forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			138 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package math
 | |
| 
 | |
| func isOddInt(x float64) bool {
 | |
| 	xi, xf := Modf(x)
 | |
| 	return xf == 0 && int64(xi)&1 == 1
 | |
| }
 | |
| 
 | |
| // Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
 | |
| // updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".
 | |
| 
 | |
| // Pow returns x**y, the base-x exponential of y.
 | |
| //
 | |
| // Special cases are (in order):
 | |
| //	Pow(x, ±0) = 1 for any x
 | |
| //	Pow(1, y) = 1 for any y
 | |
| //	Pow(x, 1) = x for any x
 | |
| //	Pow(NaN, y) = NaN
 | |
| //	Pow(x, NaN) = NaN
 | |
| //	Pow(±0, y) = ±Inf for y an odd integer < 0
 | |
| //	Pow(±0, -Inf) = +Inf
 | |
| //	Pow(±0, +Inf) = +0
 | |
| //	Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
 | |
| //	Pow(±0, y) = ±0 for y an odd integer > 0
 | |
| //	Pow(±0, y) = +0 for finite y > 0 and not an odd integer
 | |
| //	Pow(-1, ±Inf) = 1
 | |
| //	Pow(x, +Inf) = +Inf for |x| > 1
 | |
| //	Pow(x, -Inf) = +0 for |x| > 1
 | |
| //	Pow(x, +Inf) = +0 for |x| < 1
 | |
| //	Pow(x, -Inf) = +Inf for |x| < 1
 | |
| //	Pow(+Inf, y) = +Inf for y > 0
 | |
| //	Pow(+Inf, y) = +0 for y < 0
 | |
| //	Pow(-Inf, y) = Pow(-0, -y)
 | |
| //	Pow(x, y) = NaN for finite x < 0 and finite non-integer y
 | |
| func Pow(x, y float64) float64 {
 | |
| 	switch {
 | |
| 	case y == 0 || x == 1:
 | |
| 		return 1
 | |
| 	case y == 1:
 | |
| 		return x
 | |
| 	case y == 0.5:
 | |
| 		return Sqrt(x)
 | |
| 	case y == -0.5:
 | |
| 		return 1 / Sqrt(x)
 | |
| 	case IsNaN(x) || IsNaN(y):
 | |
| 		return NaN()
 | |
| 	case x == 0:
 | |
| 		switch {
 | |
| 		case y < 0:
 | |
| 			if isOddInt(y) {
 | |
| 				return Copysign(Inf(1), x)
 | |
| 			}
 | |
| 			return Inf(1)
 | |
| 		case y > 0:
 | |
| 			if isOddInt(y) {
 | |
| 				return x
 | |
| 			}
 | |
| 			return 0
 | |
| 		}
 | |
| 	case IsInf(y, 0):
 | |
| 		switch {
 | |
| 		case x == -1:
 | |
| 			return 1
 | |
| 		case (Abs(x) < 1) == IsInf(y, 1):
 | |
| 			return 0
 | |
| 		default:
 | |
| 			return Inf(1)
 | |
| 		}
 | |
| 	case IsInf(x, 0):
 | |
| 		if IsInf(x, -1) {
 | |
| 			return Pow(1/x, -y) // Pow(-0, -y)
 | |
| 		}
 | |
| 		switch {
 | |
| 		case y < 0:
 | |
| 			return 0
 | |
| 		case y > 0:
 | |
| 			return Inf(1)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	absy := y
 | |
| 	flip := false
 | |
| 	if absy < 0 {
 | |
| 		absy = -absy
 | |
| 		flip = true
 | |
| 	}
 | |
| 	yi, yf := Modf(absy)
 | |
| 	if yf != 0 && x < 0 {
 | |
| 		return NaN()
 | |
| 	}
 | |
| 	if yi >= 1<<63 {
 | |
| 		return Exp(y * Log(x))
 | |
| 	}
 | |
| 
 | |
| 	// ans = a1 * 2**ae (= 1 for now).
 | |
| 	a1 := 1.0
 | |
| 	ae := 0
 | |
| 
 | |
| 	// ans *= x**yf
 | |
| 	if yf != 0 {
 | |
| 		if yf > 0.5 {
 | |
| 			yf--
 | |
| 			yi++
 | |
| 		}
 | |
| 		a1 = Exp(yf * Log(x))
 | |
| 	}
 | |
| 
 | |
| 	// ans *= x**yi
 | |
| 	// by multiplying in successive squarings
 | |
| 	// of x according to bits of yi.
 | |
| 	// accumulate powers of two into exp.
 | |
| 	x1, xe := Frexp(x)
 | |
| 	for i := int64(yi); i != 0; i >>= 1 {
 | |
| 		if i&1 == 1 {
 | |
| 			a1 *= x1
 | |
| 			ae += xe
 | |
| 		}
 | |
| 		x1 *= x1
 | |
| 		xe <<= 1
 | |
| 		if x1 < .5 {
 | |
| 			x1 += x1
 | |
| 			xe--
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// ans = a1*2**ae
 | |
| 	// if flip { ans = 1 / ans }
 | |
| 	// but in the opposite order
 | |
| 	if flip {
 | |
| 		a1 = 1 / a1
 | |
| 		ae = -ae
 | |
| 	}
 | |
| 	return Ldexp(a1, ae)
 | |
| }
 |