forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			77 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package math
 | |
| 
 | |
| /*
 | |
| 	The algorithm is based in part on "Optimal Partitioning of
 | |
| 	Newton's Method for Calculating Roots", by Gunter Meinardus
 | |
| 	and G. D. Taylor, Mathematics of Computation © 1980 American
 | |
| 	Mathematical Society.
 | |
| 	(http://www.jstor.org/stable/2006387?seq=9, accessed 11-Feb-2010)
 | |
| */
 | |
| 
 | |
| // Cbrt returns the cube root of x.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Cbrt(±0) = ±0
 | |
| //	Cbrt(±Inf) = ±Inf
 | |
| //	Cbrt(NaN) = NaN
 | |
| func Cbrt(x float64) float64 {
 | |
| 	const (
 | |
| 		A1 = 1.662848358e-01
 | |
| 		A2 = 1.096040958e+00
 | |
| 		A3 = 4.105032829e-01
 | |
| 		A4 = 5.649335816e-01
 | |
| 		B1 = 2.639607233e-01
 | |
| 		B2 = 8.699282849e-01
 | |
| 		B3 = 1.629083358e-01
 | |
| 		B4 = 2.824667908e-01
 | |
| 		C1 = 4.190115298e-01
 | |
| 		C2 = 6.904625373e-01
 | |
| 		C3 = 6.46502159e-02
 | |
| 		C4 = 1.412333954e-01
 | |
| 	)
 | |
| 	// special cases
 | |
| 	switch {
 | |
| 	case x == 0 || IsNaN(x) || IsInf(x, 0):
 | |
| 		return x
 | |
| 	}
 | |
| 	sign := false
 | |
| 	if x < 0 {
 | |
| 		x = -x
 | |
| 		sign = true
 | |
| 	}
 | |
| 	// Reduce argument and estimate cube root
 | |
| 	f, e := Frexp(x) // 0.5 <= f < 1.0
 | |
| 	m := e % 3
 | |
| 	if m > 0 {
 | |
| 		m -= 3
 | |
| 		e -= m // e is multiple of 3
 | |
| 	}
 | |
| 	switch m {
 | |
| 	case 0: // 0.5 <= f < 1.0
 | |
| 		f = A1*f + A2 - A3/(A4+f)
 | |
| 	case -1:
 | |
| 		f *= 0.5 // 0.25 <= f < 0.5
 | |
| 		f = B1*f + B2 - B3/(B4+f)
 | |
| 	default: // m == -2
 | |
| 		f *= 0.25 // 0.125 <= f < 0.25
 | |
| 		f = C1*f + C2 - C3/(C4+f)
 | |
| 	}
 | |
| 	y := Ldexp(f, e/3) // e/3 = exponent of cube root
 | |
| 
 | |
| 	// Iterate
 | |
| 	s := y * y * y
 | |
| 	t := s + x
 | |
| 	y *= (t + x) / (s + t)
 | |
| 	// Reiterate
 | |
| 	s = (y*y*y - x) / x
 | |
| 	y -= y * (((14.0/81.0)*s-(2.0/9.0))*s + (1.0 / 3.0)) * s
 | |
| 	if sign {
 | |
| 		y = -y
 | |
| 	}
 | |
| 	return y
 | |
| }
 |