forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			200 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package math
 | ||
| 
 | ||
| // Exp returns e**x, the base-e exponential of x.
 | ||
| //
 | ||
| // Special cases are:
 | ||
| //	Exp(+Inf) = +Inf
 | ||
| //	Exp(NaN) = NaN
 | ||
| // Very large values overflow to 0 or +Inf.
 | ||
| // Very small values underflow to 1.
 | ||
| 
 | ||
| //extern exp
 | ||
| func libc_exp(float64) float64
 | ||
| 
 | ||
| func Exp(x float64) float64 {
 | ||
| 	return libc_exp(x)
 | ||
| }
 | ||
| 
 | ||
| // The original C code, the long comment, and the constants
 | ||
| // below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
 | ||
| // and came with this notice.  The go code is a simplified
 | ||
| // version of the original C.
 | ||
| //
 | ||
| // ====================================================
 | ||
| // Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
 | ||
| //
 | ||
| // Permission to use, copy, modify, and distribute this
 | ||
| // software is freely granted, provided that this notice
 | ||
| // is preserved.
 | ||
| // ====================================================
 | ||
| //
 | ||
| //
 | ||
| // exp(x)
 | ||
| // Returns the exponential of x.
 | ||
| //
 | ||
| // Method
 | ||
| //   1. Argument reduction:
 | ||
| //      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
 | ||
| //      Given x, find r and integer k such that
 | ||
| //
 | ||
| //               x = k*ln2 + r,  |r| <= 0.5*ln2.
 | ||
| //
 | ||
| //      Here r will be represented as r = hi-lo for better
 | ||
| //      accuracy.
 | ||
| //
 | ||
| //   2. Approximation of exp(r) by a special rational function on
 | ||
| //      the interval [0,0.34658]:
 | ||
| //      Write
 | ||
| //          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
 | ||
| //      We use a special Remes algorithm on [0,0.34658] to generate
 | ||
| //      a polynomial of degree 5 to approximate R. The maximum error
 | ||
| //      of this polynomial approximation is bounded by 2**-59. In
 | ||
| //      other words,
 | ||
| //          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
 | ||
| //      (where z=r*r, and the values of P1 to P5 are listed below)
 | ||
| //      and
 | ||
| //          |                  5          |     -59
 | ||
| //          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
 | ||
| //          |                             |
 | ||
| //      The computation of exp(r) thus becomes
 | ||
| //                             2*r
 | ||
| //              exp(r) = 1 + -------
 | ||
| //                            R - r
 | ||
| //                                 r*R1(r)
 | ||
| //                     = 1 + r + ----------- (for better accuracy)
 | ||
| //                                2 - R1(r)
 | ||
| //      where
 | ||
| //                               2       4             10
 | ||
| //              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
 | ||
| //
 | ||
| //   3. Scale back to obtain exp(x):
 | ||
| //      From step 1, we have
 | ||
| //         exp(x) = 2**k * exp(r)
 | ||
| //
 | ||
| // Special cases:
 | ||
| //      exp(INF) is INF, exp(NaN) is NaN;
 | ||
| //      exp(-INF) is 0, and
 | ||
| //      for finite argument, only exp(0)=1 is exact.
 | ||
| //
 | ||
| // Accuracy:
 | ||
| //      according to an error analysis, the error is always less than
 | ||
| //      1 ulp (unit in the last place).
 | ||
| //
 | ||
| // Misc. info.
 | ||
| //      For IEEE double
 | ||
| //          if x >  7.09782712893383973096e+02 then exp(x) overflow
 | ||
| //          if x < -7.45133219101941108420e+02 then exp(x) underflow
 | ||
| //
 | ||
| // Constants:
 | ||
| // The hexadecimal values are the intended ones for the following
 | ||
| // constants. The decimal values may be used, provided that the
 | ||
| // compiler will convert from decimal to binary accurately enough
 | ||
| // to produce the hexadecimal values shown.
 | ||
| 
 | ||
| func exp(x float64) float64 {
 | ||
| 	const (
 | ||
| 		Ln2Hi = 6.93147180369123816490e-01
 | ||
| 		Ln2Lo = 1.90821492927058770002e-10
 | ||
| 		Log2e = 1.44269504088896338700e+00
 | ||
| 
 | ||
| 		Overflow  = 7.09782712893383973096e+02
 | ||
| 		Underflow = -7.45133219101941108420e+02
 | ||
| 		NearZero  = 1.0 / (1 << 28) // 2**-28
 | ||
| 	)
 | ||
| 
 | ||
| 	// special cases
 | ||
| 	switch {
 | ||
| 	case IsNaN(x) || IsInf(x, 1):
 | ||
| 		return x
 | ||
| 	case IsInf(x, -1):
 | ||
| 		return 0
 | ||
| 	case x > Overflow:
 | ||
| 		return Inf(1)
 | ||
| 	case x < Underflow:
 | ||
| 		return 0
 | ||
| 	case -NearZero < x && x < NearZero:
 | ||
| 		return 1 + x
 | ||
| 	}
 | ||
| 
 | ||
| 	// reduce; computed as r = hi - lo for extra precision.
 | ||
| 	var k int
 | ||
| 	switch {
 | ||
| 	case x < 0:
 | ||
| 		k = int(Log2e*x - 0.5)
 | ||
| 	case x > 0:
 | ||
| 		k = int(Log2e*x + 0.5)
 | ||
| 	}
 | ||
| 	hi := x - float64(k)*Ln2Hi
 | ||
| 	lo := float64(k) * Ln2Lo
 | ||
| 
 | ||
| 	// compute
 | ||
| 	return expmulti(hi, lo, k)
 | ||
| }
 | ||
| 
 | ||
| // Exp2 returns 2**x, the base-2 exponential of x.
 | ||
| //
 | ||
| // Special cases are the same as Exp.
 | ||
| func Exp2(x float64) float64 {
 | ||
| 	return exp2(x)
 | ||
| }
 | ||
| 
 | ||
| func exp2(x float64) float64 {
 | ||
| 	const (
 | ||
| 		Ln2Hi = 6.93147180369123816490e-01
 | ||
| 		Ln2Lo = 1.90821492927058770002e-10
 | ||
| 
 | ||
| 		Overflow  = 1.0239999999999999e+03
 | ||
| 		Underflow = -1.0740e+03
 | ||
| 	)
 | ||
| 
 | ||
| 	// special cases
 | ||
| 	switch {
 | ||
| 	case IsNaN(x) || IsInf(x, 1):
 | ||
| 		return x
 | ||
| 	case IsInf(x, -1):
 | ||
| 		return 0
 | ||
| 	case x > Overflow:
 | ||
| 		return Inf(1)
 | ||
| 	case x < Underflow:
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 
 | ||
| 	// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
 | ||
| 	// computed as r = hi - lo for extra precision.
 | ||
| 	var k int
 | ||
| 	switch {
 | ||
| 	case x > 0:
 | ||
| 		k = int(x + 0.5)
 | ||
| 	case x < 0:
 | ||
| 		k = int(x - 0.5)
 | ||
| 	}
 | ||
| 	t := x - float64(k)
 | ||
| 	hi := t * Ln2Hi
 | ||
| 	lo := -t * Ln2Lo
 | ||
| 
 | ||
| 	// compute
 | ||
| 	return expmulti(hi, lo, k)
 | ||
| }
 | ||
| 
 | ||
| // exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
 | ||
| func expmulti(hi, lo float64, k int) float64 {
 | ||
| 	const (
 | ||
| 		P1 = 1.66666666666666019037e-01  /* 0x3FC55555; 0x5555553E */
 | ||
| 		P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
 | ||
| 		P3 = 6.61375632143793436117e-05  /* 0x3F11566A; 0xAF25DE2C */
 | ||
| 		P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
 | ||
| 		P5 = 4.13813679705723846039e-08  /* 0x3E663769; 0x72BEA4D0 */
 | ||
| 	)
 | ||
| 
 | ||
| 	r := hi - lo
 | ||
| 	t := r * r
 | ||
| 	c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
 | ||
| 	y := 1 - ((lo - (r*c)/(2-c)) - hi)
 | ||
| 	// TODO(rsc): make sure Ldexp can handle boundary k
 | ||
| 	return Ldexp(y, k)
 | ||
| }
 |