forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			242 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines the template classes ExplodedNode and ExplodedGraph,
 | |
| //  which represent a path-sensitive, intra-procedural "exploded graph."
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Analysis/PathSensitive/ExplodedGraph.h"
 | |
| #include "clang/AST/Stmt.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include <vector>
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Node auditing.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // An out of line virtual method to provide a home for the class vtable.
 | |
| ExplodedNodeImpl::Auditor::~Auditor() {}
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static ExplodedNodeImpl::Auditor* NodeAuditor = 0;
 | |
| #endif
 | |
| 
 | |
| void ExplodedNodeImpl::SetAuditor(ExplodedNodeImpl::Auditor* A) {
 | |
| #ifndef NDEBUG
 | |
|   NodeAuditor = A;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ExplodedNodeImpl.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static inline std::vector<ExplodedNodeImpl*>& getVector(void* P) {
 | |
|   return *reinterpret_cast<std::vector<ExplodedNodeImpl*>*>(P);
 | |
| }
 | |
| 
 | |
| void ExplodedNodeImpl::addPredecessor(ExplodedNodeImpl* V) {
 | |
|   assert (!V->isSink());
 | |
|   Preds.addNode(V);
 | |
|   V->Succs.addNode(this);
 | |
| #ifndef NDEBUG
 | |
|   if (NodeAuditor) NodeAuditor->AddEdge(V, this);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ExplodedNodeImpl::NodeGroup::addNode(ExplodedNodeImpl* N) {
 | |
|   
 | |
|   assert ((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
 | |
|   assert (!getFlag());
 | |
|   
 | |
|   if (getKind() == Size1) {
 | |
|     if (ExplodedNodeImpl* NOld = getNode()) {
 | |
|       std::vector<ExplodedNodeImpl*>* V = new std::vector<ExplodedNodeImpl*>();
 | |
|       assert ((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
 | |
|       V->push_back(NOld);
 | |
|       V->push_back(N);
 | |
|       P = reinterpret_cast<uintptr_t>(V) | SizeOther;
 | |
|       assert (getPtr() == (void*) V);
 | |
|       assert (getKind() == SizeOther);
 | |
|     }
 | |
|     else {
 | |
|       P = reinterpret_cast<uintptr_t>(N);
 | |
|       assert (getKind() == Size1);
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     assert (getKind() == SizeOther);
 | |
|     getVector(getPtr()).push_back(N);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned ExplodedNodeImpl::NodeGroup::size() const {
 | |
|   if (getFlag())
 | |
|     return 0;
 | |
|   
 | |
|   if (getKind() == Size1)
 | |
|     return getNode() ? 1 : 0;
 | |
|   else
 | |
|     return getVector(getPtr()).size();
 | |
| }
 | |
| 
 | |
| ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::begin() const {
 | |
|   if (getFlag())
 | |
|     return NULL;
 | |
|   
 | |
|   if (getKind() == Size1)
 | |
|     return (ExplodedNodeImpl**) (getPtr() ? &P : NULL);
 | |
|   else
 | |
|     return const_cast<ExplodedNodeImpl**>(&*(getVector(getPtr()).begin()));
 | |
| }
 | |
| 
 | |
| ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::end() const {
 | |
|   if (getFlag())
 | |
|     return NULL;
 | |
|   
 | |
|   if (getKind() == Size1)
 | |
|     return (ExplodedNodeImpl**) (getPtr() ? &P+1 : NULL);
 | |
|   else {
 | |
|     // Dereferencing end() is undefined behaviour. The vector is not empty, so
 | |
|     // we can dereference the last elem and then add 1 to the result.
 | |
|     return const_cast<ExplodedNodeImpl**>(&getVector(getPtr()).back()) + 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExplodedNodeImpl::NodeGroup::~NodeGroup() {
 | |
|   if (getKind() == SizeOther) delete &getVector(getPtr());
 | |
| }
 | |
| 
 | |
| ExplodedGraphImpl*
 | |
| ExplodedGraphImpl::Trim(const ExplodedNodeImpl* const* BeginSources,
 | |
|                         const ExplodedNodeImpl* const* EndSources,
 | |
|                         InterExplodedGraphMapImpl* M,
 | |
|                         llvm::DenseMap<const void*, const void*> *InverseMap) 
 | |
| const {
 | |
|   
 | |
|   typedef llvm::DenseSet<const ExplodedNodeImpl*> Pass1Ty;
 | |
|   Pass1Ty Pass1;
 | |
|   
 | |
|   typedef llvm::DenseMap<const ExplodedNodeImpl*, ExplodedNodeImpl*> Pass2Ty;
 | |
|   Pass2Ty& Pass2 = M->M;
 | |
|   
 | |
|   llvm::SmallVector<const ExplodedNodeImpl*, 10> WL1, WL2;
 | |
| 
 | |
|   // ===- Pass 1 (reverse DFS) -===
 | |
|   for (const ExplodedNodeImpl* const* I = BeginSources; I != EndSources; ++I) {
 | |
|     assert(*I);
 | |
|     WL1.push_back(*I);
 | |
|   }
 | |
|     
 | |
|   // Process the first worklist until it is empty.  Because it is a std::list
 | |
|   // it acts like a FIFO queue.
 | |
|   while (!WL1.empty()) {
 | |
|     const ExplodedNodeImpl *N = WL1.back();
 | |
|     WL1.pop_back();
 | |
|     
 | |
|     // Have we already visited this node?  If so, continue to the next one.
 | |
|     if (Pass1.count(N))
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, mark this node as visited.
 | |
|     Pass1.insert(N);
 | |
|     
 | |
|     // If this is a root enqueue it to the second worklist.
 | |
|     if (N->Preds.empty()) {
 | |
|       WL2.push_back(N);
 | |
|       continue;
 | |
|     }
 | |
|       
 | |
|     // Visit our predecessors and enqueue them.
 | |
|     for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
 | |
|       WL1.push_back(*I);
 | |
|   }
 | |
|   
 | |
|   // We didn't hit a root? Return with a null pointer for the new graph.
 | |
|   if (WL2.empty())
 | |
|     return 0;
 | |
| 
 | |
|   // Create an empty graph.
 | |
|   ExplodedGraphImpl* G = MakeEmptyGraph();
 | |
|   
 | |
|   // ===- Pass 2 (forward DFS to construct the new graph) -===  
 | |
|   while (!WL2.empty()) {
 | |
|     const ExplodedNodeImpl* N = WL2.back();
 | |
|     WL2.pop_back();
 | |
|     
 | |
|     // Skip this node if we have already processed it.
 | |
|     if (Pass2.find(N) != Pass2.end())
 | |
|       continue;
 | |
|     
 | |
|     // Create the corresponding node in the new graph and record the mapping
 | |
|     // from the old node to the new node.
 | |
|     ExplodedNodeImpl* NewN = G->getNodeImpl(N->getLocation(), N->State, NULL);
 | |
|     Pass2[N] = NewN;
 | |
|     
 | |
|     // Also record the reverse mapping from the new node to the old node.
 | |
|     if (InverseMap) (*InverseMap)[NewN] = N;
 | |
|     
 | |
|     // If this node is a root, designate it as such in the graph.
 | |
|     if (N->Preds.empty())
 | |
|       G->addRoot(NewN);
 | |
|     
 | |
|     // In the case that some of the intended predecessors of NewN have already
 | |
|     // been created, we should hook them up as predecessors.
 | |
| 
 | |
|     // Walk through the predecessors of 'N' and hook up their corresponding
 | |
|     // nodes in the new graph (if any) to the freshly created node.
 | |
|     for (ExplodedNodeImpl **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
 | |
|       Pass2Ty::iterator PI = Pass2.find(*I);
 | |
|       if (PI == Pass2.end())
 | |
|         continue;
 | |
|       
 | |
|       NewN->addPredecessor(PI->second);
 | |
|     }
 | |
| 
 | |
|     // In the case that some of the intended successors of NewN have already
 | |
|     // been created, we should hook them up as successors.  Otherwise, enqueue
 | |
|     // the new nodes from the original graph that should have nodes created
 | |
|     // in the new graph.
 | |
|     for (ExplodedNodeImpl **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
 | |
|       Pass2Ty::iterator PI = Pass2.find(*I);      
 | |
|       if (PI != Pass2.end()) {
 | |
|         PI->second->addPredecessor(NewN);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Enqueue nodes to the worklist that were marked during pass 1.
 | |
|       if (Pass1.count(*I))
 | |
|         WL2.push_back(*I);
 | |
|     }
 | |
|     
 | |
|     // Finally, explictly mark all nodes without any successors as sinks.
 | |
|     if (N->isSink())
 | |
|       NewN->markAsSink();
 | |
|   }
 | |
|     
 | |
|   return G;
 | |
| }
 | |
| 
 | |
| ExplodedNodeImpl*
 | |
| InterExplodedGraphMapImpl::getMappedImplNode(const ExplodedNodeImpl* N) const {
 | |
|   llvm::DenseMap<const ExplodedNodeImpl*, ExplodedNodeImpl*>::iterator I =
 | |
|     M.find(N);
 | |
| 
 | |
|   return I == M.end() ? 0 : I->second;
 | |
| }
 | |
| 
 | |
| InterExplodedGraphMapImpl::InterExplodedGraphMapImpl() {}
 | |
| 
 |