forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			61 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			61 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2010 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package math
 | |
| 
 | |
| // The original C code, the long comment, and the constants
 | |
| // below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c
 | |
| // and came with this notice.  The go code is a simplified
 | |
| // version of the original C.
 | |
| //
 | |
| // ====================================================
 | |
| // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
| //
 | |
| // Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
| // Permission to use, copy, modify, and distribute this
 | |
| // software is freely granted, provided that this notice
 | |
| // is preserved.
 | |
| // ====================================================
 | |
| //
 | |
| //
 | |
| // __ieee754_acosh(x)
 | |
| // Method :
 | |
| //	Based on
 | |
| //	        acosh(x) = log [ x + sqrt(x*x-1) ]
 | |
| //	we have
 | |
| //	        acosh(x) := log(x)+ln2,	if x is large; else
 | |
| //	        acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
 | |
| //	        acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
 | |
| //
 | |
| // Special cases:
 | |
| //	acosh(x) is NaN with signal if x<1.
 | |
| //	acosh(NaN) is NaN without signal.
 | |
| //
 | |
| 
 | |
| // Acosh returns the inverse hyperbolic cosine of x.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Acosh(+Inf) = +Inf
 | |
| //	Acosh(x) = NaN if x < 1
 | |
| //	Acosh(NaN) = NaN
 | |
| func Acosh(x float64) float64 {
 | |
| 	const (
 | |
| 		Ln2   = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
 | |
| 		Large = 1 << 28                    // 2**28
 | |
| 	)
 | |
| 	// first case is special case
 | |
| 	switch {
 | |
| 	case x < 1 || IsNaN(x):
 | |
| 		return NaN()
 | |
| 	case x == 1:
 | |
| 		return 0
 | |
| 	case x >= Large:
 | |
| 		return Log(x) + Ln2 // x > 2**28
 | |
| 	case x > 2:
 | |
| 		return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2
 | |
| 	}
 | |
| 	t := x - 1
 | |
| 	return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
 | |
| }
 |