forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1337 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1337 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
| //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a basic region store model. In this model, we do have field
 | |
| // sensitivity. But we assume nothing about the heap shape. So recursive data
 | |
| // structures are largely ignored. Basically we do 1-limiting analysis.
 | |
| // Parameter pointers are assumed with no aliasing. Pointee objects of
 | |
| // parameters are created lazily.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "clang/Analysis/PathSensitive/MemRegion.h"
 | |
| #include "clang/Analysis/PathSensitive/GRState.h"
 | |
| #include "clang/Analysis/PathSensitive/GRStateTrait.h"
 | |
| #include "clang/Analysis/Analyses/LiveVariables.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| 
 | |
| #include "llvm/ADT/ImmutableMap.h"
 | |
| #include "llvm/ADT/ImmutableList.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| // Actual Store type.
 | |
| typedef llvm::ImmutableMap<const MemRegion*, SVal> RegionBindingsTy;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Region "Views"
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  MemRegions can be layered on top of each other.  This GDM entry tracks
 | |
| //  what are the MemRegions that layer a given MemRegion.
 | |
| //
 | |
| typedef llvm::ImmutableSet<const MemRegion*> RegionViews;
 | |
| namespace { class VISIBILITY_HIDDEN RegionViewMap {}; }
 | |
| static int RegionViewMapIndex = 0;
 | |
| namespace clang {
 | |
|   template<> struct GRStateTrait<RegionViewMap> 
 | |
|     : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*,
 | |
|                                                     RegionViews> > {
 | |
|                                                       
 | |
|     static void* GDMIndex() { return &RegionViewMapIndex; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // RegionCasts records the current cast type of a region.
 | |
| namespace { class VISIBILITY_HIDDEN RegionCasts {}; }
 | |
| static int RegionCastsIndex = 0;
 | |
| namespace clang {
 | |
|   template<> struct GRStateTrait<RegionCasts>
 | |
|     : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, 
 | |
|                                                     QualType> > {
 | |
|     static void* GDMIndex() { return &RegionCastsIndex; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Region "Extents"
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  MemRegions represent chunks of memory with a size (their "extent").  This
 | |
| //  GDM entry tracks the extents for regions.  Extents are in bytes.
 | |
| //
 | |
| namespace { class VISIBILITY_HIDDEN RegionExtents {}; }
 | |
| static int RegionExtentsIndex = 0;
 | |
| namespace clang {
 | |
|   template<> struct GRStateTrait<RegionExtents>
 | |
|     : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > {
 | |
|     static void* GDMIndex() { return &RegionExtentsIndex; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Region "killsets".
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // RegionStore lazily adds value bindings to regions when the analyzer handles
 | |
| //  assignment statements.  Killsets track which default values have been
 | |
| //  killed, thus distinguishing between "unknown" values and default
 | |
| //  values. Regions are added to killset only when they are assigned "unknown"
 | |
| //  directly, otherwise we should have their value in the region bindings.
 | |
| //
 | |
| namespace { class VISIBILITY_HIDDEN RegionKills {}; }
 | |
| static int RegionKillsIndex = 0;
 | |
| namespace clang {
 | |
|   template<> struct GRStateTrait<RegionKills>
 | |
|   : public GRStatePartialTrait< llvm::ImmutableSet<const MemRegion*> > {
 | |
|     static void* GDMIndex() { return &RegionKillsIndex; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Regions with default values.
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This GDM entry tracks what regions have a default value if they have no bound
 | |
| // value and have not been killed.
 | |
| //
 | |
| namespace { class VISIBILITY_HIDDEN RegionDefaultValue {}; }
 | |
| static int RegionDefaultValueIndex = 0;
 | |
| namespace clang {
 | |
|  template<> struct GRStateTrait<RegionDefaultValue>
 | |
|    : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > {
 | |
|    static void* GDMIndex() { return &RegionDefaultValueIndex; }
 | |
|  };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Main RegionStore logic.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class VISIBILITY_HIDDEN RegionStoreSubRegionMap : public SubRegionMap {
 | |
|   typedef llvm::DenseMap<const MemRegion*,
 | |
|                          llvm::ImmutableSet<const MemRegion*> > Map;
 | |
|   
 | |
|   llvm::ImmutableSet<const MemRegion*>::Factory F;
 | |
|   Map M;
 | |
| 
 | |
| public:
 | |
|   void add(const MemRegion* Parent, const MemRegion* SubRegion) {
 | |
|     Map::iterator I = M.find(Parent);
 | |
|     M.insert(std::make_pair(Parent, 
 | |
|              F.Add(I == M.end() ? F.GetEmptySet() : I->second, SubRegion)));
 | |
|   }
 | |
|     
 | |
|   ~RegionStoreSubRegionMap() {}
 | |
|   
 | |
|   bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
 | |
|     Map::iterator I = M.find(Parent);
 | |
| 
 | |
|     if (I == M.end())
 | |
|       return true;
 | |
|     
 | |
|     llvm::ImmutableSet<const MemRegion*> S = I->second;
 | |
|     for (llvm::ImmutableSet<const MemRegion*>::iterator SI=S.begin(),SE=S.end();
 | |
|          SI != SE; ++SI) {
 | |
|       if (!V.Visit(Parent, *SI))
 | |
|         return false;
 | |
|     }
 | |
|     
 | |
|     return true;
 | |
|   }
 | |
| };  
 | |
| 
 | |
| class VISIBILITY_HIDDEN RegionStoreManager : public StoreManager {
 | |
|   RegionBindingsTy::Factory RBFactory;
 | |
|   RegionViews::Factory RVFactory;
 | |
| 
 | |
|   const MemRegion* SelfRegion;
 | |
|   const ImplicitParamDecl *SelfDecl;
 | |
| 
 | |
| public:
 | |
|   RegionStoreManager(GRStateManager& mgr) 
 | |
|     : StoreManager(mgr),
 | |
|       RBFactory(mgr.getAllocator()),
 | |
|       RVFactory(mgr.getAllocator()),
 | |
|       SelfRegion(0), SelfDecl(0) {
 | |
|     if (const ObjCMethodDecl* MD =
 | |
|           dyn_cast<ObjCMethodDecl>(&StateMgr.getCodeDecl()))
 | |
|       SelfDecl = MD->getSelfDecl();
 | |
|   }
 | |
| 
 | |
|   virtual ~RegionStoreManager() {}
 | |
| 
 | |
|   SubRegionMap* getSubRegionMap(const GRState *state);
 | |
|   
 | |
|   const GRState* BindCompoundLiteral(const GRState* St, 
 | |
|                                      const CompoundLiteralExpr* CL, SVal V);
 | |
| 
 | |
|   /// getLValueString - Returns an SVal representing the lvalue of a
 | |
|   ///  StringLiteral.  Within RegionStore a StringLiteral has an
 | |
|   ///  associated StringRegion, and the lvalue of a StringLiteral is
 | |
|   ///  the lvalue of that region.
 | |
|   SVal getLValueString(const GRState* St, const StringLiteral* S);
 | |
| 
 | |
|   /// getLValueCompoundLiteral - Returns an SVal representing the
 | |
|   ///   lvalue of a compound literal.  Within RegionStore a compound
 | |
|   ///   literal has an associated region, and the lvalue of the
 | |
|   ///   compound literal is the lvalue of that region.
 | |
|   SVal getLValueCompoundLiteral(const GRState* St, const CompoundLiteralExpr*);
 | |
| 
 | |
|   /// getLValueVar - Returns an SVal that represents the lvalue of a
 | |
|   ///  variable.  Within RegionStore a variable has an associated
 | |
|   ///  VarRegion, and the lvalue of the variable is the lvalue of that region.
 | |
|   SVal getLValueVar(const GRState* St, const VarDecl* VD);
 | |
|   
 | |
|   SVal getLValueIvar(const GRState* St, const ObjCIvarDecl* D, SVal Base);
 | |
| 
 | |
|   SVal getLValueField(const GRState* St, SVal Base, const FieldDecl* D);
 | |
|   
 | |
|   SVal getLValueFieldOrIvar(const GRState* St, SVal Base, const Decl* D);
 | |
| 
 | |
|   SVal getLValueElement(const GRState* St, QualType elementType,
 | |
|                         SVal Base, SVal Offset);
 | |
| 
 | |
|   SVal getSizeInElements(const GRState* St, const MemRegion* R);
 | |
| 
 | |
|   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
 | |
|   ///  type.  'Array' represents the lvalue of the array being decayed
 | |
|   ///  to a pointer, and the returned SVal represents the decayed
 | |
|   ///  version of that lvalue (i.e., a pointer to the first element of
 | |
|   ///  the array).  This is called by GRExprEngine when evaluating
 | |
|   ///  casts from arrays to pointers.
 | |
|   SVal ArrayToPointer(Loc Array);
 | |
| 
 | |
|   CastResult CastRegion(const GRState* state, const MemRegion* R,
 | |
|                         QualType CastToTy);
 | |
| 
 | |
|   SVal EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R);
 | |
| 
 | |
|   /// The high level logic for this method is this:
 | |
|   /// Retrieve (L)
 | |
|   ///   if L has binding
 | |
|   ///     return L's binding
 | |
|   ///   else if L is in killset
 | |
|   ///     return unknown
 | |
|   ///   else
 | |
|   ///     if L is on stack or heap
 | |
|   ///       return undefined
 | |
|   ///     else
 | |
|   ///       return symbolic
 | |
|   SVal Retrieve(const GRState* state, Loc L, QualType T = QualType());
 | |
| 
 | |
|   const GRState* Bind(const GRState* St, Loc LV, SVal V);
 | |
| 
 | |
|   Store Remove(Store store, Loc LV);
 | |
| 
 | |
|   Store getInitialStore() { return RBFactory.GetEmptyMap().getRoot(); }
 | |
|   
 | |
|   /// getSelfRegion - Returns the region for the 'self' (Objective-C) or
 | |
|   ///  'this' object (C++).  When used when analyzing a normal function this
 | |
|   ///  method returns NULL.
 | |
|   const MemRegion* getSelfRegion(Store) {
 | |
|     if (!SelfDecl)
 | |
|       return 0;
 | |
|     
 | |
|     if (!SelfRegion) {
 | |
|       const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(&StateMgr.getCodeDecl());
 | |
|       SelfRegion = MRMgr.getObjCObjectRegion(MD->getClassInterface(),
 | |
|                                              MRMgr.getHeapRegion());
 | |
|     }
 | |
|     
 | |
|     return SelfRegion;
 | |
|   }
 | |
|   
 | |
|   /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values.
 | |
|   ///  It returns a new Store with these values removed, and populates LSymbols
 | |
|   //   and DSymbols with the known set of live and dead symbols respectively.
 | |
|   Store RemoveDeadBindings(const GRState* state, Stmt* Loc,
 | |
|                            SymbolReaper& SymReaper,
 | |
|                            llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);
 | |
| 
 | |
|   const GRState* BindDecl(const GRState* St, const VarDecl* VD, SVal InitVal);
 | |
| 
 | |
|   const GRState* BindDeclWithNoInit(const GRState* St, const VarDecl* VD) {
 | |
|     return St;
 | |
|   }
 | |
| 
 | |
|   const GRState* setExtent(const GRState* St, const MemRegion* R, SVal Extent);
 | |
|   const GRState* setCastType(const GRState* St, const MemRegion* R, QualType T);
 | |
| 
 | |
|   static inline RegionBindingsTy GetRegionBindings(Store store) {
 | |
|    return RegionBindingsTy(static_cast<const RegionBindingsTy::TreeTy*>(store));
 | |
|   }
 | |
| 
 | |
|   void print(Store store, std::ostream& Out, const char* nl, const char *sep);
 | |
| 
 | |
|   void iterBindings(Store store, BindingsHandler& f) {
 | |
|     // FIXME: Implement.
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   const GRState* BindArray(const GRState* St, const TypedRegion* R, SVal V);
 | |
| 
 | |
|   /// Retrieve the values in a struct and return a CompoundVal, used when doing
 | |
|   /// struct copy: 
 | |
|   /// struct s x, y; 
 | |
|   /// x = y;
 | |
|   /// y's value is retrieved by this method.
 | |
|   SVal RetrieveStruct(const GRState* St, const TypedRegion* R);
 | |
| 
 | |
|   SVal RetrieveArray(const GRState* St, const TypedRegion* R);
 | |
| 
 | |
|   const GRState* BindStruct(const GRState* St, const TypedRegion* R, SVal V);
 | |
| 
 | |
|   /// KillStruct - Set the entire struct to unknown. 
 | |
|   const GRState* KillStruct(const GRState* St, const TypedRegion* R);
 | |
| 
 | |
|   // Utility methods.
 | |
|   BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); }
 | |
|   ASTContext& getContext() { return StateMgr.getContext(); }
 | |
| 
 | |
|   SymbolManager& getSymbolManager() { return StateMgr.getSymbolManager(); }
 | |
| 
 | |
|   const GRState* AddRegionView(const GRState* St,
 | |
|                                const MemRegion* View, const MemRegion* Base);
 | |
|   const GRState* RemoveRegionView(const GRState* St,
 | |
|                                   const MemRegion* View, const MemRegion* Base);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| StoreManager* clang::CreateRegionStoreManager(GRStateManager& StMgr) {
 | |
|   return new RegionStoreManager(StMgr);
 | |
| }
 | |
| 
 | |
| SubRegionMap* RegionStoreManager::getSubRegionMap(const GRState *state) {
 | |
|   RegionBindingsTy B = GetRegionBindings(state->getStore());
 | |
|   RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
 | |
|   
 | |
|   for (RegionBindingsTy::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
 | |
|     if (const SubRegion* R = dyn_cast<SubRegion>(I.getKey()))
 | |
|       M->add(R->getSuperRegion(), R);
 | |
|   }
 | |
|   
 | |
|   return M;
 | |
| }
 | |
| 
 | |
| /// getLValueString - Returns an SVal representing the lvalue of a
 | |
| ///  StringLiteral.  Within RegionStore a StringLiteral has an
 | |
| ///  associated StringRegion, and the lvalue of a StringLiteral is the
 | |
| ///  lvalue of that region.
 | |
| SVal RegionStoreManager::getLValueString(const GRState* St, 
 | |
|                                          const StringLiteral* S) {
 | |
|   return loc::MemRegionVal(MRMgr.getStringRegion(S));
 | |
| }
 | |
| 
 | |
| /// getLValueVar - Returns an SVal that represents the lvalue of a
 | |
| ///  variable.  Within RegionStore a variable has an associated
 | |
| ///  VarRegion, and the lvalue of the variable is the lvalue of that region.
 | |
| SVal RegionStoreManager::getLValueVar(const GRState* St, const VarDecl* VD) {
 | |
|   return loc::MemRegionVal(MRMgr.getVarRegion(VD));
 | |
| }
 | |
| 
 | |
| /// getLValueCompoundLiteral - Returns an SVal representing the lvalue
 | |
| ///   of a compound literal.  Within RegionStore a compound literal
 | |
| ///   has an associated region, and the lvalue of the compound literal
 | |
| ///   is the lvalue of that region.
 | |
| SVal
 | |
| RegionStoreManager::getLValueCompoundLiteral(const GRState* St,
 | |
| 					     const CompoundLiteralExpr* CL) {
 | |
|   return loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL));
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getLValueIvar(const GRState* St, const ObjCIvarDecl* D,
 | |
|                                        SVal Base) {
 | |
|   return getLValueFieldOrIvar(St, Base, D);
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getLValueField(const GRState* St, SVal Base,
 | |
|                                         const FieldDecl* D) {
 | |
|   return getLValueFieldOrIvar(St, Base, D);
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getLValueFieldOrIvar(const GRState* St, SVal Base,
 | |
|                                               const Decl* D) {
 | |
|   if (Base.isUnknownOrUndef())
 | |
|     return Base;
 | |
| 
 | |
|   Loc BaseL = cast<Loc>(Base);
 | |
|   const MemRegion* BaseR = 0;
 | |
| 
 | |
|   switch (BaseL.getSubKind()) {
 | |
|   case loc::MemRegionKind:
 | |
|     BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
 | |
|     if (const SymbolicRegion* SR = dyn_cast<SymbolicRegion>(BaseR)) {
 | |
|       SymbolRef Sym = SR->getSymbol();
 | |
|       BaseR = MRMgr.getTypedViewRegion(Sym->getType(getContext()), SR);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case loc::GotoLabelKind:
 | |
|     // These are anormal cases. Flag an undefined value.
 | |
|     return UndefinedVal();
 | |
| 
 | |
|   case loc::ConcreteIntKind:
 | |
|     // While these seem funny, this can happen through casts.
 | |
|     // FIXME: What we should return is the field offset.  For example,
 | |
|     //  add the field offset to the integer value.  That way funny things
 | |
|     //  like this work properly:  &(((struct foo *) 0xa)->f)
 | |
|     return Base;
 | |
| 
 | |
|   default:
 | |
|     assert(0 && "Unhandled Base.");
 | |
|     return Base;
 | |
|   }
 | |
|   
 | |
|   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
 | |
|   // of FieldDecl.
 | |
|   if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
 | |
|     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
 | |
| 
 | |
|   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getLValueElement(const GRState* St,
 | |
|                                           QualType elementType,
 | |
|                                           SVal Base, SVal Offset) {
 | |
| 
 | |
|   // If the base is an unknown or undefined value, just return it back.
 | |
|   // FIXME: For absolute pointer addresses, we just return that value back as
 | |
|   //  well, although in reality we should return the offset added to that
 | |
|   //  value.
 | |
|   if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
 | |
|     return Base;
 | |
| 
 | |
|   // Only handle integer offsets... for now.
 | |
|   if (!isa<nonloc::ConcreteInt>(Offset))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   const TypedRegion* BaseRegion = 0;
 | |
| 
 | |
|   const MemRegion* R = cast<loc::MemRegionVal>(Base).getRegion();
 | |
|   if (const SymbolicRegion* SR = dyn_cast<SymbolicRegion>(R)) {
 | |
|     SymbolRef Sym = SR->getSymbol();
 | |
|     BaseRegion = MRMgr.getTypedViewRegion(Sym->getType(getContext()), SR);
 | |
|   }
 | |
|   else
 | |
|     BaseRegion = cast<TypedRegion>(R);
 | |
| 
 | |
|   // Pointer of any type can be cast and used as array base.
 | |
|   const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
 | |
|   
 | |
|   if (!ElemR) {
 | |
|     //
 | |
|     // If the base region is not an ElementRegion, create one.
 | |
|     // This can happen in the following example:
 | |
|     //
 | |
|     //   char *p = __builtin_alloc(10);
 | |
|     //   p[1] = 8;
 | |
|     //
 | |
|     //  Observe that 'p' binds to an TypedViewRegion<AllocaRegion>.
 | |
|     //
 | |
| 
 | |
|     // Offset might be unsigned. We have to convert it to signed ConcreteInt.
 | |
|     if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&Offset)) {
 | |
|       const llvm::APSInt& OffI = CI->getValue();
 | |
|       if (OffI.isUnsigned()) {
 | |
|         llvm::APSInt Tmp = OffI;
 | |
|         Tmp.setIsSigned(true);
 | |
|         Offset = NonLoc::MakeVal(getBasicVals(), Tmp);
 | |
|       }
 | |
|     }
 | |
|     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
 | |
|                                                     BaseRegion));
 | |
|   }
 | |
|   
 | |
|   SVal BaseIdx = ElemR->getIndex();
 | |
|   
 | |
|   if (!isa<nonloc::ConcreteInt>(BaseIdx))
 | |
|     return UnknownVal();
 | |
|   
 | |
|   const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
 | |
|   const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
 | |
|   assert(BaseIdxI.isSigned());
 | |
|   
 | |
|   // FIXME: This appears to be the assumption of this code.  We should review
 | |
|   // whether or not BaseIdxI.getBitWidth() < OffI.getBitWidth().  If it
 | |
|   // can't we need to put a comment here.  If it can, we should handle it.
 | |
|   assert(BaseIdxI.getBitWidth() >= OffI.getBitWidth());
 | |
| 
 | |
|   const TypedRegion *ArrayR = cast<TypedRegion>(ElemR->getSuperRegion());
 | |
|   SVal NewIdx;
 | |
|   
 | |
|   if (OffI.isUnsigned() || OffI.getBitWidth() < BaseIdxI.getBitWidth()) {
 | |
|     // 'Offset' might be unsigned.  We have to convert it to signed and
 | |
|     // possibly extend it.
 | |
|     llvm::APSInt Tmp = OffI;
 | |
|     
 | |
|     if (OffI.getBitWidth() < BaseIdxI.getBitWidth())
 | |
|         Tmp.extend(BaseIdxI.getBitWidth());
 | |
|     
 | |
|     Tmp.setIsSigned(true);
 | |
|     Tmp += BaseIdxI; // Compute the new offset.    
 | |
|     NewIdx = NonLoc::MakeVal(getBasicVals(), Tmp);    
 | |
|   }
 | |
|   else
 | |
|     NewIdx = nonloc::ConcreteInt(getBasicVals().getValue(BaseIdxI + OffI));
 | |
| 
 | |
|   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR));
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getSizeInElements(const GRState* St,
 | |
|                                            const MemRegion* R) {
 | |
|   if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
 | |
|     // Get the type of the variable.
 | |
|     QualType T = VR->getDesugaredRValueType(getContext());
 | |
| 
 | |
|     // FIXME: Handle variable-length arrays.
 | |
|     if (isa<VariableArrayType>(T))
 | |
|       return UnknownVal();
 | |
|     
 | |
|     if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(T)) {
 | |
|       // return the size as signed integer.
 | |
|       return NonLoc::MakeVal(getBasicVals(), CAT->getSize(), false);
 | |
|     }
 | |
| 
 | |
|     GRStateRef state(St, StateMgr);
 | |
|     const QualType* CastTy = state.get<RegionCasts>(VR);
 | |
| 
 | |
|     // If the VarRegion is cast to other type, compute the size with respect to
 | |
|     // that type.
 | |
|     if (CastTy) {
 | |
|       QualType EleTy =cast<PointerType>(CastTy->getTypePtr())->getPointeeType();
 | |
|       QualType VarTy = VR->getRValueType(getContext());
 | |
|       uint64_t EleSize = getContext().getTypeSize(EleTy);
 | |
|       uint64_t VarSize = getContext().getTypeSize(VarTy);
 | |
|       return NonLoc::MakeIntVal(getBasicVals(), VarSize / EleSize, false);
 | |
|     }
 | |
| 
 | |
|     // Clients can use ordinary variables as if they were arrays.  These
 | |
|     // essentially are arrays of size 1.
 | |
|     return NonLoc::MakeIntVal(getBasicVals(), 1, false);
 | |
|   }
 | |
| 
 | |
|   if (const StringRegion* SR = dyn_cast<StringRegion>(R)) {
 | |
|     const StringLiteral* Str = SR->getStringLiteral();
 | |
|     // We intentionally made the size value signed because it participates in 
 | |
|     // operations with signed indices.
 | |
|     return NonLoc::MakeIntVal(getBasicVals(), Str->getByteLength()+1, false);
 | |
|   }
 | |
| 
 | |
|   if (const TypedViewRegion* ATR = dyn_cast<TypedViewRegion>(R)) {
 | |
| #if 0
 | |
|     // FIXME: This logic doesn't really work, as we can have all sorts of
 | |
|     // weird cases.  For example, this crashes on test case 'rdar-6442306-1.m'.
 | |
|     // The weird cases come in when arbitrary casting comes into play, violating
 | |
|     // any type-safe programming.
 | |
|     
 | |
|     GRStateRef state(St, StateMgr);
 | |
| 
 | |
|     // Get the size of the super region in bytes.
 | |
|     const SVal* Extent = state.get<RegionExtents>(ATR->getSuperRegion());
 | |
|     assert(Extent && "region extent not exist");
 | |
| 
 | |
|     // Assume it's ConcreteInt for now.
 | |
|     llvm::APSInt SSize = cast<nonloc::ConcreteInt>(*Extent).getValue();
 | |
| 
 | |
|     // Get the size of the element in bits.
 | |
|     QualType LvT = ATR->getLValueType(getContext());
 | |
|     QualType ElemTy = cast<PointerType>(LvT.getTypePtr())->getPointeeType();
 | |
| 
 | |
|     uint64_t X = getContext().getTypeSize(ElemTy);
 | |
| 
 | |
|     const llvm::APSInt& ESize = getBasicVals().getValue(X, SSize.getBitWidth(),
 | |
|                                                         false);
 | |
| 
 | |
|     // Calculate the number of elements. 
 | |
| 
 | |
|     // FIXME: What do we do with signed-ness problem? Shall we make all APSInts
 | |
|     // signed?
 | |
|     if (SSize.isUnsigned())
 | |
|       SSize.setIsSigned(true);
 | |
| 
 | |
|     // FIXME: move this operation into BasicVals.
 | |
|     const llvm::APSInt S = 
 | |
|       (SSize * getBasicVals().getValue(8, SSize.getBitWidth(), false)) / ESize;
 | |
| 
 | |
|     return NonLoc::MakeVal(getBasicVals(), S);
 | |
| #else
 | |
|     ATR = ATR;
 | |
|     return UnknownVal();
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) {
 | |
|     // FIXME: Unsupported yet.
 | |
|     FR = 0;
 | |
|     return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   if (isa<SymbolicRegion>(R)) {
 | |
|     return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   if (isa<ElementRegion>(R)) {
 | |
|     return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   assert(0 && "Other regions are not supported yet.");
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| /// ArrayToPointer - Emulates the "decay" of an array to a pointer
 | |
| ///  type.  'Array' represents the lvalue of the array being decayed
 | |
| ///  to a pointer, and the returned SVal represents the decayed
 | |
| ///  version of that lvalue (i.e., a pointer to the first element of
 | |
| ///  the array).  This is called by GRExprEngine when evaluating casts
 | |
| ///  from arrays to pointers.
 | |
| SVal RegionStoreManager::ArrayToPointer(Loc Array) {
 | |
|   if (!isa<loc::MemRegionVal>(Array))
 | |
|     return UnknownVal();
 | |
|   
 | |
|   const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
 | |
|   const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);
 | |
|   
 | |
|   if (!ArrayR)
 | |
|     return UnknownVal();
 | |
|   
 | |
|   // Strip off typedefs from the ArrayRegion's RvalueType.
 | |
|   QualType T = ArrayR->getRValueType(getContext())->getDesugaredType();
 | |
|   ArrayType *AT = cast<ArrayType>(T);
 | |
|   T = AT->getElementType();
 | |
|   
 | |
|   nonloc::ConcreteInt Idx(getBasicVals().getZeroWithPtrWidth(false));
 | |
|   ElementRegion* ER = MRMgr.getElementRegion(T, Idx, ArrayR);
 | |
|   
 | |
|   return loc::MemRegionVal(ER);                    
 | |
| }
 | |
| 
 | |
| RegionStoreManager::CastResult
 | |
| RegionStoreManager::CastRegion(const GRState* state, const MemRegion* R,
 | |
|                                QualType CastToTy) {
 | |
|   
 | |
|   ASTContext& Ctx = StateMgr.getContext();
 | |
| 
 | |
|   // We need to know the real type of CastToTy.
 | |
|   QualType ToTy = Ctx.getCanonicalType(CastToTy);
 | |
| 
 | |
|   // Check cast to ObjCQualifiedID type.
 | |
|   if (isa<ObjCQualifiedIdType>(ToTy)) {
 | |
|     // FIXME: Record the type information aside.
 | |
|     return CastResult(state, R);
 | |
|   }
 | |
| 
 | |
|   // CodeTextRegion should be cast to only function pointer type.
 | |
|   if (isa<CodeTextRegion>(R)) {
 | |
|     assert(CastToTy->isFunctionPointerType() || CastToTy->isBlockPointerType());
 | |
|     return CastResult(state, R);
 | |
|   }
 | |
| 
 | |
|   // Assume we are casting from pointer to pointer. Other cases are handled
 | |
|   // elsewhere.
 | |
|   QualType PointeeTy = cast<PointerType>(ToTy.getTypePtr())->getPointeeType();
 | |
| 
 | |
|   // Return the same region if the region types are compatible.
 | |
|   if (const TypedRegion* TR = dyn_cast<TypedRegion>(R)) {
 | |
|     QualType Ta = Ctx.getCanonicalType(TR->getLValueType(Ctx));
 | |
| 
 | |
|     if (Ta == ToTy)
 | |
|       return CastResult(state, R);
 | |
|   }
 | |
| 
 | |
|   // Process region cast according to the kind of the region being cast.
 | |
|   
 | |
| 
 | |
|   // FIXME: Need to handle arbitrary downcasts.
 | |
|   // FIXME: Handle the case where a TypedViewRegion (layering a SymbolicRegion
 | |
|   //         or an AllocaRegion is cast to another view, thus causing the memory
 | |
|   //         to be re-used for a different purpose.
 | |
| 
 | |
|   if (isa<SymbolicRegion>(R) || isa<AllocaRegion>(R)) {
 | |
|     const MemRegion* ViewR = MRMgr.getTypedViewRegion(CastToTy, R);  
 | |
|     return CastResult(AddRegionView(state, ViewR, R), ViewR);
 | |
|   }
 | |
| 
 | |
|   // VarRegion, ElementRegion, and FieldRegion has an inherent type. Normally
 | |
|   // they should not be cast. We only layer an ElementRegion when the cast-to
 | |
|   // pointee type is of smaller size. In other cases, we return the original
 | |
|   // VarRegion.
 | |
|   if (isa<VarRegion>(R) || isa<ElementRegion>(R) || isa<FieldRegion>(R)
 | |
|       || isa<ObjCIvarRegion>(R) || isa<CompoundLiteralRegion>(R)) {
 | |
|     // If the pointee type is incomplete, do not compute its size, and return
 | |
|     // the original region.
 | |
|     if (const RecordType *RT = dyn_cast<RecordType>(PointeeTy.getTypePtr())) {
 | |
|       const RecordDecl *D = RT->getDecl();
 | |
|       if (!D->getDefinition(getContext()))
 | |
|         return CastResult(state, R);
 | |
|     }
 | |
| 
 | |
|     QualType ObjTy = cast<TypedRegion>(R)->getRValueType(getContext());
 | |
|     uint64_t PointeeTySize = getContext().getTypeSize(PointeeTy);
 | |
|     uint64_t ObjTySize = getContext().getTypeSize(ObjTy);
 | |
| 
 | |
|     if (PointeeTySize > 0 && PointeeTySize < ObjTySize) {
 | |
|       // Record the cast type of the region.
 | |
|       state = setCastType(state, R, ToTy);
 | |
| 
 | |
|       SVal Idx = ValMgr.makeZeroArrayIndex();
 | |
|       ElementRegion* ER = MRMgr.getElementRegion(PointeeTy, Idx, R);
 | |
|       return CastResult(state, ER);
 | |
|     } else
 | |
|       return CastResult(state, R);
 | |
|   }
 | |
| 
 | |
|   if (isa<TypedViewRegion>(R)) {
 | |
|     const MemRegion* ViewR = MRMgr.getTypedViewRegion(CastToTy, R);  
 | |
|     return CastResult(state, ViewR);
 | |
|   }
 | |
| 
 | |
|   if (isa<ObjCObjectRegion>(R)) {
 | |
|     return CastResult(state, R);
 | |
|   }
 | |
| 
 | |
|   assert(0 && "Unprocessed region.");
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R) {
 | |
|   // Assume the base location is MemRegionVal(ElementRegion).
 | |
|   if (!isa<loc::MemRegionVal>(L))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
 | |
|   if (isa<SymbolicRegion>(MR))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   const TypedRegion* TR = cast<TypedRegion>(MR);
 | |
|   const ElementRegion* ER = dyn_cast<ElementRegion>(TR);
 | |
|   
 | |
|   if (!ER) {
 | |
|     // If the region is not element region, create one with index 0. This can
 | |
|     // happen in the following example:
 | |
|     // char *p = foo();
 | |
|     // p += 3;
 | |
|     // Note that p binds to a TypedViewRegion(SymbolicRegion).
 | |
|     nonloc::ConcreteInt Idx(getBasicVals().getZeroWithPtrWidth(false));
 | |
|     ER = MRMgr.getElementRegion(TR->getRValueType(getContext()), Idx, TR);
 | |
|   }
 | |
| 
 | |
|   SVal Idx = ER->getIndex();
 | |
| 
 | |
|   nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx);
 | |
|   nonloc::ConcreteInt* Offset = dyn_cast<nonloc::ConcreteInt>(&R);
 | |
| 
 | |
|   // Only support concrete integer indexes for now.
 | |
|   if (Base && Offset) {
 | |
|     // FIXME: For now, convert the signedness and bitwidth of offset in case
 | |
|     //  they don't match.  This can result from pointer arithmetic.  In reality,
 | |
|     //  we should figure out what are the proper semantics and implement them.
 | |
|     // 
 | |
|     //  This addresses the test case test/Analysis/ptr-arith.c
 | |
|     //
 | |
|     nonloc::ConcreteInt OffConverted(getBasicVals().Convert(Base->getValue(),
 | |
|                                                            Offset->getValue()));
 | |
|     SVal NewIdx = Base->EvalBinOp(getBasicVals(), Op, OffConverted);
 | |
|     const MemRegion* NewER =
 | |
|       MRMgr.getElementRegion(ER->getElementType(), NewIdx, 
 | |
|                              cast<TypedRegion>(ER->getSuperRegion()));
 | |
|     return Loc::MakeVal(NewER);
 | |
| 
 | |
|   }
 | |
|   
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::Retrieve(const GRState* St, Loc L, QualType T) {
 | |
|   assert(!isa<UnknownVal>(L) && "location unknown");
 | |
|   assert(!isa<UndefinedVal>(L) && "location undefined");
 | |
| 
 | |
|   // FIXME: Is this even possible?  Shouldn't this be treated as a null
 | |
|   //  dereference at a higher level?
 | |
|   if (isa<loc::ConcreteInt>(L))
 | |
|     return UndefinedVal();
 | |
| 
 | |
|   const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
 | |
| 
 | |
|   // We return unknown for symbolic region for now. This might be improved.
 | |
|   // Example:
 | |
|   // void f(int* p) { int x = *p; }
 | |
|   if (isa<SymbolicRegion>(MR))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
 | |
|   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
 | |
|   const TypedRegion* R = cast<TypedRegion>(MR);
 | |
|   assert(R && "bad region");
 | |
| 
 | |
|   // FIXME: We should eventually handle funny addressing.  e.g.:
 | |
|   //
 | |
|   //   int x = ...;
 | |
|   //   int *p = &x;
 | |
|   //   char *q = (char*) p;
 | |
|   //   char c = *q;  // returns the first byte of 'x'.
 | |
|   //
 | |
|   // Such funny addressing will occur due to layering of regions.
 | |
| 
 | |
|   QualType RTy = R->getRValueType(getContext());
 | |
| 
 | |
|   if (RTy->isStructureType())
 | |
|     return RetrieveStruct(St, R);
 | |
| 
 | |
|   if (RTy->isArrayType())
 | |
|     return RetrieveArray(St, R);
 | |
| 
 | |
|   // FIXME: handle Vector types.
 | |
|   if (RTy->isVectorType())
 | |
|       return UnknownVal();
 | |
|   
 | |
|   RegionBindingsTy B = GetRegionBindings(St->getStore());
 | |
|   RegionBindingsTy::data_type* V = B.lookup(R);
 | |
| 
 | |
|   // Check if the region has a binding.
 | |
|   if (V)
 | |
|     return *V;
 | |
| 
 | |
|   GRStateRef state(St, StateMgr);
 | |
|   
 | |
|   // Check if the region is in killset.
 | |
|   if (state.contains<RegionKills>(R))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // If the region is an element or field, it may have a default value.
 | |
|   if (isa<ElementRegion>(R) || isa<FieldRegion>(R)) {
 | |
|     const MemRegion* SuperR = cast<SubRegion>(R)->getSuperRegion();
 | |
|     GRStateTrait<RegionDefaultValue>::lookup_type D = 
 | |
|       state.get<RegionDefaultValue>(SuperR);
 | |
|     if (D)
 | |
|       return *D;
 | |
|   }
 | |
|   
 | |
|   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
 | |
|     const MemRegion *SR = IVR->getSuperRegion();
 | |
| 
 | |
|     // If the super region is 'self' then return the symbol representing
 | |
|     // the value of the ivar upon entry to the method.
 | |
|     if (SR == SelfRegion) {
 | |
|       // FIXME: Do we need to handle the case where the super region
 | |
|       // has a view?  We want to canonicalize the bindings.
 | |
|       return ValMgr.getRValueSymbolVal(R);
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we need a new symbol.  For now return Unknown.
 | |
|     return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   // The location does not have a bound value.  This means that it has
 | |
|   // the value it had upon its creation and/or entry to the analyzed
 | |
|   // function/method.  These are either symbolic values or 'undefined'.
 | |
| 
 | |
|   // We treat function parameters as symbolic values.
 | |
|   if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
 | |
|     const VarDecl *VD = VR->getDecl();
 | |
|     
 | |
|     if (VD == SelfDecl)
 | |
|       return loc::MemRegionVal(getSelfRegion(0));
 | |
|     
 | |
|     if (isa<ParmVarDecl>(VD) || isa<ImplicitParamDecl>(VD) ||
 | |
|         VD->hasGlobalStorage()) {
 | |
|       QualType VTy = VD->getType();
 | |
|       if (Loc::IsLocType(VTy) || VTy->isIntegerType())
 | |
|         return ValMgr.getRValueSymbolVal(VR);
 | |
|       else
 | |
|         return UnknownVal();
 | |
|     }
 | |
|   }  
 | |
| 
 | |
|   if (MRMgr.onStack(R) || MRMgr.onHeap(R)) {
 | |
|     // All stack variables are considered to have undefined values
 | |
|     // upon creation.  All heap allocated blocks are considered to
 | |
|     // have undefined values as well unless they are explicitly bound
 | |
|     // to specific values.
 | |
|     return UndefinedVal();
 | |
|   }
 | |
| 
 | |
|   // All other integer values are symbolic.
 | |
|   if (Loc::IsLocType(RTy) || RTy->isIntegerType())
 | |
|     return ValMgr.getRValueSymbolVal(R);
 | |
|   else
 | |
|     return UnknownVal();
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::RetrieveStruct(const GRState* St,const TypedRegion* R){
 | |
|   // FIXME: Verify we want getRValueType instead of getLValueType.
 | |
|   QualType T = R->getRValueType(getContext());
 | |
|   assert(T->isStructureType());
 | |
| 
 | |
|   const RecordType* RT = cast<RecordType>(T.getTypePtr());
 | |
|   RecordDecl* RD = RT->getDecl();
 | |
|   assert(RD->isDefinition());
 | |
| 
 | |
|   llvm::ImmutableList<SVal> StructVal = getBasicVals().getEmptySValList();
 | |
| 
 | |
|   std::vector<FieldDecl *> Fields(RD->field_begin(getContext()), 
 | |
|                                   RD->field_end(getContext()));
 | |
| 
 | |
|   for (std::vector<FieldDecl *>::reverse_iterator Field = Fields.rbegin(),
 | |
|                                                FieldEnd = Fields.rend();
 | |
|        Field != FieldEnd; ++Field) {
 | |
|     FieldRegion* FR = MRMgr.getFieldRegion(*Field, R);
 | |
|     QualType FTy = (*Field)->getType();
 | |
|     SVal FieldValue = Retrieve(St, loc::MemRegionVal(FR), FTy);
 | |
|     StructVal = getBasicVals().consVals(FieldValue, StructVal);
 | |
|   }
 | |
| 
 | |
|   return NonLoc::MakeCompoundVal(T, StructVal, getBasicVals());
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::RetrieveArray(const GRState* St, const TypedRegion* R){
 | |
|   QualType T = R->getRValueType(getContext());
 | |
|   ConstantArrayType* CAT = cast<ConstantArrayType>(T.getTypePtr());
 | |
| 
 | |
|   llvm::ImmutableList<SVal> ArrayVal = getBasicVals().getEmptySValList();
 | |
|   llvm::APSInt Size(CAT->getSize(), false);
 | |
|   llvm::APSInt i = getBasicVals().getValue(0, Size.getBitWidth(), 
 | |
| 					   Size.isUnsigned());
 | |
| 
 | |
|   for (; i < Size; ++i) {
 | |
|     SVal Idx = NonLoc::MakeVal(getBasicVals(), i);
 | |
|     ElementRegion* ER = MRMgr.getElementRegion(R->getRValueType(getContext()),
 | |
|                                                Idx, R);
 | |
|     QualType ETy = ER->getElementType();
 | |
|     SVal ElementVal = Retrieve(St, loc::MemRegionVal(ER), ETy);
 | |
|     ArrayVal = getBasicVals().consVals(ElementVal, ArrayVal);
 | |
|   }
 | |
| 
 | |
|   return NonLoc::MakeCompoundVal(T, ArrayVal, getBasicVals());
 | |
| }
 | |
| 
 | |
| const GRState* RegionStoreManager::Bind(const GRState* St, Loc L, SVal V) {
 | |
|   // If we get here, the location should be a region.
 | |
|   const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion();
 | |
|   assert(R);
 | |
| 
 | |
|   // Check if the region is a struct region.
 | |
|   if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
 | |
|     // FIXME: Verify we want getRValueType().
 | |
|     if (TR->getRValueType(getContext())->isStructureType())
 | |
|       return BindStruct(St, TR, V);
 | |
| 
 | |
|   Store store = St->getStore();
 | |
|   RegionBindingsTy B = GetRegionBindings(store);
 | |
| 
 | |
|   if (V.isUnknown()) {
 | |
|     // Remove the binding.
 | |
|     store = RBFactory.Remove(B, R).getRoot();
 | |
| 
 | |
|     // Add the region to the killset.
 | |
|     GRStateRef state(St, StateMgr);
 | |
|     St = state.add<RegionKills>(R);
 | |
|   } 
 | |
|   else
 | |
|     store = RBFactory.Add(B, R, V).getRoot();
 | |
| 
 | |
|   return StateMgr.MakeStateWithStore(St, store);
 | |
| }
 | |
| 
 | |
| Store RegionStoreManager::Remove(Store store, Loc L) {
 | |
|   const MemRegion* R = 0;
 | |
|   
 | |
|   if (isa<loc::MemRegionVal>(L))
 | |
|     R = cast<loc::MemRegionVal>(L).getRegion();
 | |
|   
 | |
|   if (R) {
 | |
|     RegionBindingsTy B = GetRegionBindings(store);  
 | |
|     return RBFactory.Remove(B, R).getRoot();
 | |
|   }
 | |
|   
 | |
|   return store;
 | |
| }
 | |
| 
 | |
| const GRState* RegionStoreManager::BindDecl(const GRState* St, 
 | |
|                                             const VarDecl* VD, SVal InitVal) {
 | |
| 
 | |
|   QualType T = VD->getType();
 | |
|   VarRegion* VR = MRMgr.getVarRegion(VD);
 | |
| 
 | |
|   if (T->isArrayType())
 | |
|     return BindArray(St, VR, InitVal);
 | |
|   if (T->isStructureType())
 | |
|     return BindStruct(St, VR, InitVal);
 | |
| 
 | |
|   return Bind(St, Loc::MakeVal(VR), InitVal);
 | |
| }
 | |
| 
 | |
| // FIXME: this method should be merged into Bind().
 | |
| const GRState* 
 | |
| RegionStoreManager::BindCompoundLiteral(const GRState* St,
 | |
|                                         const CompoundLiteralExpr* CL, SVal V) {
 | |
|   CompoundLiteralRegion* R = MRMgr.getCompoundLiteralRegion(CL);
 | |
|   return Bind(St, loc::MemRegionVal(R), V);
 | |
| }
 | |
| 
 | |
| const GRState* RegionStoreManager::setExtent(const GRState* St,
 | |
|                                              const MemRegion* R, SVal Extent) {
 | |
|   GRStateRef state(St, StateMgr);
 | |
|   return state.set<RegionExtents>(R, Extent);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void UpdateLiveSymbols(SVal X, SymbolReaper& SymReaper) {
 | |
|   if (loc::MemRegionVal *XR = dyn_cast<loc::MemRegionVal>(&X)) {
 | |
|     const MemRegion *R = XR->getRegion();
 | |
|     
 | |
|     while (R) {
 | |
|       if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
 | |
|         SymReaper.markLive(SR->getSymbol());
 | |
|         return;
 | |
|       }
 | |
|       
 | |
|       if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
 | |
|         R = SR->getSuperRegion();
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   for (SVal::symbol_iterator SI=X.symbol_begin(), SE=X.symbol_end();SI!=SE;++SI)
 | |
|     SymReaper.markLive(*SI);
 | |
| }
 | |
| 
 | |
| Store RegionStoreManager::RemoveDeadBindings(const GRState* state, Stmt* Loc, 
 | |
|                                              SymbolReaper& SymReaper,
 | |
|                            llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
 | |
| {
 | |
| 
 | |
|   Store store = state->getStore();
 | |
|   RegionBindingsTy B = GetRegionBindings(store);
 | |
|   
 | |
|   // Lazily constructed backmap from MemRegions to SubRegions.
 | |
|   typedef llvm::ImmutableSet<const MemRegion*> SubRegionsTy;
 | |
|   typedef llvm::ImmutableMap<const MemRegion*, SubRegionsTy> SubRegionsMapTy;
 | |
|   
 | |
|   // FIXME: As a future optimization we can modifiy BumpPtrAllocator to have
 | |
|   // the ability to reuse memory.  This way we can keep TmpAlloc around as
 | |
|   // an instance variable of RegionStoreManager (avoiding repeated malloc
 | |
|   // overhead).
 | |
|   llvm::BumpPtrAllocator TmpAlloc;
 | |
|   
 | |
|   // Factory objects.
 | |
|   SubRegionsMapTy::Factory SubRegMapF(TmpAlloc);
 | |
|   SubRegionsTy::Factory SubRegF(TmpAlloc);
 | |
|   
 | |
|   // The backmap from regions to subregions.
 | |
|   SubRegionsMapTy SubRegMap = SubRegMapF.GetEmptyMap();
 | |
|   
 | |
|   // Do a pass over the regions in the store.  For VarRegions we check if
 | |
|   // the variable is still live and if so add it to the list of live roots.
 | |
|   // For other regions we populate our region backmap.
 | |
| 
 | |
|   llvm::SmallVector<const MemRegion*, 10> IntermediateRoots;
 | |
| 
 | |
|   for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | |
|     IntermediateRoots.push_back(I.getKey());
 | |
|   }
 | |
| 
 | |
|   while (!IntermediateRoots.empty()) {
 | |
|     const MemRegion* R = IntermediateRoots.back();
 | |
|     IntermediateRoots.pop_back();
 | |
| 
 | |
|     if (const VarRegion* VR = dyn_cast<VarRegion>(R)) {
 | |
|       if (SymReaper.isLive(Loc, VR->getDecl()))
 | |
|         RegionRoots.push_back(VR); // This is a live "root".
 | |
|     } 
 | |
|     else if (const SymbolicRegion* SR = dyn_cast<SymbolicRegion>(R)) {
 | |
|       if (SymReaper.isLive(SR->getSymbol()))
 | |
|         RegionRoots.push_back(SR);
 | |
|     }
 | |
|     else {
 | |
|       // Get the super region for R.
 | |
|       const MemRegion* SuperR = cast<SubRegion>(R)->getSuperRegion();
 | |
| 
 | |
|       // Get the current set of subregions for SuperR.
 | |
|       const SubRegionsTy* SRptr = SubRegMap.lookup(SuperR);
 | |
|       SubRegionsTy SR = SRptr ? *SRptr : SubRegF.GetEmptySet();
 | |
| 
 | |
|       // Add R to the subregions of SuperR.
 | |
|       SubRegMap = SubRegMapF.Add(SubRegMap, SuperR, SubRegF.Add(SR, R));
 | |
| 
 | |
|       // Super region may be VarRegion or subregion of another VarRegion. Add it
 | |
|       // to the work list.
 | |
|       if (isa<SubRegion>(SuperR))
 | |
|         IntermediateRoots.push_back(SuperR);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Process the worklist of RegionRoots.  This performs a "mark-and-sweep"
 | |
|   // of the store.  We want to find all live symbols and dead regions.  
 | |
|   llvm::SmallPtrSet<const MemRegion*, 10> Marked;
 | |
|   
 | |
|   while (!RegionRoots.empty()) {
 | |
|     // Dequeue the next region on the worklist.
 | |
|     const MemRegion* R = RegionRoots.back();
 | |
|     RegionRoots.pop_back();
 | |
| 
 | |
|     // Check if we have already processed this region.
 | |
|     if (Marked.count(R)) continue;
 | |
| 
 | |
|     // Mark this region as processed.  This is needed for termination in case
 | |
|     // a region is referenced more than once.
 | |
|     Marked.insert(R);
 | |
|     
 | |
|     // Mark the symbol for any live SymbolicRegion as "live".  This means we
 | |
|     // should continue to track that symbol.
 | |
|     if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R))
 | |
|       SymReaper.markLive(SymR->getSymbol());
 | |
| 
 | |
|     // Get the data binding for R (if any).
 | |
|     RegionBindingsTy::data_type* Xptr = B.lookup(R);
 | |
|     if (Xptr) {
 | |
|       SVal X = *Xptr;
 | |
|       UpdateLiveSymbols(X, SymReaper); // Update the set of live symbols.
 | |
|     
 | |
|       // If X is a region, then add it the RegionRoots.
 | |
|       if (loc::MemRegionVal* RegionX = dyn_cast<loc::MemRegionVal>(&X))
 | |
|         RegionRoots.push_back(RegionX->getRegion());
 | |
|     }
 | |
|     
 | |
|     // Get the subregions of R.  These are RegionRoots as well since they
 | |
|     // represent values that are also bound to R.
 | |
|     const SubRegionsTy* SRptr = SubRegMap.lookup(R);      
 | |
|     if (!SRptr) continue;
 | |
|     SubRegionsTy SR = *SRptr;
 | |
|     
 | |
|     for (SubRegionsTy::iterator I=SR.begin(), E=SR.end(); I!=E; ++I)
 | |
|       RegionRoots.push_back(*I);
 | |
|   }
 | |
|   
 | |
|   // We have now scanned the store, marking reachable regions and symbols
 | |
|   // as live.  We now remove all the regions that are dead from the store
 | |
|   // as well as update DSymbols with the set symbols that are now dead.  
 | |
|   for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | |
|     const MemRegion* R = I.getKey();
 | |
|     
 | |
|     // If this region live?  Is so, none of its symbols are dead.
 | |
|     if (Marked.count(R))
 | |
|       continue;
 | |
|     
 | |
|     // Remove this dead region from the store.
 | |
|     store = Remove(store, Loc::MakeVal(R));
 | |
| 
 | |
|     // Mark all non-live symbols that this region references as dead.
 | |
|     if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R))
 | |
|       SymReaper.maybeDead(SymR->getSymbol());
 | |
| 
 | |
|     SVal X = I.getData();
 | |
|     SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
 | |
|     for (; SI != SE; ++SI) SymReaper.maybeDead(*SI);
 | |
|   }
 | |
|   
 | |
|   return store;
 | |
| }
 | |
| 
 | |
| void RegionStoreManager::print(Store store, std::ostream& Out, 
 | |
|                                const char* nl, const char *sep) {
 | |
|   llvm::raw_os_ostream OS(Out);
 | |
|   RegionBindingsTy B = GetRegionBindings(store);
 | |
|   OS << "Store:" << nl;
 | |
| 
 | |
|   for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | |
|     OS << ' '; I.getKey()->print(OS); OS << " : ";
 | |
|     I.getData().print(OS); OS << nl;
 | |
|   }
 | |
| }
 | |
| 
 | |
| const GRState* RegionStoreManager::BindArray(const GRState* St, 
 | |
|                                              const TypedRegion* R, SVal Init) {
 | |
|   
 | |
|   // FIXME: Verify we should use getLValueType or getRValueType.
 | |
|   QualType T = R->getRValueType(getContext());
 | |
|   assert(T->isArrayType());
 | |
| 
 | |
|   // When we are binding the whole array, it always has default value 0.
 | |
|   GRStateRef state(St, StateMgr);
 | |
|   St = state.set<RegionDefaultValue>(R, NonLoc::MakeIntVal(getBasicVals(), 0, 
 | |
|                                                            false));
 | |
| 
 | |
|   ConstantArrayType* CAT = cast<ConstantArrayType>(T.getTypePtr());
 | |
| 
 | |
|   llvm::APSInt Size(CAT->getSize(), false);
 | |
|   llvm::APSInt i = getBasicVals().getValue(0, Size.getBitWidth(),
 | |
|                                            Size.isUnsigned());
 | |
| 
 | |
|   // Check if the init expr is a StringLiteral.
 | |
|   if (isa<loc::MemRegionVal>(Init)) {
 | |
|     const MemRegion* InitR = cast<loc::MemRegionVal>(Init).getRegion();
 | |
|     const StringLiteral* S = cast<StringRegion>(InitR)->getStringLiteral();
 | |
|     const char* str = S->getStrData();
 | |
|     unsigned len = S->getByteLength();
 | |
|     unsigned j = 0;
 | |
| 
 | |
|     // Copy bytes from the string literal into the target array. Trailing bytes
 | |
|     // in the array that are not covered by the string literal are initialized
 | |
|     // to zero.
 | |
|     for (; i < Size; ++i, ++j) {
 | |
|       if (j >= len)
 | |
|         break;
 | |
| 
 | |
|       SVal Idx = NonLoc::MakeVal(getBasicVals(), i);
 | |
|       ElementRegion* ER =
 | |
|         MRMgr.getElementRegion(cast<ArrayType>(T)->getElementType(),
 | |
|                                Idx, R);
 | |
| 
 | |
|       SVal V = NonLoc::MakeVal(getBasicVals(), str[j], sizeof(char)*8, true);
 | |
|       St = Bind(St, loc::MemRegionVal(ER), V);
 | |
|     }
 | |
| 
 | |
|     return St;
 | |
|   }
 | |
| 
 | |
|   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
 | |
|   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | |
| 
 | |
|   for (; i < Size; ++i, ++VI) {
 | |
|     // The init list might be shorter than the array decl.
 | |
|     if (VI == VE)
 | |
|       break;
 | |
| 
 | |
|     SVal Idx = NonLoc::MakeVal(getBasicVals(), i);
 | |
|     ElementRegion* ER =
 | |
|       MRMgr.getElementRegion(cast<ArrayType>(T)->getElementType(),
 | |
|                              Idx, R);
 | |
| 
 | |
|     if (CAT->getElementType()->isStructureType())
 | |
|       St = BindStruct(St, ER, *VI);
 | |
|     else
 | |
|       St = Bind(St, Loc::MakeVal(ER), *VI);
 | |
|   }
 | |
| 
 | |
|   return St;
 | |
| }
 | |
| 
 | |
| const GRState*
 | |
| RegionStoreManager::BindStruct(const GRState* St, const TypedRegion* R, SVal V){
 | |
|   // FIXME: Verify that we should use getRValueType or getLValueType.
 | |
|   QualType T = R->getRValueType(getContext());
 | |
|   assert(T->isStructureType());
 | |
| 
 | |
|   const RecordType* RT = T->getAsRecordType();
 | |
|   RecordDecl* RD = RT->getDecl();
 | |
| 
 | |
|   if (!RD->isDefinition())
 | |
|     return St;
 | |
| 
 | |
|   if (V.isUnknown())
 | |
|     return KillStruct(St, R);
 | |
| 
 | |
|   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
 | |
|   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | |
|   RecordDecl::field_iterator FI = RD->field_begin(getContext()), 
 | |
|                              FE = RD->field_end(getContext());
 | |
| 
 | |
|   for (; FI != FE; ++FI, ++VI) {
 | |
| 
 | |
|     // There may be fewer values than fields only when we are initializing a
 | |
|     // struct decl. In this case, mark the region as having default value.
 | |
|     if (VI == VE) {
 | |
|       GRStateRef state(St, StateMgr);
 | |
|       const NonLoc& Idx = NonLoc::MakeIntVal(getBasicVals(), 0, false);
 | |
|       St = state.set<RegionDefaultValue>(R, Idx);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     QualType FTy = (*FI)->getType();
 | |
|     FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
 | |
| 
 | |
|     if (Loc::IsLocType(FTy) || FTy->isIntegerType())
 | |
|       St = Bind(St, Loc::MakeVal(FR), *VI);
 | |
|     
 | |
|     else if (FTy->isArrayType())
 | |
|       St = BindArray(St, FR, *VI);
 | |
| 
 | |
|     else if (FTy->isStructureType())
 | |
|       St = BindStruct(St, FR, *VI);
 | |
|   }
 | |
| 
 | |
|   return St;
 | |
| }
 | |
| 
 | |
| const GRState* RegionStoreManager::KillStruct(const GRState* St,
 | |
|                                               const TypedRegion* R){
 | |
|   GRStateRef state(St, StateMgr);
 | |
| 
 | |
|   // Kill the struct region because it is assigned "unknown".
 | |
|   St = state.add<RegionKills>(R);
 | |
|   
 | |
|   // Set the default value of the struct region to "unknown".
 | |
|   St = state.set<RegionDefaultValue>(R, UnknownVal());
 | |
| 
 | |
|   Store store = St->getStore();
 | |
|   RegionBindingsTy B = GetRegionBindings(store);
 | |
| 
 | |
|   // Remove all bindings for the subregions of the struct.
 | |
|   for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | |
|     const MemRegion* r = I.getKey();
 | |
|     if (const SubRegion* sr = dyn_cast<SubRegion>(r))
 | |
|       if (sr->isSubRegionOf(R))
 | |
|         store = Remove(store, Loc::MakeVal(sr));
 | |
|     // FIXME: Maybe we should also remove the bindings for the "views" of the
 | |
|     // subregions.
 | |
|   }
 | |
| 
 | |
|   return StateMgr.MakeStateWithStore(St, store);
 | |
| }
 | |
| 
 | |
| const GRState* RegionStoreManager::AddRegionView(const GRState* St,
 | |
|                                                  const MemRegion* View,
 | |
|                                                  const MemRegion* Base) {
 | |
|   GRStateRef state(St, StateMgr);
 | |
| 
 | |
|   // First, retrieve the region view of the base region.
 | |
|   const RegionViews* d = state.get<RegionViewMap>(Base);
 | |
|   RegionViews L = d ? *d : RVFactory.GetEmptySet();
 | |
| 
 | |
|   // Now add View to the region view.
 | |
|   L = RVFactory.Add(L, View);
 | |
| 
 | |
|   // Create a new state with the new region view.
 | |
|   return state.set<RegionViewMap>(Base, L);
 | |
| }
 | |
| 
 | |
| const GRState* RegionStoreManager::RemoveRegionView(const GRState* St,
 | |
|                                                     const MemRegion* View,
 | |
|                                                     const MemRegion* Base) {
 | |
|   GRStateRef state(St, StateMgr);
 | |
| 
 | |
|   // Retrieve the region view of the base region.
 | |
|   const RegionViews* d = state.get<RegionViewMap>(Base);
 | |
| 
 | |
|   // If the base region has no view, return.
 | |
|   if (!d)
 | |
|     return St;
 | |
| 
 | |
|   // Remove the view.
 | |
|   RegionViews V = *d;
 | |
|   V = RVFactory.Remove(V, View);
 | |
| 
 | |
|   return state.set<RegionViewMap>(Base, V);
 | |
| }
 | |
| 
 | |
| const GRState* RegionStoreManager::setCastType(const GRState* St,
 | |
|                                                const MemRegion* R, QualType T) {
 | |
|   GRStateRef state(St, StateMgr);
 | |
|   return state.set<RegionCasts>(R, T);
 | |
| }
 |