forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			237 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2011 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package math
 | |
| 
 | |
| /*
 | |
| 	Floating-point sine and cosine.
 | |
| */
 | |
| 
 | |
| // The original C code, the long comment, and the constants
 | |
| // below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
 | |
| // available from http://www.netlib.org/cephes/cmath.tgz.
 | |
| // The go code is a simplified version of the original C.
 | |
| //
 | |
| //      sin.c
 | |
| //
 | |
| //      Circular sine
 | |
| //
 | |
| // SYNOPSIS:
 | |
| //
 | |
| // double x, y, sin();
 | |
| // y = sin( x );
 | |
| //
 | |
| // DESCRIPTION:
 | |
| //
 | |
| // Range reduction is into intervals of pi/4.  The reduction error is nearly
 | |
| // eliminated by contriving an extended precision modular arithmetic.
 | |
| //
 | |
| // Two polynomial approximating functions are employed.
 | |
| // Between 0 and pi/4 the sine is approximated by
 | |
| //      x  +  x**3 P(x**2).
 | |
| // Between pi/4 and pi/2 the cosine is represented as
 | |
| //      1  -  x**2 Q(x**2).
 | |
| //
 | |
| // ACCURACY:
 | |
| //
 | |
| //                      Relative error:
 | |
| // arithmetic   domain      # trials      peak         rms
 | |
| //    DEC       0, 10       150000       3.0e-17     7.8e-18
 | |
| //    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
 | |
| //
 | |
| // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9.  The loss
 | |
| // is not gradual, but jumps suddenly to about 1 part in 10e7.  Results may
 | |
| // be meaningless for x > 2**49 = 5.6e14.
 | |
| //
 | |
| //      cos.c
 | |
| //
 | |
| //      Circular cosine
 | |
| //
 | |
| // SYNOPSIS:
 | |
| //
 | |
| // double x, y, cos();
 | |
| // y = cos( x );
 | |
| //
 | |
| // DESCRIPTION:
 | |
| //
 | |
| // Range reduction is into intervals of pi/4.  The reduction error is nearly
 | |
| // eliminated by contriving an extended precision modular arithmetic.
 | |
| //
 | |
| // Two polynomial approximating functions are employed.
 | |
| // Between 0 and pi/4 the cosine is approximated by
 | |
| //      1  -  x**2 Q(x**2).
 | |
| // Between pi/4 and pi/2 the sine is represented as
 | |
| //      x  +  x**3 P(x**2).
 | |
| //
 | |
| // ACCURACY:
 | |
| //
 | |
| //                      Relative error:
 | |
| // arithmetic   domain      # trials      peak         rms
 | |
| //    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
 | |
| //    DEC        0,+1.07e9   17000       3.0e-17     7.2e-18
 | |
| //
 | |
| // Cephes Math Library Release 2.8:  June, 2000
 | |
| // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
 | |
| //
 | |
| // The readme file at http://netlib.sandia.gov/cephes/ says:
 | |
| //    Some software in this archive may be from the book _Methods and
 | |
| // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
 | |
| // International, 1989) or from the Cephes Mathematical Library, a
 | |
| // commercial product. In either event, it is copyrighted by the author.
 | |
| // What you see here may be used freely but it comes with no support or
 | |
| // guarantee.
 | |
| //
 | |
| //   The two known misprints in the book are repaired here in the
 | |
| // source listings for the gamma function and the incomplete beta
 | |
| // integral.
 | |
| //
 | |
| //   Stephen L. Moshier
 | |
| //   moshier@na-net.ornl.gov
 | |
| 
 | |
| // sin coefficients
 | |
| var _sin = [...]float64{
 | |
| 	1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd
 | |
| 	-2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d
 | |
| 	2.75573136213857245213E-6,  // 0x3ec71de3567d48a1
 | |
| 	-1.98412698295895385996E-4, // 0xbf2a01a019bfdf03
 | |
| 	8.33333333332211858878E-3,  // 0x3f8111111110f7d0
 | |
| 	-1.66666666666666307295E-1, // 0xbfc5555555555548
 | |
| }
 | |
| 
 | |
| // cos coefficients
 | |
| var _cos = [...]float64{
 | |
| 	-1.13585365213876817300E-11, // 0xbda8fa49a0861a9b
 | |
| 	2.08757008419747316778E-9,   // 0x3e21ee9d7b4e3f05
 | |
| 	-2.75573141792967388112E-7,  // 0xbe927e4f7eac4bc6
 | |
| 	2.48015872888517045348E-5,   // 0x3efa01a019c844f5
 | |
| 	-1.38888888888730564116E-3,  // 0xbf56c16c16c14f91
 | |
| 	4.16666666666665929218E-2,   // 0x3fa555555555554b
 | |
| }
 | |
| 
 | |
| // Cos returns the cosine of the radian argument x.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Cos(±Inf) = NaN
 | |
| //	Cos(NaN) = NaN
 | |
| 
 | |
| //extern cos
 | |
| func libc_cos(float64) float64
 | |
| 
 | |
| func Cos(x float64) float64 {
 | |
| 	return libc_cos(x)
 | |
| }
 | |
| 
 | |
| func cos(x float64) float64 {
 | |
| 	const (
 | |
| 		PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
 | |
| 		PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
 | |
| 		PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
 | |
| 		M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
 | |
| 	)
 | |
| 	// special cases
 | |
| 	switch {
 | |
| 	case IsNaN(x) || IsInf(x, 0):
 | |
| 		return NaN()
 | |
| 	}
 | |
| 
 | |
| 	// make argument positive
 | |
| 	sign := false
 | |
| 	if x < 0 {
 | |
| 		x = -x
 | |
| 	}
 | |
| 
 | |
| 	j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
 | |
| 	y := float64(j)      // integer part of x/(Pi/4), as float
 | |
| 
 | |
| 	// map zeros to origin
 | |
| 	if j&1 == 1 {
 | |
| 		j += 1
 | |
| 		y += 1
 | |
| 	}
 | |
| 	j &= 7 // octant modulo 2Pi radians (360 degrees)
 | |
| 	if j > 3 {
 | |
| 		j -= 4
 | |
| 		sign = !sign
 | |
| 	}
 | |
| 	if j > 1 {
 | |
| 		sign = !sign
 | |
| 	}
 | |
| 
 | |
| 	z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
 | |
| 	zz := z * z
 | |
| 	if j == 1 || j == 2 {
 | |
| 		y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
 | |
| 	} else {
 | |
| 		y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
 | |
| 	}
 | |
| 	if sign {
 | |
| 		y = -y
 | |
| 	}
 | |
| 	return y
 | |
| }
 | |
| 
 | |
| // Sin returns the sine of the radian argument x.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Sin(±0) = ±0
 | |
| //	Sin(±Inf) = NaN
 | |
| //	Sin(NaN) = NaN
 | |
| 
 | |
| //extern sin
 | |
| func libc_sin(float64) float64
 | |
| 
 | |
| func Sin(x float64) float64 {
 | |
| 	return libc_sin(x)
 | |
| }
 | |
| 
 | |
| func sin(x float64) float64 {
 | |
| 	const (
 | |
| 		PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
 | |
| 		PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
 | |
| 		PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
 | |
| 		M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
 | |
| 	)
 | |
| 	// special cases
 | |
| 	switch {
 | |
| 	case x == 0 || IsNaN(x):
 | |
| 		return x // return ±0 || NaN()
 | |
| 	case IsInf(x, 0):
 | |
| 		return NaN()
 | |
| 	}
 | |
| 
 | |
| 	// make argument positive but save the sign
 | |
| 	sign := false
 | |
| 	if x < 0 {
 | |
| 		x = -x
 | |
| 		sign = true
 | |
| 	}
 | |
| 
 | |
| 	j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
 | |
| 	y := float64(j)      // integer part of x/(Pi/4), as float
 | |
| 
 | |
| 	// map zeros to origin
 | |
| 	if j&1 == 1 {
 | |
| 		j += 1
 | |
| 		y += 1
 | |
| 	}
 | |
| 	j &= 7 // octant modulo 2Pi radians (360 degrees)
 | |
| 	// reflect in x axis
 | |
| 	if j > 3 {
 | |
| 		sign = !sign
 | |
| 		j -= 4
 | |
| 	}
 | |
| 
 | |
| 	z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
 | |
| 	zz := z * z
 | |
| 	if j == 1 || j == 2 {
 | |
| 		y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
 | |
| 	} else {
 | |
| 		y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
 | |
| 	}
 | |
| 	if sign {
 | |
| 		y = -y
 | |
| 	}
 | |
| 	return y
 | |
| }
 |