forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			7702 lines
		
	
	
		
			266 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			7702 lines
		
	
	
		
			266 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Expr constant evaluator.
 | 
						|
//
 | 
						|
// Constant expression evaluation produces four main results:
 | 
						|
//
 | 
						|
//  * A success/failure flag indicating whether constant folding was successful.
 | 
						|
//    This is the 'bool' return value used by most of the code in this file. A
 | 
						|
//    'false' return value indicates that constant folding has failed, and any
 | 
						|
//    appropriate diagnostic has already been produced.
 | 
						|
//
 | 
						|
//  * An evaluated result, valid only if constant folding has not failed.
 | 
						|
//
 | 
						|
//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
 | 
						|
//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
 | 
						|
//    where it is possible to determine the evaluated result regardless.
 | 
						|
//
 | 
						|
//  * A set of notes indicating why the evaluation was not a constant expression
 | 
						|
//    (under the C++11 rules only, at the moment), or, if folding failed too,
 | 
						|
//    why the expression could not be folded.
 | 
						|
//
 | 
						|
// If we are checking for a potential constant expression, failure to constant
 | 
						|
// fold a potential constant sub-expression will be indicated by a 'false'
 | 
						|
// return value (the expression could not be folded) and no diagnostic (the
 | 
						|
// expression is not necessarily non-constant).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/APValue.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/ASTDiagnostic.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cstring>
 | 
						|
#include <functional>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using llvm::APSInt;
 | 
						|
using llvm::APFloat;
 | 
						|
 | 
						|
static bool IsGlobalLValue(APValue::LValueBase B);
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct LValue;
 | 
						|
  struct CallStackFrame;
 | 
						|
  struct EvalInfo;
 | 
						|
 | 
						|
  static QualType getType(APValue::LValueBase B) {
 | 
						|
    if (!B) return QualType();
 | 
						|
    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
 | 
						|
      return D->getType();
 | 
						|
    return B.get<const Expr*>()->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Get an LValue path entry, which is known to not be an array index, as a
 | 
						|
  /// field or base class.
 | 
						|
  static
 | 
						|
  APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
 | 
						|
    APValue::BaseOrMemberType Value;
 | 
						|
    Value.setFromOpaqueValue(E.BaseOrMember);
 | 
						|
    return Value;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Get an LValue path entry, which is known to not be an array index, as a
 | 
						|
  /// field declaration.
 | 
						|
  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
 | 
						|
    return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
 | 
						|
  }
 | 
						|
  /// Get an LValue path entry, which is known to not be an array index, as a
 | 
						|
  /// base class declaration.
 | 
						|
  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
 | 
						|
    return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
 | 
						|
  }
 | 
						|
  /// Determine whether this LValue path entry for a base class names a virtual
 | 
						|
  /// base class.
 | 
						|
  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
 | 
						|
    return getAsBaseOrMember(E).getInt();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Find the path length and type of the most-derived subobject in the given
 | 
						|
  /// path, and find the size of the containing array, if any.
 | 
						|
  static
 | 
						|
  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
 | 
						|
                                    ArrayRef<APValue::LValuePathEntry> Path,
 | 
						|
                                    uint64_t &ArraySize, QualType &Type) {
 | 
						|
    unsigned MostDerivedLength = 0;
 | 
						|
    Type = Base;
 | 
						|
    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
 | 
						|
      if (Type->isArrayType()) {
 | 
						|
        const ConstantArrayType *CAT =
 | 
						|
          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
 | 
						|
        Type = CAT->getElementType();
 | 
						|
        ArraySize = CAT->getSize().getZExtValue();
 | 
						|
        MostDerivedLength = I + 1;
 | 
						|
      } else if (Type->isAnyComplexType()) {
 | 
						|
        const ComplexType *CT = Type->castAs<ComplexType>();
 | 
						|
        Type = CT->getElementType();
 | 
						|
        ArraySize = 2;
 | 
						|
        MostDerivedLength = I + 1;
 | 
						|
      } else if (const FieldDecl *FD = getAsField(Path[I])) {
 | 
						|
        Type = FD->getType();
 | 
						|
        ArraySize = 0;
 | 
						|
        MostDerivedLength = I + 1;
 | 
						|
      } else {
 | 
						|
        // Path[I] describes a base class.
 | 
						|
        ArraySize = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return MostDerivedLength;
 | 
						|
  }
 | 
						|
 | 
						|
  // The order of this enum is important for diagnostics.
 | 
						|
  enum CheckSubobjectKind {
 | 
						|
    CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
 | 
						|
    CSK_This, CSK_Real, CSK_Imag
 | 
						|
  };
 | 
						|
 | 
						|
  /// A path from a glvalue to a subobject of that glvalue.
 | 
						|
  struct SubobjectDesignator {
 | 
						|
    /// True if the subobject was named in a manner not supported by C++11. Such
 | 
						|
    /// lvalues can still be folded, but they are not core constant expressions
 | 
						|
    /// and we cannot perform lvalue-to-rvalue conversions on them.
 | 
						|
    bool Invalid : 1;
 | 
						|
 | 
						|
    /// Is this a pointer one past the end of an object?
 | 
						|
    bool IsOnePastTheEnd : 1;
 | 
						|
 | 
						|
    /// The length of the path to the most-derived object of which this is a
 | 
						|
    /// subobject.
 | 
						|
    unsigned MostDerivedPathLength : 30;
 | 
						|
 | 
						|
    /// The size of the array of which the most-derived object is an element, or
 | 
						|
    /// 0 if the most-derived object is not an array element.
 | 
						|
    uint64_t MostDerivedArraySize;
 | 
						|
 | 
						|
    /// The type of the most derived object referred to by this address.
 | 
						|
    QualType MostDerivedType;
 | 
						|
 | 
						|
    typedef APValue::LValuePathEntry PathEntry;
 | 
						|
 | 
						|
    /// The entries on the path from the glvalue to the designated subobject.
 | 
						|
    SmallVector<PathEntry, 8> Entries;
 | 
						|
 | 
						|
    SubobjectDesignator() : Invalid(true) {}
 | 
						|
 | 
						|
    explicit SubobjectDesignator(QualType T)
 | 
						|
      : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
 | 
						|
        MostDerivedArraySize(0), MostDerivedType(T) {}
 | 
						|
 | 
						|
    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
 | 
						|
      : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
 | 
						|
        MostDerivedPathLength(0), MostDerivedArraySize(0) {
 | 
						|
      if (!Invalid) {
 | 
						|
        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
 | 
						|
        ArrayRef<PathEntry> VEntries = V.getLValuePath();
 | 
						|
        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
 | 
						|
        if (V.getLValueBase())
 | 
						|
          MostDerivedPathLength =
 | 
						|
              findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
 | 
						|
                                       V.getLValuePath(), MostDerivedArraySize,
 | 
						|
                                       MostDerivedType);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void setInvalid() {
 | 
						|
      Invalid = true;
 | 
						|
      Entries.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Determine whether this is a one-past-the-end pointer.
 | 
						|
    bool isOnePastTheEnd() const {
 | 
						|
      if (IsOnePastTheEnd)
 | 
						|
        return true;
 | 
						|
      if (MostDerivedArraySize &&
 | 
						|
          Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
 | 
						|
        return true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Check that this refers to a valid subobject.
 | 
						|
    bool isValidSubobject() const {
 | 
						|
      if (Invalid)
 | 
						|
        return false;
 | 
						|
      return !isOnePastTheEnd();
 | 
						|
    }
 | 
						|
    /// Check that this refers to a valid subobject, and if not, produce a
 | 
						|
    /// relevant diagnostic and set the designator as invalid.
 | 
						|
    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
 | 
						|
 | 
						|
    /// Update this designator to refer to the first element within this array.
 | 
						|
    void addArrayUnchecked(const ConstantArrayType *CAT) {
 | 
						|
      PathEntry Entry;
 | 
						|
      Entry.ArrayIndex = 0;
 | 
						|
      Entries.push_back(Entry);
 | 
						|
 | 
						|
      // This is a most-derived object.
 | 
						|
      MostDerivedType = CAT->getElementType();
 | 
						|
      MostDerivedArraySize = CAT->getSize().getZExtValue();
 | 
						|
      MostDerivedPathLength = Entries.size();
 | 
						|
    }
 | 
						|
    /// Update this designator to refer to the given base or member of this
 | 
						|
    /// object.
 | 
						|
    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
 | 
						|
      PathEntry Entry;
 | 
						|
      APValue::BaseOrMemberType Value(D, Virtual);
 | 
						|
      Entry.BaseOrMember = Value.getOpaqueValue();
 | 
						|
      Entries.push_back(Entry);
 | 
						|
 | 
						|
      // If this isn't a base class, it's a new most-derived object.
 | 
						|
      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
 | 
						|
        MostDerivedType = FD->getType();
 | 
						|
        MostDerivedArraySize = 0;
 | 
						|
        MostDerivedPathLength = Entries.size();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /// Update this designator to refer to the given complex component.
 | 
						|
    void addComplexUnchecked(QualType EltTy, bool Imag) {
 | 
						|
      PathEntry Entry;
 | 
						|
      Entry.ArrayIndex = Imag;
 | 
						|
      Entries.push_back(Entry);
 | 
						|
 | 
						|
      // This is technically a most-derived object, though in practice this
 | 
						|
      // is unlikely to matter.
 | 
						|
      MostDerivedType = EltTy;
 | 
						|
      MostDerivedArraySize = 2;
 | 
						|
      MostDerivedPathLength = Entries.size();
 | 
						|
    }
 | 
						|
    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
 | 
						|
    /// Add N to the address of this subobject.
 | 
						|
    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
 | 
						|
      if (Invalid) return;
 | 
						|
      if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
 | 
						|
        Entries.back().ArrayIndex += N;
 | 
						|
        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
 | 
						|
          diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
 | 
						|
          setInvalid();
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // [expr.add]p4: For the purposes of these operators, a pointer to a
 | 
						|
      // nonarray object behaves the same as a pointer to the first element of
 | 
						|
      // an array of length one with the type of the object as its element type.
 | 
						|
      if (IsOnePastTheEnd && N == (uint64_t)-1)
 | 
						|
        IsOnePastTheEnd = false;
 | 
						|
      else if (!IsOnePastTheEnd && N == 1)
 | 
						|
        IsOnePastTheEnd = true;
 | 
						|
      else if (N != 0) {
 | 
						|
        diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
 | 
						|
        setInvalid();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// A stack frame in the constexpr call stack.
 | 
						|
  struct CallStackFrame {
 | 
						|
    EvalInfo &Info;
 | 
						|
 | 
						|
    /// Parent - The caller of this stack frame.
 | 
						|
    CallStackFrame *Caller;
 | 
						|
 | 
						|
    /// CallLoc - The location of the call expression for this call.
 | 
						|
    SourceLocation CallLoc;
 | 
						|
 | 
						|
    /// Callee - The function which was called.
 | 
						|
    const FunctionDecl *Callee;
 | 
						|
 | 
						|
    /// Index - The call index of this call.
 | 
						|
    unsigned Index;
 | 
						|
 | 
						|
    /// This - The binding for the this pointer in this call, if any.
 | 
						|
    const LValue *This;
 | 
						|
 | 
						|
    /// ParmBindings - Parameter bindings for this function call, indexed by
 | 
						|
    /// parameters' function scope indices.
 | 
						|
    APValue *Arguments;
 | 
						|
 | 
						|
    // Note that we intentionally use std::map here so that references to
 | 
						|
    // values are stable.
 | 
						|
    typedef std::map<const void*, APValue> MapTy;
 | 
						|
    typedef MapTy::const_iterator temp_iterator;
 | 
						|
    /// Temporaries - Temporary lvalues materialized within this stack frame.
 | 
						|
    MapTy Temporaries;
 | 
						|
 | 
						|
    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
 | 
						|
                   const FunctionDecl *Callee, const LValue *This,
 | 
						|
                   APValue *Arguments);
 | 
						|
    ~CallStackFrame();
 | 
						|
  };
 | 
						|
 | 
						|
  /// Temporarily override 'this'.
 | 
						|
  class ThisOverrideRAII {
 | 
						|
  public:
 | 
						|
    ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
 | 
						|
        : Frame(Frame), OldThis(Frame.This) {
 | 
						|
      if (Enable)
 | 
						|
        Frame.This = NewThis;
 | 
						|
    }
 | 
						|
    ~ThisOverrideRAII() {
 | 
						|
      Frame.This = OldThis;
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    CallStackFrame &Frame;
 | 
						|
    const LValue *OldThis;
 | 
						|
  };
 | 
						|
 | 
						|
  /// A partial diagnostic which we might know in advance that we are not going
 | 
						|
  /// to emit.
 | 
						|
  class OptionalDiagnostic {
 | 
						|
    PartialDiagnostic *Diag;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
 | 
						|
 | 
						|
    template<typename T>
 | 
						|
    OptionalDiagnostic &operator<<(const T &v) {
 | 
						|
      if (Diag)
 | 
						|
        *Diag << v;
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    OptionalDiagnostic &operator<<(const APSInt &I) {
 | 
						|
      if (Diag) {
 | 
						|
        SmallVector<char, 32> Buffer;
 | 
						|
        I.toString(Buffer);
 | 
						|
        *Diag << StringRef(Buffer.data(), Buffer.size());
 | 
						|
      }
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    OptionalDiagnostic &operator<<(const APFloat &F) {
 | 
						|
      if (Diag) {
 | 
						|
        SmallVector<char, 32> Buffer;
 | 
						|
        F.toString(Buffer);
 | 
						|
        *Diag << StringRef(Buffer.data(), Buffer.size());
 | 
						|
      }
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// EvalInfo - This is a private struct used by the evaluator to capture
 | 
						|
  /// information about a subexpression as it is folded.  It retains information
 | 
						|
  /// about the AST context, but also maintains information about the folded
 | 
						|
  /// expression.
 | 
						|
  ///
 | 
						|
  /// If an expression could be evaluated, it is still possible it is not a C
 | 
						|
  /// "integer constant expression" or constant expression.  If not, this struct
 | 
						|
  /// captures information about how and why not.
 | 
						|
  ///
 | 
						|
  /// One bit of information passed *into* the request for constant folding
 | 
						|
  /// indicates whether the subexpression is "evaluated" or not according to C
 | 
						|
  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
 | 
						|
  /// evaluate the expression regardless of what the RHS is, but C only allows
 | 
						|
  /// certain things in certain situations.
 | 
						|
  struct EvalInfo {
 | 
						|
    ASTContext &Ctx;
 | 
						|
 | 
						|
    /// EvalStatus - Contains information about the evaluation.
 | 
						|
    Expr::EvalStatus &EvalStatus;
 | 
						|
 | 
						|
    /// CurrentCall - The top of the constexpr call stack.
 | 
						|
    CallStackFrame *CurrentCall;
 | 
						|
 | 
						|
    /// CallStackDepth - The number of calls in the call stack right now.
 | 
						|
    unsigned CallStackDepth;
 | 
						|
 | 
						|
    /// NextCallIndex - The next call index to assign.
 | 
						|
    unsigned NextCallIndex;
 | 
						|
 | 
						|
    /// BottomFrame - The frame in which evaluation started. This must be
 | 
						|
    /// initialized after CurrentCall and CallStackDepth.
 | 
						|
    CallStackFrame BottomFrame;
 | 
						|
 | 
						|
    /// EvaluatingDecl - This is the declaration whose initializer is being
 | 
						|
    /// evaluated, if any.
 | 
						|
    const VarDecl *EvaluatingDecl;
 | 
						|
 | 
						|
    /// EvaluatingDeclValue - This is the value being constructed for the
 | 
						|
    /// declaration whose initializer is being evaluated, if any.
 | 
						|
    APValue *EvaluatingDeclValue;
 | 
						|
 | 
						|
    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
 | 
						|
    /// notes attached to it will also be stored, otherwise they will not be.
 | 
						|
    bool HasActiveDiagnostic;
 | 
						|
 | 
						|
    /// CheckingPotentialConstantExpression - Are we checking whether the
 | 
						|
    /// expression is a potential constant expression? If so, some diagnostics
 | 
						|
    /// are suppressed.
 | 
						|
    bool CheckingPotentialConstantExpression;
 | 
						|
    
 | 
						|
    bool IntOverflowCheckMode;
 | 
						|
 | 
						|
    EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
 | 
						|
             bool OverflowCheckMode=false)
 | 
						|
      : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
 | 
						|
        CallStackDepth(0), NextCallIndex(1),
 | 
						|
        BottomFrame(*this, SourceLocation(), 0, 0, 0),
 | 
						|
        EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
 | 
						|
        CheckingPotentialConstantExpression(false),
 | 
						|
        IntOverflowCheckMode(OverflowCheckMode) {}
 | 
						|
 | 
						|
    void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
 | 
						|
      EvaluatingDecl = VD;
 | 
						|
      EvaluatingDeclValue = &Value;
 | 
						|
    }
 | 
						|
 | 
						|
    const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
 | 
						|
 | 
						|
    bool CheckCallLimit(SourceLocation Loc) {
 | 
						|
      // Don't perform any constexpr calls (other than the call we're checking)
 | 
						|
      // when checking a potential constant expression.
 | 
						|
      if (CheckingPotentialConstantExpression && CallStackDepth > 1)
 | 
						|
        return false;
 | 
						|
      if (NextCallIndex == 0) {
 | 
						|
        // NextCallIndex has wrapped around.
 | 
						|
        Diag(Loc, diag::note_constexpr_call_limit_exceeded);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
 | 
						|
        return true;
 | 
						|
      Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
 | 
						|
        << getLangOpts().ConstexprCallDepth;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    CallStackFrame *getCallFrame(unsigned CallIndex) {
 | 
						|
      assert(CallIndex && "no call index in getCallFrame");
 | 
						|
      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
 | 
						|
      // be null in this loop.
 | 
						|
      CallStackFrame *Frame = CurrentCall;
 | 
						|
      while (Frame->Index > CallIndex)
 | 
						|
        Frame = Frame->Caller;
 | 
						|
      return (Frame->Index == CallIndex) ? Frame : 0;
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// Add a diagnostic to the diagnostics list.
 | 
						|
    PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
 | 
						|
      PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
 | 
						|
      EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
 | 
						|
      return EvalStatus.Diag->back().second;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Add notes containing a call stack to the current point of evaluation.
 | 
						|
    void addCallStack(unsigned Limit);
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Diagnose that the evaluation cannot be folded.
 | 
						|
    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
 | 
						|
                              = diag::note_invalid_subexpr_in_const_expr,
 | 
						|
                            unsigned ExtraNotes = 0) {
 | 
						|
      // If we have a prior diagnostic, it will be noting that the expression
 | 
						|
      // isn't a constant expression. This diagnostic is more important.
 | 
						|
      // FIXME: We might want to show both diagnostics to the user.
 | 
						|
      if (EvalStatus.Diag) {
 | 
						|
        unsigned CallStackNotes = CallStackDepth - 1;
 | 
						|
        unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
 | 
						|
        if (Limit)
 | 
						|
          CallStackNotes = std::min(CallStackNotes, Limit + 1);
 | 
						|
        if (CheckingPotentialConstantExpression)
 | 
						|
          CallStackNotes = 0;
 | 
						|
 | 
						|
        HasActiveDiagnostic = true;
 | 
						|
        EvalStatus.Diag->clear();
 | 
						|
        EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
 | 
						|
        addDiag(Loc, DiagId);
 | 
						|
        if (!CheckingPotentialConstantExpression)
 | 
						|
          addCallStack(Limit);
 | 
						|
        return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
 | 
						|
      }
 | 
						|
      HasActiveDiagnostic = false;
 | 
						|
      return OptionalDiagnostic();
 | 
						|
    }
 | 
						|
 | 
						|
    OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
 | 
						|
                              = diag::note_invalid_subexpr_in_const_expr,
 | 
						|
                            unsigned ExtraNotes = 0) {
 | 
						|
      if (EvalStatus.Diag)
 | 
						|
        return Diag(E->getExprLoc(), DiagId, ExtraNotes);
 | 
						|
      HasActiveDiagnostic = false;
 | 
						|
      return OptionalDiagnostic();
 | 
						|
    }
 | 
						|
 | 
						|
    bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
 | 
						|
    
 | 
						|
    /// Diagnose that the evaluation does not produce a C++11 core constant
 | 
						|
    /// expression.
 | 
						|
    template<typename LocArg>
 | 
						|
    OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
 | 
						|
                                 = diag::note_invalid_subexpr_in_const_expr,
 | 
						|
                               unsigned ExtraNotes = 0) {
 | 
						|
      // Don't override a previous diagnostic.
 | 
						|
      if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
 | 
						|
        HasActiveDiagnostic = false;
 | 
						|
        return OptionalDiagnostic();
 | 
						|
      }
 | 
						|
      return Diag(Loc, DiagId, ExtraNotes);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Add a note to a prior diagnostic.
 | 
						|
    OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
 | 
						|
      if (!HasActiveDiagnostic)
 | 
						|
        return OptionalDiagnostic();
 | 
						|
      return OptionalDiagnostic(&addDiag(Loc, DiagId));
 | 
						|
    }
 | 
						|
 | 
						|
    /// Add a stack of notes to a prior diagnostic.
 | 
						|
    void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
 | 
						|
      if (HasActiveDiagnostic) {
 | 
						|
        EvalStatus.Diag->insert(EvalStatus.Diag->end(),
 | 
						|
                                Diags.begin(), Diags.end());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Should we continue evaluation as much as possible after encountering a
 | 
						|
    /// construct which can't be folded?
 | 
						|
    bool keepEvaluatingAfterFailure() {
 | 
						|
      // Should return true in IntOverflowCheckMode, so that we check for
 | 
						|
      // overflow even if some subexpressions can't be evaluated as constants.
 | 
						|
      return IntOverflowCheckMode ||
 | 
						|
             (CheckingPotentialConstantExpression &&
 | 
						|
              EvalStatus.Diag && EvalStatus.Diag->empty());
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Object used to treat all foldable expressions as constant expressions.
 | 
						|
  struct FoldConstant {
 | 
						|
    bool Enabled;
 | 
						|
 | 
						|
    explicit FoldConstant(EvalInfo &Info)
 | 
						|
      : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
 | 
						|
                !Info.EvalStatus.HasSideEffects) {
 | 
						|
    }
 | 
						|
    // Treat the value we've computed since this object was created as constant.
 | 
						|
    void Fold(EvalInfo &Info) {
 | 
						|
      if (Enabled && !Info.EvalStatus.Diag->empty() &&
 | 
						|
          !Info.EvalStatus.HasSideEffects)
 | 
						|
        Info.EvalStatus.Diag->clear();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// RAII object used to suppress diagnostics and side-effects from a
 | 
						|
  /// speculative evaluation.
 | 
						|
  class SpeculativeEvaluationRAII {
 | 
						|
    EvalInfo &Info;
 | 
						|
    Expr::EvalStatus Old;
 | 
						|
 | 
						|
  public:
 | 
						|
    SpeculativeEvaluationRAII(EvalInfo &Info,
 | 
						|
                              SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
 | 
						|
      : Info(Info), Old(Info.EvalStatus) {
 | 
						|
      Info.EvalStatus.Diag = NewDiag;
 | 
						|
    }
 | 
						|
    ~SpeculativeEvaluationRAII() {
 | 
						|
      Info.EvalStatus = Old;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
 | 
						|
                                         CheckSubobjectKind CSK) {
 | 
						|
  if (Invalid)
 | 
						|
    return false;
 | 
						|
  if (isOnePastTheEnd()) {
 | 
						|
    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
 | 
						|
      << CSK;
 | 
						|
    setInvalid();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
 | 
						|
                                                    const Expr *E, uint64_t N) {
 | 
						|
  if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
 | 
						|
    Info.CCEDiag(E, diag::note_constexpr_array_index)
 | 
						|
      << static_cast<int>(N) << /*array*/ 0
 | 
						|
      << static_cast<unsigned>(MostDerivedArraySize);
 | 
						|
  else
 | 
						|
    Info.CCEDiag(E, diag::note_constexpr_array_index)
 | 
						|
      << static_cast<int>(N) << /*non-array*/ 1;
 | 
						|
  setInvalid();
 | 
						|
}
 | 
						|
 | 
						|
CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
 | 
						|
                               const FunctionDecl *Callee, const LValue *This,
 | 
						|
                               APValue *Arguments)
 | 
						|
    : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
 | 
						|
      Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
 | 
						|
  Info.CurrentCall = this;
 | 
						|
  ++Info.CallStackDepth;
 | 
						|
}
 | 
						|
 | 
						|
CallStackFrame::~CallStackFrame() {
 | 
						|
  assert(Info.CurrentCall == this && "calls retired out of order");
 | 
						|
  --Info.CallStackDepth;
 | 
						|
  Info.CurrentCall = Caller;
 | 
						|
}
 | 
						|
 | 
						|
/// Produce a string describing the given constexpr call.
 | 
						|
static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
 | 
						|
  unsigned ArgIndex = 0;
 | 
						|
  bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
 | 
						|
                      !isa<CXXConstructorDecl>(Frame->Callee) &&
 | 
						|
                      cast<CXXMethodDecl>(Frame->Callee)->isInstance();
 | 
						|
 | 
						|
  if (!IsMemberCall)
 | 
						|
    Out << *Frame->Callee << '(';
 | 
						|
 | 
						|
  for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
 | 
						|
       E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
 | 
						|
    if (ArgIndex > (unsigned)IsMemberCall)
 | 
						|
      Out << ", ";
 | 
						|
 | 
						|
    const ParmVarDecl *Param = *I;
 | 
						|
    const APValue &Arg = Frame->Arguments[ArgIndex];
 | 
						|
    Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
 | 
						|
 | 
						|
    if (ArgIndex == 0 && IsMemberCall)
 | 
						|
      Out << "->" << *Frame->Callee << '(';
 | 
						|
  }
 | 
						|
 | 
						|
  Out << ')';
 | 
						|
}
 | 
						|
 | 
						|
void EvalInfo::addCallStack(unsigned Limit) {
 | 
						|
  // Determine which calls to skip, if any.
 | 
						|
  unsigned ActiveCalls = CallStackDepth - 1;
 | 
						|
  unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
 | 
						|
  if (Limit && Limit < ActiveCalls) {
 | 
						|
    SkipStart = Limit / 2 + Limit % 2;
 | 
						|
    SkipEnd = ActiveCalls - Limit / 2;
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk the call stack and add the diagnostics.
 | 
						|
  unsigned CallIdx = 0;
 | 
						|
  for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
 | 
						|
       Frame = Frame->Caller, ++CallIdx) {
 | 
						|
    // Skip this call?
 | 
						|
    if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
 | 
						|
      if (CallIdx == SkipStart) {
 | 
						|
        // Note that we're skipping calls.
 | 
						|
        addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
 | 
						|
          << unsigned(ActiveCalls - Limit);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<char, 128> Buffer;
 | 
						|
    llvm::raw_svector_ostream Out(Buffer);
 | 
						|
    describeCall(Frame, Out);
 | 
						|
    addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct ComplexValue {
 | 
						|
  private:
 | 
						|
    bool IsInt;
 | 
						|
 | 
						|
  public:
 | 
						|
    APSInt IntReal, IntImag;
 | 
						|
    APFloat FloatReal, FloatImag;
 | 
						|
 | 
						|
    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
 | 
						|
 | 
						|
    void makeComplexFloat() { IsInt = false; }
 | 
						|
    bool isComplexFloat() const { return !IsInt; }
 | 
						|
    APFloat &getComplexFloatReal() { return FloatReal; }
 | 
						|
    APFloat &getComplexFloatImag() { return FloatImag; }
 | 
						|
 | 
						|
    void makeComplexInt() { IsInt = true; }
 | 
						|
    bool isComplexInt() const { return IsInt; }
 | 
						|
    APSInt &getComplexIntReal() { return IntReal; }
 | 
						|
    APSInt &getComplexIntImag() { return IntImag; }
 | 
						|
 | 
						|
    void moveInto(APValue &v) const {
 | 
						|
      if (isComplexFloat())
 | 
						|
        v = APValue(FloatReal, FloatImag);
 | 
						|
      else
 | 
						|
        v = APValue(IntReal, IntImag);
 | 
						|
    }
 | 
						|
    void setFrom(const APValue &v) {
 | 
						|
      assert(v.isComplexFloat() || v.isComplexInt());
 | 
						|
      if (v.isComplexFloat()) {
 | 
						|
        makeComplexFloat();
 | 
						|
        FloatReal = v.getComplexFloatReal();
 | 
						|
        FloatImag = v.getComplexFloatImag();
 | 
						|
      } else {
 | 
						|
        makeComplexInt();
 | 
						|
        IntReal = v.getComplexIntReal();
 | 
						|
        IntImag = v.getComplexIntImag();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct LValue {
 | 
						|
    APValue::LValueBase Base;
 | 
						|
    CharUnits Offset;
 | 
						|
    unsigned CallIndex;
 | 
						|
    SubobjectDesignator Designator;
 | 
						|
 | 
						|
    const APValue::LValueBase getLValueBase() const { return Base; }
 | 
						|
    CharUnits &getLValueOffset() { return Offset; }
 | 
						|
    const CharUnits &getLValueOffset() const { return Offset; }
 | 
						|
    unsigned getLValueCallIndex() const { return CallIndex; }
 | 
						|
    SubobjectDesignator &getLValueDesignator() { return Designator; }
 | 
						|
    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
 | 
						|
 | 
						|
    void moveInto(APValue &V) const {
 | 
						|
      if (Designator.Invalid)
 | 
						|
        V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
 | 
						|
      else
 | 
						|
        V = APValue(Base, Offset, Designator.Entries,
 | 
						|
                    Designator.IsOnePastTheEnd, CallIndex);
 | 
						|
    }
 | 
						|
    void setFrom(ASTContext &Ctx, const APValue &V) {
 | 
						|
      assert(V.isLValue());
 | 
						|
      Base = V.getLValueBase();
 | 
						|
      Offset = V.getLValueOffset();
 | 
						|
      CallIndex = V.getLValueCallIndex();
 | 
						|
      Designator = SubobjectDesignator(Ctx, V);
 | 
						|
    }
 | 
						|
 | 
						|
    void set(APValue::LValueBase B, unsigned I = 0) {
 | 
						|
      Base = B;
 | 
						|
      Offset = CharUnits::Zero();
 | 
						|
      CallIndex = I;
 | 
						|
      Designator = SubobjectDesignator(getType(B));
 | 
						|
    }
 | 
						|
 | 
						|
    // Check that this LValue is not based on a null pointer. If it is, produce
 | 
						|
    // a diagnostic and mark the designator as invalid.
 | 
						|
    bool checkNullPointer(EvalInfo &Info, const Expr *E,
 | 
						|
                          CheckSubobjectKind CSK) {
 | 
						|
      if (Designator.Invalid)
 | 
						|
        return false;
 | 
						|
      if (!Base) {
 | 
						|
        Info.CCEDiag(E, diag::note_constexpr_null_subobject)
 | 
						|
          << CSK;
 | 
						|
        Designator.setInvalid();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check this LValue refers to an object. If not, set the designator to be
 | 
						|
    // invalid and emit a diagnostic.
 | 
						|
    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
 | 
						|
      // Outside C++11, do not build a designator referring to a subobject of
 | 
						|
      // any object: we won't use such a designator for anything.
 | 
						|
      if (!Info.getLangOpts().CPlusPlus11)
 | 
						|
        Designator.setInvalid();
 | 
						|
      return checkNullPointer(Info, E, CSK) &&
 | 
						|
             Designator.checkSubobject(Info, E, CSK);
 | 
						|
    }
 | 
						|
 | 
						|
    void addDecl(EvalInfo &Info, const Expr *E,
 | 
						|
                 const Decl *D, bool Virtual = false) {
 | 
						|
      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
 | 
						|
        Designator.addDeclUnchecked(D, Virtual);
 | 
						|
    }
 | 
						|
    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
 | 
						|
      if (checkSubobject(Info, E, CSK_ArrayToPointer))
 | 
						|
        Designator.addArrayUnchecked(CAT);
 | 
						|
    }
 | 
						|
    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
 | 
						|
      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
 | 
						|
        Designator.addComplexUnchecked(EltTy, Imag);
 | 
						|
    }
 | 
						|
    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
 | 
						|
      if (checkNullPointer(Info, E, CSK_ArrayIndex))
 | 
						|
        Designator.adjustIndex(Info, E, N);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct MemberPtr {
 | 
						|
    MemberPtr() {}
 | 
						|
    explicit MemberPtr(const ValueDecl *Decl) :
 | 
						|
      DeclAndIsDerivedMember(Decl, false), Path() {}
 | 
						|
 | 
						|
    /// The member or (direct or indirect) field referred to by this member
 | 
						|
    /// pointer, or 0 if this is a null member pointer.
 | 
						|
    const ValueDecl *getDecl() const {
 | 
						|
      return DeclAndIsDerivedMember.getPointer();
 | 
						|
    }
 | 
						|
    /// Is this actually a member of some type derived from the relevant class?
 | 
						|
    bool isDerivedMember() const {
 | 
						|
      return DeclAndIsDerivedMember.getInt();
 | 
						|
    }
 | 
						|
    /// Get the class which the declaration actually lives in.
 | 
						|
    const CXXRecordDecl *getContainingRecord() const {
 | 
						|
      return cast<CXXRecordDecl>(
 | 
						|
          DeclAndIsDerivedMember.getPointer()->getDeclContext());
 | 
						|
    }
 | 
						|
 | 
						|
    void moveInto(APValue &V) const {
 | 
						|
      V = APValue(getDecl(), isDerivedMember(), Path);
 | 
						|
    }
 | 
						|
    void setFrom(const APValue &V) {
 | 
						|
      assert(V.isMemberPointer());
 | 
						|
      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
 | 
						|
      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
 | 
						|
      Path.clear();
 | 
						|
      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
 | 
						|
      Path.insert(Path.end(), P.begin(), P.end());
 | 
						|
    }
 | 
						|
 | 
						|
    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
 | 
						|
    /// whether the member is a member of some class derived from the class type
 | 
						|
    /// of the member pointer.
 | 
						|
    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
 | 
						|
    /// Path - The path of base/derived classes from the member declaration's
 | 
						|
    /// class (exclusive) to the class type of the member pointer (inclusive).
 | 
						|
    SmallVector<const CXXRecordDecl*, 4> Path;
 | 
						|
 | 
						|
    /// Perform a cast towards the class of the Decl (either up or down the
 | 
						|
    /// hierarchy).
 | 
						|
    bool castBack(const CXXRecordDecl *Class) {
 | 
						|
      assert(!Path.empty());
 | 
						|
      const CXXRecordDecl *Expected;
 | 
						|
      if (Path.size() >= 2)
 | 
						|
        Expected = Path[Path.size() - 2];
 | 
						|
      else
 | 
						|
        Expected = getContainingRecord();
 | 
						|
      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
 | 
						|
        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
 | 
						|
        // if B does not contain the original member and is not a base or
 | 
						|
        // derived class of the class containing the original member, the result
 | 
						|
        // of the cast is undefined.
 | 
						|
        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
 | 
						|
        // (D::*). We consider that to be a language defect.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      Path.pop_back();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    /// Perform a base-to-derived member pointer cast.
 | 
						|
    bool castToDerived(const CXXRecordDecl *Derived) {
 | 
						|
      if (!getDecl())
 | 
						|
        return true;
 | 
						|
      if (!isDerivedMember()) {
 | 
						|
        Path.push_back(Derived);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (!castBack(Derived))
 | 
						|
        return false;
 | 
						|
      if (Path.empty())
 | 
						|
        DeclAndIsDerivedMember.setInt(false);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    /// Perform a derived-to-base member pointer cast.
 | 
						|
    bool castToBase(const CXXRecordDecl *Base) {
 | 
						|
      if (!getDecl())
 | 
						|
        return true;
 | 
						|
      if (Path.empty())
 | 
						|
        DeclAndIsDerivedMember.setInt(true);
 | 
						|
      if (isDerivedMember()) {
 | 
						|
        Path.push_back(Base);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      return castBack(Base);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Compare two member pointers, which are assumed to be of the same type.
 | 
						|
  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
 | 
						|
    if (!LHS.getDecl() || !RHS.getDecl())
 | 
						|
      return !LHS.getDecl() && !RHS.getDecl();
 | 
						|
    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
 | 
						|
      return false;
 | 
						|
    return LHS.Path == RHS.Path;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Kinds of constant expression checking, for diagnostics.
 | 
						|
  enum CheckConstantExpressionKind {
 | 
						|
    CCEK_Constant,    ///< A normal constant.
 | 
						|
    CCEK_ReturnValue, ///< A constexpr function return value.
 | 
						|
    CCEK_MemberInit   ///< A constexpr constructor mem-initializer.
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
 | 
						|
static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
 | 
						|
                            const LValue &This, const Expr *E,
 | 
						|
                            CheckConstantExpressionKind CCEK = CCEK_Constant,
 | 
						|
                            bool AllowNonLiteralTypes = false);
 | 
						|
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
 | 
						|
static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
 | 
						|
static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
 | 
						|
                                  EvalInfo &Info);
 | 
						|
static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
 | 
						|
static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
 | 
						|
static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
 | 
						|
                                    EvalInfo &Info);
 | 
						|
static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
 | 
						|
static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Misc utilities
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Evaluate an expression to see if it had side-effects, and discard its
 | 
						|
/// result.
 | 
						|
/// \return \c true if the caller should keep evaluating.
 | 
						|
static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
 | 
						|
  APValue Scratch;
 | 
						|
  if (!Evaluate(Scratch, Info, E)) {
 | 
						|
    Info.EvalStatus.HasSideEffects = true;
 | 
						|
    return Info.keepEvaluatingAfterFailure();
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Should this call expression be treated as a string literal?
 | 
						|
static bool IsStringLiteralCall(const CallExpr *E) {
 | 
						|
  unsigned Builtin = E->isBuiltinCall();
 | 
						|
  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
 | 
						|
          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
 | 
						|
}
 | 
						|
 | 
						|
static bool IsGlobalLValue(APValue::LValueBase B) {
 | 
						|
  // C++11 [expr.const]p3 An address constant expression is a prvalue core
 | 
						|
  // constant expression of pointer type that evaluates to...
 | 
						|
 | 
						|
  // ... a null pointer value, or a prvalue core constant expression of type
 | 
						|
  // std::nullptr_t.
 | 
						|
  if (!B) return true;
 | 
						|
 | 
						|
  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
 | 
						|
    // ... the address of an object with static storage duration,
 | 
						|
    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | 
						|
      return VD->hasGlobalStorage();
 | 
						|
    // ... the address of a function,
 | 
						|
    return isa<FunctionDecl>(D);
 | 
						|
  }
 | 
						|
 | 
						|
  const Expr *E = B.get<const Expr*>();
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case Expr::CompoundLiteralExprClass: {
 | 
						|
    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
 | 
						|
    return CLE->isFileScope() && CLE->isLValue();
 | 
						|
  }
 | 
						|
  // A string literal has static storage duration.
 | 
						|
  case Expr::StringLiteralClass:
 | 
						|
  case Expr::PredefinedExprClass:
 | 
						|
  case Expr::ObjCStringLiteralClass:
 | 
						|
  case Expr::ObjCEncodeExprClass:
 | 
						|
  case Expr::CXXTypeidExprClass:
 | 
						|
  case Expr::CXXUuidofExprClass:
 | 
						|
    return true;
 | 
						|
  case Expr::CallExprClass:
 | 
						|
    return IsStringLiteralCall(cast<CallExpr>(E));
 | 
						|
  // For GCC compatibility, &&label has static storage duration.
 | 
						|
  case Expr::AddrLabelExprClass:
 | 
						|
    return true;
 | 
						|
  // A Block literal expression may be used as the initialization value for
 | 
						|
  // Block variables at global or local static scope.
 | 
						|
  case Expr::BlockExprClass:
 | 
						|
    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
 | 
						|
  case Expr::ImplicitValueInitExprClass:
 | 
						|
    // FIXME:
 | 
						|
    // We can never form an lvalue with an implicit value initialization as its
 | 
						|
    // base through expression evaluation, so these only appear in one case: the
 | 
						|
    // implicit variable declaration we invent when checking whether a constexpr
 | 
						|
    // constructor can produce a constant expression. We must assume that such
 | 
						|
    // an expression might be a global lvalue.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
 | 
						|
  assert(Base && "no location for a null lvalue");
 | 
						|
  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
 | 
						|
  if (VD)
 | 
						|
    Info.Note(VD->getLocation(), diag::note_declared_at);
 | 
						|
  else
 | 
						|
    Info.Note(Base.get<const Expr*>()->getExprLoc(),
 | 
						|
              diag::note_constexpr_temporary_here);
 | 
						|
}
 | 
						|
 | 
						|
/// Check that this reference or pointer core constant expression is a valid
 | 
						|
/// value for an address or reference constant expression. Return true if we
 | 
						|
/// can fold this expression, whether or not it's a constant expression.
 | 
						|
static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
 | 
						|
                                          QualType Type, const LValue &LVal) {
 | 
						|
  bool IsReferenceType = Type->isReferenceType();
 | 
						|
 | 
						|
  APValue::LValueBase Base = LVal.getLValueBase();
 | 
						|
  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
 | 
						|
 | 
						|
  // Check that the object is a global. Note that the fake 'this' object we
 | 
						|
  // manufacture when checking potential constant expressions is conservatively
 | 
						|
  // assumed to be global here.
 | 
						|
  if (!IsGlobalLValue(Base)) {
 | 
						|
    if (Info.getLangOpts().CPlusPlus11) {
 | 
						|
      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
 | 
						|
      Info.Diag(Loc, diag::note_constexpr_non_global, 1)
 | 
						|
        << IsReferenceType << !Designator.Entries.empty()
 | 
						|
        << !!VD << VD;
 | 
						|
      NoteLValueLocation(Info, Base);
 | 
						|
    } else {
 | 
						|
      Info.Diag(Loc);
 | 
						|
    }
 | 
						|
    // Don't allow references to temporaries to escape.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  assert((Info.CheckingPotentialConstantExpression ||
 | 
						|
          LVal.getLValueCallIndex() == 0) &&
 | 
						|
         "have call index for global lvalue");
 | 
						|
 | 
						|
  // Check if this is a thread-local variable.
 | 
						|
  if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
 | 
						|
    if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
 | 
						|
      if (Var->getTLSKind())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow address constant expressions to be past-the-end pointers. This is
 | 
						|
  // an extension: the standard requires them to point to an object.
 | 
						|
  if (!IsReferenceType)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // A reference constant expression must refer to an object.
 | 
						|
  if (!Base) {
 | 
						|
    // FIXME: diagnostic
 | 
						|
    Info.CCEDiag(Loc);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Does this refer one past the end of some object?
 | 
						|
  if (Designator.isOnePastTheEnd()) {
 | 
						|
    const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
 | 
						|
    Info.Diag(Loc, diag::note_constexpr_past_end, 1)
 | 
						|
      << !Designator.Entries.empty() << !!VD << VD;
 | 
						|
    NoteLValueLocation(Info, Base);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that this core constant expression is of literal type, and if not,
 | 
						|
/// produce an appropriate diagnostic.
 | 
						|
static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
 | 
						|
  if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Prvalue constant expressions must be of literal types.
 | 
						|
  if (Info.getLangOpts().CPlusPlus11)
 | 
						|
    Info.Diag(E, diag::note_constexpr_nonliteral)
 | 
						|
      << E->getType();
 | 
						|
  else
 | 
						|
    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that this core constant expression value is a valid value for a
 | 
						|
/// constant expression. If not, report an appropriate diagnostic. Does not
 | 
						|
/// check that the expression is of literal type.
 | 
						|
static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
 | 
						|
                                    QualType Type, const APValue &Value) {
 | 
						|
  // Core issue 1454: For a literal constant expression of array or class type,
 | 
						|
  // each subobject of its value shall have been initialized by a constant
 | 
						|
  // expression.
 | 
						|
  if (Value.isArray()) {
 | 
						|
    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
 | 
						|
    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
 | 
						|
      if (!CheckConstantExpression(Info, DiagLoc, EltTy,
 | 
						|
                                   Value.getArrayInitializedElt(I)))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    if (!Value.hasArrayFiller())
 | 
						|
      return true;
 | 
						|
    return CheckConstantExpression(Info, DiagLoc, EltTy,
 | 
						|
                                   Value.getArrayFiller());
 | 
						|
  }
 | 
						|
  if (Value.isUnion() && Value.getUnionField()) {
 | 
						|
    return CheckConstantExpression(Info, DiagLoc,
 | 
						|
                                   Value.getUnionField()->getType(),
 | 
						|
                                   Value.getUnionValue());
 | 
						|
  }
 | 
						|
  if (Value.isStruct()) {
 | 
						|
    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
 | 
						|
    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
      unsigned BaseIndex = 0;
 | 
						|
      for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
 | 
						|
             End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
 | 
						|
        if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
 | 
						|
                                     Value.getStructBase(BaseIndex)))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
 | 
						|
                                   Value.getStructField(I->getFieldIndex())))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value.isLValue()) {
 | 
						|
    LValue LVal;
 | 
						|
    LVal.setFrom(Info.Ctx, Value);
 | 
						|
    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything else is fine.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
 | 
						|
  return LVal.Base.dyn_cast<const ValueDecl*>();
 | 
						|
}
 | 
						|
 | 
						|
static bool IsLiteralLValue(const LValue &Value) {
 | 
						|
  return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsWeakLValue(const LValue &Value) {
 | 
						|
  const ValueDecl *Decl = GetLValueBaseDecl(Value);
 | 
						|
  return Decl && Decl->isWeak();
 | 
						|
}
 | 
						|
 | 
						|
static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
 | 
						|
  // A null base expression indicates a null pointer.  These are always
 | 
						|
  // evaluatable, and they are false unless the offset is zero.
 | 
						|
  if (!Value.getLValueBase()) {
 | 
						|
    Result = !Value.getLValueOffset().isZero();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have a non-null base.  These are generally known to be true, but if it's
 | 
						|
  // a weak declaration it can be null at runtime.
 | 
						|
  Result = true;
 | 
						|
  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
 | 
						|
  return !Decl || !Decl->isWeak();
 | 
						|
}
 | 
						|
 | 
						|
static bool HandleConversionToBool(const APValue &Val, bool &Result) {
 | 
						|
  switch (Val.getKind()) {
 | 
						|
  case APValue::Uninitialized:
 | 
						|
    return false;
 | 
						|
  case APValue::Int:
 | 
						|
    Result = Val.getInt().getBoolValue();
 | 
						|
    return true;
 | 
						|
  case APValue::Float:
 | 
						|
    Result = !Val.getFloat().isZero();
 | 
						|
    return true;
 | 
						|
  case APValue::ComplexInt:
 | 
						|
    Result = Val.getComplexIntReal().getBoolValue() ||
 | 
						|
             Val.getComplexIntImag().getBoolValue();
 | 
						|
    return true;
 | 
						|
  case APValue::ComplexFloat:
 | 
						|
    Result = !Val.getComplexFloatReal().isZero() ||
 | 
						|
             !Val.getComplexFloatImag().isZero();
 | 
						|
    return true;
 | 
						|
  case APValue::LValue:
 | 
						|
    return EvalPointerValueAsBool(Val, Result);
 | 
						|
  case APValue::MemberPointer:
 | 
						|
    Result = Val.getMemberPointerDecl();
 | 
						|
    return true;
 | 
						|
  case APValue::Vector:
 | 
						|
  case APValue::Array:
 | 
						|
  case APValue::Struct:
 | 
						|
  case APValue::Union:
 | 
						|
  case APValue::AddrLabelDiff:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown APValue kind");
 | 
						|
}
 | 
						|
 | 
						|
static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
 | 
						|
                                       EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
 | 
						|
  APValue Val;
 | 
						|
  if (!Evaluate(Val, Info, E))
 | 
						|
    return false;
 | 
						|
  return HandleConversionToBool(Val, Result);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static void HandleOverflow(EvalInfo &Info, const Expr *E,
 | 
						|
                           const T &SrcValue, QualType DestType) {
 | 
						|
  Info.CCEDiag(E, diag::note_constexpr_overflow)
 | 
						|
    << SrcValue << DestType;
 | 
						|
}
 | 
						|
 | 
						|
static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
 | 
						|
                                 QualType SrcType, const APFloat &Value,
 | 
						|
                                 QualType DestType, APSInt &Result) {
 | 
						|
  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
 | 
						|
  // Determine whether we are converting to unsigned or signed.
 | 
						|
  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
 | 
						|
 | 
						|
  Result = APSInt(DestWidth, !DestSigned);
 | 
						|
  bool ignored;
 | 
						|
  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
 | 
						|
      & APFloat::opInvalidOp)
 | 
						|
    HandleOverflow(Info, E, Value, DestType);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
 | 
						|
                                   QualType SrcType, QualType DestType,
 | 
						|
                                   APFloat &Result) {
 | 
						|
  APFloat Value = Result;
 | 
						|
  bool ignored;
 | 
						|
  if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
 | 
						|
                     APFloat::rmNearestTiesToEven, &ignored)
 | 
						|
      & APFloat::opOverflow)
 | 
						|
    HandleOverflow(Info, E, Value, DestType);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
 | 
						|
                                 QualType DestType, QualType SrcType,
 | 
						|
                                 APSInt &Value) {
 | 
						|
  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
 | 
						|
  APSInt Result = Value;
 | 
						|
  // Figure out if this is a truncate, extend or noop cast.
 | 
						|
  // If the input is signed, do a sign extend, noop, or truncate.
 | 
						|
  Result = Result.extOrTrunc(DestWidth);
 | 
						|
  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
 | 
						|
                                 QualType SrcType, const APSInt &Value,
 | 
						|
                                 QualType DestType, APFloat &Result) {
 | 
						|
  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
 | 
						|
  if (Result.convertFromAPInt(Value, Value.isSigned(),
 | 
						|
                              APFloat::rmNearestTiesToEven)
 | 
						|
      & APFloat::opOverflow)
 | 
						|
    HandleOverflow(Info, E, Value, DestType);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
 | 
						|
                                  llvm::APInt &Res) {
 | 
						|
  APValue SVal;
 | 
						|
  if (!Evaluate(SVal, Info, E))
 | 
						|
    return false;
 | 
						|
  if (SVal.isInt()) {
 | 
						|
    Res = SVal.getInt();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (SVal.isFloat()) {
 | 
						|
    Res = SVal.getFloat().bitcastToAPInt();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (SVal.isVector()) {
 | 
						|
    QualType VecTy = E->getType();
 | 
						|
    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
 | 
						|
    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
 | 
						|
    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
 | 
						|
    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
 | 
						|
    Res = llvm::APInt::getNullValue(VecSize);
 | 
						|
    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
 | 
						|
      APValue &Elt = SVal.getVectorElt(i);
 | 
						|
      llvm::APInt EltAsInt;
 | 
						|
      if (Elt.isInt()) {
 | 
						|
        EltAsInt = Elt.getInt();
 | 
						|
      } else if (Elt.isFloat()) {
 | 
						|
        EltAsInt = Elt.getFloat().bitcastToAPInt();
 | 
						|
      } else {
 | 
						|
        // Don't try to handle vectors of anything other than int or float
 | 
						|
        // (not sure if it's possible to hit this case).
 | 
						|
        Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      unsigned BaseEltSize = EltAsInt.getBitWidth();
 | 
						|
      if (BigEndian)
 | 
						|
        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
 | 
						|
      else
 | 
						|
        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Give up if the input isn't an int, float, or vector.  For example, we
 | 
						|
  // reject "(v4i16)(intptr_t)&a".
 | 
						|
  Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Cast an lvalue referring to a base subobject to a derived class, by
 | 
						|
/// truncating the lvalue's path to the given length.
 | 
						|
static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
 | 
						|
                               const RecordDecl *TruncatedType,
 | 
						|
                               unsigned TruncatedElements) {
 | 
						|
  SubobjectDesignator &D = Result.Designator;
 | 
						|
 | 
						|
  // Check we actually point to a derived class object.
 | 
						|
  if (TruncatedElements == D.Entries.size())
 | 
						|
    return true;
 | 
						|
  assert(TruncatedElements >= D.MostDerivedPathLength &&
 | 
						|
         "not casting to a derived class");
 | 
						|
  if (!Result.checkSubobject(Info, E, CSK_Derived))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Truncate the path to the subobject, and remove any derived-to-base offsets.
 | 
						|
  const RecordDecl *RD = TruncatedType;
 | 
						|
  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
 | 
						|
    if (RD->isInvalidDecl()) return false;
 | 
						|
    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | 
						|
    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
 | 
						|
    if (isVirtualBaseClass(D.Entries[I]))
 | 
						|
      Result.Offset -= Layout.getVBaseClassOffset(Base);
 | 
						|
    else
 | 
						|
      Result.Offset -= Layout.getBaseClassOffset(Base);
 | 
						|
    RD = Base;
 | 
						|
  }
 | 
						|
  D.Entries.resize(TruncatedElements);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
 | 
						|
                                   const CXXRecordDecl *Derived,
 | 
						|
                                   const CXXRecordDecl *Base,
 | 
						|
                                   const ASTRecordLayout *RL = 0) {
 | 
						|
  if (!RL) {
 | 
						|
    if (Derived->isInvalidDecl()) return false;
 | 
						|
    RL = &Info.Ctx.getASTRecordLayout(Derived);
 | 
						|
  }
 | 
						|
 | 
						|
  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
 | 
						|
  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
 | 
						|
                             const CXXRecordDecl *DerivedDecl,
 | 
						|
                             const CXXBaseSpecifier *Base) {
 | 
						|
  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
 | 
						|
 | 
						|
  if (!Base->isVirtual())
 | 
						|
    return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
 | 
						|
 | 
						|
  SubobjectDesignator &D = Obj.Designator;
 | 
						|
  if (D.Invalid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Extract most-derived object and corresponding type.
 | 
						|
  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
 | 
						|
  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the virtual base class.
 | 
						|
  if (DerivedDecl->isInvalidDecl()) return false;
 | 
						|
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
 | 
						|
  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
 | 
						|
  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Update LVal to refer to the given field, which must be a member of the type
 | 
						|
/// currently described by LVal.
 | 
						|
static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
 | 
						|
                               const FieldDecl *FD,
 | 
						|
                               const ASTRecordLayout *RL = 0) {
 | 
						|
  if (!RL) {
 | 
						|
    if (FD->getParent()->isInvalidDecl()) return false;
 | 
						|
    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned I = FD->getFieldIndex();
 | 
						|
  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
 | 
						|
  LVal.addDecl(Info, E, FD);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Update LVal to refer to the given indirect field.
 | 
						|
static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
 | 
						|
                                       LValue &LVal,
 | 
						|
                                       const IndirectFieldDecl *IFD) {
 | 
						|
  for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
 | 
						|
                                         CE = IFD->chain_end(); C != CE; ++C)
 | 
						|
    if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the size of the given type in char units.
 | 
						|
static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
 | 
						|
                         QualType Type, CharUnits &Size) {
 | 
						|
  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
 | 
						|
  // extension.
 | 
						|
  if (Type->isVoidType() || Type->isFunctionType()) {
 | 
						|
    Size = CharUnits::One();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Type->isConstantSizeType()) {
 | 
						|
    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
 | 
						|
    // FIXME: Better diagnostic.
 | 
						|
    Info.Diag(Loc);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Size = Info.Ctx.getTypeSizeInChars(Type);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Update a pointer value to model pointer arithmetic.
 | 
						|
/// \param Info - Information about the ongoing evaluation.
 | 
						|
/// \param E - The expression being evaluated, for diagnostic purposes.
 | 
						|
/// \param LVal - The pointer value to be updated.
 | 
						|
/// \param EltTy - The pointee type represented by LVal.
 | 
						|
/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
 | 
						|
static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
 | 
						|
                                        LValue &LVal, QualType EltTy,
 | 
						|
                                        int64_t Adjustment) {
 | 
						|
  CharUnits SizeOfPointee;
 | 
						|
  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Compute the new offset in the appropriate width.
 | 
						|
  LVal.Offset += Adjustment * SizeOfPointee;
 | 
						|
  LVal.adjustIndex(Info, E, Adjustment);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Update an lvalue to refer to a component of a complex number.
 | 
						|
/// \param Info - Information about the ongoing evaluation.
 | 
						|
/// \param LVal - The lvalue to be updated.
 | 
						|
/// \param EltTy - The complex number's component type.
 | 
						|
/// \param Imag - False for the real component, true for the imaginary.
 | 
						|
static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
 | 
						|
                                       LValue &LVal, QualType EltTy,
 | 
						|
                                       bool Imag) {
 | 
						|
  if (Imag) {
 | 
						|
    CharUnits SizeOfComponent;
 | 
						|
    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
 | 
						|
      return false;
 | 
						|
    LVal.Offset += SizeOfComponent;
 | 
						|
  }
 | 
						|
  LVal.addComplex(Info, E, EltTy, Imag);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to evaluate the initializer for a variable declaration.
 | 
						|
///
 | 
						|
/// \param Info   Information about the ongoing evaluation.
 | 
						|
/// \param E      An expression to be used when printing diagnostics.
 | 
						|
/// \param VD     The variable whose initializer should be obtained.
 | 
						|
/// \param Frame  The frame in which the variable was created. Must be null
 | 
						|
///               if this variable is not local to the evaluation.
 | 
						|
/// \param Result Filled in with a pointer to the value of the variable.
 | 
						|
static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
 | 
						|
                                const VarDecl *VD, CallStackFrame *Frame,
 | 
						|
                                APValue *&Result) {
 | 
						|
  // If this is a parameter to an active constexpr function call, perform
 | 
						|
  // argument substitution.
 | 
						|
  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
 | 
						|
    // Assume arguments of a potential constant expression are unknown
 | 
						|
    // constant expressions.
 | 
						|
    if (Info.CheckingPotentialConstantExpression)
 | 
						|
      return false;
 | 
						|
    if (!Frame || !Frame->Arguments) {
 | 
						|
      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a local variable, dig out its value.
 | 
						|
  if (Frame) {
 | 
						|
    Result = &Frame->Temporaries[VD];
 | 
						|
    // If we've carried on past an unevaluatable local variable initializer,
 | 
						|
    // we can't go any further. This can happen during potential constant
 | 
						|
    // expression checking.
 | 
						|
    return !Result->isUninit();
 | 
						|
  }
 | 
						|
 | 
						|
  // Dig out the initializer, and use the declaration which it's attached to.
 | 
						|
  const Expr *Init = VD->getAnyInitializer(VD);
 | 
						|
  if (!Init || Init->isValueDependent()) {
 | 
						|
    // If we're checking a potential constant expression, the variable could be
 | 
						|
    // initialized later.
 | 
						|
    if (!Info.CheckingPotentialConstantExpression)
 | 
						|
      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're currently evaluating the initializer of this declaration, use that
 | 
						|
  // in-flight value.
 | 
						|
  if (Info.EvaluatingDecl == VD) {
 | 
						|
    Result = Info.EvaluatingDeclValue;
 | 
						|
    return !Result->isUninit();
 | 
						|
  }
 | 
						|
 | 
						|
  // Never evaluate the initializer of a weak variable. We can't be sure that
 | 
						|
  // this is the definition which will be used.
 | 
						|
  if (VD->isWeak()) {
 | 
						|
    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that we can fold the initializer. In C++, we will have already done
 | 
						|
  // this in the cases where it matters for conformance.
 | 
						|
  SmallVector<PartialDiagnosticAt, 8> Notes;
 | 
						|
  if (!VD->evaluateValue(Notes)) {
 | 
						|
    Info.Diag(E, diag::note_constexpr_var_init_non_constant,
 | 
						|
              Notes.size() + 1) << VD;
 | 
						|
    Info.Note(VD->getLocation(), diag::note_declared_at);
 | 
						|
    Info.addNotes(Notes);
 | 
						|
    return false;
 | 
						|
  } else if (!VD->checkInitIsICE()) {
 | 
						|
    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
 | 
						|
                 Notes.size() + 1) << VD;
 | 
						|
    Info.Note(VD->getLocation(), diag::note_declared_at);
 | 
						|
    Info.addNotes(Notes);
 | 
						|
  }
 | 
						|
 | 
						|
  Result = VD->getEvaluatedValue();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsConstNonVolatile(QualType T) {
 | 
						|
  Qualifiers Quals = T.getQualifiers();
 | 
						|
  return Quals.hasConst() && !Quals.hasVolatile();
 | 
						|
}
 | 
						|
 | 
						|
/// Get the base index of the given base class within an APValue representing
 | 
						|
/// the given derived class.
 | 
						|
static unsigned getBaseIndex(const CXXRecordDecl *Derived,
 | 
						|
                             const CXXRecordDecl *Base) {
 | 
						|
  Base = Base->getCanonicalDecl();
 | 
						|
  unsigned Index = 0;
 | 
						|
  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
 | 
						|
         E = Derived->bases_end(); I != E; ++I, ++Index) {
 | 
						|
    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
 | 
						|
      return Index;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("base class missing from derived class's bases list");
 | 
						|
}
 | 
						|
 | 
						|
/// Extract the value of a character from a string literal.
 | 
						|
static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
 | 
						|
                                            uint64_t Index) {
 | 
						|
  // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
 | 
						|
  const StringLiteral *S = cast<StringLiteral>(Lit);
 | 
						|
  const ConstantArrayType *CAT =
 | 
						|
      Info.Ctx.getAsConstantArrayType(S->getType());
 | 
						|
  assert(CAT && "string literal isn't an array");
 | 
						|
  QualType CharType = CAT->getElementType();
 | 
						|
  assert(CharType->isIntegerType() && "unexpected character type");
 | 
						|
 | 
						|
  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
 | 
						|
               CharType->isUnsignedIntegerType());
 | 
						|
  if (Index < S->getLength())
 | 
						|
    Value = S->getCodeUnit(Index);
 | 
						|
  return Value;
 | 
						|
}
 | 
						|
 | 
						|
// Expand a string literal into an array of characters.
 | 
						|
static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
 | 
						|
                                APValue &Result) {
 | 
						|
  const StringLiteral *S = cast<StringLiteral>(Lit);
 | 
						|
  const ConstantArrayType *CAT =
 | 
						|
      Info.Ctx.getAsConstantArrayType(S->getType());
 | 
						|
  assert(CAT && "string literal isn't an array");
 | 
						|
  QualType CharType = CAT->getElementType();
 | 
						|
  assert(CharType->isIntegerType() && "unexpected character type");
 | 
						|
 | 
						|
  unsigned Elts = CAT->getSize().getZExtValue();
 | 
						|
  Result = APValue(APValue::UninitArray(),
 | 
						|
                   std::min(S->getLength(), Elts), Elts);
 | 
						|
  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
 | 
						|
               CharType->isUnsignedIntegerType());
 | 
						|
  if (Result.hasArrayFiller())
 | 
						|
    Result.getArrayFiller() = APValue(Value);
 | 
						|
  for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
 | 
						|
    Value = S->getCodeUnit(I);
 | 
						|
    Result.getArrayInitializedElt(I) = APValue(Value);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Expand an array so that it has more than Index filled elements.
 | 
						|
static void expandArray(APValue &Array, unsigned Index) {
 | 
						|
  unsigned Size = Array.getArraySize();
 | 
						|
  assert(Index < Size);
 | 
						|
 | 
						|
  // Always at least double the number of elements for which we store a value.
 | 
						|
  unsigned OldElts = Array.getArrayInitializedElts();
 | 
						|
  unsigned NewElts = std::max(Index+1, OldElts * 2);
 | 
						|
  NewElts = std::min(Size, std::max(NewElts, 8u));
 | 
						|
 | 
						|
  // Copy the data across.
 | 
						|
  APValue NewValue(APValue::UninitArray(), NewElts, Size);
 | 
						|
  for (unsigned I = 0; I != OldElts; ++I)
 | 
						|
    NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
 | 
						|
  for (unsigned I = OldElts; I != NewElts; ++I)
 | 
						|
    NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
 | 
						|
  if (NewValue.hasArrayFiller())
 | 
						|
    NewValue.getArrayFiller() = Array.getArrayFiller();
 | 
						|
  Array.swap(NewValue);
 | 
						|
}
 | 
						|
 | 
						|
/// Kinds of access we can perform on an object.
 | 
						|
enum AccessKinds {
 | 
						|
  AK_Read,
 | 
						|
  AK_Assign,
 | 
						|
  AK_Increment,
 | 
						|
  AK_Decrement
 | 
						|
};
 | 
						|
 | 
						|
/// A handle to a complete object (an object that is not a subobject of
 | 
						|
/// another object).
 | 
						|
struct CompleteObject {
 | 
						|
  /// The value of the complete object.
 | 
						|
  APValue *Value;
 | 
						|
  /// The type of the complete object.
 | 
						|
  QualType Type;
 | 
						|
 | 
						|
  CompleteObject() : Value(0) {}
 | 
						|
  CompleteObject(APValue *Value, QualType Type)
 | 
						|
      : Value(Value), Type(Type) {
 | 
						|
    assert(Value && "missing value for complete object");
 | 
						|
  }
 | 
						|
 | 
						|
  operator bool() const { return Value; }
 | 
						|
};
 | 
						|
 | 
						|
/// Find the designated sub-object of an rvalue.
 | 
						|
template<typename SubobjectHandler>
 | 
						|
typename SubobjectHandler::result_type
 | 
						|
findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
 | 
						|
              const SubobjectDesignator &Sub, SubobjectHandler &handler) {
 | 
						|
  if (Sub.Invalid)
 | 
						|
    // A diagnostic will have already been produced.
 | 
						|
    return handler.failed();
 | 
						|
  if (Sub.isOnePastTheEnd()) {
 | 
						|
    if (Info.getLangOpts().CPlusPlus11)
 | 
						|
      Info.Diag(E, diag::note_constexpr_access_past_end)
 | 
						|
        << handler.AccessKind;
 | 
						|
    else
 | 
						|
      Info.Diag(E);
 | 
						|
    return handler.failed();
 | 
						|
  }
 | 
						|
  if (Sub.Entries.empty())
 | 
						|
    return handler.found(*Obj.Value, Obj.Type);
 | 
						|
  if (Info.CheckingPotentialConstantExpression && Obj.Value->isUninit())
 | 
						|
    // This object might be initialized later.
 | 
						|
    return handler.failed();
 | 
						|
 | 
						|
  APValue *O = Obj.Value;
 | 
						|
  QualType ObjType = Obj.Type;
 | 
						|
  // Walk the designator's path to find the subobject.
 | 
						|
  for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
 | 
						|
    if (ObjType->isArrayType()) {
 | 
						|
      // Next subobject is an array element.
 | 
						|
      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
 | 
						|
      assert(CAT && "vla in literal type?");
 | 
						|
      uint64_t Index = Sub.Entries[I].ArrayIndex;
 | 
						|
      if (CAT->getSize().ule(Index)) {
 | 
						|
        // Note, it should not be possible to form a pointer with a valid
 | 
						|
        // designator which points more than one past the end of the array.
 | 
						|
        if (Info.getLangOpts().CPlusPlus11)
 | 
						|
          Info.Diag(E, diag::note_constexpr_access_past_end)
 | 
						|
            << handler.AccessKind;
 | 
						|
        else
 | 
						|
          Info.Diag(E);
 | 
						|
        return handler.failed();
 | 
						|
      }
 | 
						|
 | 
						|
      ObjType = CAT->getElementType();
 | 
						|
 | 
						|
      // An array object is represented as either an Array APValue or as an
 | 
						|
      // LValue which refers to a string literal.
 | 
						|
      if (O->isLValue()) {
 | 
						|
        assert(I == N - 1 && "extracting subobject of character?");
 | 
						|
        assert(!O->hasLValuePath() || O->getLValuePath().empty());
 | 
						|
        if (handler.AccessKind != AK_Read)
 | 
						|
          expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
 | 
						|
                              *O);
 | 
						|
        else
 | 
						|
          return handler.foundString(*O, ObjType, Index);
 | 
						|
      }
 | 
						|
 | 
						|
      if (O->getArrayInitializedElts() > Index)
 | 
						|
        O = &O->getArrayInitializedElt(Index);
 | 
						|
      else if (handler.AccessKind != AK_Read) {
 | 
						|
        expandArray(*O, Index);
 | 
						|
        O = &O->getArrayInitializedElt(Index);
 | 
						|
      } else
 | 
						|
        O = &O->getArrayFiller();
 | 
						|
    } else if (ObjType->isAnyComplexType()) {
 | 
						|
      // Next subobject is a complex number.
 | 
						|
      uint64_t Index = Sub.Entries[I].ArrayIndex;
 | 
						|
      if (Index > 1) {
 | 
						|
        if (Info.getLangOpts().CPlusPlus11)
 | 
						|
          Info.Diag(E, diag::note_constexpr_access_past_end)
 | 
						|
            << handler.AccessKind;
 | 
						|
        else
 | 
						|
          Info.Diag(E);
 | 
						|
        return handler.failed();
 | 
						|
      }
 | 
						|
 | 
						|
      bool WasConstQualified = ObjType.isConstQualified();
 | 
						|
      ObjType = ObjType->castAs<ComplexType>()->getElementType();
 | 
						|
      if (WasConstQualified)
 | 
						|
        ObjType.addConst();
 | 
						|
 | 
						|
      assert(I == N - 1 && "extracting subobject of scalar?");
 | 
						|
      if (O->isComplexInt()) {
 | 
						|
        return handler.found(Index ? O->getComplexIntImag()
 | 
						|
                                   : O->getComplexIntReal(), ObjType);
 | 
						|
      } else {
 | 
						|
        assert(O->isComplexFloat());
 | 
						|
        return handler.found(Index ? O->getComplexFloatImag()
 | 
						|
                                   : O->getComplexFloatReal(), ObjType);
 | 
						|
      }
 | 
						|
    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
 | 
						|
      if (Field->isMutable() && handler.AccessKind == AK_Read) {
 | 
						|
        Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
 | 
						|
          << Field;
 | 
						|
        Info.Note(Field->getLocation(), diag::note_declared_at);
 | 
						|
        return handler.failed();
 | 
						|
      }
 | 
						|
 | 
						|
      // Next subobject is a class, struct or union field.
 | 
						|
      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
 | 
						|
      if (RD->isUnion()) {
 | 
						|
        const FieldDecl *UnionField = O->getUnionField();
 | 
						|
        if (!UnionField ||
 | 
						|
            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
 | 
						|
          Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
 | 
						|
            << handler.AccessKind << Field << !UnionField << UnionField;
 | 
						|
          return handler.failed();
 | 
						|
        }
 | 
						|
        O = &O->getUnionValue();
 | 
						|
      } else
 | 
						|
        O = &O->getStructField(Field->getFieldIndex());
 | 
						|
 | 
						|
      bool WasConstQualified = ObjType.isConstQualified();
 | 
						|
      ObjType = Field->getType();
 | 
						|
      if (WasConstQualified && !Field->isMutable())
 | 
						|
        ObjType.addConst();
 | 
						|
 | 
						|
      if (ObjType.isVolatileQualified()) {
 | 
						|
        if (Info.getLangOpts().CPlusPlus) {
 | 
						|
          // FIXME: Include a description of the path to the volatile subobject.
 | 
						|
          Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
 | 
						|
            << handler.AccessKind << 2 << Field;
 | 
						|
          Info.Note(Field->getLocation(), diag::note_declared_at);
 | 
						|
        } else {
 | 
						|
          Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
        }
 | 
						|
        return handler.failed();
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Next subobject is a base class.
 | 
						|
      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
 | 
						|
      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
 | 
						|
      O = &O->getStructBase(getBaseIndex(Derived, Base));
 | 
						|
 | 
						|
      bool WasConstQualified = ObjType.isConstQualified();
 | 
						|
      ObjType = Info.Ctx.getRecordType(Base);
 | 
						|
      if (WasConstQualified)
 | 
						|
        ObjType.addConst();
 | 
						|
    }
 | 
						|
 | 
						|
    if (O->isUninit()) {
 | 
						|
      if (!Info.CheckingPotentialConstantExpression)
 | 
						|
        Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
 | 
						|
      return handler.failed();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return handler.found(*O, ObjType);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct ExtractSubobjectHandler {
 | 
						|
  EvalInfo &Info;
 | 
						|
  APValue &Result;
 | 
						|
 | 
						|
  static const AccessKinds AccessKind = AK_Read;
 | 
						|
 | 
						|
  typedef bool result_type;
 | 
						|
  bool failed() { return false; }
 | 
						|
  bool found(APValue &Subobj, QualType SubobjType) {
 | 
						|
    Result = Subobj;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool found(APSInt &Value, QualType SubobjType) {
 | 
						|
    Result = APValue(Value);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool found(APFloat &Value, QualType SubobjType) {
 | 
						|
    Result = APValue(Value);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
 | 
						|
    Result = APValue(extractStringLiteralCharacter(
 | 
						|
        Info, Subobj.getLValueBase().get<const Expr *>(), Character));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
const AccessKinds ExtractSubobjectHandler::AccessKind;
 | 
						|
 | 
						|
/// Extract the designated sub-object of an rvalue.
 | 
						|
static bool extractSubobject(EvalInfo &Info, const Expr *E,
 | 
						|
                             const CompleteObject &Obj,
 | 
						|
                             const SubobjectDesignator &Sub,
 | 
						|
                             APValue &Result) {
 | 
						|
  ExtractSubobjectHandler Handler = { Info, Result };
 | 
						|
  return findSubobject(Info, E, Obj, Sub, Handler);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct ModifySubobjectHandler {
 | 
						|
  EvalInfo &Info;
 | 
						|
  APValue &NewVal;
 | 
						|
  const Expr *E;
 | 
						|
 | 
						|
  typedef bool result_type;
 | 
						|
  static const AccessKinds AccessKind = AK_Assign;
 | 
						|
 | 
						|
  bool checkConst(QualType QT) {
 | 
						|
    // Assigning to a const object has undefined behavior.
 | 
						|
    if (QT.isConstQualified()) {
 | 
						|
      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool failed() { return false; }
 | 
						|
  bool found(APValue &Subobj, QualType SubobjType) {
 | 
						|
    if (!checkConst(SubobjType))
 | 
						|
      return false;
 | 
						|
    // We've been given ownership of NewVal, so just swap it in.
 | 
						|
    Subobj.swap(NewVal);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool found(APSInt &Value, QualType SubobjType) {
 | 
						|
    if (!checkConst(SubobjType))
 | 
						|
      return false;
 | 
						|
    if (!NewVal.isInt()) {
 | 
						|
      // Maybe trying to write a cast pointer value into a complex?
 | 
						|
      Info.Diag(E);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Value = NewVal.getInt();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool found(APFloat &Value, QualType SubobjType) {
 | 
						|
    if (!checkConst(SubobjType))
 | 
						|
      return false;
 | 
						|
    Value = NewVal.getFloat();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
 | 
						|
    llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
const AccessKinds ModifySubobjectHandler::AccessKind;
 | 
						|
 | 
						|
/// Update the designated sub-object of an rvalue to the given value.
 | 
						|
static bool modifySubobject(EvalInfo &Info, const Expr *E,
 | 
						|
                            const CompleteObject &Obj,
 | 
						|
                            const SubobjectDesignator &Sub,
 | 
						|
                            APValue &NewVal) {
 | 
						|
  ModifySubobjectHandler Handler = { Info, NewVal, E };
 | 
						|
  return findSubobject(Info, E, Obj, Sub, Handler);
 | 
						|
}
 | 
						|
 | 
						|
/// Find the position where two subobject designators diverge, or equivalently
 | 
						|
/// the length of the common initial subsequence.
 | 
						|
static unsigned FindDesignatorMismatch(QualType ObjType,
 | 
						|
                                       const SubobjectDesignator &A,
 | 
						|
                                       const SubobjectDesignator &B,
 | 
						|
                                       bool &WasArrayIndex) {
 | 
						|
  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
 | 
						|
  for (/**/; I != N; ++I) {
 | 
						|
    if (!ObjType.isNull() &&
 | 
						|
        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
 | 
						|
      // Next subobject is an array element.
 | 
						|
      if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
 | 
						|
        WasArrayIndex = true;
 | 
						|
        return I;
 | 
						|
      }
 | 
						|
      if (ObjType->isAnyComplexType())
 | 
						|
        ObjType = ObjType->castAs<ComplexType>()->getElementType();
 | 
						|
      else
 | 
						|
        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
 | 
						|
    } else {
 | 
						|
      if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
 | 
						|
        WasArrayIndex = false;
 | 
						|
        return I;
 | 
						|
      }
 | 
						|
      if (const FieldDecl *FD = getAsField(A.Entries[I]))
 | 
						|
        // Next subobject is a field.
 | 
						|
        ObjType = FD->getType();
 | 
						|
      else
 | 
						|
        // Next subobject is a base class.
 | 
						|
        ObjType = QualType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  WasArrayIndex = false;
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the given subobject designators refer to elements of the
 | 
						|
/// same array object.
 | 
						|
static bool AreElementsOfSameArray(QualType ObjType,
 | 
						|
                                   const SubobjectDesignator &A,
 | 
						|
                                   const SubobjectDesignator &B) {
 | 
						|
  if (A.Entries.size() != B.Entries.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IsArray = A.MostDerivedArraySize != 0;
 | 
						|
  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
 | 
						|
    // A is a subobject of the array element.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If A (and B) designates an array element, the last entry will be the array
 | 
						|
  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
 | 
						|
  // of length 1' case, and the entire path must match.
 | 
						|
  bool WasArrayIndex;
 | 
						|
  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
 | 
						|
  return CommonLength >= A.Entries.size() - IsArray;
 | 
						|
}
 | 
						|
 | 
						|
/// Find the complete object to which an LValue refers.
 | 
						|
CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
 | 
						|
                                  const LValue &LVal, QualType LValType) {
 | 
						|
  if (!LVal.Base) {
 | 
						|
    Info.Diag(E, diag::note_constexpr_access_null) << AK;
 | 
						|
    return CompleteObject();
 | 
						|
  }
 | 
						|
 | 
						|
  CallStackFrame *Frame = 0;
 | 
						|
  if (LVal.CallIndex) {
 | 
						|
    Frame = Info.getCallFrame(LVal.CallIndex);
 | 
						|
    if (!Frame) {
 | 
						|
      Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
 | 
						|
        << AK << LVal.Base.is<const ValueDecl*>();
 | 
						|
      NoteLValueLocation(Info, LVal.Base);
 | 
						|
      return CompleteObject();
 | 
						|
    }
 | 
						|
  } else if (AK != AK_Read) {
 | 
						|
    Info.Diag(E, diag::note_constexpr_modify_global);
 | 
						|
    return CompleteObject();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
 | 
						|
  // is not a constant expression (even if the object is non-volatile). We also
 | 
						|
  // apply this rule to C++98, in order to conform to the expected 'volatile'
 | 
						|
  // semantics.
 | 
						|
  if (LValType.isVolatileQualified()) {
 | 
						|
    if (Info.getLangOpts().CPlusPlus)
 | 
						|
      Info.Diag(E, diag::note_constexpr_access_volatile_type)
 | 
						|
        << AK << LValType;
 | 
						|
    else
 | 
						|
      Info.Diag(E);
 | 
						|
    return CompleteObject();
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute value storage location and type of base object.
 | 
						|
  APValue *BaseVal = 0;
 | 
						|
  QualType BaseType;
 | 
						|
 | 
						|
  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
 | 
						|
    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
 | 
						|
    // In C++11, constexpr, non-volatile variables initialized with constant
 | 
						|
    // expressions are constant expressions too. Inside constexpr functions,
 | 
						|
    // parameters are constant expressions even if they're non-const.
 | 
						|
    // In C++1y, objects local to a constant expression (those with a Frame) are
 | 
						|
    // both readable and writable inside constant expressions.
 | 
						|
    // In C, such things can also be folded, although they are not ICEs.
 | 
						|
    const VarDecl *VD = dyn_cast<VarDecl>(D);
 | 
						|
    if (VD) {
 | 
						|
      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
 | 
						|
        VD = VDef;
 | 
						|
    }
 | 
						|
    if (!VD || VD->isInvalidDecl()) {
 | 
						|
      Info.Diag(E);
 | 
						|
      return CompleteObject();
 | 
						|
    }
 | 
						|
 | 
						|
    // Accesses of volatile-qualified objects are not allowed.
 | 
						|
    BaseType = VD->getType();
 | 
						|
    if (BaseType.isVolatileQualified()) {
 | 
						|
      if (Info.getLangOpts().CPlusPlus) {
 | 
						|
        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
 | 
						|
          << AK << 1 << VD;
 | 
						|
        Info.Note(VD->getLocation(), diag::note_declared_at);
 | 
						|
      } else {
 | 
						|
        Info.Diag(E);
 | 
						|
      }
 | 
						|
      return CompleteObject();
 | 
						|
    }
 | 
						|
 | 
						|
    // Unless we're looking at a local variable or argument in a constexpr call,
 | 
						|
    // the variable we're reading must be const.
 | 
						|
    if (!Frame) {
 | 
						|
      assert(AK == AK_Read && "can't modify non-local");
 | 
						|
      if (VD->isConstexpr()) {
 | 
						|
        // OK, we can read this variable.
 | 
						|
      } else if (BaseType->isIntegralOrEnumerationType()) {
 | 
						|
        if (!BaseType.isConstQualified()) {
 | 
						|
          if (Info.getLangOpts().CPlusPlus) {
 | 
						|
            Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
 | 
						|
            Info.Note(VD->getLocation(), diag::note_declared_at);
 | 
						|
          } else {
 | 
						|
            Info.Diag(E);
 | 
						|
          }
 | 
						|
          return CompleteObject();
 | 
						|
        }
 | 
						|
      } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
 | 
						|
        // We support folding of const floating-point types, in order to make
 | 
						|
        // static const data members of such types (supported as an extension)
 | 
						|
        // more useful.
 | 
						|
        if (Info.getLangOpts().CPlusPlus11) {
 | 
						|
          Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
 | 
						|
          Info.Note(VD->getLocation(), diag::note_declared_at);
 | 
						|
        } else {
 | 
						|
          Info.CCEDiag(E);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // FIXME: Allow folding of values of any literal type in all languages.
 | 
						|
        if (Info.getLangOpts().CPlusPlus11) {
 | 
						|
          Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
 | 
						|
          Info.Note(VD->getLocation(), diag::note_declared_at);
 | 
						|
        } else {
 | 
						|
          Info.Diag(E);
 | 
						|
        }
 | 
						|
        return CompleteObject();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
 | 
						|
      return CompleteObject();
 | 
						|
  } else {
 | 
						|
    const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
 | 
						|
 | 
						|
    if (!Frame) {
 | 
						|
      Info.Diag(E);
 | 
						|
      return CompleteObject();
 | 
						|
    }
 | 
						|
 | 
						|
    BaseType = Base->getType();
 | 
						|
    BaseVal = &Frame->Temporaries[Base];
 | 
						|
 | 
						|
    // Volatile temporary objects cannot be accessed in constant expressions.
 | 
						|
    if (BaseType.isVolatileQualified()) {
 | 
						|
      if (Info.getLangOpts().CPlusPlus) {
 | 
						|
        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
 | 
						|
          << AK << 0;
 | 
						|
        Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
 | 
						|
      } else {
 | 
						|
        Info.Diag(E);
 | 
						|
      }
 | 
						|
      return CompleteObject();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In C++1y, we can't safely access any mutable state when checking a
 | 
						|
  // potential constant expression.
 | 
						|
  if (Frame && Info.getLangOpts().CPlusPlus1y &&
 | 
						|
      Info.CheckingPotentialConstantExpression)
 | 
						|
    return CompleteObject();
 | 
						|
 | 
						|
  return CompleteObject(BaseVal, BaseType);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
 | 
						|
/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
 | 
						|
/// glvalue referred to by an entity of reference type.
 | 
						|
///
 | 
						|
/// \param Info - Information about the ongoing evaluation.
 | 
						|
/// \param Conv - The expression for which we are performing the conversion.
 | 
						|
///               Used for diagnostics.
 | 
						|
/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
 | 
						|
///               case of a non-class type).
 | 
						|
/// \param LVal - The glvalue on which we are attempting to perform this action.
 | 
						|
/// \param RVal - The produced value will be placed here.
 | 
						|
static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
 | 
						|
                                           QualType Type,
 | 
						|
                                           const LValue &LVal, APValue &RVal) {
 | 
						|
  if (LVal.Designator.Invalid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check for special cases where there is no existing APValue to look at.
 | 
						|
  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
 | 
						|
  if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
 | 
						|
      !Type.isVolatileQualified()) {
 | 
						|
    if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
 | 
						|
      // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
 | 
						|
      // initializer until now for such expressions. Such an expression can't be
 | 
						|
      // an ICE in C, so this only matters for fold.
 | 
						|
      assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
 | 
						|
      if (Type.isVolatileQualified()) {
 | 
						|
        Info.Diag(Conv);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      APValue Lit;
 | 
						|
      if (!Evaluate(Lit, Info, CLE->getInitializer()))
 | 
						|
        return false;
 | 
						|
      CompleteObject LitObj(&Lit, Base->getType());
 | 
						|
      return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
 | 
						|
    } else if (isa<StringLiteral>(Base)) {
 | 
						|
      // We represent a string literal array as an lvalue pointing at the
 | 
						|
      // corresponding expression, rather than building an array of chars.
 | 
						|
      // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
 | 
						|
      APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
 | 
						|
      CompleteObject StrObj(&Str, Base->getType());
 | 
						|
      return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
 | 
						|
  return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
 | 
						|
}
 | 
						|
 | 
						|
/// Perform an assignment of Val to LVal. Takes ownership of Val.
 | 
						|
static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
 | 
						|
                             QualType LValType, APValue &Val) {
 | 
						|
  if (LVal.Designator.Invalid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!Info.getLangOpts().CPlusPlus1y) {
 | 
						|
    Info.Diag(E);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
 | 
						|
  return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
 | 
						|
}
 | 
						|
 | 
						|
static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
 | 
						|
  return T->isSignedIntegerType() &&
 | 
						|
         Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct IncDecSubobjectHandler {
 | 
						|
  EvalInfo &Info;
 | 
						|
  const Expr *E;
 | 
						|
  AccessKinds AccessKind;
 | 
						|
  APValue *Old;
 | 
						|
 | 
						|
  typedef bool result_type;
 | 
						|
 | 
						|
  bool checkConst(QualType QT) {
 | 
						|
    // Assigning to a const object has undefined behavior.
 | 
						|
    if (QT.isConstQualified()) {
 | 
						|
      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool failed() { return false; }
 | 
						|
  bool found(APValue &Subobj, QualType SubobjType) {
 | 
						|
    // Stash the old value. Also clear Old, so we don't clobber it later
 | 
						|
    // if we're post-incrementing a complex.
 | 
						|
    if (Old) {
 | 
						|
      *Old = Subobj;
 | 
						|
      Old = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Subobj.getKind()) {
 | 
						|
    case APValue::Int:
 | 
						|
      return found(Subobj.getInt(), SubobjType);
 | 
						|
    case APValue::Float:
 | 
						|
      return found(Subobj.getFloat(), SubobjType);
 | 
						|
    case APValue::ComplexInt:
 | 
						|
      return found(Subobj.getComplexIntReal(),
 | 
						|
                   SubobjType->castAs<ComplexType>()->getElementType()
 | 
						|
                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
 | 
						|
    case APValue::ComplexFloat:
 | 
						|
      return found(Subobj.getComplexFloatReal(),
 | 
						|
                   SubobjType->castAs<ComplexType>()->getElementType()
 | 
						|
                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
 | 
						|
    case APValue::LValue:
 | 
						|
      return foundPointer(Subobj, SubobjType);
 | 
						|
    default:
 | 
						|
      // FIXME: can this happen?
 | 
						|
      Info.Diag(E);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  bool found(APSInt &Value, QualType SubobjType) {
 | 
						|
    if (!checkConst(SubobjType))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!SubobjType->isIntegerType()) {
 | 
						|
      // We don't support increment / decrement on integer-cast-to-pointer
 | 
						|
      // values.
 | 
						|
      Info.Diag(E);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Old) *Old = APValue(Value);
 | 
						|
 | 
						|
    // bool arithmetic promotes to int, and the conversion back to bool
 | 
						|
    // doesn't reduce mod 2^n, so special-case it.
 | 
						|
    if (SubobjType->isBooleanType()) {
 | 
						|
      if (AccessKind == AK_Increment)
 | 
						|
        Value = 1;
 | 
						|
      else
 | 
						|
        Value = !Value;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    bool WasNegative = Value.isNegative();
 | 
						|
    if (AccessKind == AK_Increment) {
 | 
						|
      ++Value;
 | 
						|
 | 
						|
      if (!WasNegative && Value.isNegative() &&
 | 
						|
          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
 | 
						|
        APSInt ActualValue(Value, /*IsUnsigned*/true);
 | 
						|
        HandleOverflow(Info, E, ActualValue, SubobjType);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      --Value;
 | 
						|
 | 
						|
      if (WasNegative && !Value.isNegative() &&
 | 
						|
          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
 | 
						|
        unsigned BitWidth = Value.getBitWidth();
 | 
						|
        APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
 | 
						|
        ActualValue.setBit(BitWidth);
 | 
						|
        HandleOverflow(Info, E, ActualValue, SubobjType);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool found(APFloat &Value, QualType SubobjType) {
 | 
						|
    if (!checkConst(SubobjType))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Old) *Old = APValue(Value);
 | 
						|
 | 
						|
    APFloat One(Value.getSemantics(), 1);
 | 
						|
    if (AccessKind == AK_Increment)
 | 
						|
      Value.add(One, APFloat::rmNearestTiesToEven);
 | 
						|
    else
 | 
						|
      Value.subtract(One, APFloat::rmNearestTiesToEven);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool foundPointer(APValue &Subobj, QualType SubobjType) {
 | 
						|
    if (!checkConst(SubobjType))
 | 
						|
      return false;
 | 
						|
 | 
						|
    QualType PointeeType;
 | 
						|
    if (const PointerType *PT = SubobjType->getAs<PointerType>())
 | 
						|
      PointeeType = PT->getPointeeType();
 | 
						|
    else {
 | 
						|
      Info.Diag(E);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    LValue LVal;
 | 
						|
    LVal.setFrom(Info.Ctx, Subobj);
 | 
						|
    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
 | 
						|
                                     AccessKind == AK_Increment ? 1 : -1))
 | 
						|
      return false;
 | 
						|
    LVal.moveInto(Subobj);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
 | 
						|
    llvm_unreachable("shouldn't encounter string elements here");
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Perform an increment or decrement on LVal.
 | 
						|
static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
 | 
						|
                         QualType LValType, bool IsIncrement, APValue *Old) {
 | 
						|
  if (LVal.Designator.Invalid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!Info.getLangOpts().CPlusPlus1y) {
 | 
						|
    Info.Diag(E);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
 | 
						|
  CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
 | 
						|
  IncDecSubobjectHandler Handler = { Info, E, AK, Old };
 | 
						|
  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
 | 
						|
}
 | 
						|
 | 
						|
/// Build an lvalue for the object argument of a member function call.
 | 
						|
static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
 | 
						|
                                   LValue &This) {
 | 
						|
  if (Object->getType()->isPointerType())
 | 
						|
    return EvaluatePointer(Object, This, Info);
 | 
						|
 | 
						|
  if (Object->isGLValue())
 | 
						|
    return EvaluateLValue(Object, This, Info);
 | 
						|
 | 
						|
  if (Object->getType()->isLiteralType(Info.Ctx))
 | 
						|
    return EvaluateTemporary(Object, This, Info);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleMemberPointerAccess - Evaluate a member access operation and build an
 | 
						|
/// lvalue referring to the result.
 | 
						|
///
 | 
						|
/// \param Info - Information about the ongoing evaluation.
 | 
						|
/// \param BO - The member pointer access operation.
 | 
						|
/// \param LV - Filled in with a reference to the resulting object.
 | 
						|
/// \param IncludeMember - Specifies whether the member itself is included in
 | 
						|
///        the resulting LValue subobject designator. This is not possible when
 | 
						|
///        creating a bound member function.
 | 
						|
/// \return The field or method declaration to which the member pointer refers,
 | 
						|
///         or 0 if evaluation fails.
 | 
						|
static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
 | 
						|
                                                  const BinaryOperator *BO,
 | 
						|
                                                  LValue &LV,
 | 
						|
                                                  bool IncludeMember = true) {
 | 
						|
  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
 | 
						|
 | 
						|
  bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
 | 
						|
  if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  MemberPtr MemPtr;
 | 
						|
  if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
 | 
						|
  // member value, the behavior is undefined.
 | 
						|
  if (!MemPtr.getDecl())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (!EvalObjOK)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (MemPtr.isDerivedMember()) {
 | 
						|
    // This is a member of some derived class. Truncate LV appropriately.
 | 
						|
    // The end of the derived-to-base path for the base object must match the
 | 
						|
    // derived-to-base path for the member pointer.
 | 
						|
    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
 | 
						|
        LV.Designator.Entries.size())
 | 
						|
      return 0;
 | 
						|
    unsigned PathLengthToMember =
 | 
						|
        LV.Designator.Entries.size() - MemPtr.Path.size();
 | 
						|
    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
 | 
						|
      const CXXRecordDecl *LVDecl = getAsBaseClass(
 | 
						|
          LV.Designator.Entries[PathLengthToMember + I]);
 | 
						|
      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
 | 
						|
      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // Truncate the lvalue to the appropriate derived class.
 | 
						|
    if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
 | 
						|
                            PathLengthToMember))
 | 
						|
      return 0;
 | 
						|
  } else if (!MemPtr.Path.empty()) {
 | 
						|
    // Extend the LValue path with the member pointer's path.
 | 
						|
    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
 | 
						|
                                  MemPtr.Path.size() + IncludeMember);
 | 
						|
 | 
						|
    // Walk down to the appropriate base class.
 | 
						|
    QualType LVType = BO->getLHS()->getType();
 | 
						|
    if (const PointerType *PT = LVType->getAs<PointerType>())
 | 
						|
      LVType = PT->getPointeeType();
 | 
						|
    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
 | 
						|
    assert(RD && "member pointer access on non-class-type expression");
 | 
						|
    // The first class in the path is that of the lvalue.
 | 
						|
    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
 | 
						|
      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
 | 
						|
      if (!HandleLValueDirectBase(Info, BO, LV, RD, Base))
 | 
						|
        return 0;
 | 
						|
      RD = Base;
 | 
						|
    }
 | 
						|
    // Finally cast to the class containing the member.
 | 
						|
    if (!HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord()))
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the member. Note that we cannot build bound member functions here.
 | 
						|
  if (IncludeMember) {
 | 
						|
    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
 | 
						|
      if (!HandleLValueMember(Info, BO, LV, FD))
 | 
						|
        return 0;
 | 
						|
    } else if (const IndirectFieldDecl *IFD =
 | 
						|
                 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
 | 
						|
      if (!HandleLValueIndirectMember(Info, BO, LV, IFD))
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("can't construct reference to bound member function");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MemPtr.getDecl();
 | 
						|
}
 | 
						|
 | 
						|
/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
 | 
						|
/// the provided lvalue, which currently refers to the base object.
 | 
						|
static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
 | 
						|
                                    LValue &Result) {
 | 
						|
  SubobjectDesignator &D = Result.Designator;
 | 
						|
  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType TargetQT = E->getType();
 | 
						|
  if (const PointerType *PT = TargetQT->getAs<PointerType>())
 | 
						|
    TargetQT = PT->getPointeeType();
 | 
						|
 | 
						|
  // Check this cast lands within the final derived-to-base subobject path.
 | 
						|
  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
 | 
						|
    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
 | 
						|
      << D.MostDerivedType << TargetQT;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the type of the final cast. We don't need to check the path,
 | 
						|
  // since a cast can only be formed if the path is unique.
 | 
						|
  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
 | 
						|
  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
 | 
						|
  const CXXRecordDecl *FinalType;
 | 
						|
  if (NewEntriesSize == D.MostDerivedPathLength)
 | 
						|
    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
 | 
						|
  else
 | 
						|
    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
 | 
						|
  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
 | 
						|
    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
 | 
						|
      << D.MostDerivedType << TargetQT;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Truncate the lvalue to the appropriate derived class.
 | 
						|
  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
enum EvalStmtResult {
 | 
						|
  /// Evaluation failed.
 | 
						|
  ESR_Failed,
 | 
						|
  /// Hit a 'return' statement.
 | 
						|
  ESR_Returned,
 | 
						|
  /// Evaluation succeeded.
 | 
						|
  ESR_Succeeded,
 | 
						|
  /// Hit a 'continue' statement.
 | 
						|
  ESR_Continue,
 | 
						|
  /// Hit a 'break' statement.
 | 
						|
  ESR_Break
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    // We don't need to evaluate the initializer for a static local.
 | 
						|
    if (!VD->hasLocalStorage())
 | 
						|
      return true;
 | 
						|
 | 
						|
    LValue Result;
 | 
						|
    Result.set(VD, Info.CurrentCall->Index);
 | 
						|
    APValue &Val = Info.CurrentCall->Temporaries[VD];
 | 
						|
 | 
						|
    if (!EvaluateInPlace(Val, Info, Result, VD->getInit())) {
 | 
						|
      // Wipe out any partially-computed value, to allow tracking that this
 | 
						|
      // evaluation failed.
 | 
						|
      Val = APValue();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Evaluate a condition (either a variable declaration or an expression).
 | 
						|
static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
 | 
						|
                         const Expr *Cond, bool &Result) {
 | 
						|
  if (CondDecl && !EvaluateDecl(Info, CondDecl))
 | 
						|
    return false;
 | 
						|
  return EvaluateAsBooleanCondition(Cond, Result, Info);
 | 
						|
}
 | 
						|
 | 
						|
static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
 | 
						|
                                   const Stmt *S);
 | 
						|
 | 
						|
/// Evaluate the body of a loop, and translate the result as appropriate.
 | 
						|
static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
 | 
						|
                                       const Stmt *Body) {
 | 
						|
  switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body)) {
 | 
						|
  case ESR_Break:
 | 
						|
    return ESR_Succeeded;
 | 
						|
  case ESR_Succeeded:
 | 
						|
  case ESR_Continue:
 | 
						|
    return ESR_Continue;
 | 
						|
  case ESR_Failed:
 | 
						|
  case ESR_Returned:
 | 
						|
    return ESR;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid EvalStmtResult!");
 | 
						|
}
 | 
						|
 | 
						|
// Evaluate a statement.
 | 
						|
static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
 | 
						|
                                   const Stmt *S) {
 | 
						|
  // FIXME: Mark all temporaries in the current frame as destroyed at
 | 
						|
  // the end of each full-expression.
 | 
						|
  switch (S->getStmtClass()) {
 | 
						|
  default:
 | 
						|
    if (const Expr *E = dyn_cast<Expr>(S)) {
 | 
						|
      // Don't bother evaluating beyond an expression-statement which couldn't
 | 
						|
      // be evaluated.
 | 
						|
      if (!EvaluateIgnoredValue(Info, E))
 | 
						|
        return ESR_Failed;
 | 
						|
      return ESR_Succeeded;
 | 
						|
    }
 | 
						|
 | 
						|
    Info.Diag(S->getLocStart());
 | 
						|
    return ESR_Failed;
 | 
						|
 | 
						|
  case Stmt::NullStmtClass:
 | 
						|
    return ESR_Succeeded;
 | 
						|
 | 
						|
  case Stmt::DeclStmtClass: {
 | 
						|
    const DeclStmt *DS = cast<DeclStmt>(S);
 | 
						|
    for (DeclStmt::const_decl_iterator DclIt = DS->decl_begin(),
 | 
						|
           DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt)
 | 
						|
      if (!EvaluateDecl(Info, *DclIt) && !Info.keepEvaluatingAfterFailure())
 | 
						|
        return ESR_Failed;
 | 
						|
    return ESR_Succeeded;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::ReturnStmtClass: {
 | 
						|
    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
 | 
						|
    if (RetExpr && !Evaluate(Result, Info, RetExpr))
 | 
						|
      return ESR_Failed;
 | 
						|
    return ESR_Returned;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::CompoundStmtClass: {
 | 
						|
    const CompoundStmt *CS = cast<CompoundStmt>(S);
 | 
						|
    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
 | 
						|
           BE = CS->body_end(); BI != BE; ++BI) {
 | 
						|
      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
 | 
						|
      if (ESR != ESR_Succeeded)
 | 
						|
        return ESR;
 | 
						|
    }
 | 
						|
    return ESR_Succeeded;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::IfStmtClass: {
 | 
						|
    const IfStmt *IS = cast<IfStmt>(S);
 | 
						|
 | 
						|
    // Evaluate the condition, as either a var decl or as an expression.
 | 
						|
    bool Cond;
 | 
						|
    if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
 | 
						|
      return ESR_Failed;
 | 
						|
 | 
						|
    if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
 | 
						|
      EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
 | 
						|
      if (ESR != ESR_Succeeded)
 | 
						|
        return ESR;
 | 
						|
    }
 | 
						|
    return ESR_Succeeded;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::WhileStmtClass: {
 | 
						|
    const WhileStmt *WS = cast<WhileStmt>(S);
 | 
						|
    while (true) {
 | 
						|
      bool Continue;
 | 
						|
      if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
 | 
						|
                        Continue))
 | 
						|
        return ESR_Failed;
 | 
						|
      if (!Continue)
 | 
						|
        break;
 | 
						|
 | 
						|
      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
 | 
						|
      if (ESR != ESR_Continue)
 | 
						|
        return ESR;
 | 
						|
    }
 | 
						|
    return ESR_Succeeded;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::DoStmtClass: {
 | 
						|
    const DoStmt *DS = cast<DoStmt>(S);
 | 
						|
    bool Continue;
 | 
						|
    do {
 | 
						|
      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody());
 | 
						|
      if (ESR != ESR_Continue)
 | 
						|
        return ESR;
 | 
						|
 | 
						|
      if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
 | 
						|
        return ESR_Failed;
 | 
						|
    } while (Continue);
 | 
						|
    return ESR_Succeeded;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::ForStmtClass: {
 | 
						|
    const ForStmt *FS = cast<ForStmt>(S);
 | 
						|
    if (FS->getInit()) {
 | 
						|
      EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
 | 
						|
      if (ESR != ESR_Succeeded)
 | 
						|
        return ESR;
 | 
						|
    }
 | 
						|
    while (true) {
 | 
						|
      bool Continue = true;
 | 
						|
      if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
 | 
						|
                                         FS->getCond(), Continue))
 | 
						|
        return ESR_Failed;
 | 
						|
      if (!Continue)
 | 
						|
        break;
 | 
						|
 | 
						|
      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
 | 
						|
      if (ESR != ESR_Continue)
 | 
						|
        return ESR;
 | 
						|
 | 
						|
      if (FS->getInc() && !EvaluateIgnoredValue(Info, FS->getInc()))
 | 
						|
        return ESR_Failed;
 | 
						|
    }
 | 
						|
    return ESR_Succeeded;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::CXXForRangeStmtClass: {
 | 
						|
    const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
 | 
						|
 | 
						|
    // Initialize the __range variable.
 | 
						|
    EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
 | 
						|
    if (ESR != ESR_Succeeded)
 | 
						|
      return ESR;
 | 
						|
 | 
						|
    // Create the __begin and __end iterators.
 | 
						|
    ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
 | 
						|
    if (ESR != ESR_Succeeded)
 | 
						|
      return ESR;
 | 
						|
 | 
						|
    while (true) {
 | 
						|
      // Condition: __begin != __end.
 | 
						|
      bool Continue = true;
 | 
						|
      if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
 | 
						|
        return ESR_Failed;
 | 
						|
      if (!Continue)
 | 
						|
        break;
 | 
						|
 | 
						|
      // User's variable declaration, initialized by *__begin.
 | 
						|
      ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
 | 
						|
      if (ESR != ESR_Succeeded)
 | 
						|
        return ESR;
 | 
						|
 | 
						|
      // Loop body.
 | 
						|
      ESR = EvaluateLoopBody(Result, Info, FS->getBody());
 | 
						|
      if (ESR != ESR_Continue)
 | 
						|
        return ESR;
 | 
						|
 | 
						|
      // Increment: ++__begin
 | 
						|
      if (!EvaluateIgnoredValue(Info, FS->getInc()))
 | 
						|
        return ESR_Failed;
 | 
						|
    }
 | 
						|
 | 
						|
    return ESR_Succeeded;
 | 
						|
  }
 | 
						|
 | 
						|
  case Stmt::ContinueStmtClass:
 | 
						|
    return ESR_Continue;
 | 
						|
 | 
						|
  case Stmt::BreakStmtClass:
 | 
						|
    return ESR_Break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
 | 
						|
/// default constructor. If so, we'll fold it whether or not it's marked as
 | 
						|
/// constexpr. If it is marked as constexpr, we will never implicitly define it,
 | 
						|
/// so we need special handling.
 | 
						|
static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
 | 
						|
                                           const CXXConstructorDecl *CD,
 | 
						|
                                           bool IsValueInitialization) {
 | 
						|
  if (!CD->isTrivial() || !CD->isDefaultConstructor())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Value-initialization does not call a trivial default constructor, so such a
 | 
						|
  // call is a core constant expression whether or not the constructor is
 | 
						|
  // constexpr.
 | 
						|
  if (!CD->isConstexpr() && !IsValueInitialization) {
 | 
						|
    if (Info.getLangOpts().CPlusPlus11) {
 | 
						|
      // FIXME: If DiagDecl is an implicitly-declared special member function,
 | 
						|
      // we should be much more explicit about why it's not constexpr.
 | 
						|
      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
 | 
						|
        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
 | 
						|
      Info.Note(CD->getLocation(), diag::note_declared_at);
 | 
						|
    } else {
 | 
						|
      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckConstexprFunction - Check that a function can be called in a constant
 | 
						|
/// expression.
 | 
						|
static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
 | 
						|
                                   const FunctionDecl *Declaration,
 | 
						|
                                   const FunctionDecl *Definition) {
 | 
						|
  // Potential constant expressions can contain calls to declared, but not yet
 | 
						|
  // defined, constexpr functions.
 | 
						|
  if (Info.CheckingPotentialConstantExpression && !Definition &&
 | 
						|
      Declaration->isConstexpr())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Can we evaluate this function call?
 | 
						|
  if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Info.getLangOpts().CPlusPlus11) {
 | 
						|
    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
 | 
						|
    // FIXME: If DiagDecl is an implicitly-declared special member function, we
 | 
						|
    // should be much more explicit about why it's not constexpr.
 | 
						|
    Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
 | 
						|
      << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
 | 
						|
      << DiagDecl;
 | 
						|
    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
 | 
						|
  } else {
 | 
						|
    Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
typedef SmallVector<APValue, 8> ArgVector;
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateArgs - Evaluate the arguments to a function call.
 | 
						|
static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
 | 
						|
                         EvalInfo &Info) {
 | 
						|
  bool Success = true;
 | 
						|
  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
 | 
						|
      // If we're checking for a potential constant expression, evaluate all
 | 
						|
      // initializers even if some of them fail.
 | 
						|
      if (!Info.keepEvaluatingAfterFailure())
 | 
						|
        return false;
 | 
						|
      Success = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Success;
 | 
						|
}
 | 
						|
 | 
						|
/// Evaluate a function call.
 | 
						|
static bool HandleFunctionCall(SourceLocation CallLoc,
 | 
						|
                               const FunctionDecl *Callee, const LValue *This,
 | 
						|
                               ArrayRef<const Expr*> Args, const Stmt *Body,
 | 
						|
                               EvalInfo &Info, APValue &Result) {
 | 
						|
  ArgVector ArgValues(Args.size());
 | 
						|
  if (!EvaluateArgs(Args, ArgValues, Info))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!Info.CheckCallLimit(CallLoc))
 | 
						|
    return false;
 | 
						|
 | 
						|
  CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
 | 
						|
 | 
						|
  // For a trivial copy or move assignment, perform an APValue copy. This is
 | 
						|
  // essential for unions, where the operations performed by the assignment
 | 
						|
  // operator cannot be represented as statements.
 | 
						|
  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
 | 
						|
  if (MD && MD->isDefaulted() && MD->isTrivial()) {
 | 
						|
    assert(This &&
 | 
						|
           (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
 | 
						|
    LValue RHS;
 | 
						|
    RHS.setFrom(Info.Ctx, ArgValues[0]);
 | 
						|
    APValue RHSValue;
 | 
						|
    if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
 | 
						|
                                        RHS, RHSValue))
 | 
						|
      return false;
 | 
						|
    if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
 | 
						|
                          RHSValue))
 | 
						|
      return false;
 | 
						|
    This->moveInto(Result);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
 | 
						|
  if (ESR == ESR_Succeeded) {
 | 
						|
    if (Callee->getResultType()->isVoidType())
 | 
						|
      return true;
 | 
						|
    Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
 | 
						|
  }
 | 
						|
  return ESR == ESR_Returned;
 | 
						|
}
 | 
						|
 | 
						|
/// Evaluate a constructor call.
 | 
						|
static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
 | 
						|
                                  ArrayRef<const Expr*> Args,
 | 
						|
                                  const CXXConstructorDecl *Definition,
 | 
						|
                                  EvalInfo &Info, APValue &Result) {
 | 
						|
  ArgVector ArgValues(Args.size());
 | 
						|
  if (!EvaluateArgs(Args, ArgValues, Info))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!Info.CheckCallLimit(CallLoc))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const CXXRecordDecl *RD = Definition->getParent();
 | 
						|
  if (RD->getNumVBases()) {
 | 
						|
    Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
 | 
						|
 | 
						|
  // If it's a delegating constructor, just delegate.
 | 
						|
  if (Definition->isDelegatingConstructor()) {
 | 
						|
    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
 | 
						|
    if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
 | 
						|
      return false;
 | 
						|
    return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
 | 
						|
  }
 | 
						|
 | 
						|
  // For a trivial copy or move constructor, perform an APValue copy. This is
 | 
						|
  // essential for unions, where the operations performed by the constructor
 | 
						|
  // cannot be represented by ctor-initializers.
 | 
						|
  if (Definition->isDefaulted() &&
 | 
						|
      ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
 | 
						|
       (Definition->isMoveConstructor() && Definition->isTrivial()))) {
 | 
						|
    LValue RHS;
 | 
						|
    RHS.setFrom(Info.Ctx, ArgValues[0]);
 | 
						|
    return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
 | 
						|
                                          RHS, Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reserve space for the struct members.
 | 
						|
  if (!RD->isUnion() && Result.isUninit())
 | 
						|
    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
 | 
						|
                     std::distance(RD->field_begin(), RD->field_end()));
 | 
						|
 | 
						|
  if (RD->isInvalidDecl()) return false;
 | 
						|
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | 
						|
 | 
						|
  bool Success = true;
 | 
						|
  unsigned BasesSeen = 0;
 | 
						|
#ifndef NDEBUG
 | 
						|
  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
 | 
						|
#endif
 | 
						|
  for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
 | 
						|
       E = Definition->init_end(); I != E; ++I) {
 | 
						|
    LValue Subobject = This;
 | 
						|
    APValue *Value = &Result;
 | 
						|
 | 
						|
    // Determine the subobject to initialize.
 | 
						|
    if ((*I)->isBaseInitializer()) {
 | 
						|
      QualType BaseType((*I)->getBaseClass(), 0);
 | 
						|
#ifndef NDEBUG
 | 
						|
      // Non-virtual base classes are initialized in the order in the class
 | 
						|
      // definition. We have already checked for virtual base classes.
 | 
						|
      assert(!BaseIt->isVirtual() && "virtual base for literal type");
 | 
						|
      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
 | 
						|
             "base class initializers not in expected order");
 | 
						|
      ++BaseIt;
 | 
						|
#endif
 | 
						|
      if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
 | 
						|
                                  BaseType->getAsCXXRecordDecl(), &Layout))
 | 
						|
        return false;
 | 
						|
      Value = &Result.getStructBase(BasesSeen++);
 | 
						|
    } else if (FieldDecl *FD = (*I)->getMember()) {
 | 
						|
      if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
 | 
						|
        return false;
 | 
						|
      if (RD->isUnion()) {
 | 
						|
        Result = APValue(FD);
 | 
						|
        Value = &Result.getUnionValue();
 | 
						|
      } else {
 | 
						|
        Value = &Result.getStructField(FD->getFieldIndex());
 | 
						|
      }
 | 
						|
    } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
 | 
						|
      // Walk the indirect field decl's chain to find the object to initialize,
 | 
						|
      // and make sure we've initialized every step along it.
 | 
						|
      for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
 | 
						|
                                             CE = IFD->chain_end();
 | 
						|
           C != CE; ++C) {
 | 
						|
        FieldDecl *FD = cast<FieldDecl>(*C);
 | 
						|
        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
 | 
						|
        // Switch the union field if it differs. This happens if we had
 | 
						|
        // preceding zero-initialization, and we're now initializing a union
 | 
						|
        // subobject other than the first.
 | 
						|
        // FIXME: In this case, the values of the other subobjects are
 | 
						|
        // specified, since zero-initialization sets all padding bits to zero.
 | 
						|
        if (Value->isUninit() ||
 | 
						|
            (Value->isUnion() && Value->getUnionField() != FD)) {
 | 
						|
          if (CD->isUnion())
 | 
						|
            *Value = APValue(FD);
 | 
						|
          else
 | 
						|
            *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
 | 
						|
                             std::distance(CD->field_begin(), CD->field_end()));
 | 
						|
        }
 | 
						|
        if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
 | 
						|
          return false;
 | 
						|
        if (CD->isUnion())
 | 
						|
          Value = &Value->getUnionValue();
 | 
						|
        else
 | 
						|
          Value = &Value->getStructField(FD->getFieldIndex());
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("unknown base initializer kind");
 | 
						|
    }
 | 
						|
 | 
						|
    if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
 | 
						|
                         (*I)->isBaseInitializer()
 | 
						|
                                      ? CCEK_Constant : CCEK_MemberInit)) {
 | 
						|
      // If we're checking for a potential constant expression, evaluate all
 | 
						|
      // initializers even if some of them fail.
 | 
						|
      if (!Info.keepEvaluatingAfterFailure())
 | 
						|
        return false;
 | 
						|
      Success = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Success &&
 | 
						|
         EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Generic Evaluation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
namespace {
 | 
						|
 | 
						|
// FIXME: RetTy is always bool. Remove it.
 | 
						|
template <class Derived, typename RetTy=bool>
 | 
						|
class ExprEvaluatorBase
 | 
						|
  : public ConstStmtVisitor<Derived, RetTy> {
 | 
						|
private:
 | 
						|
  RetTy DerivedSuccess(const APValue &V, const Expr *E) {
 | 
						|
    return static_cast<Derived*>(this)->Success(V, E);
 | 
						|
  }
 | 
						|
  RetTy DerivedZeroInitialization(const Expr *E) {
 | 
						|
    return static_cast<Derived*>(this)->ZeroInitialization(E);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether a conditional operator with a non-constant condition is a
 | 
						|
  // potential constant expression. If neither arm is a potential constant
 | 
						|
  // expression, then the conditional operator is not either.
 | 
						|
  template<typename ConditionalOperator>
 | 
						|
  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
 | 
						|
    assert(Info.CheckingPotentialConstantExpression);
 | 
						|
 | 
						|
    // Speculatively evaluate both arms.
 | 
						|
    {
 | 
						|
      SmallVector<PartialDiagnosticAt, 8> Diag;
 | 
						|
      SpeculativeEvaluationRAII Speculate(Info, &Diag);
 | 
						|
 | 
						|
      StmtVisitorTy::Visit(E->getFalseExpr());
 | 
						|
      if (Diag.empty())
 | 
						|
        return;
 | 
						|
 | 
						|
      Diag.clear();
 | 
						|
      StmtVisitorTy::Visit(E->getTrueExpr());
 | 
						|
      if (Diag.empty())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    Error(E, diag::note_constexpr_conditional_never_const);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  template<typename ConditionalOperator>
 | 
						|
  bool HandleConditionalOperator(const ConditionalOperator *E) {
 | 
						|
    bool BoolResult;
 | 
						|
    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
 | 
						|
      if (Info.CheckingPotentialConstantExpression)
 | 
						|
        CheckPotentialConstantConditional(E);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
 | 
						|
    return StmtVisitorTy::Visit(EvalExpr);
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
  EvalInfo &Info;
 | 
						|
  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
 | 
						|
  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
 | 
						|
 | 
						|
  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
 | 
						|
    return Info.CCEDiag(E, D);
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy ZeroInitialization(const Expr *E) { return Error(E); }
 | 
						|
 | 
						|
public:
 | 
						|
  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
 | 
						|
 | 
						|
  EvalInfo &getEvalInfo() { return Info; }
 | 
						|
 | 
						|
  /// Report an evaluation error. This should only be called when an error is
 | 
						|
  /// first discovered. When propagating an error, just return false.
 | 
						|
  bool Error(const Expr *E, diag::kind D) {
 | 
						|
    Info.Diag(E, D);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  bool Error(const Expr *E) {
 | 
						|
    return Error(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitStmt(const Stmt *) {
 | 
						|
    llvm_unreachable("Expression evaluator should not be called on stmts");
 | 
						|
  }
 | 
						|
  RetTy VisitExpr(const Expr *E) {
 | 
						|
    return Error(E);
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitParenExpr(const ParenExpr *E)
 | 
						|
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
 | 
						|
  RetTy VisitUnaryExtension(const UnaryOperator *E)
 | 
						|
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
 | 
						|
  RetTy VisitUnaryPlus(const UnaryOperator *E)
 | 
						|
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
 | 
						|
  RetTy VisitChooseExpr(const ChooseExpr *E)
 | 
						|
    { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
 | 
						|
  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
 | 
						|
    { return StmtVisitorTy::Visit(E->getResultExpr()); }
 | 
						|
  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
 | 
						|
    { return StmtVisitorTy::Visit(E->getReplacement()); }
 | 
						|
  RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
 | 
						|
    { return StmtVisitorTy::Visit(E->getExpr()); }
 | 
						|
  RetTy VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E)
 | 
						|
    { return StmtVisitorTy::Visit(E->getExpr()); }
 | 
						|
  // We cannot create any objects for which cleanups are required, so there is
 | 
						|
  // nothing to do here; all cleanups must come from unevaluated subexpressions.
 | 
						|
  RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
 | 
						|
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
 | 
						|
 | 
						|
  RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
 | 
						|
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
 | 
						|
    return static_cast<Derived*>(this)->VisitCastExpr(E);
 | 
						|
  }
 | 
						|
  RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
 | 
						|
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
 | 
						|
    return static_cast<Derived*>(this)->VisitCastExpr(E);
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitBinaryOperator(const BinaryOperator *E) {
 | 
						|
    switch (E->getOpcode()) {
 | 
						|
    default:
 | 
						|
      return Error(E);
 | 
						|
 | 
						|
    case BO_Comma:
 | 
						|
      VisitIgnoredValue(E->getLHS());
 | 
						|
      return StmtVisitorTy::Visit(E->getRHS());
 | 
						|
 | 
						|
    case BO_PtrMemD:
 | 
						|
    case BO_PtrMemI: {
 | 
						|
      LValue Obj;
 | 
						|
      if (!HandleMemberPointerAccess(Info, E, Obj))
 | 
						|
        return false;
 | 
						|
      APValue Result;
 | 
						|
      if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
 | 
						|
        return false;
 | 
						|
      return DerivedSuccess(Result, E);
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
 | 
						|
    // Evaluate and cache the common expression. We treat it as a temporary,
 | 
						|
    // even though it's not quite the same thing.
 | 
						|
    if (!Evaluate(Info.CurrentCall->Temporaries[E->getOpaqueValue()],
 | 
						|
                  Info, E->getCommon()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    return HandleConditionalOperator(E);
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
 | 
						|
    bool IsBcpCall = false;
 | 
						|
    // If the condition (ignoring parens) is a __builtin_constant_p call,
 | 
						|
    // the result is a constant expression if it can be folded without
 | 
						|
    // side-effects. This is an important GNU extension. See GCC PR38377
 | 
						|
    // for discussion.
 | 
						|
    if (const CallExpr *CallCE =
 | 
						|
          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
 | 
						|
      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
 | 
						|
        IsBcpCall = true;
 | 
						|
 | 
						|
    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
 | 
						|
    // constant expression; we can't check whether it's potentially foldable.
 | 
						|
    if (Info.CheckingPotentialConstantExpression && IsBcpCall)
 | 
						|
      return false;
 | 
						|
 | 
						|
    FoldConstant Fold(Info);
 | 
						|
 | 
						|
    if (!HandleConditionalOperator(E))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (IsBcpCall)
 | 
						|
      Fold.Fold(Info);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
 | 
						|
    APValue &Value = Info.CurrentCall->Temporaries[E];
 | 
						|
    if (Value.isUninit()) {
 | 
						|
      const Expr *Source = E->getSourceExpr();
 | 
						|
      if (!Source)
 | 
						|
        return Error(E);
 | 
						|
      if (Source == E) { // sanity checking.
 | 
						|
        assert(0 && "OpaqueValueExpr recursively refers to itself");
 | 
						|
        return Error(E);
 | 
						|
      }
 | 
						|
      return StmtVisitorTy::Visit(Source);
 | 
						|
    }
 | 
						|
    return DerivedSuccess(Value, E);
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitCallExpr(const CallExpr *E) {
 | 
						|
    const Expr *Callee = E->getCallee()->IgnoreParens();
 | 
						|
    QualType CalleeType = Callee->getType();
 | 
						|
 | 
						|
    const FunctionDecl *FD = 0;
 | 
						|
    LValue *This = 0, ThisVal;
 | 
						|
    ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
 | 
						|
    bool HasQualifier = false;
 | 
						|
 | 
						|
    // Extract function decl and 'this' pointer from the callee.
 | 
						|
    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
 | 
						|
      const ValueDecl *Member = 0;
 | 
						|
      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
 | 
						|
        // Explicit bound member calls, such as x.f() or p->g();
 | 
						|
        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
 | 
						|
          return false;
 | 
						|
        Member = ME->getMemberDecl();
 | 
						|
        This = &ThisVal;
 | 
						|
        HasQualifier = ME->hasQualifier();
 | 
						|
      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
 | 
						|
        // Indirect bound member calls ('.*' or '->*').
 | 
						|
        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
 | 
						|
        if (!Member) return false;
 | 
						|
        This = &ThisVal;
 | 
						|
      } else
 | 
						|
        return Error(Callee);
 | 
						|
 | 
						|
      FD = dyn_cast<FunctionDecl>(Member);
 | 
						|
      if (!FD)
 | 
						|
        return Error(Callee);
 | 
						|
    } else if (CalleeType->isFunctionPointerType()) {
 | 
						|
      LValue Call;
 | 
						|
      if (!EvaluatePointer(Callee, Call, Info))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!Call.getLValueOffset().isZero())
 | 
						|
        return Error(Callee);
 | 
						|
      FD = dyn_cast_or_null<FunctionDecl>(
 | 
						|
                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
 | 
						|
      if (!FD)
 | 
						|
        return Error(Callee);
 | 
						|
 | 
						|
      // Overloaded operator calls to member functions are represented as normal
 | 
						|
      // calls with '*this' as the first argument.
 | 
						|
      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
 | 
						|
      if (MD && !MD->isStatic()) {
 | 
						|
        // FIXME: When selecting an implicit conversion for an overloaded
 | 
						|
        // operator delete, we sometimes try to evaluate calls to conversion
 | 
						|
        // operators without a 'this' parameter!
 | 
						|
        if (Args.empty())
 | 
						|
          return Error(E);
 | 
						|
 | 
						|
        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
 | 
						|
          return false;
 | 
						|
        This = &ThisVal;
 | 
						|
        Args = Args.slice(1);
 | 
						|
      }
 | 
						|
 | 
						|
      // Don't call function pointers which have been cast to some other type.
 | 
						|
      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
 | 
						|
        return Error(E);
 | 
						|
    } else
 | 
						|
      return Error(E);
 | 
						|
 | 
						|
    if (This && !This->checkSubobject(Info, E, CSK_This))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // DR1358 allows virtual constexpr functions in some cases. Don't allow
 | 
						|
    // calls to such functions in constant expressions.
 | 
						|
    if (This && !HasQualifier &&
 | 
						|
        isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
 | 
						|
      return Error(E, diag::note_constexpr_virtual_call);
 | 
						|
 | 
						|
    const FunctionDecl *Definition = 0;
 | 
						|
    Stmt *Body = FD->getBody(Definition);
 | 
						|
    APValue Result;
 | 
						|
 | 
						|
    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
 | 
						|
        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
 | 
						|
                            Info, Result))
 | 
						|
      return false;
 | 
						|
 | 
						|
    return DerivedSuccess(Result, E);
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
 | 
						|
    return StmtVisitorTy::Visit(E->getInitializer());
 | 
						|
  }
 | 
						|
  RetTy VisitInitListExpr(const InitListExpr *E) {
 | 
						|
    if (E->getNumInits() == 0)
 | 
						|
      return DerivedZeroInitialization(E);
 | 
						|
    if (E->getNumInits() == 1)
 | 
						|
      return StmtVisitorTy::Visit(E->getInit(0));
 | 
						|
    return Error(E);
 | 
						|
  }
 | 
						|
  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
 | 
						|
    return DerivedZeroInitialization(E);
 | 
						|
  }
 | 
						|
  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
 | 
						|
    return DerivedZeroInitialization(E);
 | 
						|
  }
 | 
						|
  RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
 | 
						|
    return DerivedZeroInitialization(E);
 | 
						|
  }
 | 
						|
 | 
						|
  /// A member expression where the object is a prvalue is itself a prvalue.
 | 
						|
  RetTy VisitMemberExpr(const MemberExpr *E) {
 | 
						|
    assert(!E->isArrow() && "missing call to bound member function?");
 | 
						|
 | 
						|
    APValue Val;
 | 
						|
    if (!Evaluate(Val, Info, E->getBase()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    QualType BaseTy = E->getBase()->getType();
 | 
						|
 | 
						|
    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
 | 
						|
    if (!FD) return Error(E);
 | 
						|
    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
 | 
						|
    assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
 | 
						|
           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
 | 
						|
 | 
						|
    CompleteObject Obj(&Val, BaseTy);
 | 
						|
    SubobjectDesignator Designator(BaseTy);
 | 
						|
    Designator.addDeclUnchecked(FD);
 | 
						|
 | 
						|
    APValue Result;
 | 
						|
    return extractSubobject(Info, E, Obj, Designator, Result) &&
 | 
						|
           DerivedSuccess(Result, E);
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitCastExpr(const CastExpr *E) {
 | 
						|
    switch (E->getCastKind()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    case CK_AtomicToNonAtomic:
 | 
						|
    case CK_NonAtomicToAtomic:
 | 
						|
    case CK_NoOp:
 | 
						|
    case CK_UserDefinedConversion:
 | 
						|
      return StmtVisitorTy::Visit(E->getSubExpr());
 | 
						|
 | 
						|
    case CK_LValueToRValue: {
 | 
						|
      LValue LVal;
 | 
						|
      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
 | 
						|
        return false;
 | 
						|
      APValue RVal;
 | 
						|
      // Note, we use the subexpression's type in order to retain cv-qualifiers.
 | 
						|
      if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
 | 
						|
                                          LVal, RVal))
 | 
						|
        return false;
 | 
						|
      return DerivedSuccess(RVal, E);
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    return Error(E);
 | 
						|
  }
 | 
						|
 | 
						|
  RetTy VisitUnaryPostInc(const UnaryOperator *UO) {
 | 
						|
    return VisitUnaryPostIncDec(UO);
 | 
						|
  }
 | 
						|
  RetTy VisitUnaryPostDec(const UnaryOperator *UO) {
 | 
						|
    return VisitUnaryPostIncDec(UO);
 | 
						|
  }
 | 
						|
  RetTy VisitUnaryPostIncDec(const UnaryOperator *UO) {
 | 
						|
    if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
 | 
						|
      return Error(UO);
 | 
						|
 | 
						|
    LValue LVal;
 | 
						|
    if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
 | 
						|
      return false;
 | 
						|
    APValue RVal;
 | 
						|
    if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
 | 
						|
                      UO->isIncrementOp(), &RVal))
 | 
						|
      return false;
 | 
						|
    return DerivedSuccess(RVal, UO);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Visit a value which is evaluated, but whose value is ignored.
 | 
						|
  void VisitIgnoredValue(const Expr *E) {
 | 
						|
    EvaluateIgnoredValue(Info, E);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Common base class for lvalue and temporary evaluation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
namespace {
 | 
						|
template<class Derived>
 | 
						|
class LValueExprEvaluatorBase
 | 
						|
  : public ExprEvaluatorBase<Derived, bool> {
 | 
						|
protected:
 | 
						|
  LValue &Result;
 | 
						|
  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
 | 
						|
  typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
 | 
						|
 | 
						|
  bool Success(APValue::LValueBase B) {
 | 
						|
    Result.set(B);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
 | 
						|
    ExprEvaluatorBaseTy(Info), Result(Result) {}
 | 
						|
 | 
						|
  bool Success(const APValue &V, const Expr *E) {
 | 
						|
    Result.setFrom(this->Info.Ctx, V);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitMemberExpr(const MemberExpr *E) {
 | 
						|
    // Handle non-static data members.
 | 
						|
    QualType BaseTy;
 | 
						|
    if (E->isArrow()) {
 | 
						|
      if (!EvaluatePointer(E->getBase(), Result, this->Info))
 | 
						|
        return false;
 | 
						|
      BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
 | 
						|
    } else if (E->getBase()->isRValue()) {
 | 
						|
      assert(E->getBase()->getType()->isRecordType());
 | 
						|
      if (!EvaluateTemporary(E->getBase(), Result, this->Info))
 | 
						|
        return false;
 | 
						|
      BaseTy = E->getBase()->getType();
 | 
						|
    } else {
 | 
						|
      if (!this->Visit(E->getBase()))
 | 
						|
        return false;
 | 
						|
      BaseTy = E->getBase()->getType();
 | 
						|
    }
 | 
						|
 | 
						|
    const ValueDecl *MD = E->getMemberDecl();
 | 
						|
    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
 | 
						|
      assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
 | 
						|
             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
 | 
						|
      (void)BaseTy;
 | 
						|
      if (!HandleLValueMember(this->Info, E, Result, FD))
 | 
						|
        return false;
 | 
						|
    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
 | 
						|
      if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
 | 
						|
        return false;
 | 
						|
    } else
 | 
						|
      return this->Error(E);
 | 
						|
 | 
						|
    if (MD->getType()->isReferenceType()) {
 | 
						|
      APValue RefValue;
 | 
						|
      if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
 | 
						|
                                          RefValue))
 | 
						|
        return false;
 | 
						|
      return Success(RefValue, E);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitBinaryOperator(const BinaryOperator *E) {
 | 
						|
    switch (E->getOpcode()) {
 | 
						|
    default:
 | 
						|
      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | 
						|
 | 
						|
    case BO_PtrMemD:
 | 
						|
    case BO_PtrMemI:
 | 
						|
      return HandleMemberPointerAccess(this->Info, E, Result);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitCastExpr(const CastExpr *E) {
 | 
						|
    switch (E->getCastKind()) {
 | 
						|
    default:
 | 
						|
      return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
 | 
						|
    case CK_DerivedToBase:
 | 
						|
    case CK_UncheckedDerivedToBase: {
 | 
						|
      if (!this->Visit(E->getSubExpr()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Now figure out the necessary offset to add to the base LV to get from
 | 
						|
      // the derived class to the base class.
 | 
						|
      QualType Type = E->getSubExpr()->getType();
 | 
						|
 | 
						|
      for (CastExpr::path_const_iterator PathI = E->path_begin(),
 | 
						|
           PathE = E->path_end(); PathI != PathE; ++PathI) {
 | 
						|
        if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
 | 
						|
                              *PathI))
 | 
						|
          return false;
 | 
						|
        Type = (*PathI)->getType();
 | 
						|
      }
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LValue Evaluation
 | 
						|
//
 | 
						|
// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
 | 
						|
// function designators (in C), decl references to void objects (in C), and
 | 
						|
// temporaries (if building with -Wno-address-of-temporary).
 | 
						|
//
 | 
						|
// LValue evaluation produces values comprising a base expression of one of the
 | 
						|
// following types:
 | 
						|
// - Declarations
 | 
						|
//  * VarDecl
 | 
						|
//  * FunctionDecl
 | 
						|
// - Literals
 | 
						|
//  * CompoundLiteralExpr in C
 | 
						|
//  * StringLiteral
 | 
						|
//  * CXXTypeidExpr
 | 
						|
//  * PredefinedExpr
 | 
						|
//  * ObjCStringLiteralExpr
 | 
						|
//  * ObjCEncodeExpr
 | 
						|
//  * AddrLabelExpr
 | 
						|
//  * BlockExpr
 | 
						|
//  * CallExpr for a MakeStringConstant builtin
 | 
						|
// - Locals and temporaries
 | 
						|
//  * Any Expr, with a CallIndex indicating the function in which the temporary
 | 
						|
//    was evaluated.
 | 
						|
// plus an offset in bytes.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
namespace {
 | 
						|
class LValueExprEvaluator
 | 
						|
  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
 | 
						|
public:
 | 
						|
  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
 | 
						|
    LValueExprEvaluatorBaseTy(Info, Result) {}
 | 
						|
 | 
						|
  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
 | 
						|
  bool VisitUnaryPreIncDec(const UnaryOperator *UO);
 | 
						|
 | 
						|
  bool VisitDeclRefExpr(const DeclRefExpr *E);
 | 
						|
  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
 | 
						|
  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
 | 
						|
  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
 | 
						|
  bool VisitMemberExpr(const MemberExpr *E);
 | 
						|
  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
 | 
						|
  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
 | 
						|
  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
 | 
						|
  bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
 | 
						|
  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
 | 
						|
  bool VisitUnaryDeref(const UnaryOperator *E);
 | 
						|
  bool VisitUnaryReal(const UnaryOperator *E);
 | 
						|
  bool VisitUnaryImag(const UnaryOperator *E);
 | 
						|
  bool VisitUnaryPreInc(const UnaryOperator *UO) {
 | 
						|
    return VisitUnaryPreIncDec(UO);
 | 
						|
  }
 | 
						|
  bool VisitUnaryPreDec(const UnaryOperator *UO) {
 | 
						|
    return VisitUnaryPreIncDec(UO);
 | 
						|
  }
 | 
						|
  bool VisitBinAssign(const BinaryOperator *BO);
 | 
						|
  bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
 | 
						|
 | 
						|
  bool VisitCastExpr(const CastExpr *E) {
 | 
						|
    switch (E->getCastKind()) {
 | 
						|
    default:
 | 
						|
      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
 | 
						|
    case CK_LValueBitCast:
 | 
						|
      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
 | 
						|
      if (!Visit(E->getSubExpr()))
 | 
						|
        return false;
 | 
						|
      Result.Designator.setInvalid();
 | 
						|
      return true;
 | 
						|
 | 
						|
    case CK_BaseToDerived:
 | 
						|
      if (!Visit(E->getSubExpr()))
 | 
						|
        return false;
 | 
						|
      return HandleBaseToDerivedCast(Info, E, Result);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Evaluate an expression as an lvalue. This can be legitimately called on
 | 
						|
/// expressions which are not glvalues, in two cases:
 | 
						|
///  * function designators in C, and
 | 
						|
///  * "extern void" objects
 | 
						|
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
 | 
						|
  assert(E->isGLValue() || E->getType()->isFunctionType() ||
 | 
						|
         E->getType()->isVoidType());
 | 
						|
  return LValueExprEvaluator(Info, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
 | 
						|
    return Success(FD);
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
 | 
						|
    return VisitVarDecl(E, VD);
 | 
						|
  return Error(E);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
 | 
						|
  CallStackFrame *Frame = 0;
 | 
						|
  if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
 | 
						|
    Frame = Info.CurrentCall;
 | 
						|
 | 
						|
  if (!VD->getType()->isReferenceType()) {
 | 
						|
    if (Frame) {
 | 
						|
      Result.set(VD, Frame->Index);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return Success(VD);
 | 
						|
  }
 | 
						|
 | 
						|
  APValue *V;
 | 
						|
  if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
 | 
						|
    return false;
 | 
						|
  return Success(*V, E);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
 | 
						|
    const MaterializeTemporaryExpr *E) {
 | 
						|
  if (E->getType()->isRecordType())
 | 
						|
    return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
 | 
						|
 | 
						|
  Result.set(E, Info.CurrentCall->Index);
 | 
						|
  return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
 | 
						|
                         Result, E->GetTemporaryExpr());
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
 | 
						|
  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
 | 
						|
  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
 | 
						|
  // only see this when folding in C, so there's no standard to follow here.
 | 
						|
  return Success(E);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
 | 
						|
  if (!E->isPotentiallyEvaluated())
 | 
						|
    return Success(E);
 | 
						|
 | 
						|
  Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
 | 
						|
    << E->getExprOperand()->getType()
 | 
						|
    << E->getExprOperand()->getSourceRange();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
 | 
						|
  return Success(E);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
 | 
						|
  // Handle static data members.
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
 | 
						|
    VisitIgnoredValue(E->getBase());
 | 
						|
    return VisitVarDecl(E, VD);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle static member functions.
 | 
						|
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
 | 
						|
    if (MD->isStatic()) {
 | 
						|
      VisitIgnoredValue(E->getBase());
 | 
						|
      return Success(MD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle non-static data members.
 | 
						|
  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
 | 
						|
  // FIXME: Deal with vectors as array subscript bases.
 | 
						|
  if (E->getBase()->getType()->isVectorType())
 | 
						|
    return Error(E);
 | 
						|
 | 
						|
  if (!EvaluatePointer(E->getBase(), Result, Info))
 | 
						|
    return false;
 | 
						|
 | 
						|
  APSInt Index;
 | 
						|
  if (!EvaluateInteger(E->getIdx(), Index, Info))
 | 
						|
    return false;
 | 
						|
  int64_t IndexValue
 | 
						|
    = Index.isSigned() ? Index.getSExtValue()
 | 
						|
                       : static_cast<int64_t>(Index.getZExtValue());
 | 
						|
 | 
						|
  return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
 | 
						|
  return EvaluatePointer(E->getSubExpr(), Result, Info);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
 | 
						|
  if (!Visit(E->getSubExpr()))
 | 
						|
    return false;
 | 
						|
  // __real is a no-op on scalar lvalues.
 | 
						|
  if (E->getSubExpr()->getType()->isAnyComplexType())
 | 
						|
    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
 | 
						|
  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
 | 
						|
         "lvalue __imag__ on scalar?");
 | 
						|
  if (!Visit(E->getSubExpr()))
 | 
						|
    return false;
 | 
						|
  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
 | 
						|
  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
 | 
						|
    return Error(UO);
 | 
						|
 | 
						|
  if (!this->Visit(UO->getSubExpr()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return handleIncDec(
 | 
						|
      this->Info, UO, Result, UO->getSubExpr()->getType(),
 | 
						|
      UO->isIncrementOp(), 0);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitCompoundAssignOperator(
 | 
						|
    const CompoundAssignOperator *CAO) {
 | 
						|
  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
 | 
						|
    return Error(CAO);
 | 
						|
 | 
						|
  APValue RHS;
 | 
						|
 | 
						|
  // The overall lvalue result is the result of evaluating the LHS.
 | 
						|
  if (!this->Visit(CAO->getLHS())) {
 | 
						|
    if (Info.keepEvaluatingAfterFailure())
 | 
						|
      Evaluate(RHS, this->Info, CAO->getRHS());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Evaluate(RHS, this->Info, CAO->getRHS()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME:
 | 
						|
  //return handleCompoundAssignment(
 | 
						|
  //    this->Info, CAO,
 | 
						|
  //    Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
 | 
						|
  //    RHS, CAO->getRHS()->getType(),
 | 
						|
  //    CAO->getOpForCompoundAssignment(CAO->getOpcode()),
 | 
						|
  //    CAO->getComputationResultType());
 | 
						|
  return Error(CAO);
 | 
						|
}
 | 
						|
 | 
						|
bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
 | 
						|
  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
 | 
						|
    return Error(E);
 | 
						|
 | 
						|
  APValue NewVal;
 | 
						|
 | 
						|
  if (!this->Visit(E->getLHS())) {
 | 
						|
    if (Info.keepEvaluatingAfterFailure())
 | 
						|
      Evaluate(NewVal, this->Info, E->getRHS());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Evaluate(NewVal, this->Info, E->getRHS()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
 | 
						|
                          NewVal);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Pointer Evaluation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class PointerExprEvaluator
 | 
						|
  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
 | 
						|
  LValue &Result;
 | 
						|
 | 
						|
  bool Success(const Expr *E) {
 | 
						|
    Result.set(E);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  PointerExprEvaluator(EvalInfo &info, LValue &Result)
 | 
						|
    : ExprEvaluatorBaseTy(info), Result(Result) {}
 | 
						|
 | 
						|
  bool Success(const APValue &V, const Expr *E) {
 | 
						|
    Result.setFrom(Info.Ctx, V);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool ZeroInitialization(const Expr *E) {
 | 
						|
    return Success((Expr*)0);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitBinaryOperator(const BinaryOperator *E);
 | 
						|
  bool VisitCastExpr(const CastExpr* E);
 | 
						|
  bool VisitUnaryAddrOf(const UnaryOperator *E);
 | 
						|
  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
 | 
						|
      { return Success(E); }
 | 
						|
  bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
 | 
						|
      { return Success(E); }    
 | 
						|
  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
 | 
						|
      { return Success(E); }
 | 
						|
  bool VisitCallExpr(const CallExpr *E);
 | 
						|
  bool VisitBlockExpr(const BlockExpr *E) {
 | 
						|
    if (!E->getBlockDecl()->hasCaptures())
 | 
						|
      return Success(E);
 | 
						|
    return Error(E);
 | 
						|
  }
 | 
						|
  bool VisitCXXThisExpr(const CXXThisExpr *E) {
 | 
						|
    if (!Info.CurrentCall->This)
 | 
						|
      return Error(E);
 | 
						|
    Result = *Info.CurrentCall->This;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Missing: @protocol, @selector
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
 | 
						|
  return PointerExprEvaluator(Info, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
 | 
						|
  if (E->getOpcode() != BO_Add &&
 | 
						|
      E->getOpcode() != BO_Sub)
 | 
						|
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | 
						|
 | 
						|
  const Expr *PExp = E->getLHS();
 | 
						|
  const Expr *IExp = E->getRHS();
 | 
						|
  if (IExp->getType()->isPointerType())
 | 
						|
    std::swap(PExp, IExp);
 | 
						|
 | 
						|
  bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
 | 
						|
  if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
 | 
						|
    return false;
 | 
						|
 | 
						|
  llvm::APSInt Offset;
 | 
						|
  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
 | 
						|
    return false;
 | 
						|
  int64_t AdditionalOffset
 | 
						|
    = Offset.isSigned() ? Offset.getSExtValue()
 | 
						|
                        : static_cast<int64_t>(Offset.getZExtValue());
 | 
						|
  if (E->getOpcode() == BO_Sub)
 | 
						|
    AdditionalOffset = -AdditionalOffset;
 | 
						|
 | 
						|
  QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
 | 
						|
  return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
 | 
						|
                                     AdditionalOffset);
 | 
						|
}
 | 
						|
 | 
						|
bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
 | 
						|
  return EvaluateLValue(E->getSubExpr(), Result, Info);
 | 
						|
}
 | 
						|
 | 
						|
bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
 | 
						|
  const Expr* SubExpr = E->getSubExpr();
 | 
						|
 | 
						|
  switch (E->getCastKind()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
 | 
						|
  case CK_BitCast:
 | 
						|
  case CK_CPointerToObjCPointerCast:
 | 
						|
  case CK_BlockPointerToObjCPointerCast:
 | 
						|
  case CK_AnyPointerToBlockPointerCast:
 | 
						|
    if (!Visit(SubExpr))
 | 
						|
      return false;
 | 
						|
    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
 | 
						|
    // permitted in constant expressions in C++11. Bitcasts from cv void* are
 | 
						|
    // also static_casts, but we disallow them as a resolution to DR1312.
 | 
						|
    if (!E->getType()->isVoidPointerType()) {
 | 
						|
      Result.Designator.setInvalid();
 | 
						|
      if (SubExpr->getType()->isVoidPointerType())
 | 
						|
        CCEDiag(E, diag::note_constexpr_invalid_cast)
 | 
						|
          << 3 << SubExpr->getType();
 | 
						|
      else
 | 
						|
        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
 | 
						|
  case CK_DerivedToBase:
 | 
						|
  case CK_UncheckedDerivedToBase: {
 | 
						|
    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
 | 
						|
      return false;
 | 
						|
    if (!Result.Base && Result.Offset.isZero())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Now figure out the necessary offset to add to the base LV to get from
 | 
						|
    // the derived class to the base class.
 | 
						|
    QualType Type =
 | 
						|
        E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
 | 
						|
 | 
						|
    for (CastExpr::path_const_iterator PathI = E->path_begin(),
 | 
						|
         PathE = E->path_end(); PathI != PathE; ++PathI) {
 | 
						|
      if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
 | 
						|
                            *PathI))
 | 
						|
        return false;
 | 
						|
      Type = (*PathI)->getType();
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_BaseToDerived:
 | 
						|
    if (!Visit(E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
    if (!Result.Base && Result.Offset.isZero())
 | 
						|
      return true;
 | 
						|
    return HandleBaseToDerivedCast(Info, E, Result);
 | 
						|
 | 
						|
  case CK_NullToPointer:
 | 
						|
    VisitIgnoredValue(E->getSubExpr());
 | 
						|
    return ZeroInitialization(E);
 | 
						|
 | 
						|
  case CK_IntegralToPointer: {
 | 
						|
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
 | 
						|
 | 
						|
    APValue Value;
 | 
						|
    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
 | 
						|
      break;
 | 
						|
 | 
						|
    if (Value.isInt()) {
 | 
						|
      unsigned Size = Info.Ctx.getTypeSize(E->getType());
 | 
						|
      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
 | 
						|
      Result.Base = (Expr*)0;
 | 
						|
      Result.Offset = CharUnits::fromQuantity(N);
 | 
						|
      Result.CallIndex = 0;
 | 
						|
      Result.Designator.setInvalid();
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      // Cast is of an lvalue, no need to change value.
 | 
						|
      Result.setFrom(Info.Ctx, Value);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case CK_ArrayToPointerDecay:
 | 
						|
    if (SubExpr->isGLValue()) {
 | 
						|
      if (!EvaluateLValue(SubExpr, Result, Info))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      Result.set(SubExpr, Info.CurrentCall->Index);
 | 
						|
      if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
 | 
						|
                           Info, Result, SubExpr))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    // The result is a pointer to the first element of the array.
 | 
						|
    if (const ConstantArrayType *CAT
 | 
						|
          = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
 | 
						|
      Result.addArray(Info, E, CAT);
 | 
						|
    else
 | 
						|
      Result.Designator.setInvalid();
 | 
						|
    return true;
 | 
						|
 | 
						|
  case CK_FunctionToPointerDecay:
 | 
						|
    return EvaluateLValue(SubExpr, Result, Info);
 | 
						|
  }
 | 
						|
 | 
						|
  return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
}
 | 
						|
 | 
						|
bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
 | 
						|
  if (IsStringLiteralCall(E))
 | 
						|
    return Success(E);
 | 
						|
 | 
						|
  return ExprEvaluatorBaseTy::VisitCallExpr(E);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Member Pointer Evaluation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class MemberPointerExprEvaluator
 | 
						|
  : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
 | 
						|
  MemberPtr &Result;
 | 
						|
 | 
						|
  bool Success(const ValueDecl *D) {
 | 
						|
    Result = MemberPtr(D);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
 | 
						|
    : ExprEvaluatorBaseTy(Info), Result(Result) {}
 | 
						|
 | 
						|
  bool Success(const APValue &V, const Expr *E) {
 | 
						|
    Result.setFrom(V);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool ZeroInitialization(const Expr *E) {
 | 
						|
    return Success((const ValueDecl*)0);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitCastExpr(const CastExpr *E);
 | 
						|
  bool VisitUnaryAddrOf(const UnaryOperator *E);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
 | 
						|
                                  EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->isMemberPointerType());
 | 
						|
  return MemberPointerExprEvaluator(Info, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | 
						|
  switch (E->getCastKind()) {
 | 
						|
  default:
 | 
						|
    return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
 | 
						|
  case CK_NullToMemberPointer:
 | 
						|
    VisitIgnoredValue(E->getSubExpr());
 | 
						|
    return ZeroInitialization(E);
 | 
						|
 | 
						|
  case CK_BaseToDerivedMemberPointer: {
 | 
						|
    if (!Visit(E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
    if (E->path_empty())
 | 
						|
      return true;
 | 
						|
    // Base-to-derived member pointer casts store the path in derived-to-base
 | 
						|
    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
 | 
						|
    // the wrong end of the derived->base arc, so stagger the path by one class.
 | 
						|
    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
 | 
						|
    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
 | 
						|
         PathI != PathE; ++PathI) {
 | 
						|
      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
 | 
						|
      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
 | 
						|
      if (!Result.castToDerived(Derived))
 | 
						|
        return Error(E);
 | 
						|
    }
 | 
						|
    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
 | 
						|
    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
 | 
						|
      return Error(E);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_DerivedToBaseMemberPointer:
 | 
						|
    if (!Visit(E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
    for (CastExpr::path_const_iterator PathI = E->path_begin(),
 | 
						|
         PathE = E->path_end(); PathI != PathE; ++PathI) {
 | 
						|
      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
 | 
						|
      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
 | 
						|
      if (!Result.castToBase(Base))
 | 
						|
        return Error(E);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
 | 
						|
  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
 | 
						|
  // member can be formed.
 | 
						|
  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Record Evaluation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class RecordExprEvaluator
 | 
						|
  : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
 | 
						|
    const LValue &This;
 | 
						|
    APValue &Result;
 | 
						|
  public:
 | 
						|
 | 
						|
    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
 | 
						|
      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
 | 
						|
 | 
						|
    bool Success(const APValue &V, const Expr *E) {
 | 
						|
      Result = V;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    bool ZeroInitialization(const Expr *E);
 | 
						|
 | 
						|
    bool VisitCastExpr(const CastExpr *E);
 | 
						|
    bool VisitInitListExpr(const InitListExpr *E);
 | 
						|
    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// Perform zero-initialization on an object of non-union class type.
 | 
						|
/// C++11 [dcl.init]p5:
 | 
						|
///  To zero-initialize an object or reference of type T means:
 | 
						|
///    [...]
 | 
						|
///    -- if T is a (possibly cv-qualified) non-union class type,
 | 
						|
///       each non-static data member and each base-class subobject is
 | 
						|
///       zero-initialized
 | 
						|
static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
 | 
						|
                                          const RecordDecl *RD,
 | 
						|
                                          const LValue &This, APValue &Result) {
 | 
						|
  assert(!RD->isUnion() && "Expected non-union class type");
 | 
						|
  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
 | 
						|
  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
 | 
						|
                   std::distance(RD->field_begin(), RD->field_end()));
 | 
						|
 | 
						|
  if (RD->isInvalidDecl()) return false;
 | 
						|
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | 
						|
 | 
						|
  if (CD) {
 | 
						|
    unsigned Index = 0;
 | 
						|
    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
 | 
						|
           End = CD->bases_end(); I != End; ++I, ++Index) {
 | 
						|
      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
 | 
						|
      LValue Subobject = This;
 | 
						|
      if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
 | 
						|
        return false;
 | 
						|
      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
 | 
						|
                                         Result.getStructBase(Index)))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
 | 
						|
       I != End; ++I) {
 | 
						|
    // -- if T is a reference type, no initialization is performed.
 | 
						|
    if (I->getType()->isReferenceType())
 | 
						|
      continue;
 | 
						|
 | 
						|
    LValue Subobject = This;
 | 
						|
    if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
 | 
						|
      return false;
 | 
						|
 | 
						|
    ImplicitValueInitExpr VIE(I->getType());
 | 
						|
    if (!EvaluateInPlace(
 | 
						|
          Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
 | 
						|
  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
 | 
						|
  if (RD->isInvalidDecl()) return false;
 | 
						|
  if (RD->isUnion()) {
 | 
						|
    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
 | 
						|
    // object's first non-static named data member is zero-initialized
 | 
						|
    RecordDecl::field_iterator I = RD->field_begin();
 | 
						|
    if (I == RD->field_end()) {
 | 
						|
      Result = APValue((const FieldDecl*)0);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    LValue Subobject = This;
 | 
						|
    if (!HandleLValueMember(Info, E, Subobject, *I))
 | 
						|
      return false;
 | 
						|
    Result = APValue(*I);
 | 
						|
    ImplicitValueInitExpr VIE(I->getType());
 | 
						|
    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
 | 
						|
    Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return HandleClassZeroInitialization(Info, E, RD, This, Result);
 | 
						|
}
 | 
						|
 | 
						|
bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | 
						|
  switch (E->getCastKind()) {
 | 
						|
  default:
 | 
						|
    return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
 | 
						|
  case CK_ConstructorConversion:
 | 
						|
    return Visit(E->getSubExpr());
 | 
						|
 | 
						|
  case CK_DerivedToBase:
 | 
						|
  case CK_UncheckedDerivedToBase: {
 | 
						|
    APValue DerivedObject;
 | 
						|
    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
    if (!DerivedObject.isStruct())
 | 
						|
      return Error(E->getSubExpr());
 | 
						|
 | 
						|
    // Derived-to-base rvalue conversion: just slice off the derived part.
 | 
						|
    APValue *Value = &DerivedObject;
 | 
						|
    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
 | 
						|
    for (CastExpr::path_const_iterator PathI = E->path_begin(),
 | 
						|
         PathE = E->path_end(); PathI != PathE; ++PathI) {
 | 
						|
      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
 | 
						|
      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
 | 
						|
      Value = &Value->getStructBase(getBaseIndex(RD, Base));
 | 
						|
      RD = Base;
 | 
						|
    }
 | 
						|
    Result = *Value;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
 | 
						|
  // Cannot constant-evaluate std::initializer_list inits.
 | 
						|
  if (E->initializesStdInitializerList())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
 | 
						|
  if (RD->isInvalidDecl()) return false;
 | 
						|
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | 
						|
 | 
						|
  if (RD->isUnion()) {
 | 
						|
    const FieldDecl *Field = E->getInitializedFieldInUnion();
 | 
						|
    Result = APValue(Field);
 | 
						|
    if (!Field)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If the initializer list for a union does not contain any elements, the
 | 
						|
    // first element of the union is value-initialized.
 | 
						|
    // FIXME: The element should be initialized from an initializer list.
 | 
						|
    //        Is this difference ever observable for initializer lists which
 | 
						|
    //        we don't build?
 | 
						|
    ImplicitValueInitExpr VIE(Field->getType());
 | 
						|
    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
 | 
						|
 | 
						|
    LValue Subobject = This;
 | 
						|
    if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
 | 
						|
    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
 | 
						|
                                  isa<CXXDefaultInitExpr>(InitExpr));
 | 
						|
 | 
						|
    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
 | 
						|
  }
 | 
						|
 | 
						|
  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
 | 
						|
         "initializer list for class with base classes");
 | 
						|
  Result = APValue(APValue::UninitStruct(), 0,
 | 
						|
                   std::distance(RD->field_begin(), RD->field_end()));
 | 
						|
  unsigned ElementNo = 0;
 | 
						|
  bool Success = true;
 | 
						|
  for (RecordDecl::field_iterator Field = RD->field_begin(),
 | 
						|
       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
 | 
						|
    // Anonymous bit-fields are not considered members of the class for
 | 
						|
    // purposes of aggregate initialization.
 | 
						|
    if (Field->isUnnamedBitfield())
 | 
						|
      continue;
 | 
						|
 | 
						|
    LValue Subobject = This;
 | 
						|
 | 
						|
    bool HaveInit = ElementNo < E->getNumInits();
 | 
						|
 | 
						|
    // FIXME: Diagnostics here should point to the end of the initializer
 | 
						|
    // list, not the start.
 | 
						|
    if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
 | 
						|
                            Subobject, *Field, &Layout))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Perform an implicit value-initialization for members beyond the end of
 | 
						|
    // the initializer list.
 | 
						|
    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
 | 
						|
    const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
 | 
						|
 | 
						|
    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
 | 
						|
    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
 | 
						|
                                  isa<CXXDefaultInitExpr>(Init));
 | 
						|
 | 
						|
    if (!EvaluateInPlace(Result.getStructField(Field->getFieldIndex()), Info,
 | 
						|
                         Subobject, Init)) {
 | 
						|
      if (!Info.keepEvaluatingAfterFailure())
 | 
						|
        return false;
 | 
						|
      Success = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Success;
 | 
						|
}
 | 
						|
 | 
						|
bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | 
						|
  const CXXConstructorDecl *FD = E->getConstructor();
 | 
						|
  if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
 | 
						|
 | 
						|
  bool ZeroInit = E->requiresZeroInitialization();
 | 
						|
  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
 | 
						|
    // If we've already performed zero-initialization, we're already done.
 | 
						|
    if (!Result.isUninit())
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (ZeroInit)
 | 
						|
      return ZeroInitialization(E);
 | 
						|
 | 
						|
    const CXXRecordDecl *RD = FD->getParent();
 | 
						|
    if (RD->isUnion())
 | 
						|
      Result = APValue((FieldDecl*)0);
 | 
						|
    else
 | 
						|
      Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
 | 
						|
                       std::distance(RD->field_begin(), RD->field_end()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const FunctionDecl *Definition = 0;
 | 
						|
  FD->getBody(Definition);
 | 
						|
 | 
						|
  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Avoid materializing a temporary for an elidable copy/move constructor.
 | 
						|
  if (E->isElidable() && !ZeroInit)
 | 
						|
    if (const MaterializeTemporaryExpr *ME
 | 
						|
          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
 | 
						|
      return Visit(ME->GetTemporaryExpr());
 | 
						|
 | 
						|
  if (ZeroInit && !ZeroInitialization(E))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
 | 
						|
  return HandleConstructorCall(E->getExprLoc(), This, Args,
 | 
						|
                               cast<CXXConstructorDecl>(Definition), Info,
 | 
						|
                               Result);
 | 
						|
}
 | 
						|
 | 
						|
static bool EvaluateRecord(const Expr *E, const LValue &This,
 | 
						|
                           APValue &Result, EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->isRecordType() &&
 | 
						|
         "can't evaluate expression as a record rvalue");
 | 
						|
  return RecordExprEvaluator(Info, This, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Temporary Evaluation
 | 
						|
//
 | 
						|
// Temporaries are represented in the AST as rvalues, but generally behave like
 | 
						|
// lvalues. The full-object of which the temporary is a subobject is implicitly
 | 
						|
// materialized so that a reference can bind to it.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
namespace {
 | 
						|
class TemporaryExprEvaluator
 | 
						|
  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
 | 
						|
public:
 | 
						|
  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
 | 
						|
    LValueExprEvaluatorBaseTy(Info, Result) {}
 | 
						|
 | 
						|
  /// Visit an expression which constructs the value of this temporary.
 | 
						|
  bool VisitConstructExpr(const Expr *E) {
 | 
						|
    Result.set(E, Info.CurrentCall->Index);
 | 
						|
    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitCastExpr(const CastExpr *E) {
 | 
						|
    switch (E->getCastKind()) {
 | 
						|
    default:
 | 
						|
      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
 | 
						|
    case CK_ConstructorConversion:
 | 
						|
      return VisitConstructExpr(E->getSubExpr());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  bool VisitInitListExpr(const InitListExpr *E) {
 | 
						|
    return VisitConstructExpr(E);
 | 
						|
  }
 | 
						|
  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | 
						|
    return VisitConstructExpr(E);
 | 
						|
  }
 | 
						|
  bool VisitCallExpr(const CallExpr *E) {
 | 
						|
    return VisitConstructExpr(E);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Evaluate an expression of record type as a temporary.
 | 
						|
static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->isRecordType());
 | 
						|
  return TemporaryExprEvaluator(Info, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Vector Evaluation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class VectorExprEvaluator
 | 
						|
  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
 | 
						|
    APValue &Result;
 | 
						|
  public:
 | 
						|
 | 
						|
    VectorExprEvaluator(EvalInfo &info, APValue &Result)
 | 
						|
      : ExprEvaluatorBaseTy(info), Result(Result) {}
 | 
						|
 | 
						|
    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
 | 
						|
      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
 | 
						|
      // FIXME: remove this APValue copy.
 | 
						|
      Result = APValue(V.data(), V.size());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    bool Success(const APValue &V, const Expr *E) {
 | 
						|
      assert(V.isVector());
 | 
						|
      Result = V;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    bool ZeroInitialization(const Expr *E);
 | 
						|
 | 
						|
    bool VisitUnaryReal(const UnaryOperator *E)
 | 
						|
      { return Visit(E->getSubExpr()); }
 | 
						|
    bool VisitCastExpr(const CastExpr* E);
 | 
						|
    bool VisitInitListExpr(const InitListExpr *E);
 | 
						|
    bool VisitUnaryImag(const UnaryOperator *E);
 | 
						|
    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
 | 
						|
    //                 binary comparisons, binary and/or/xor,
 | 
						|
    //                 shufflevector, ExtVectorElementExpr
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
 | 
						|
  return VectorExprEvaluator(Info, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
 | 
						|
  const VectorType *VTy = E->getType()->castAs<VectorType>();
 | 
						|
  unsigned NElts = VTy->getNumElements();
 | 
						|
 | 
						|
  const Expr *SE = E->getSubExpr();
 | 
						|
  QualType SETy = SE->getType();
 | 
						|
 | 
						|
  switch (E->getCastKind()) {
 | 
						|
  case CK_VectorSplat: {
 | 
						|
    APValue Val = APValue();
 | 
						|
    if (SETy->isIntegerType()) {
 | 
						|
      APSInt IntResult;
 | 
						|
      if (!EvaluateInteger(SE, IntResult, Info))
 | 
						|
         return false;
 | 
						|
      Val = APValue(IntResult);
 | 
						|
    } else if (SETy->isRealFloatingType()) {
 | 
						|
       APFloat F(0.0);
 | 
						|
       if (!EvaluateFloat(SE, F, Info))
 | 
						|
         return false;
 | 
						|
       Val = APValue(F);
 | 
						|
    } else {
 | 
						|
      return Error(E);
 | 
						|
    }
 | 
						|
 | 
						|
    // Splat and create vector APValue.
 | 
						|
    SmallVector<APValue, 4> Elts(NElts, Val);
 | 
						|
    return Success(Elts, E);
 | 
						|
  }
 | 
						|
  case CK_BitCast: {
 | 
						|
    // Evaluate the operand into an APInt we can extract from.
 | 
						|
    llvm::APInt SValInt;
 | 
						|
    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
 | 
						|
      return false;
 | 
						|
    // Extract the elements
 | 
						|
    QualType EltTy = VTy->getElementType();
 | 
						|
    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
 | 
						|
    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
 | 
						|
    SmallVector<APValue, 4> Elts;
 | 
						|
    if (EltTy->isRealFloatingType()) {
 | 
						|
      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
 | 
						|
      unsigned FloatEltSize = EltSize;
 | 
						|
      if (&Sem == &APFloat::x87DoubleExtended)
 | 
						|
        FloatEltSize = 80;
 | 
						|
      for (unsigned i = 0; i < NElts; i++) {
 | 
						|
        llvm::APInt Elt;
 | 
						|
        if (BigEndian)
 | 
						|
          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
 | 
						|
        else
 | 
						|
          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
 | 
						|
        Elts.push_back(APValue(APFloat(Sem, Elt)));
 | 
						|
      }
 | 
						|
    } else if (EltTy->isIntegerType()) {
 | 
						|
      for (unsigned i = 0; i < NElts; i++) {
 | 
						|
        llvm::APInt Elt;
 | 
						|
        if (BigEndian)
 | 
						|
          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
 | 
						|
        else
 | 
						|
          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
 | 
						|
        Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      return Error(E);
 | 
						|
    }
 | 
						|
    return Success(Elts, E);
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
 | 
						|
  const VectorType *VT = E->getType()->castAs<VectorType>();
 | 
						|
  unsigned NumInits = E->getNumInits();
 | 
						|
  unsigned NumElements = VT->getNumElements();
 | 
						|
 | 
						|
  QualType EltTy = VT->getElementType();
 | 
						|
  SmallVector<APValue, 4> Elements;
 | 
						|
 | 
						|
  // The number of initializers can be less than the number of
 | 
						|
  // vector elements. For OpenCL, this can be due to nested vector
 | 
						|
  // initialization. For GCC compatibility, missing trailing elements 
 | 
						|
  // should be initialized with zeroes.
 | 
						|
  unsigned CountInits = 0, CountElts = 0;
 | 
						|
  while (CountElts < NumElements) {
 | 
						|
    // Handle nested vector initialization.
 | 
						|
    if (CountInits < NumInits 
 | 
						|
        && E->getInit(CountInits)->getType()->isExtVectorType()) {
 | 
						|
      APValue v;
 | 
						|
      if (!EvaluateVector(E->getInit(CountInits), v, Info))
 | 
						|
        return Error(E);
 | 
						|
      unsigned vlen = v.getVectorLength();
 | 
						|
      for (unsigned j = 0; j < vlen; j++) 
 | 
						|
        Elements.push_back(v.getVectorElt(j));
 | 
						|
      CountElts += vlen;
 | 
						|
    } else if (EltTy->isIntegerType()) {
 | 
						|
      llvm::APSInt sInt(32);
 | 
						|
      if (CountInits < NumInits) {
 | 
						|
        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
 | 
						|
          return false;
 | 
						|
      } else // trailing integer zero.
 | 
						|
        sInt = Info.Ctx.MakeIntValue(0, EltTy);
 | 
						|
      Elements.push_back(APValue(sInt));
 | 
						|
      CountElts++;
 | 
						|
    } else {
 | 
						|
      llvm::APFloat f(0.0);
 | 
						|
      if (CountInits < NumInits) {
 | 
						|
        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
 | 
						|
          return false;
 | 
						|
      } else // trailing float zero.
 | 
						|
        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
 | 
						|
      Elements.push_back(APValue(f));
 | 
						|
      CountElts++;
 | 
						|
    }
 | 
						|
    CountInits++;
 | 
						|
  }
 | 
						|
  return Success(Elements, E);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
VectorExprEvaluator::ZeroInitialization(const Expr *E) {
 | 
						|
  const VectorType *VT = E->getType()->getAs<VectorType>();
 | 
						|
  QualType EltTy = VT->getElementType();
 | 
						|
  APValue ZeroElement;
 | 
						|
  if (EltTy->isIntegerType())
 | 
						|
    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
 | 
						|
  else
 | 
						|
    ZeroElement =
 | 
						|
        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
 | 
						|
 | 
						|
  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
 | 
						|
  return Success(Elements, E);
 | 
						|
}
 | 
						|
 | 
						|
bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
 | 
						|
  VisitIgnoredValue(E->getSubExpr());
 | 
						|
  return ZeroInitialization(E);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Array Evaluation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class ArrayExprEvaluator
 | 
						|
  : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
 | 
						|
    const LValue &This;
 | 
						|
    APValue &Result;
 | 
						|
  public:
 | 
						|
 | 
						|
    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
 | 
						|
      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
 | 
						|
 | 
						|
    bool Success(const APValue &V, const Expr *E) {
 | 
						|
      assert((V.isArray() || V.isLValue()) &&
 | 
						|
             "expected array or string literal");
 | 
						|
      Result = V;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    bool ZeroInitialization(const Expr *E) {
 | 
						|
      const ConstantArrayType *CAT =
 | 
						|
          Info.Ctx.getAsConstantArrayType(E->getType());
 | 
						|
      if (!CAT)
 | 
						|
        return Error(E);
 | 
						|
 | 
						|
      Result = APValue(APValue::UninitArray(), 0,
 | 
						|
                       CAT->getSize().getZExtValue());
 | 
						|
      if (!Result.hasArrayFiller()) return true;
 | 
						|
 | 
						|
      // Zero-initialize all elements.
 | 
						|
      LValue Subobject = This;
 | 
						|
      Subobject.addArray(Info, E, CAT);
 | 
						|
      ImplicitValueInitExpr VIE(CAT->getElementType());
 | 
						|
      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitInitListExpr(const InitListExpr *E);
 | 
						|
    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
 | 
						|
    bool VisitCXXConstructExpr(const CXXConstructExpr *E,
 | 
						|
                               const LValue &Subobject,
 | 
						|
                               APValue *Value, QualType Type);
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static bool EvaluateArray(const Expr *E, const LValue &This,
 | 
						|
                          APValue &Result, EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
 | 
						|
  return ArrayExprEvaluator(Info, This, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
 | 
						|
  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
 | 
						|
  if (!CAT)
 | 
						|
    return Error(E);
 | 
						|
 | 
						|
  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
 | 
						|
  // an appropriately-typed string literal enclosed in braces.
 | 
						|
  if (E->isStringLiteralInit()) {
 | 
						|
    LValue LV;
 | 
						|
    if (!EvaluateLValue(E->getInit(0), LV, Info))
 | 
						|
      return false;
 | 
						|
    APValue Val;
 | 
						|
    LV.moveInto(Val);
 | 
						|
    return Success(Val, E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Success = true;
 | 
						|
 | 
						|
  assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
 | 
						|
         "zero-initialized array shouldn't have any initialized elts");
 | 
						|
  APValue Filler;
 | 
						|
  if (Result.isArray() && Result.hasArrayFiller())
 | 
						|
    Filler = Result.getArrayFiller();
 | 
						|
 | 
						|
  unsigned NumEltsToInit = E->getNumInits();
 | 
						|
  unsigned NumElts = CAT->getSize().getZExtValue();
 | 
						|
  const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : 0;
 | 
						|
 | 
						|
  // If the initializer might depend on the array index, run it for each
 | 
						|
  // array element. For now, just whitelist non-class value-initialization.
 | 
						|
  if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
 | 
						|
    NumEltsToInit = NumElts;
 | 
						|
 | 
						|
  Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
 | 
						|
 | 
						|
  // If the array was previously zero-initialized, preserve the
 | 
						|
  // zero-initialized values.
 | 
						|
  if (!Filler.isUninit()) {
 | 
						|
    for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
 | 
						|
      Result.getArrayInitializedElt(I) = Filler;
 | 
						|
    if (Result.hasArrayFiller())
 | 
						|
      Result.getArrayFiller() = Filler;
 | 
						|
  }
 | 
						|
 | 
						|
  LValue Subobject = This;
 | 
						|
  Subobject.addArray(Info, E, CAT);
 | 
						|
  for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
 | 
						|
    const Expr *Init =
 | 
						|
        Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
 | 
						|
    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
 | 
						|
                         Info, Subobject, Init) ||
 | 
						|
        !HandleLValueArrayAdjustment(Info, Init, Subobject,
 | 
						|
                                     CAT->getElementType(), 1)) {
 | 
						|
      if (!Info.keepEvaluatingAfterFailure())
 | 
						|
        return false;
 | 
						|
      Success = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Result.hasArrayFiller())
 | 
						|
    return Success;
 | 
						|
 | 
						|
  // If we get here, we have a trivial filler, which we can just evaluate
 | 
						|
  // once and splat over the rest of the array elements.
 | 
						|
  assert(FillerExpr && "no array filler for incomplete init list");
 | 
						|
  return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
 | 
						|
                         FillerExpr) && Success;
 | 
						|
}
 | 
						|
 | 
						|
bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | 
						|
  return VisitCXXConstructExpr(E, This, &Result, E->getType());
 | 
						|
}
 | 
						|
 | 
						|
bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
 | 
						|
                                               const LValue &Subobject,
 | 
						|
                                               APValue *Value,
 | 
						|
                                               QualType Type) {
 | 
						|
  bool HadZeroInit = !Value->isUninit();
 | 
						|
 | 
						|
  if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
 | 
						|
    unsigned N = CAT->getSize().getZExtValue();
 | 
						|
 | 
						|
    // Preserve the array filler if we had prior zero-initialization.
 | 
						|
    APValue Filler =
 | 
						|
      HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
 | 
						|
                                             : APValue();
 | 
						|
 | 
						|
    *Value = APValue(APValue::UninitArray(), N, N);
 | 
						|
 | 
						|
    if (HadZeroInit)
 | 
						|
      for (unsigned I = 0; I != N; ++I)
 | 
						|
        Value->getArrayInitializedElt(I) = Filler;
 | 
						|
 | 
						|
    // Initialize the elements.
 | 
						|
    LValue ArrayElt = Subobject;
 | 
						|
    ArrayElt.addArray(Info, E, CAT);
 | 
						|
    for (unsigned I = 0; I != N; ++I)
 | 
						|
      if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
 | 
						|
                                 CAT->getElementType()) ||
 | 
						|
          !HandleLValueArrayAdjustment(Info, E, ArrayElt,
 | 
						|
                                       CAT->getElementType(), 1))
 | 
						|
        return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Type->isRecordType())
 | 
						|
    return Error(E);
 | 
						|
 | 
						|
  const CXXConstructorDecl *FD = E->getConstructor();
 | 
						|
 | 
						|
  bool ZeroInit = E->requiresZeroInitialization();
 | 
						|
  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
 | 
						|
    if (HadZeroInit)
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (ZeroInit) {
 | 
						|
      ImplicitValueInitExpr VIE(Type);
 | 
						|
      return EvaluateInPlace(*Value, Info, Subobject, &VIE);
 | 
						|
    }
 | 
						|
 | 
						|
    const CXXRecordDecl *RD = FD->getParent();
 | 
						|
    if (RD->isUnion())
 | 
						|
      *Value = APValue((FieldDecl*)0);
 | 
						|
    else
 | 
						|
      *Value =
 | 
						|
          APValue(APValue::UninitStruct(), RD->getNumBases(),
 | 
						|
                  std::distance(RD->field_begin(), RD->field_end()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const FunctionDecl *Definition = 0;
 | 
						|
  FD->getBody(Definition);
 | 
						|
 | 
						|
  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (ZeroInit && !HadZeroInit) {
 | 
						|
    ImplicitValueInitExpr VIE(Type);
 | 
						|
    if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
 | 
						|
  return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
 | 
						|
                               cast<CXXConstructorDecl>(Definition),
 | 
						|
                               Info, *Value);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Integer Evaluation
 | 
						|
//
 | 
						|
// As a GNU extension, we support casting pointers to sufficiently-wide integer
 | 
						|
// types and back in constant folding. Integer values are thus represented
 | 
						|
// either as an integer-valued APValue, or as an lvalue-valued APValue.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class IntExprEvaluator
 | 
						|
  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
 | 
						|
  APValue &Result;
 | 
						|
public:
 | 
						|
  IntExprEvaluator(EvalInfo &info, APValue &result)
 | 
						|
    : ExprEvaluatorBaseTy(info), Result(result) {}
 | 
						|
 | 
						|
  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
 | 
						|
    assert(E->getType()->isIntegralOrEnumerationType() &&
 | 
						|
           "Invalid evaluation result.");
 | 
						|
    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
 | 
						|
           "Invalid evaluation result.");
 | 
						|
    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
 | 
						|
           "Invalid evaluation result.");
 | 
						|
    Result = APValue(SI);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool Success(const llvm::APSInt &SI, const Expr *E) {
 | 
						|
    return Success(SI, E, Result);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
 | 
						|
    assert(E->getType()->isIntegralOrEnumerationType() && 
 | 
						|
           "Invalid evaluation result.");
 | 
						|
    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
 | 
						|
           "Invalid evaluation result.");
 | 
						|
    Result = APValue(APSInt(I));
 | 
						|
    Result.getInt().setIsUnsigned(
 | 
						|
                            E->getType()->isUnsignedIntegerOrEnumerationType());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool Success(const llvm::APInt &I, const Expr *E) {
 | 
						|
    return Success(I, E, Result);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
 | 
						|
    assert(E->getType()->isIntegralOrEnumerationType() && 
 | 
						|
           "Invalid evaluation result.");
 | 
						|
    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool Success(uint64_t Value, const Expr *E) {
 | 
						|
    return Success(Value, E, Result);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Success(CharUnits Size, const Expr *E) {
 | 
						|
    return Success(Size.getQuantity(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Success(const APValue &V, const Expr *E) {
 | 
						|
    if (V.isLValue() || V.isAddrLabelDiff()) {
 | 
						|
      Result = V;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return Success(V.getInt(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool ZeroInitialization(const Expr *E) { return Success(0, E); }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //                            Visitor Methods
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  bool VisitIntegerLiteral(const IntegerLiteral *E) {
 | 
						|
    return Success(E->getValue(), E);
 | 
						|
  }
 | 
						|
  bool VisitCharacterLiteral(const CharacterLiteral *E) {
 | 
						|
    return Success(E->getValue(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool CheckReferencedDecl(const Expr *E, const Decl *D);
 | 
						|
  bool VisitDeclRefExpr(const DeclRefExpr *E) {
 | 
						|
    if (CheckReferencedDecl(E, E->getDecl()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
 | 
						|
  }
 | 
						|
  bool VisitMemberExpr(const MemberExpr *E) {
 | 
						|
    if (CheckReferencedDecl(E, E->getMemberDecl())) {
 | 
						|
      VisitIgnoredValue(E->getBase());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitCallExpr(const CallExpr *E);
 | 
						|
  bool VisitBinaryOperator(const BinaryOperator *E);
 | 
						|
  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
 | 
						|
  bool VisitUnaryOperator(const UnaryOperator *E);
 | 
						|
 | 
						|
  bool VisitCastExpr(const CastExpr* E);
 | 
						|
  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
 | 
						|
 | 
						|
  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
 | 
						|
    return Success(E->getValue(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
 | 
						|
    return Success(E->getValue(), E);
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Note, GNU defines __null as an integer, not a pointer.
 | 
						|
  bool VisitGNUNullExpr(const GNUNullExpr *E) {
 | 
						|
    return ZeroInitialization(E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
 | 
						|
    return Success(E->getValue(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
 | 
						|
    return Success(E->getValue(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
 | 
						|
    return Success(E->getValue(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
 | 
						|
    return Success(E->getValue(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
 | 
						|
    return Success(E->getValue(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitUnaryReal(const UnaryOperator *E);
 | 
						|
  bool VisitUnaryImag(const UnaryOperator *E);
 | 
						|
 | 
						|
  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
 | 
						|
  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
 | 
						|
 | 
						|
private:
 | 
						|
  CharUnits GetAlignOfExpr(const Expr *E);
 | 
						|
  CharUnits GetAlignOfType(QualType T);
 | 
						|
  static QualType GetObjectType(APValue::LValueBase B);
 | 
						|
  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
 | 
						|
  // FIXME: Missing: array subscript of vector, member of vector
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
 | 
						|
/// produce either the integer value or a pointer.
 | 
						|
///
 | 
						|
/// GCC has a heinous extension which folds casts between pointer types and
 | 
						|
/// pointer-sized integral types. We support this by allowing the evaluation of
 | 
						|
/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
 | 
						|
/// Some simple arithmetic on such values is supported (they are treated much
 | 
						|
/// like char*).
 | 
						|
static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
 | 
						|
                                    EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
 | 
						|
  return IntExprEvaluator(Info, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
 | 
						|
  APValue Val;
 | 
						|
  if (!EvaluateIntegerOrLValue(E, Val, Info))
 | 
						|
    return false;
 | 
						|
  if (!Val.isInt()) {
 | 
						|
    // FIXME: It would be better to produce the diagnostic for casting
 | 
						|
    //        a pointer to an integer.
 | 
						|
    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  Result = Val.getInt();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the given declaration can be directly converted to an integral
 | 
						|
/// rvalue. If not, no diagnostic is produced; there are other things we can
 | 
						|
/// try.
 | 
						|
bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
 | 
						|
  // Enums are integer constant exprs.
 | 
						|
  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
 | 
						|
    // Check for signedness/width mismatches between E type and ECD value.
 | 
						|
    bool SameSign = (ECD->getInitVal().isSigned()
 | 
						|
                     == E->getType()->isSignedIntegerOrEnumerationType());
 | 
						|
    bool SameWidth = (ECD->getInitVal().getBitWidth()
 | 
						|
                      == Info.Ctx.getIntWidth(E->getType()));
 | 
						|
    if (SameSign && SameWidth)
 | 
						|
      return Success(ECD->getInitVal(), E);
 | 
						|
    else {
 | 
						|
      // Get rid of mismatch (otherwise Success assertions will fail)
 | 
						|
      // by computing a new value matching the type of E.
 | 
						|
      llvm::APSInt Val = ECD->getInitVal();
 | 
						|
      if (!SameSign)
 | 
						|
        Val.setIsSigned(!ECD->getInitVal().isSigned());
 | 
						|
      if (!SameWidth)
 | 
						|
        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
 | 
						|
      return Success(Val, E);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
 | 
						|
/// as GCC.
 | 
						|
static int EvaluateBuiltinClassifyType(const CallExpr *E) {
 | 
						|
  // The following enum mimics the values returned by GCC.
 | 
						|
  // FIXME: Does GCC differ between lvalue and rvalue references here?
 | 
						|
  enum gcc_type_class {
 | 
						|
    no_type_class = -1,
 | 
						|
    void_type_class, integer_type_class, char_type_class,
 | 
						|
    enumeral_type_class, boolean_type_class,
 | 
						|
    pointer_type_class, reference_type_class, offset_type_class,
 | 
						|
    real_type_class, complex_type_class,
 | 
						|
    function_type_class, method_type_class,
 | 
						|
    record_type_class, union_type_class,
 | 
						|
    array_type_class, string_type_class,
 | 
						|
    lang_type_class
 | 
						|
  };
 | 
						|
 | 
						|
  // If no argument was supplied, default to "no_type_class". This isn't
 | 
						|
  // ideal, however it is what gcc does.
 | 
						|
  if (E->getNumArgs() == 0)
 | 
						|
    return no_type_class;
 | 
						|
 | 
						|
  QualType ArgTy = E->getArg(0)->getType();
 | 
						|
  if (ArgTy->isVoidType())
 | 
						|
    return void_type_class;
 | 
						|
  else if (ArgTy->isEnumeralType())
 | 
						|
    return enumeral_type_class;
 | 
						|
  else if (ArgTy->isBooleanType())
 | 
						|
    return boolean_type_class;
 | 
						|
  else if (ArgTy->isCharType())
 | 
						|
    return string_type_class; // gcc doesn't appear to use char_type_class
 | 
						|
  else if (ArgTy->isIntegerType())
 | 
						|
    return integer_type_class;
 | 
						|
  else if (ArgTy->isPointerType())
 | 
						|
    return pointer_type_class;
 | 
						|
  else if (ArgTy->isReferenceType())
 | 
						|
    return reference_type_class;
 | 
						|
  else if (ArgTy->isRealType())
 | 
						|
    return real_type_class;
 | 
						|
  else if (ArgTy->isComplexType())
 | 
						|
    return complex_type_class;
 | 
						|
  else if (ArgTy->isFunctionType())
 | 
						|
    return function_type_class;
 | 
						|
  else if (ArgTy->isStructureOrClassType())
 | 
						|
    return record_type_class;
 | 
						|
  else if (ArgTy->isUnionType())
 | 
						|
    return union_type_class;
 | 
						|
  else if (ArgTy->isArrayType())
 | 
						|
    return array_type_class;
 | 
						|
  else if (ArgTy->isUnionType())
 | 
						|
    return union_type_class;
 | 
						|
  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
 | 
						|
    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateBuiltinConstantPForLValue - Determine the result of
 | 
						|
/// __builtin_constant_p when applied to the given lvalue.
 | 
						|
///
 | 
						|
/// An lvalue is only "constant" if it is a pointer or reference to the first
 | 
						|
/// character of a string literal.
 | 
						|
template<typename LValue>
 | 
						|
static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
 | 
						|
  const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
 | 
						|
  return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
 | 
						|
/// GCC as we can manage.
 | 
						|
static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
 | 
						|
  // __builtin_constant_p always has one operand. The rules which gcc follows
 | 
						|
  // are not precisely documented, but are as follows:
 | 
						|
  //
 | 
						|
  //  - If the operand is of integral, floating, complex or enumeration type,
 | 
						|
  //    and can be folded to a known value of that type, it returns 1.
 | 
						|
  //  - If the operand and can be folded to a pointer to the first character
 | 
						|
  //    of a string literal (or such a pointer cast to an integral type), it
 | 
						|
  //    returns 1.
 | 
						|
  //
 | 
						|
  // Otherwise, it returns 0.
 | 
						|
  //
 | 
						|
  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
 | 
						|
  // its support for this does not currently work.
 | 
						|
  if (ArgType->isIntegralOrEnumerationType()) {
 | 
						|
    Expr::EvalResult Result;
 | 
						|
    if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
 | 
						|
      return false;
 | 
						|
 | 
						|
    APValue &V = Result.Val;
 | 
						|
    if (V.getKind() == APValue::Int)
 | 
						|
      return true;
 | 
						|
 | 
						|
    return EvaluateBuiltinConstantPForLValue(V);
 | 
						|
  } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
 | 
						|
    return Arg->isEvaluatable(Ctx);
 | 
						|
  } else if (ArgType->isPointerType() || Arg->isGLValue()) {
 | 
						|
    LValue LV;
 | 
						|
    Expr::EvalStatus Status;
 | 
						|
    EvalInfo Info(Ctx, Status);
 | 
						|
    if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
 | 
						|
                          : EvaluatePointer(Arg, LV, Info)) &&
 | 
						|
        !Status.HasSideEffects)
 | 
						|
      return EvaluateBuiltinConstantPForLValue(LV);
 | 
						|
  }
 | 
						|
 | 
						|
  // Anything else isn't considered to be sufficiently constant.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Retrieves the "underlying object type" of the given expression,
 | 
						|
/// as used by __builtin_object_size.
 | 
						|
QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
 | 
						|
  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
 | 
						|
    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | 
						|
      return VD->getType();
 | 
						|
  } else if (const Expr *E = B.get<const Expr*>()) {
 | 
						|
    if (isa<CompoundLiteralExpr>(E))
 | 
						|
      return E->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
 | 
						|
  LValue Base;
 | 
						|
 | 
						|
  {
 | 
						|
    // The operand of __builtin_object_size is never evaluated for side-effects.
 | 
						|
    // If there are any, but we can determine the pointed-to object anyway, then
 | 
						|
    // ignore the side-effects.
 | 
						|
    SpeculativeEvaluationRAII SpeculativeEval(Info);
 | 
						|
    if (!EvaluatePointer(E->getArg(0), Base, Info))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we can prove the base is null, lower to zero now.
 | 
						|
  if (!Base.getLValueBase()) return Success(0, E);
 | 
						|
 | 
						|
  QualType T = GetObjectType(Base.getLValueBase());
 | 
						|
  if (T.isNull() ||
 | 
						|
      T->isIncompleteType() ||
 | 
						|
      T->isFunctionType() ||
 | 
						|
      T->isVariablyModifiedType() ||
 | 
						|
      T->isDependentType())
 | 
						|
    return Error(E);
 | 
						|
 | 
						|
  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
 | 
						|
  CharUnits Offset = Base.getLValueOffset();
 | 
						|
 | 
						|
  if (!Offset.isNegative() && Offset <= Size)
 | 
						|
    Size -= Offset;
 | 
						|
  else
 | 
						|
    Size = CharUnits::Zero();
 | 
						|
  return Success(Size, E);
 | 
						|
}
 | 
						|
 | 
						|
bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
 | 
						|
  switch (unsigned BuiltinOp = E->isBuiltinCall()) {
 | 
						|
  default:
 | 
						|
    return ExprEvaluatorBaseTy::VisitCallExpr(E);
 | 
						|
 | 
						|
  case Builtin::BI__builtin_object_size: {
 | 
						|
    if (TryEvaluateBuiltinObjectSize(E))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If evaluating the argument has side-effects, we can't determine the size
 | 
						|
    // of the object, and so we lower it to unknown now. CodeGen relies on us to
 | 
						|
    // handle all cases where the expression has side-effects.
 | 
						|
    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
 | 
						|
      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
 | 
						|
        return Success(-1ULL, E);
 | 
						|
      return Success(0, E);
 | 
						|
    }
 | 
						|
 | 
						|
    // Expression had no side effects, but we couldn't statically determine the
 | 
						|
    // size of the referenced object.
 | 
						|
    return Error(E);
 | 
						|
  }
 | 
						|
 | 
						|
  case Builtin::BI__builtin_bswap16:
 | 
						|
  case Builtin::BI__builtin_bswap32:
 | 
						|
  case Builtin::BI__builtin_bswap64: {
 | 
						|
    APSInt Val;
 | 
						|
    if (!EvaluateInteger(E->getArg(0), Val, Info))
 | 
						|
      return false;
 | 
						|
 | 
						|
    return Success(Val.byteSwap(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  case Builtin::BI__builtin_classify_type:
 | 
						|
    return Success(EvaluateBuiltinClassifyType(E), E);
 | 
						|
 | 
						|
  case Builtin::BI__builtin_constant_p:
 | 
						|
    return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
 | 
						|
 | 
						|
  case Builtin::BI__builtin_eh_return_data_regno: {
 | 
						|
    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
 | 
						|
    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
 | 
						|
    return Success(Operand, E);
 | 
						|
  }
 | 
						|
 | 
						|
  case Builtin::BI__builtin_expect:
 | 
						|
    return Visit(E->getArg(0));
 | 
						|
 | 
						|
  case Builtin::BIstrlen:
 | 
						|
    // A call to strlen is not a constant expression.
 | 
						|
    if (Info.getLangOpts().CPlusPlus11)
 | 
						|
      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
 | 
						|
        << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
 | 
						|
    else
 | 
						|
      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
    // Fall through.
 | 
						|
  case Builtin::BI__builtin_strlen:
 | 
						|
    // As an extension, we support strlen() and __builtin_strlen() as constant
 | 
						|
    // expressions when the argument is a string literal.
 | 
						|
    if (const StringLiteral *S
 | 
						|
               = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
 | 
						|
      // The string literal may have embedded null characters. Find the first
 | 
						|
      // one and truncate there.
 | 
						|
      StringRef Str = S->getString();
 | 
						|
      StringRef::size_type Pos = Str.find(0);
 | 
						|
      if (Pos != StringRef::npos)
 | 
						|
        Str = Str.substr(0, Pos);
 | 
						|
      
 | 
						|
      return Success(Str.size(), E);
 | 
						|
    }
 | 
						|
      
 | 
						|
    return Error(E);
 | 
						|
 | 
						|
  case Builtin::BI__atomic_always_lock_free:
 | 
						|
  case Builtin::BI__atomic_is_lock_free:
 | 
						|
  case Builtin::BI__c11_atomic_is_lock_free: {
 | 
						|
    APSInt SizeVal;
 | 
						|
    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
 | 
						|
    // of two less than the maximum inline atomic width, we know it is
 | 
						|
    // lock-free.  If the size isn't a power of two, or greater than the
 | 
						|
    // maximum alignment where we promote atomics, we know it is not lock-free
 | 
						|
    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
 | 
						|
    // the answer can only be determined at runtime; for example, 16-byte
 | 
						|
    // atomics have lock-free implementations on some, but not all,
 | 
						|
    // x86-64 processors.
 | 
						|
 | 
						|
    // Check power-of-two.
 | 
						|
    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
 | 
						|
    if (Size.isPowerOfTwo()) {
 | 
						|
      // Check against inlining width.
 | 
						|
      unsigned InlineWidthBits =
 | 
						|
          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
 | 
						|
      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
 | 
						|
        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
 | 
						|
            Size == CharUnits::One() ||
 | 
						|
            E->getArg(1)->isNullPointerConstant(Info.Ctx,
 | 
						|
                                                Expr::NPC_NeverValueDependent))
 | 
						|
          // OK, we will inline appropriately-aligned operations of this size,
 | 
						|
          // and _Atomic(T) is appropriately-aligned.
 | 
						|
          return Success(1, E);
 | 
						|
 | 
						|
        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
 | 
						|
          castAs<PointerType>()->getPointeeType();
 | 
						|
        if (!PointeeType->isIncompleteType() &&
 | 
						|
            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
 | 
						|
          // OK, we will inline operations on this object.
 | 
						|
          return Success(1, E);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
 | 
						|
        Success(0, E) : Error(E);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool HasSameBase(const LValue &A, const LValue &B) {
 | 
						|
  if (!A.getLValueBase())
 | 
						|
    return !B.getLValueBase();
 | 
						|
  if (!B.getLValueBase())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (A.getLValueBase().getOpaqueValue() !=
 | 
						|
      B.getLValueBase().getOpaqueValue()) {
 | 
						|
    const Decl *ADecl = GetLValueBaseDecl(A);
 | 
						|
    if (!ADecl)
 | 
						|
      return false;
 | 
						|
    const Decl *BDecl = GetLValueBaseDecl(B);
 | 
						|
    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return IsGlobalLValue(A.getLValueBase()) ||
 | 
						|
         A.getLValueCallIndex() == B.getLValueCallIndex();
 | 
						|
}
 | 
						|
 | 
						|
/// Perform the given integer operation, which is known to need at most BitWidth
 | 
						|
/// bits, and check for overflow in the original type (if that type was not an
 | 
						|
/// unsigned type).
 | 
						|
template<typename Operation>
 | 
						|
static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
 | 
						|
                                   const APSInt &LHS, const APSInt &RHS,
 | 
						|
                                   unsigned BitWidth, Operation Op) {
 | 
						|
  if (LHS.isUnsigned())
 | 
						|
    return Op(LHS, RHS);
 | 
						|
 | 
						|
  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
 | 
						|
  APSInt Result = Value.trunc(LHS.getBitWidth());
 | 
						|
  if (Result.extend(BitWidth) != Value) {
 | 
						|
    if (Info.getIntOverflowCheckMode())
 | 
						|
      Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
 | 
						|
        diag::warn_integer_constant_overflow)
 | 
						|
          << Result.toString(10) << E->getType();
 | 
						|
    else
 | 
						|
      HandleOverflow(Info, E, Value, E->getType());
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// \brief Data recursive integer evaluator of certain binary operators.
 | 
						|
///
 | 
						|
/// We use a data recursive algorithm for binary operators so that we are able
 | 
						|
/// to handle extreme cases of chained binary operators without causing stack
 | 
						|
/// overflow.
 | 
						|
class DataRecursiveIntBinOpEvaluator {
 | 
						|
  struct EvalResult {
 | 
						|
    APValue Val;
 | 
						|
    bool Failed;
 | 
						|
 | 
						|
    EvalResult() : Failed(false) { }
 | 
						|
 | 
						|
    void swap(EvalResult &RHS) {
 | 
						|
      Val.swap(RHS.Val);
 | 
						|
      Failed = RHS.Failed;
 | 
						|
      RHS.Failed = false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct Job {
 | 
						|
    const Expr *E;
 | 
						|
    EvalResult LHSResult; // meaningful only for binary operator expression.
 | 
						|
    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
 | 
						|
    
 | 
						|
    Job() : StoredInfo(0) { }
 | 
						|
    void startSpeculativeEval(EvalInfo &Info) {
 | 
						|
      OldEvalStatus = Info.EvalStatus;
 | 
						|
      Info.EvalStatus.Diag = 0;
 | 
						|
      StoredInfo = &Info;
 | 
						|
    }
 | 
						|
    ~Job() {
 | 
						|
      if (StoredInfo) {
 | 
						|
        StoredInfo->EvalStatus = OldEvalStatus;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    EvalInfo *StoredInfo; // non-null if status changed.
 | 
						|
    Expr::EvalStatus OldEvalStatus;
 | 
						|
  };
 | 
						|
 | 
						|
  SmallVector<Job, 16> Queue;
 | 
						|
 | 
						|
  IntExprEvaluator &IntEval;
 | 
						|
  EvalInfo &Info;
 | 
						|
  APValue &FinalResult;
 | 
						|
 | 
						|
public:
 | 
						|
  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
 | 
						|
    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
 | 
						|
 | 
						|
  /// \brief True if \param E is a binary operator that we are going to handle
 | 
						|
  /// data recursively.
 | 
						|
  /// We handle binary operators that are comma, logical, or that have operands
 | 
						|
  /// with integral or enumeration type.
 | 
						|
  static bool shouldEnqueue(const BinaryOperator *E) {
 | 
						|
    return E->getOpcode() == BO_Comma ||
 | 
						|
           E->isLogicalOp() ||
 | 
						|
           (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
 | 
						|
            E->getRHS()->getType()->isIntegralOrEnumerationType());
 | 
						|
  }
 | 
						|
 | 
						|
  bool Traverse(const BinaryOperator *E) {
 | 
						|
    enqueue(E);
 | 
						|
    EvalResult PrevResult;
 | 
						|
    while (!Queue.empty())
 | 
						|
      process(PrevResult);
 | 
						|
 | 
						|
    if (PrevResult.Failed) return false;
 | 
						|
 | 
						|
    FinalResult.swap(PrevResult.Val);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
 | 
						|
    return IntEval.Success(Value, E, Result);
 | 
						|
  }
 | 
						|
  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
 | 
						|
    return IntEval.Success(Value, E, Result);
 | 
						|
  }
 | 
						|
  bool Error(const Expr *E) {
 | 
						|
    return IntEval.Error(E);
 | 
						|
  }
 | 
						|
  bool Error(const Expr *E, diag::kind D) {
 | 
						|
    return IntEval.Error(E, D);
 | 
						|
  }
 | 
						|
 | 
						|
  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
 | 
						|
    return Info.CCEDiag(E, D);
 | 
						|
  }
 | 
						|
 | 
						|
  // \brief Returns true if visiting the RHS is necessary, false otherwise.
 | 
						|
  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
 | 
						|
                         bool &SuppressRHSDiags);
 | 
						|
 | 
						|
  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
 | 
						|
                  const BinaryOperator *E, APValue &Result);
 | 
						|
 | 
						|
  void EvaluateExpr(const Expr *E, EvalResult &Result) {
 | 
						|
    Result.Failed = !Evaluate(Result.Val, Info, E);
 | 
						|
    if (Result.Failed)
 | 
						|
      Result.Val = APValue();
 | 
						|
  }
 | 
						|
 | 
						|
  void process(EvalResult &Result);
 | 
						|
 | 
						|
  void enqueue(const Expr *E) {
 | 
						|
    E = E->IgnoreParens();
 | 
						|
    Queue.resize(Queue.size()+1);
 | 
						|
    Queue.back().E = E;
 | 
						|
    Queue.back().Kind = Job::AnyExprKind;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool DataRecursiveIntBinOpEvaluator::
 | 
						|
       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
 | 
						|
                         bool &SuppressRHSDiags) {
 | 
						|
  if (E->getOpcode() == BO_Comma) {
 | 
						|
    // Ignore LHS but note if we could not evaluate it.
 | 
						|
    if (LHSResult.Failed)
 | 
						|
      Info.EvalStatus.HasSideEffects = true;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (E->isLogicalOp()) {
 | 
						|
    bool lhsResult;
 | 
						|
    if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
 | 
						|
      // We were able to evaluate the LHS, see if we can get away with not
 | 
						|
      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
 | 
						|
      if (lhsResult == (E->getOpcode() == BO_LOr)) {
 | 
						|
        Success(lhsResult, E, LHSResult.Val);
 | 
						|
        return false; // Ignore RHS
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Since we weren't able to evaluate the left hand side, it
 | 
						|
      // must have had side effects.
 | 
						|
      Info.EvalStatus.HasSideEffects = true;
 | 
						|
      
 | 
						|
      // We can't evaluate the LHS; however, sometimes the result
 | 
						|
      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
 | 
						|
      // Don't ignore RHS and suppress diagnostics from this arm.
 | 
						|
      SuppressRHSDiags = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
 | 
						|
         E->getRHS()->getType()->isIntegralOrEnumerationType());
 | 
						|
  
 | 
						|
  if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
 | 
						|
    return false; // Ignore RHS;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool DataRecursiveIntBinOpEvaluator::
 | 
						|
       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
 | 
						|
                  const BinaryOperator *E, APValue &Result) {
 | 
						|
  if (E->getOpcode() == BO_Comma) {
 | 
						|
    if (RHSResult.Failed)
 | 
						|
      return false;
 | 
						|
    Result = RHSResult.Val;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (E->isLogicalOp()) {
 | 
						|
    bool lhsResult, rhsResult;
 | 
						|
    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
 | 
						|
    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
 | 
						|
    
 | 
						|
    if (LHSIsOK) {
 | 
						|
      if (RHSIsOK) {
 | 
						|
        if (E->getOpcode() == BO_LOr)
 | 
						|
          return Success(lhsResult || rhsResult, E, Result);
 | 
						|
        else
 | 
						|
          return Success(lhsResult && rhsResult, E, Result);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (RHSIsOK) {
 | 
						|
        // We can't evaluate the LHS; however, sometimes the result
 | 
						|
        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
 | 
						|
        if (rhsResult == (E->getOpcode() == BO_LOr))
 | 
						|
          return Success(rhsResult, E, Result);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
 | 
						|
         E->getRHS()->getType()->isIntegralOrEnumerationType());
 | 
						|
  
 | 
						|
  if (LHSResult.Failed || RHSResult.Failed)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  const APValue &LHSVal = LHSResult.Val;
 | 
						|
  const APValue &RHSVal = RHSResult.Val;
 | 
						|
  
 | 
						|
  // Handle cases like (unsigned long)&a + 4.
 | 
						|
  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
 | 
						|
    Result = LHSVal;
 | 
						|
    CharUnits AdditionalOffset = CharUnits::fromQuantity(
 | 
						|
                                                         RHSVal.getInt().getZExtValue());
 | 
						|
    if (E->getOpcode() == BO_Add)
 | 
						|
      Result.getLValueOffset() += AdditionalOffset;
 | 
						|
    else
 | 
						|
      Result.getLValueOffset() -= AdditionalOffset;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle cases like 4 + (unsigned long)&a
 | 
						|
  if (E->getOpcode() == BO_Add &&
 | 
						|
      RHSVal.isLValue() && LHSVal.isInt()) {
 | 
						|
    Result = RHSVal;
 | 
						|
    Result.getLValueOffset() += CharUnits::fromQuantity(
 | 
						|
                                                        LHSVal.getInt().getZExtValue());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
 | 
						|
    // Handle (intptr_t)&&A - (intptr_t)&&B.
 | 
						|
    if (!LHSVal.getLValueOffset().isZero() ||
 | 
						|
        !RHSVal.getLValueOffset().isZero())
 | 
						|
      return false;
 | 
						|
    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
 | 
						|
    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
 | 
						|
    if (!LHSExpr || !RHSExpr)
 | 
						|
      return false;
 | 
						|
    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
 | 
						|
    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
 | 
						|
    if (!LHSAddrExpr || !RHSAddrExpr)
 | 
						|
      return false;
 | 
						|
    // Make sure both labels come from the same function.
 | 
						|
    if (LHSAddrExpr->getLabel()->getDeclContext() !=
 | 
						|
        RHSAddrExpr->getLabel()->getDeclContext())
 | 
						|
      return false;
 | 
						|
    Result = APValue(LHSAddrExpr, RHSAddrExpr);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // All the following cases expect both operands to be an integer
 | 
						|
  if (!LHSVal.isInt() || !RHSVal.isInt())
 | 
						|
    return Error(E);
 | 
						|
  
 | 
						|
  const APSInt &LHS = LHSVal.getInt();
 | 
						|
  APSInt RHS = RHSVal.getInt();
 | 
						|
  
 | 
						|
  switch (E->getOpcode()) {
 | 
						|
    default:
 | 
						|
      return Error(E);
 | 
						|
    case BO_Mul:
 | 
						|
      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
 | 
						|
                                          LHS.getBitWidth() * 2,
 | 
						|
                                          std::multiplies<APSInt>()), E,
 | 
						|
                     Result);
 | 
						|
    case BO_Add:
 | 
						|
      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
 | 
						|
                                          LHS.getBitWidth() + 1,
 | 
						|
                                          std::plus<APSInt>()), E, Result);
 | 
						|
    case BO_Sub:
 | 
						|
      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
 | 
						|
                                          LHS.getBitWidth() + 1,
 | 
						|
                                          std::minus<APSInt>()), E, Result);
 | 
						|
    case BO_And: return Success(LHS & RHS, E, Result);
 | 
						|
    case BO_Xor: return Success(LHS ^ RHS, E, Result);
 | 
						|
    case BO_Or:  return Success(LHS | RHS, E, Result);
 | 
						|
    case BO_Div:
 | 
						|
    case BO_Rem:
 | 
						|
      if (RHS == 0)
 | 
						|
        return Error(E, diag::note_expr_divide_by_zero);
 | 
						|
      // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
 | 
						|
      // not actually undefined behavior in C++11 due to a language defect.
 | 
						|
      if (RHS.isNegative() && RHS.isAllOnesValue() &&
 | 
						|
          LHS.isSigned() && LHS.isMinSignedValue())
 | 
						|
        HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
 | 
						|
      return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
 | 
						|
                     Result);
 | 
						|
    case BO_Shl: {
 | 
						|
      if (Info.getLangOpts().OpenCL)
 | 
						|
        // OpenCL 6.3j: shift values are effectively % word size of LHS.
 | 
						|
        RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
 | 
						|
                      static_cast<uint64_t>(LHS.getBitWidth() - 1)),
 | 
						|
                      RHS.isUnsigned());
 | 
						|
      else if (RHS.isSigned() && RHS.isNegative()) {
 | 
						|
        // During constant-folding, a negative shift is an opposite shift. Such
 | 
						|
        // a shift is not a constant expression.
 | 
						|
        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
 | 
						|
        RHS = -RHS;
 | 
						|
        goto shift_right;
 | 
						|
      }
 | 
						|
      
 | 
						|
    shift_left:
 | 
						|
      // C++11 [expr.shift]p1: Shift width must be less than the bit width of
 | 
						|
      // the shifted type.
 | 
						|
      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
 | 
						|
      if (SA != RHS) {
 | 
						|
        CCEDiag(E, diag::note_constexpr_large_shift)
 | 
						|
        << RHS << E->getType() << LHS.getBitWidth();
 | 
						|
      } else if (LHS.isSigned()) {
 | 
						|
        // C++11 [expr.shift]p2: A signed left shift must have a non-negative
 | 
						|
        // operand, and must not overflow the corresponding unsigned type.
 | 
						|
        if (LHS.isNegative())
 | 
						|
          CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
 | 
						|
        else if (LHS.countLeadingZeros() < SA)
 | 
						|
          CCEDiag(E, diag::note_constexpr_lshift_discards);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return Success(LHS << SA, E, Result);
 | 
						|
    }
 | 
						|
    case BO_Shr: {
 | 
						|
      if (Info.getLangOpts().OpenCL)
 | 
						|
        // OpenCL 6.3j: shift values are effectively % word size of LHS.
 | 
						|
        RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
 | 
						|
                      static_cast<uint64_t>(LHS.getBitWidth() - 1)),
 | 
						|
                      RHS.isUnsigned());
 | 
						|
      else if (RHS.isSigned() && RHS.isNegative()) {
 | 
						|
        // During constant-folding, a negative shift is an opposite shift. Such a
 | 
						|
        // shift is not a constant expression.
 | 
						|
        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
 | 
						|
        RHS = -RHS;
 | 
						|
        goto shift_left;
 | 
						|
      }
 | 
						|
      
 | 
						|
    shift_right:
 | 
						|
      // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
 | 
						|
      // shifted type.
 | 
						|
      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
 | 
						|
      if (SA != RHS)
 | 
						|
        CCEDiag(E, diag::note_constexpr_large_shift)
 | 
						|
        << RHS << E->getType() << LHS.getBitWidth();
 | 
						|
      
 | 
						|
      return Success(LHS >> SA, E, Result);
 | 
						|
    }
 | 
						|
      
 | 
						|
    case BO_LT: return Success(LHS < RHS, E, Result);
 | 
						|
    case BO_GT: return Success(LHS > RHS, E, Result);
 | 
						|
    case BO_LE: return Success(LHS <= RHS, E, Result);
 | 
						|
    case BO_GE: return Success(LHS >= RHS, E, Result);
 | 
						|
    case BO_EQ: return Success(LHS == RHS, E, Result);
 | 
						|
    case BO_NE: return Success(LHS != RHS, E, Result);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
 | 
						|
  Job &job = Queue.back();
 | 
						|
  
 | 
						|
  switch (job.Kind) {
 | 
						|
    case Job::AnyExprKind: {
 | 
						|
      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
 | 
						|
        if (shouldEnqueue(Bop)) {
 | 
						|
          job.Kind = Job::BinOpKind;
 | 
						|
          enqueue(Bop->getLHS());
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      EvaluateExpr(job.E, Result);
 | 
						|
      Queue.pop_back();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Job::BinOpKind: {
 | 
						|
      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
 | 
						|
      bool SuppressRHSDiags = false;
 | 
						|
      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
 | 
						|
        Queue.pop_back();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      if (SuppressRHSDiags)
 | 
						|
        job.startSpeculativeEval(Info);
 | 
						|
      job.LHSResult.swap(Result);
 | 
						|
      job.Kind = Job::BinOpVisitedLHSKind;
 | 
						|
      enqueue(Bop->getRHS());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Job::BinOpVisitedLHSKind: {
 | 
						|
      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
 | 
						|
      EvalResult RHS;
 | 
						|
      RHS.swap(Result);
 | 
						|
      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
 | 
						|
      Queue.pop_back();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm_unreachable("Invalid Job::Kind!");
 | 
						|
}
 | 
						|
 | 
						|
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
 | 
						|
  if (E->isAssignmentOp())
 | 
						|
    return Error(E);
 | 
						|
 | 
						|
  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
 | 
						|
    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
 | 
						|
 | 
						|
  QualType LHSTy = E->getLHS()->getType();
 | 
						|
  QualType RHSTy = E->getRHS()->getType();
 | 
						|
 | 
						|
  if (LHSTy->isAnyComplexType()) {
 | 
						|
    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
 | 
						|
    ComplexValue LHS, RHS;
 | 
						|
 | 
						|
    bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
 | 
						|
    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (LHS.isComplexFloat()) {
 | 
						|
      APFloat::cmpResult CR_r =
 | 
						|
        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
 | 
						|
      APFloat::cmpResult CR_i =
 | 
						|
        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
 | 
						|
 | 
						|
      if (E->getOpcode() == BO_EQ)
 | 
						|
        return Success((CR_r == APFloat::cmpEqual &&
 | 
						|
                        CR_i == APFloat::cmpEqual), E);
 | 
						|
      else {
 | 
						|
        assert(E->getOpcode() == BO_NE &&
 | 
						|
               "Invalid complex comparison.");
 | 
						|
        return Success(((CR_r == APFloat::cmpGreaterThan ||
 | 
						|
                         CR_r == APFloat::cmpLessThan ||
 | 
						|
                         CR_r == APFloat::cmpUnordered) ||
 | 
						|
                        (CR_i == APFloat::cmpGreaterThan ||
 | 
						|
                         CR_i == APFloat::cmpLessThan ||
 | 
						|
                         CR_i == APFloat::cmpUnordered)), E);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (E->getOpcode() == BO_EQ)
 | 
						|
        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
 | 
						|
                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
 | 
						|
      else {
 | 
						|
        assert(E->getOpcode() == BO_NE &&
 | 
						|
               "Invalid compex comparison.");
 | 
						|
        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
 | 
						|
                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHSTy->isRealFloatingType() &&
 | 
						|
      RHSTy->isRealFloatingType()) {
 | 
						|
    APFloat RHS(0.0), LHS(0.0);
 | 
						|
 | 
						|
    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
 | 
						|
    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
 | 
						|
      return false;
 | 
						|
 | 
						|
    APFloat::cmpResult CR = LHS.compare(RHS);
 | 
						|
 | 
						|
    switch (E->getOpcode()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Invalid binary operator!");
 | 
						|
    case BO_LT:
 | 
						|
      return Success(CR == APFloat::cmpLessThan, E);
 | 
						|
    case BO_GT:
 | 
						|
      return Success(CR == APFloat::cmpGreaterThan, E);
 | 
						|
    case BO_LE:
 | 
						|
      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
 | 
						|
    case BO_GE:
 | 
						|
      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
 | 
						|
                     E);
 | 
						|
    case BO_EQ:
 | 
						|
      return Success(CR == APFloat::cmpEqual, E);
 | 
						|
    case BO_NE:
 | 
						|
      return Success(CR == APFloat::cmpGreaterThan
 | 
						|
                     || CR == APFloat::cmpLessThan
 | 
						|
                     || CR == APFloat::cmpUnordered, E);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
 | 
						|
    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
 | 
						|
      LValue LHSValue, RHSValue;
 | 
						|
 | 
						|
      bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
 | 
						|
      if (!LHSOK && Info.keepEvaluatingAfterFailure())
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Reject differing bases from the normal codepath; we special-case
 | 
						|
      // comparisons to null.
 | 
						|
      if (!HasSameBase(LHSValue, RHSValue)) {
 | 
						|
        if (E->getOpcode() == BO_Sub) {
 | 
						|
          // Handle &&A - &&B.
 | 
						|
          if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
 | 
						|
            return false;
 | 
						|
          const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
 | 
						|
          const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
 | 
						|
          if (!LHSExpr || !RHSExpr)
 | 
						|
            return false;
 | 
						|
          const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
 | 
						|
          const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
 | 
						|
          if (!LHSAddrExpr || !RHSAddrExpr)
 | 
						|
            return false;
 | 
						|
          // Make sure both labels come from the same function.
 | 
						|
          if (LHSAddrExpr->getLabel()->getDeclContext() !=
 | 
						|
              RHSAddrExpr->getLabel()->getDeclContext())
 | 
						|
            return false;
 | 
						|
          Result = APValue(LHSAddrExpr, RHSAddrExpr);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
        // Inequalities and subtractions between unrelated pointers have
 | 
						|
        // unspecified or undefined behavior.
 | 
						|
        if (!E->isEqualityOp())
 | 
						|
          return Error(E);
 | 
						|
        // A constant address may compare equal to the address of a symbol.
 | 
						|
        // The one exception is that address of an object cannot compare equal
 | 
						|
        // to a null pointer constant.
 | 
						|
        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
 | 
						|
            (!RHSValue.Base && !RHSValue.Offset.isZero()))
 | 
						|
          return Error(E);
 | 
						|
        // It's implementation-defined whether distinct literals will have
 | 
						|
        // distinct addresses. In clang, the result of such a comparison is
 | 
						|
        // unspecified, so it is not a constant expression. However, we do know
 | 
						|
        // that the address of a literal will be non-null.
 | 
						|
        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
 | 
						|
            LHSValue.Base && RHSValue.Base)
 | 
						|
          return Error(E);
 | 
						|
        // We can't tell whether weak symbols will end up pointing to the same
 | 
						|
        // object.
 | 
						|
        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
 | 
						|
          return Error(E);
 | 
						|
        // Pointers with different bases cannot represent the same object.
 | 
						|
        // (Note that clang defaults to -fmerge-all-constants, which can
 | 
						|
        // lead to inconsistent results for comparisons involving the address
 | 
						|
        // of a constant; this generally doesn't matter in practice.)
 | 
						|
        return Success(E->getOpcode() == BO_NE, E);
 | 
						|
      }
 | 
						|
 | 
						|
      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
 | 
						|
      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
 | 
						|
 | 
						|
      SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
 | 
						|
      SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
 | 
						|
 | 
						|
      if (E->getOpcode() == BO_Sub) {
 | 
						|
        // C++11 [expr.add]p6:
 | 
						|
        //   Unless both pointers point to elements of the same array object, or
 | 
						|
        //   one past the last element of the array object, the behavior is
 | 
						|
        //   undefined.
 | 
						|
        if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
 | 
						|
            !AreElementsOfSameArray(getType(LHSValue.Base),
 | 
						|
                                    LHSDesignator, RHSDesignator))
 | 
						|
          CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
 | 
						|
 | 
						|
        QualType Type = E->getLHS()->getType();
 | 
						|
        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
 | 
						|
 | 
						|
        CharUnits ElementSize;
 | 
						|
        if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
 | 
						|
          return false;
 | 
						|
 | 
						|
        // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
 | 
						|
        // and produce incorrect results when it overflows. Such behavior
 | 
						|
        // appears to be non-conforming, but is common, so perhaps we should
 | 
						|
        // assume the standard intended for such cases to be undefined behavior
 | 
						|
        // and check for them.
 | 
						|
 | 
						|
        // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
 | 
						|
        // overflow in the final conversion to ptrdiff_t.
 | 
						|
        APSInt LHS(
 | 
						|
          llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
 | 
						|
        APSInt RHS(
 | 
						|
          llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
 | 
						|
        APSInt ElemSize(
 | 
						|
          llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
 | 
						|
        APSInt TrueResult = (LHS - RHS) / ElemSize;
 | 
						|
        APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
 | 
						|
 | 
						|
        if (Result.extend(65) != TrueResult)
 | 
						|
          HandleOverflow(Info, E, TrueResult, E->getType());
 | 
						|
        return Success(Result, E);
 | 
						|
      }
 | 
						|
 | 
						|
      // C++11 [expr.rel]p3:
 | 
						|
      //   Pointers to void (after pointer conversions) can be compared, with a
 | 
						|
      //   result defined as follows: If both pointers represent the same
 | 
						|
      //   address or are both the null pointer value, the result is true if the
 | 
						|
      //   operator is <= or >= and false otherwise; otherwise the result is
 | 
						|
      //   unspecified.
 | 
						|
      // We interpret this as applying to pointers to *cv* void.
 | 
						|
      if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
 | 
						|
          E->isRelationalOp())
 | 
						|
        CCEDiag(E, diag::note_constexpr_void_comparison);
 | 
						|
 | 
						|
      // C++11 [expr.rel]p2:
 | 
						|
      // - If two pointers point to non-static data members of the same object,
 | 
						|
      //   or to subobjects or array elements fo such members, recursively, the
 | 
						|
      //   pointer to the later declared member compares greater provided the
 | 
						|
      //   two members have the same access control and provided their class is
 | 
						|
      //   not a union.
 | 
						|
      //   [...]
 | 
						|
      // - Otherwise pointer comparisons are unspecified.
 | 
						|
      if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
 | 
						|
          E->isRelationalOp()) {
 | 
						|
        bool WasArrayIndex;
 | 
						|
        unsigned Mismatch =
 | 
						|
          FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
 | 
						|
                                 RHSDesignator, WasArrayIndex);
 | 
						|
        // At the point where the designators diverge, the comparison has a
 | 
						|
        // specified value if:
 | 
						|
        //  - we are comparing array indices
 | 
						|
        //  - we are comparing fields of a union, or fields with the same access
 | 
						|
        // Otherwise, the result is unspecified and thus the comparison is not a
 | 
						|
        // constant expression.
 | 
						|
        if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
 | 
						|
            Mismatch < RHSDesignator.Entries.size()) {
 | 
						|
          const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
 | 
						|
          const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
 | 
						|
          if (!LF && !RF)
 | 
						|
            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
 | 
						|
          else if (!LF)
 | 
						|
            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
 | 
						|
              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
 | 
						|
              << RF->getParent() << RF;
 | 
						|
          else if (!RF)
 | 
						|
            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
 | 
						|
              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
 | 
						|
              << LF->getParent() << LF;
 | 
						|
          else if (!LF->getParent()->isUnion() &&
 | 
						|
                   LF->getAccess() != RF->getAccess())
 | 
						|
            CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
 | 
						|
              << LF << LF->getAccess() << RF << RF->getAccess()
 | 
						|
              << LF->getParent();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // The comparison here must be unsigned, and performed with the same
 | 
						|
      // width as the pointer.
 | 
						|
      unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
 | 
						|
      uint64_t CompareLHS = LHSOffset.getQuantity();
 | 
						|
      uint64_t CompareRHS = RHSOffset.getQuantity();
 | 
						|
      assert(PtrSize <= 64 && "Unexpected pointer width");
 | 
						|
      uint64_t Mask = ~0ULL >> (64 - PtrSize);
 | 
						|
      CompareLHS &= Mask;
 | 
						|
      CompareRHS &= Mask;
 | 
						|
 | 
						|
      // If there is a base and this is a relational operator, we can only
 | 
						|
      // compare pointers within the object in question; otherwise, the result
 | 
						|
      // depends on where the object is located in memory.
 | 
						|
      if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
 | 
						|
        QualType BaseTy = getType(LHSValue.Base);
 | 
						|
        if (BaseTy->isIncompleteType())
 | 
						|
          return Error(E);
 | 
						|
        CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
 | 
						|
        uint64_t OffsetLimit = Size.getQuantity();
 | 
						|
        if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
 | 
						|
          return Error(E);
 | 
						|
      }
 | 
						|
 | 
						|
      switch (E->getOpcode()) {
 | 
						|
      default: llvm_unreachable("missing comparison operator");
 | 
						|
      case BO_LT: return Success(CompareLHS < CompareRHS, E);
 | 
						|
      case BO_GT: return Success(CompareLHS > CompareRHS, E);
 | 
						|
      case BO_LE: return Success(CompareLHS <= CompareRHS, E);
 | 
						|
      case BO_GE: return Success(CompareLHS >= CompareRHS, E);
 | 
						|
      case BO_EQ: return Success(CompareLHS == CompareRHS, E);
 | 
						|
      case BO_NE: return Success(CompareLHS != CompareRHS, E);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHSTy->isMemberPointerType()) {
 | 
						|
    assert(E->isEqualityOp() && "unexpected member pointer operation");
 | 
						|
    assert(RHSTy->isMemberPointerType() && "invalid comparison");
 | 
						|
 | 
						|
    MemberPtr LHSValue, RHSValue;
 | 
						|
 | 
						|
    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
 | 
						|
    if (!LHSOK && Info.keepEvaluatingAfterFailure())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // C++11 [expr.eq]p2:
 | 
						|
    //   If both operands are null, they compare equal. Otherwise if only one is
 | 
						|
    //   null, they compare unequal.
 | 
						|
    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
 | 
						|
      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
 | 
						|
      return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
 | 
						|
    }
 | 
						|
 | 
						|
    //   Otherwise if either is a pointer to a virtual member function, the
 | 
						|
    //   result is unspecified.
 | 
						|
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
 | 
						|
      if (MD->isVirtual())
 | 
						|
        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
 | 
						|
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
 | 
						|
      if (MD->isVirtual())
 | 
						|
        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
 | 
						|
 | 
						|
    //   Otherwise they compare equal if and only if they would refer to the
 | 
						|
    //   same member of the same most derived object or the same subobject if
 | 
						|
    //   they were dereferenced with a hypothetical object of the associated
 | 
						|
    //   class type.
 | 
						|
    bool Equal = LHSValue == RHSValue;
 | 
						|
    return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHSTy->isNullPtrType()) {
 | 
						|
    assert(E->isComparisonOp() && "unexpected nullptr operation");
 | 
						|
    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
 | 
						|
    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
 | 
						|
    // are compared, the result is true of the operator is <=, >= or ==, and
 | 
						|
    // false otherwise.
 | 
						|
    BinaryOperator::Opcode Opcode = E->getOpcode();
 | 
						|
    return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
 | 
						|
  }
 | 
						|
 | 
						|
  assert((!LHSTy->isIntegralOrEnumerationType() ||
 | 
						|
          !RHSTy->isIntegralOrEnumerationType()) &&
 | 
						|
         "DataRecursiveIntBinOpEvaluator should have handled integral types");
 | 
						|
  // We can't continue from here for non-integral types.
 | 
						|
  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | 
						|
}
 | 
						|
 | 
						|
CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
 | 
						|
  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
 | 
						|
  //   result shall be the alignment of the referenced type."
 | 
						|
  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
 | 
						|
    T = Ref->getPointeeType();
 | 
						|
 | 
						|
  // __alignof is defined to return the preferred alignment.
 | 
						|
  return Info.Ctx.toCharUnitsFromBits(
 | 
						|
    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
 | 
						|
}
 | 
						|
 | 
						|
CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
 | 
						|
  E = E->IgnoreParens();
 | 
						|
 | 
						|
  // The kinds of expressions that we have special-case logic here for
 | 
						|
  // should be kept up to date with the special checks for those
 | 
						|
  // expressions in Sema.
 | 
						|
 | 
						|
  // alignof decl is always accepted, even if it doesn't make sense: we default
 | 
						|
  // to 1 in those cases.
 | 
						|
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | 
						|
    return Info.Ctx.getDeclAlign(DRE->getDecl(), 
 | 
						|
                                 /*RefAsPointee*/true);
 | 
						|
 | 
						|
  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
 | 
						|
    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
 | 
						|
                                 /*RefAsPointee*/true);
 | 
						|
 | 
						|
  return GetAlignOfType(E->getType());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
 | 
						|
/// a result as the expression's type.
 | 
						|
bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
 | 
						|
                                    const UnaryExprOrTypeTraitExpr *E) {
 | 
						|
  switch(E->getKind()) {
 | 
						|
  case UETT_AlignOf: {
 | 
						|
    if (E->isArgumentType())
 | 
						|
      return Success(GetAlignOfType(E->getArgumentType()), E);
 | 
						|
    else
 | 
						|
      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
 | 
						|
  }
 | 
						|
 | 
						|
  case UETT_VecStep: {
 | 
						|
    QualType Ty = E->getTypeOfArgument();
 | 
						|
 | 
						|
    if (Ty->isVectorType()) {
 | 
						|
      unsigned n = Ty->castAs<VectorType>()->getNumElements();
 | 
						|
 | 
						|
      // The vec_step built-in functions that take a 3-component
 | 
						|
      // vector return 4. (OpenCL 1.1 spec 6.11.12)
 | 
						|
      if (n == 3)
 | 
						|
        n = 4;
 | 
						|
 | 
						|
      return Success(n, E);
 | 
						|
    } else
 | 
						|
      return Success(1, E);
 | 
						|
  }
 | 
						|
 | 
						|
  case UETT_SizeOf: {
 | 
						|
    QualType SrcTy = E->getTypeOfArgument();
 | 
						|
    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
 | 
						|
    //   the result is the size of the referenced type."
 | 
						|
    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
 | 
						|
      SrcTy = Ref->getPointeeType();
 | 
						|
 | 
						|
    CharUnits Sizeof;
 | 
						|
    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
 | 
						|
      return false;
 | 
						|
    return Success(Sizeof, E);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown expr/type trait");
 | 
						|
}
 | 
						|
 | 
						|
bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
 | 
						|
  CharUnits Result;
 | 
						|
  unsigned n = OOE->getNumComponents();
 | 
						|
  if (n == 0)
 | 
						|
    return Error(OOE);
 | 
						|
  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
 | 
						|
  for (unsigned i = 0; i != n; ++i) {
 | 
						|
    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
 | 
						|
    switch (ON.getKind()) {
 | 
						|
    case OffsetOfExpr::OffsetOfNode::Array: {
 | 
						|
      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
 | 
						|
      APSInt IdxResult;
 | 
						|
      if (!EvaluateInteger(Idx, IdxResult, Info))
 | 
						|
        return false;
 | 
						|
      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
 | 
						|
      if (!AT)
 | 
						|
        return Error(OOE);
 | 
						|
      CurrentType = AT->getElementType();
 | 
						|
      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
 | 
						|
      Result += IdxResult.getSExtValue() * ElementSize;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    case OffsetOfExpr::OffsetOfNode::Field: {
 | 
						|
      FieldDecl *MemberDecl = ON.getField();
 | 
						|
      const RecordType *RT = CurrentType->getAs<RecordType>();
 | 
						|
      if (!RT)
 | 
						|
        return Error(OOE);
 | 
						|
      RecordDecl *RD = RT->getDecl();
 | 
						|
      if (RD->isInvalidDecl()) return false;
 | 
						|
      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
 | 
						|
      unsigned i = MemberDecl->getFieldIndex();
 | 
						|
      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
 | 
						|
      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
 | 
						|
      CurrentType = MemberDecl->getType().getNonReferenceType();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case OffsetOfExpr::OffsetOfNode::Identifier:
 | 
						|
      llvm_unreachable("dependent __builtin_offsetof");
 | 
						|
 | 
						|
    case OffsetOfExpr::OffsetOfNode::Base: {
 | 
						|
      CXXBaseSpecifier *BaseSpec = ON.getBase();
 | 
						|
      if (BaseSpec->isVirtual())
 | 
						|
        return Error(OOE);
 | 
						|
 | 
						|
      // Find the layout of the class whose base we are looking into.
 | 
						|
      const RecordType *RT = CurrentType->getAs<RecordType>();
 | 
						|
      if (!RT)
 | 
						|
        return Error(OOE);
 | 
						|
      RecordDecl *RD = RT->getDecl();
 | 
						|
      if (RD->isInvalidDecl()) return false;
 | 
						|
      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
 | 
						|
 | 
						|
      // Find the base class itself.
 | 
						|
      CurrentType = BaseSpec->getType();
 | 
						|
      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
 | 
						|
      if (!BaseRT)
 | 
						|
        return Error(OOE);
 | 
						|
      
 | 
						|
      // Add the offset to the base.
 | 
						|
      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Success(Result, OOE);
 | 
						|
}
 | 
						|
 | 
						|
bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
 | 
						|
  switch (E->getOpcode()) {
 | 
						|
  default:
 | 
						|
    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
 | 
						|
    // See C99 6.6p3.
 | 
						|
    return Error(E);
 | 
						|
  case UO_Extension:
 | 
						|
    // FIXME: Should extension allow i-c-e extension expressions in its scope?
 | 
						|
    // If so, we could clear the diagnostic ID.
 | 
						|
    return Visit(E->getSubExpr());
 | 
						|
  case UO_Plus:
 | 
						|
    // The result is just the value.
 | 
						|
    return Visit(E->getSubExpr());
 | 
						|
  case UO_Minus: {
 | 
						|
    if (!Visit(E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
    if (!Result.isInt()) return Error(E);
 | 
						|
    const APSInt &Value = Result.getInt();
 | 
						|
    if (Value.isSigned() && Value.isMinSignedValue())
 | 
						|
      HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
 | 
						|
                     E->getType());
 | 
						|
    return Success(-Value, E);
 | 
						|
  }
 | 
						|
  case UO_Not: {
 | 
						|
    if (!Visit(E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
    if (!Result.isInt()) return Error(E);
 | 
						|
    return Success(~Result.getInt(), E);
 | 
						|
  }
 | 
						|
  case UO_LNot: {
 | 
						|
    bool bres;
 | 
						|
    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
 | 
						|
      return false;
 | 
						|
    return Success(!bres, E);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HandleCast - This is used to evaluate implicit or explicit casts where the
 | 
						|
/// result type is integer.
 | 
						|
bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | 
						|
  const Expr *SubExpr = E->getSubExpr();
 | 
						|
  QualType DestType = E->getType();
 | 
						|
  QualType SrcType = SubExpr->getType();
 | 
						|
 | 
						|
  switch (E->getCastKind()) {
 | 
						|
  case CK_BaseToDerived:
 | 
						|
  case CK_DerivedToBase:
 | 
						|
  case CK_UncheckedDerivedToBase:
 | 
						|
  case CK_Dynamic:
 | 
						|
  case CK_ToUnion:
 | 
						|
  case CK_ArrayToPointerDecay:
 | 
						|
  case CK_FunctionToPointerDecay:
 | 
						|
  case CK_NullToPointer:
 | 
						|
  case CK_NullToMemberPointer:
 | 
						|
  case CK_BaseToDerivedMemberPointer:
 | 
						|
  case CK_DerivedToBaseMemberPointer:
 | 
						|
  case CK_ReinterpretMemberPointer:
 | 
						|
  case CK_ConstructorConversion:
 | 
						|
  case CK_IntegralToPointer:
 | 
						|
  case CK_ToVoid:
 | 
						|
  case CK_VectorSplat:
 | 
						|
  case CK_IntegralToFloating:
 | 
						|
  case CK_FloatingCast:
 | 
						|
  case CK_CPointerToObjCPointerCast:
 | 
						|
  case CK_BlockPointerToObjCPointerCast:
 | 
						|
  case CK_AnyPointerToBlockPointerCast:
 | 
						|
  case CK_ObjCObjectLValueCast:
 | 
						|
  case CK_FloatingRealToComplex:
 | 
						|
  case CK_FloatingComplexToReal:
 | 
						|
  case CK_FloatingComplexCast:
 | 
						|
  case CK_FloatingComplexToIntegralComplex:
 | 
						|
  case CK_IntegralRealToComplex:
 | 
						|
  case CK_IntegralComplexCast:
 | 
						|
  case CK_IntegralComplexToFloatingComplex:
 | 
						|
  case CK_BuiltinFnToFnPtr:
 | 
						|
  case CK_ZeroToOCLEvent:
 | 
						|
    llvm_unreachable("invalid cast kind for integral value");
 | 
						|
 | 
						|
  case CK_BitCast:
 | 
						|
  case CK_Dependent:
 | 
						|
  case CK_LValueBitCast:
 | 
						|
  case CK_ARCProduceObject:
 | 
						|
  case CK_ARCConsumeObject:
 | 
						|
  case CK_ARCReclaimReturnedObject:
 | 
						|
  case CK_ARCExtendBlockObject:
 | 
						|
  case CK_CopyAndAutoreleaseBlockObject:
 | 
						|
    return Error(E);
 | 
						|
 | 
						|
  case CK_UserDefinedConversion:
 | 
						|
  case CK_LValueToRValue:
 | 
						|
  case CK_AtomicToNonAtomic:
 | 
						|
  case CK_NonAtomicToAtomic:
 | 
						|
  case CK_NoOp:
 | 
						|
    return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
 | 
						|
  case CK_MemberPointerToBoolean:
 | 
						|
  case CK_PointerToBoolean:
 | 
						|
  case CK_IntegralToBoolean:
 | 
						|
  case CK_FloatingToBoolean:
 | 
						|
  case CK_FloatingComplexToBoolean:
 | 
						|
  case CK_IntegralComplexToBoolean: {
 | 
						|
    bool BoolResult;
 | 
						|
    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
 | 
						|
      return false;
 | 
						|
    return Success(BoolResult, E);
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_IntegralCast: {
 | 
						|
    if (!Visit(SubExpr))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!Result.isInt()) {
 | 
						|
      // Allow casts of address-of-label differences if they are no-ops
 | 
						|
      // or narrowing.  (The narrowing case isn't actually guaranteed to
 | 
						|
      // be constant-evaluatable except in some narrow cases which are hard
 | 
						|
      // to detect here.  We let it through on the assumption the user knows
 | 
						|
      // what they are doing.)
 | 
						|
      if (Result.isAddrLabelDiff())
 | 
						|
        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
 | 
						|
      // Only allow casts of lvalues if they are lossless.
 | 
						|
      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
 | 
						|
    }
 | 
						|
 | 
						|
    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
 | 
						|
                                      Result.getInt()), E);
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_PointerToIntegral: {
 | 
						|
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
 | 
						|
 | 
						|
    LValue LV;
 | 
						|
    if (!EvaluatePointer(SubExpr, LV, Info))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (LV.getLValueBase()) {
 | 
						|
      // Only allow based lvalue casts if they are lossless.
 | 
						|
      // FIXME: Allow a larger integer size than the pointer size, and allow
 | 
						|
      // narrowing back down to pointer width in subsequent integral casts.
 | 
						|
      // FIXME: Check integer type's active bits, not its type size.
 | 
						|
      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
 | 
						|
        return Error(E);
 | 
						|
 | 
						|
      LV.Designator.setInvalid();
 | 
						|
      LV.moveInto(Result);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(), 
 | 
						|
                                         SrcType);
 | 
						|
    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_IntegralComplexToReal: {
 | 
						|
    ComplexValue C;
 | 
						|
    if (!EvaluateComplex(SubExpr, C, Info))
 | 
						|
      return false;
 | 
						|
    return Success(C.getComplexIntReal(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_FloatingToIntegral: {
 | 
						|
    APFloat F(0.0);
 | 
						|
    if (!EvaluateFloat(SubExpr, F, Info))
 | 
						|
      return false;
 | 
						|
 | 
						|
    APSInt Value;
 | 
						|
    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
 | 
						|
      return false;
 | 
						|
    return Success(Value, E);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown cast resulting in integral value");
 | 
						|
}
 | 
						|
 | 
						|
bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
 | 
						|
  if (E->getSubExpr()->getType()->isAnyComplexType()) {
 | 
						|
    ComplexValue LV;
 | 
						|
    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
 | 
						|
      return false;
 | 
						|
    if (!LV.isComplexInt())
 | 
						|
      return Error(E);
 | 
						|
    return Success(LV.getComplexIntReal(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  return Visit(E->getSubExpr());
 | 
						|
}
 | 
						|
 | 
						|
bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
 | 
						|
  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
 | 
						|
    ComplexValue LV;
 | 
						|
    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
 | 
						|
      return false;
 | 
						|
    if (!LV.isComplexInt())
 | 
						|
      return Error(E);
 | 
						|
    return Success(LV.getComplexIntImag(), E);
 | 
						|
  }
 | 
						|
 | 
						|
  VisitIgnoredValue(E->getSubExpr());
 | 
						|
  return Success(0, E);
 | 
						|
}
 | 
						|
 | 
						|
bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
 | 
						|
  return Success(E->getPackLength(), E);
 | 
						|
}
 | 
						|
 | 
						|
bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
 | 
						|
  return Success(E->getValue(), E);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Float Evaluation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class FloatExprEvaluator
 | 
						|
  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
 | 
						|
  APFloat &Result;
 | 
						|
public:
 | 
						|
  FloatExprEvaluator(EvalInfo &info, APFloat &result)
 | 
						|
    : ExprEvaluatorBaseTy(info), Result(result) {}
 | 
						|
 | 
						|
  bool Success(const APValue &V, const Expr *e) {
 | 
						|
    Result = V.getFloat();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ZeroInitialization(const Expr *E) {
 | 
						|
    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitCallExpr(const CallExpr *E);
 | 
						|
 | 
						|
  bool VisitUnaryOperator(const UnaryOperator *E);
 | 
						|
  bool VisitBinaryOperator(const BinaryOperator *E);
 | 
						|
  bool VisitFloatingLiteral(const FloatingLiteral *E);
 | 
						|
  bool VisitCastExpr(const CastExpr *E);
 | 
						|
 | 
						|
  bool VisitUnaryReal(const UnaryOperator *E);
 | 
						|
  bool VisitUnaryImag(const UnaryOperator *E);
 | 
						|
 | 
						|
  // FIXME: Missing: array subscript of vector, member of vector
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->isRealFloatingType());
 | 
						|
  return FloatExprEvaluator(Info, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
 | 
						|
                                  QualType ResultTy,
 | 
						|
                                  const Expr *Arg,
 | 
						|
                                  bool SNaN,
 | 
						|
                                  llvm::APFloat &Result) {
 | 
						|
  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
 | 
						|
  if (!S) return false;
 | 
						|
 | 
						|
  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
 | 
						|
 | 
						|
  llvm::APInt fill;
 | 
						|
 | 
						|
  // Treat empty strings as if they were zero.
 | 
						|
  if (S->getString().empty())
 | 
						|
    fill = llvm::APInt(32, 0);
 | 
						|
  else if (S->getString().getAsInteger(0, fill))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (SNaN)
 | 
						|
    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
 | 
						|
  else
 | 
						|
    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
 | 
						|
  switch (E->isBuiltinCall()) {
 | 
						|
  default:
 | 
						|
    return ExprEvaluatorBaseTy::VisitCallExpr(E);
 | 
						|
 | 
						|
  case Builtin::BI__builtin_huge_val:
 | 
						|
  case Builtin::BI__builtin_huge_valf:
 | 
						|
  case Builtin::BI__builtin_huge_vall:
 | 
						|
  case Builtin::BI__builtin_inf:
 | 
						|
  case Builtin::BI__builtin_inff:
 | 
						|
  case Builtin::BI__builtin_infl: {
 | 
						|
    const llvm::fltSemantics &Sem =
 | 
						|
      Info.Ctx.getFloatTypeSemantics(E->getType());
 | 
						|
    Result = llvm::APFloat::getInf(Sem);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case Builtin::BI__builtin_nans:
 | 
						|
  case Builtin::BI__builtin_nansf:
 | 
						|
  case Builtin::BI__builtin_nansl:
 | 
						|
    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
 | 
						|
                               true, Result))
 | 
						|
      return Error(E);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Builtin::BI__builtin_nan:
 | 
						|
  case Builtin::BI__builtin_nanf:
 | 
						|
  case Builtin::BI__builtin_nanl:
 | 
						|
    // If this is __builtin_nan() turn this into a nan, otherwise we
 | 
						|
    // can't constant fold it.
 | 
						|
    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
 | 
						|
                               false, Result))
 | 
						|
      return Error(E);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Builtin::BI__builtin_fabs:
 | 
						|
  case Builtin::BI__builtin_fabsf:
 | 
						|
  case Builtin::BI__builtin_fabsl:
 | 
						|
    if (!EvaluateFloat(E->getArg(0), Result, Info))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Result.isNegative())
 | 
						|
      Result.changeSign();
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Builtin::BI__builtin_copysign:
 | 
						|
  case Builtin::BI__builtin_copysignf:
 | 
						|
  case Builtin::BI__builtin_copysignl: {
 | 
						|
    APFloat RHS(0.);
 | 
						|
    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
 | 
						|
        !EvaluateFloat(E->getArg(1), RHS, Info))
 | 
						|
      return false;
 | 
						|
    Result.copySign(RHS);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
 | 
						|
  if (E->getSubExpr()->getType()->isAnyComplexType()) {
 | 
						|
    ComplexValue CV;
 | 
						|
    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
 | 
						|
      return false;
 | 
						|
    Result = CV.FloatReal;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Visit(E->getSubExpr());
 | 
						|
}
 | 
						|
 | 
						|
bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
 | 
						|
  if (E->getSubExpr()->getType()->isAnyComplexType()) {
 | 
						|
    ComplexValue CV;
 | 
						|
    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
 | 
						|
      return false;
 | 
						|
    Result = CV.FloatImag;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  VisitIgnoredValue(E->getSubExpr());
 | 
						|
  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
 | 
						|
  Result = llvm::APFloat::getZero(Sem);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
 | 
						|
  switch (E->getOpcode()) {
 | 
						|
  default: return Error(E);
 | 
						|
  case UO_Plus:
 | 
						|
    return EvaluateFloat(E->getSubExpr(), Result, Info);
 | 
						|
  case UO_Minus:
 | 
						|
    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
 | 
						|
      return false;
 | 
						|
    Result.changeSign();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
 | 
						|
  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
 | 
						|
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | 
						|
 | 
						|
  APFloat RHS(0.0);
 | 
						|
  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
 | 
						|
  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
 | 
						|
    return false;
 | 
						|
  if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (E->getOpcode()) {
 | 
						|
  default: return Error(E);
 | 
						|
  case BO_Mul:
 | 
						|
    Result.multiply(RHS, APFloat::rmNearestTiesToEven);
 | 
						|
    break;
 | 
						|
  case BO_Add:
 | 
						|
    Result.add(RHS, APFloat::rmNearestTiesToEven);
 | 
						|
    break;
 | 
						|
  case BO_Sub:
 | 
						|
    Result.subtract(RHS, APFloat::rmNearestTiesToEven);
 | 
						|
    break;
 | 
						|
  case BO_Div:
 | 
						|
    Result.divide(RHS, APFloat::rmNearestTiesToEven);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result.isInfinity() || Result.isNaN())
 | 
						|
    CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
 | 
						|
  Result = E->getValue();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | 
						|
  const Expr* SubExpr = E->getSubExpr();
 | 
						|
 | 
						|
  switch (E->getCastKind()) {
 | 
						|
  default:
 | 
						|
    return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
 | 
						|
  case CK_IntegralToFloating: {
 | 
						|
    APSInt IntResult;
 | 
						|
    return EvaluateInteger(SubExpr, IntResult, Info) &&
 | 
						|
           HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
 | 
						|
                                E->getType(), Result);
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_FloatingCast: {
 | 
						|
    if (!Visit(SubExpr))
 | 
						|
      return false;
 | 
						|
    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
 | 
						|
                                  Result);
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_FloatingComplexToReal: {
 | 
						|
    ComplexValue V;
 | 
						|
    if (!EvaluateComplex(SubExpr, V, Info))
 | 
						|
      return false;
 | 
						|
    Result = V.getComplexFloatReal();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Complex Evaluation (for float and integer)
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class ComplexExprEvaluator
 | 
						|
  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
 | 
						|
  ComplexValue &Result;
 | 
						|
 | 
						|
public:
 | 
						|
  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
 | 
						|
    : ExprEvaluatorBaseTy(info), Result(Result) {}
 | 
						|
 | 
						|
  bool Success(const APValue &V, const Expr *e) {
 | 
						|
    Result.setFrom(V);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ZeroInitialization(const Expr *E);
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //                            Visitor Methods
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
 | 
						|
  bool VisitCastExpr(const CastExpr *E);
 | 
						|
  bool VisitBinaryOperator(const BinaryOperator *E);
 | 
						|
  bool VisitUnaryOperator(const UnaryOperator *E);
 | 
						|
  bool VisitInitListExpr(const InitListExpr *E);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
 | 
						|
                            EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->isAnyComplexType());
 | 
						|
  return ComplexExprEvaluator(Info, Result).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
 | 
						|
  QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
 | 
						|
  if (ElemTy->isRealFloatingType()) {
 | 
						|
    Result.makeComplexFloat();
 | 
						|
    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
 | 
						|
    Result.FloatReal = Zero;
 | 
						|
    Result.FloatImag = Zero;
 | 
						|
  } else {
 | 
						|
    Result.makeComplexInt();
 | 
						|
    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
 | 
						|
    Result.IntReal = Zero;
 | 
						|
    Result.IntImag = Zero;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
 | 
						|
  const Expr* SubExpr = E->getSubExpr();
 | 
						|
 | 
						|
  if (SubExpr->getType()->isRealFloatingType()) {
 | 
						|
    Result.makeComplexFloat();
 | 
						|
    APFloat &Imag = Result.FloatImag;
 | 
						|
    if (!EvaluateFloat(SubExpr, Imag, Info))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Result.FloatReal = APFloat(Imag.getSemantics());
 | 
						|
    return true;
 | 
						|
  } else {
 | 
						|
    assert(SubExpr->getType()->isIntegerType() &&
 | 
						|
           "Unexpected imaginary literal.");
 | 
						|
 | 
						|
    Result.makeComplexInt();
 | 
						|
    APSInt &Imag = Result.IntImag;
 | 
						|
    if (!EvaluateInteger(SubExpr, Imag, Info))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | 
						|
 | 
						|
  switch (E->getCastKind()) {
 | 
						|
  case CK_BitCast:
 | 
						|
  case CK_BaseToDerived:
 | 
						|
  case CK_DerivedToBase:
 | 
						|
  case CK_UncheckedDerivedToBase:
 | 
						|
  case CK_Dynamic:
 | 
						|
  case CK_ToUnion:
 | 
						|
  case CK_ArrayToPointerDecay:
 | 
						|
  case CK_FunctionToPointerDecay:
 | 
						|
  case CK_NullToPointer:
 | 
						|
  case CK_NullToMemberPointer:
 | 
						|
  case CK_BaseToDerivedMemberPointer:
 | 
						|
  case CK_DerivedToBaseMemberPointer:
 | 
						|
  case CK_MemberPointerToBoolean:
 | 
						|
  case CK_ReinterpretMemberPointer:
 | 
						|
  case CK_ConstructorConversion:
 | 
						|
  case CK_IntegralToPointer:
 | 
						|
  case CK_PointerToIntegral:
 | 
						|
  case CK_PointerToBoolean:
 | 
						|
  case CK_ToVoid:
 | 
						|
  case CK_VectorSplat:
 | 
						|
  case CK_IntegralCast:
 | 
						|
  case CK_IntegralToBoolean:
 | 
						|
  case CK_IntegralToFloating:
 | 
						|
  case CK_FloatingToIntegral:
 | 
						|
  case CK_FloatingToBoolean:
 | 
						|
  case CK_FloatingCast:
 | 
						|
  case CK_CPointerToObjCPointerCast:
 | 
						|
  case CK_BlockPointerToObjCPointerCast:
 | 
						|
  case CK_AnyPointerToBlockPointerCast:
 | 
						|
  case CK_ObjCObjectLValueCast:
 | 
						|
  case CK_FloatingComplexToReal:
 | 
						|
  case CK_FloatingComplexToBoolean:
 | 
						|
  case CK_IntegralComplexToReal:
 | 
						|
  case CK_IntegralComplexToBoolean:
 | 
						|
  case CK_ARCProduceObject:
 | 
						|
  case CK_ARCConsumeObject:
 | 
						|
  case CK_ARCReclaimReturnedObject:
 | 
						|
  case CK_ARCExtendBlockObject:
 | 
						|
  case CK_CopyAndAutoreleaseBlockObject:
 | 
						|
  case CK_BuiltinFnToFnPtr:
 | 
						|
  case CK_ZeroToOCLEvent:
 | 
						|
    llvm_unreachable("invalid cast kind for complex value");
 | 
						|
 | 
						|
  case CK_LValueToRValue:
 | 
						|
  case CK_AtomicToNonAtomic:
 | 
						|
  case CK_NonAtomicToAtomic:
 | 
						|
  case CK_NoOp:
 | 
						|
    return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
 | 
						|
  case CK_Dependent:
 | 
						|
  case CK_LValueBitCast:
 | 
						|
  case CK_UserDefinedConversion:
 | 
						|
    return Error(E);
 | 
						|
 | 
						|
  case CK_FloatingRealToComplex: {
 | 
						|
    APFloat &Real = Result.FloatReal;
 | 
						|
    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Result.makeComplexFloat();
 | 
						|
    Result.FloatImag = APFloat(Real.getSemantics());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_FloatingComplexCast: {
 | 
						|
    if (!Visit(E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
 | 
						|
    QualType From
 | 
						|
      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
 | 
						|
 | 
						|
    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
 | 
						|
           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_FloatingComplexToIntegralComplex: {
 | 
						|
    if (!Visit(E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
 | 
						|
    QualType From
 | 
						|
      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
 | 
						|
    Result.makeComplexInt();
 | 
						|
    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
 | 
						|
                                To, Result.IntReal) &&
 | 
						|
           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
 | 
						|
                                To, Result.IntImag);
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_IntegralRealToComplex: {
 | 
						|
    APSInt &Real = Result.IntReal;
 | 
						|
    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Result.makeComplexInt();
 | 
						|
    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_IntegralComplexCast: {
 | 
						|
    if (!Visit(E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
 | 
						|
    QualType From
 | 
						|
      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
 | 
						|
 | 
						|
    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
 | 
						|
    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_IntegralComplexToFloatingComplex: {
 | 
						|
    if (!Visit(E->getSubExpr()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
 | 
						|
    QualType From
 | 
						|
      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
 | 
						|
    Result.makeComplexFloat();
 | 
						|
    return HandleIntToFloatCast(Info, E, From, Result.IntReal,
 | 
						|
                                To, Result.FloatReal) &&
 | 
						|
           HandleIntToFloatCast(Info, E, From, Result.IntImag,
 | 
						|
                                To, Result.FloatImag);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown cast resulting in complex value");
 | 
						|
}
 | 
						|
 | 
						|
bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
 | 
						|
  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
 | 
						|
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | 
						|
 | 
						|
  bool LHSOK = Visit(E->getLHS());
 | 
						|
  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
 | 
						|
    return false;
 | 
						|
 | 
						|
  ComplexValue RHS;
 | 
						|
  if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
 | 
						|
         "Invalid operands to binary operator.");
 | 
						|
  switch (E->getOpcode()) {
 | 
						|
  default: return Error(E);
 | 
						|
  case BO_Add:
 | 
						|
    if (Result.isComplexFloat()) {
 | 
						|
      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
 | 
						|
                                       APFloat::rmNearestTiesToEven);
 | 
						|
      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
 | 
						|
                                       APFloat::rmNearestTiesToEven);
 | 
						|
    } else {
 | 
						|
      Result.getComplexIntReal() += RHS.getComplexIntReal();
 | 
						|
      Result.getComplexIntImag() += RHS.getComplexIntImag();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case BO_Sub:
 | 
						|
    if (Result.isComplexFloat()) {
 | 
						|
      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
 | 
						|
                                            APFloat::rmNearestTiesToEven);
 | 
						|
      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
 | 
						|
                                            APFloat::rmNearestTiesToEven);
 | 
						|
    } else {
 | 
						|
      Result.getComplexIntReal() -= RHS.getComplexIntReal();
 | 
						|
      Result.getComplexIntImag() -= RHS.getComplexIntImag();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case BO_Mul:
 | 
						|
    if (Result.isComplexFloat()) {
 | 
						|
      ComplexValue LHS = Result;
 | 
						|
      APFloat &LHS_r = LHS.getComplexFloatReal();
 | 
						|
      APFloat &LHS_i = LHS.getComplexFloatImag();
 | 
						|
      APFloat &RHS_r = RHS.getComplexFloatReal();
 | 
						|
      APFloat &RHS_i = RHS.getComplexFloatImag();
 | 
						|
 | 
						|
      APFloat Tmp = LHS_r;
 | 
						|
      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
 | 
						|
      Result.getComplexFloatReal() = Tmp;
 | 
						|
      Tmp = LHS_i;
 | 
						|
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
 | 
						|
      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
 | 
						|
 | 
						|
      Tmp = LHS_r;
 | 
						|
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
 | 
						|
      Result.getComplexFloatImag() = Tmp;
 | 
						|
      Tmp = LHS_i;
 | 
						|
      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
 | 
						|
      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
 | 
						|
    } else {
 | 
						|
      ComplexValue LHS = Result;
 | 
						|
      Result.getComplexIntReal() =
 | 
						|
        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
 | 
						|
         LHS.getComplexIntImag() * RHS.getComplexIntImag());
 | 
						|
      Result.getComplexIntImag() =
 | 
						|
        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
 | 
						|
         LHS.getComplexIntImag() * RHS.getComplexIntReal());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case BO_Div:
 | 
						|
    if (Result.isComplexFloat()) {
 | 
						|
      ComplexValue LHS = Result;
 | 
						|
      APFloat &LHS_r = LHS.getComplexFloatReal();
 | 
						|
      APFloat &LHS_i = LHS.getComplexFloatImag();
 | 
						|
      APFloat &RHS_r = RHS.getComplexFloatReal();
 | 
						|
      APFloat &RHS_i = RHS.getComplexFloatImag();
 | 
						|
      APFloat &Res_r = Result.getComplexFloatReal();
 | 
						|
      APFloat &Res_i = Result.getComplexFloatImag();
 | 
						|
 | 
						|
      APFloat Den = RHS_r;
 | 
						|
      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
 | 
						|
      APFloat Tmp = RHS_i;
 | 
						|
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
 | 
						|
      Den.add(Tmp, APFloat::rmNearestTiesToEven);
 | 
						|
 | 
						|
      Res_r = LHS_r;
 | 
						|
      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
 | 
						|
      Tmp = LHS_i;
 | 
						|
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
 | 
						|
      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
 | 
						|
      Res_r.divide(Den, APFloat::rmNearestTiesToEven);
 | 
						|
 | 
						|
      Res_i = LHS_i;
 | 
						|
      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
 | 
						|
      Tmp = LHS_r;
 | 
						|
      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
 | 
						|
      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
 | 
						|
      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
 | 
						|
    } else {
 | 
						|
      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
 | 
						|
        return Error(E, diag::note_expr_divide_by_zero);
 | 
						|
 | 
						|
      ComplexValue LHS = Result;
 | 
						|
      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
 | 
						|
        RHS.getComplexIntImag() * RHS.getComplexIntImag();
 | 
						|
      Result.getComplexIntReal() =
 | 
						|
        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
 | 
						|
         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
 | 
						|
      Result.getComplexIntImag() =
 | 
						|
        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
 | 
						|
         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
 | 
						|
  // Get the operand value into 'Result'.
 | 
						|
  if (!Visit(E->getSubExpr()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (E->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return Error(E);
 | 
						|
  case UO_Extension:
 | 
						|
    return true;
 | 
						|
  case UO_Plus:
 | 
						|
    // The result is always just the subexpr.
 | 
						|
    return true;
 | 
						|
  case UO_Minus:
 | 
						|
    if (Result.isComplexFloat()) {
 | 
						|
      Result.getComplexFloatReal().changeSign();
 | 
						|
      Result.getComplexFloatImag().changeSign();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      Result.getComplexIntReal() = -Result.getComplexIntReal();
 | 
						|
      Result.getComplexIntImag() = -Result.getComplexIntImag();
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  case UO_Not:
 | 
						|
    if (Result.isComplexFloat())
 | 
						|
      Result.getComplexFloatImag().changeSign();
 | 
						|
    else
 | 
						|
      Result.getComplexIntImag() = -Result.getComplexIntImag();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
 | 
						|
  if (E->getNumInits() == 2) {
 | 
						|
    if (E->getType()->isComplexType()) {
 | 
						|
      Result.makeComplexFloat();
 | 
						|
      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
 | 
						|
        return false;
 | 
						|
      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      Result.makeComplexInt();
 | 
						|
      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
 | 
						|
        return false;
 | 
						|
      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Void expression evaluation, primarily for a cast to void on the LHS of a
 | 
						|
// comma operator
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class VoidExprEvaluator
 | 
						|
  : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
 | 
						|
public:
 | 
						|
  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
 | 
						|
 | 
						|
  bool Success(const APValue &V, const Expr *e) { return true; }
 | 
						|
 | 
						|
  bool VisitCastExpr(const CastExpr *E) {
 | 
						|
    switch (E->getCastKind()) {
 | 
						|
    default:
 | 
						|
      return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | 
						|
    case CK_ToVoid:
 | 
						|
      VisitIgnoredValue(E->getSubExpr());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
 | 
						|
  assert(E->isRValue() && E->getType()->isVoidType());
 | 
						|
  return VoidExprEvaluator(Info).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Top level Expr::EvaluateAsRValue method.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
 | 
						|
  // In C, function designators are not lvalues, but we evaluate them as if they
 | 
						|
  // are.
 | 
						|
  if (E->isGLValue() || E->getType()->isFunctionType()) {
 | 
						|
    LValue LV;
 | 
						|
    if (!EvaluateLValue(E, LV, Info))
 | 
						|
      return false;
 | 
						|
    LV.moveInto(Result);
 | 
						|
  } else if (E->getType()->isVectorType()) {
 | 
						|
    if (!EvaluateVector(E, Result, Info))
 | 
						|
      return false;
 | 
						|
  } else if (E->getType()->isIntegralOrEnumerationType()) {
 | 
						|
    if (!IntExprEvaluator(Info, Result).Visit(E))
 | 
						|
      return false;
 | 
						|
  } else if (E->getType()->hasPointerRepresentation()) {
 | 
						|
    LValue LV;
 | 
						|
    if (!EvaluatePointer(E, LV, Info))
 | 
						|
      return false;
 | 
						|
    LV.moveInto(Result);
 | 
						|
  } else if (E->getType()->isRealFloatingType()) {
 | 
						|
    llvm::APFloat F(0.0);
 | 
						|
    if (!EvaluateFloat(E, F, Info))
 | 
						|
      return false;
 | 
						|
    Result = APValue(F);
 | 
						|
  } else if (E->getType()->isAnyComplexType()) {
 | 
						|
    ComplexValue C;
 | 
						|
    if (!EvaluateComplex(E, C, Info))
 | 
						|
      return false;
 | 
						|
    C.moveInto(Result);
 | 
						|
  } else if (E->getType()->isMemberPointerType()) {
 | 
						|
    MemberPtr P;
 | 
						|
    if (!EvaluateMemberPointer(E, P, Info))
 | 
						|
      return false;
 | 
						|
    P.moveInto(Result);
 | 
						|
    return true;
 | 
						|
  } else if (E->getType()->isArrayType()) {
 | 
						|
    LValue LV;
 | 
						|
    LV.set(E, Info.CurrentCall->Index);
 | 
						|
    if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
 | 
						|
      return false;
 | 
						|
    Result = Info.CurrentCall->Temporaries[E];
 | 
						|
  } else if (E->getType()->isRecordType()) {
 | 
						|
    LValue LV;
 | 
						|
    LV.set(E, Info.CurrentCall->Index);
 | 
						|
    if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
 | 
						|
      return false;
 | 
						|
    Result = Info.CurrentCall->Temporaries[E];
 | 
						|
  } else if (E->getType()->isVoidType()) {
 | 
						|
    if (!Info.getLangOpts().CPlusPlus11)
 | 
						|
      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
 | 
						|
        << E->getType();
 | 
						|
    if (!EvaluateVoid(E, Info))
 | 
						|
      return false;
 | 
						|
  } else if (Info.getLangOpts().CPlusPlus11) {
 | 
						|
    Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
 | 
						|
    return false;
 | 
						|
  } else {
 | 
						|
    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
 | 
						|
/// cases, the in-place evaluation is essential, since later initializers for
 | 
						|
/// an object can indirectly refer to subobjects which were initialized earlier.
 | 
						|
static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
 | 
						|
                            const Expr *E, CheckConstantExpressionKind CCEK,
 | 
						|
                            bool AllowNonLiteralTypes) {
 | 
						|
  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (E->isRValue()) {
 | 
						|
    // Evaluate arrays and record types in-place, so that later initializers can
 | 
						|
    // refer to earlier-initialized members of the object.
 | 
						|
    if (E->getType()->isArrayType())
 | 
						|
      return EvaluateArray(E, This, Result, Info);
 | 
						|
    else if (E->getType()->isRecordType())
 | 
						|
      return EvaluateRecord(E, This, Result, Info);
 | 
						|
  }
 | 
						|
 | 
						|
  // For any other type, in-place evaluation is unimportant.
 | 
						|
  return Evaluate(Result, Info, E);
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
 | 
						|
/// lvalue-to-rvalue cast if it is an lvalue.
 | 
						|
static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
 | 
						|
  if (!CheckLiteralType(Info, E))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!::Evaluate(Result, Info, E))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (E->isGLValue()) {
 | 
						|
    LValue LV;
 | 
						|
    LV.setFrom(Info.Ctx, Result);
 | 
						|
    if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check this core constant expression is a constant expression.
 | 
						|
  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
 | 
						|
}
 | 
						|
 | 
						|
static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
 | 
						|
                                 const ASTContext &Ctx, bool &IsConst) {
 | 
						|
  // Fast-path evaluations of integer literals, since we sometimes see files
 | 
						|
  // containing vast quantities of these.
 | 
						|
  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
 | 
						|
    Result.Val = APValue(APSInt(L->getValue(),
 | 
						|
                                L->getType()->isUnsignedIntegerType()));
 | 
						|
    IsConst = true;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: Evaluating values of large array and record types can cause
 | 
						|
  // performance problems. Only do so in C++11 for now.
 | 
						|
  if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
 | 
						|
                          Exp->getType()->isRecordType()) &&
 | 
						|
      !Ctx.getLangOpts().CPlusPlus11) {
 | 
						|
    IsConst = false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EvaluateAsRValue - Return true if this is a constant which we can fold using
 | 
						|
/// any crazy technique (that has nothing to do with language standards) that
 | 
						|
/// we want to.  If this function returns true, it returns the folded constant
 | 
						|
/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
 | 
						|
/// will be applied to the result.
 | 
						|
bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
 | 
						|
  bool IsConst;
 | 
						|
  if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
 | 
						|
    return IsConst;
 | 
						|
  
 | 
						|
  EvalInfo Info(Ctx, Result);
 | 
						|
  return ::EvaluateAsRValue(Info, this, Result.Val);
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::EvaluateAsBooleanCondition(bool &Result,
 | 
						|
                                      const ASTContext &Ctx) const {
 | 
						|
  EvalResult Scratch;
 | 
						|
  return EvaluateAsRValue(Scratch, Ctx) &&
 | 
						|
         HandleConversionToBool(Scratch.Val, Result);
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
 | 
						|
                         SideEffectsKind AllowSideEffects) const {
 | 
						|
  if (!getType()->isIntegralOrEnumerationType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  EvalResult ExprResult;
 | 
						|
  if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
 | 
						|
      (!AllowSideEffects && ExprResult.HasSideEffects))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Result = ExprResult.Val.getInt();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
 | 
						|
  EvalInfo Info(Ctx, Result);
 | 
						|
 | 
						|
  LValue LV;
 | 
						|
  if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
 | 
						|
      !CheckLValueConstantExpression(Info, getExprLoc(),
 | 
						|
                                     Ctx.getLValueReferenceType(getType()), LV))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LV.moveInto(Result.Val);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
 | 
						|
                                 const VarDecl *VD,
 | 
						|
                            SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
 | 
						|
  // FIXME: Evaluating initializers for large array and record types can cause
 | 
						|
  // performance problems. Only do so in C++11 for now.
 | 
						|
  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
 | 
						|
      !Ctx.getLangOpts().CPlusPlus11)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Expr::EvalStatus EStatus;
 | 
						|
  EStatus.Diag = &Notes;
 | 
						|
 | 
						|
  EvalInfo InitInfo(Ctx, EStatus);
 | 
						|
  InitInfo.setEvaluatingDecl(VD, Value);
 | 
						|
 | 
						|
  LValue LVal;
 | 
						|
  LVal.set(VD);
 | 
						|
 | 
						|
  // C++11 [basic.start.init]p2:
 | 
						|
  //  Variables with static storage duration or thread storage duration shall be
 | 
						|
  //  zero-initialized before any other initialization takes place.
 | 
						|
  // This behavior is not present in C.
 | 
						|
  if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
 | 
						|
      !VD->getType()->isReferenceType()) {
 | 
						|
    ImplicitValueInitExpr VIE(VD->getType());
 | 
						|
    if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
 | 
						|
                         /*AllowNonLiteralTypes=*/true))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
 | 
						|
                         /*AllowNonLiteralTypes=*/true) ||
 | 
						|
      EStatus.HasSideEffects)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
 | 
						|
                                 Value);
 | 
						|
}
 | 
						|
 | 
						|
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
 | 
						|
/// constant folded, but discard the result.
 | 
						|
bool Expr::isEvaluatable(const ASTContext &Ctx) const {
 | 
						|
  EvalResult Result;
 | 
						|
  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
 | 
						|
}
 | 
						|
 | 
						|
APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
 | 
						|
                    SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
 | 
						|
  EvalResult EvalResult;
 | 
						|
  EvalResult.Diag = Diag;
 | 
						|
  bool Result = EvaluateAsRValue(EvalResult, Ctx);
 | 
						|
  (void)Result;
 | 
						|
  assert(Result && "Could not evaluate expression");
 | 
						|
  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
 | 
						|
 | 
						|
  return EvalResult.Val.getInt();
 | 
						|
}
 | 
						|
 | 
						|
void Expr::EvaluateForOverflow(const ASTContext &Ctx,
 | 
						|
                    SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
 | 
						|
  bool IsConst;
 | 
						|
  EvalResult EvalResult;
 | 
						|
  EvalResult.Diag = Diags;
 | 
						|
  if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
 | 
						|
    EvalInfo Info(Ctx, EvalResult, true);
 | 
						|
    (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 bool Expr::EvalResult::isGlobalLValue() const {
 | 
						|
   assert(Val.isLValue());
 | 
						|
   return IsGlobalLValue(Val.getLValueBase());
 | 
						|
 }
 | 
						|
 | 
						|
 | 
						|
/// isIntegerConstantExpr - this recursive routine will test if an expression is
 | 
						|
/// an integer constant expression.
 | 
						|
 | 
						|
/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
 | 
						|
/// comma, etc
 | 
						|
 | 
						|
// CheckICE - This function does the fundamental ICE checking: the returned
 | 
						|
// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
 | 
						|
// and a (possibly null) SourceLocation indicating the location of the problem.
 | 
						|
//
 | 
						|
// Note that to reduce code duplication, this helper does no evaluation
 | 
						|
// itself; the caller checks whether the expression is evaluatable, and
 | 
						|
// in the rare cases where CheckICE actually cares about the evaluated
 | 
						|
// value, it calls into Evalute.
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
enum ICEKind {
 | 
						|
  /// This expression is an ICE.
 | 
						|
  IK_ICE,
 | 
						|
  /// This expression is not an ICE, but if it isn't evaluated, it's
 | 
						|
  /// a legal subexpression for an ICE. This return value is used to handle
 | 
						|
  /// the comma operator in C99 mode, and non-constant subexpressions.
 | 
						|
  IK_ICEIfUnevaluated,
 | 
						|
  /// This expression is not an ICE, and is not a legal subexpression for one.
 | 
						|
  IK_NotICE
 | 
						|
};
 | 
						|
 | 
						|
struct ICEDiag {
 | 
						|
  ICEKind Kind;
 | 
						|
  SourceLocation Loc;
 | 
						|
 | 
						|
  ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
 | 
						|
 | 
						|
static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
 | 
						|
 | 
						|
static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
 | 
						|
  Expr::EvalResult EVResult;
 | 
						|
  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
 | 
						|
      !EVResult.Val.isInt())
 | 
						|
    return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
 | 
						|
  return NoDiag();
 | 
						|
}
 | 
						|
 | 
						|
static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
 | 
						|
  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
 | 
						|
  if (!E->getType()->isIntegralOrEnumerationType())
 | 
						|
    return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
#define ABSTRACT_STMT(Node)
 | 
						|
#define STMT(Node, Base) case Expr::Node##Class:
 | 
						|
#define EXPR(Node, Base)
 | 
						|
#include "clang/AST/StmtNodes.inc"
 | 
						|
  case Expr::PredefinedExprClass:
 | 
						|
  case Expr::FloatingLiteralClass:
 | 
						|
  case Expr::ImaginaryLiteralClass:
 | 
						|
  case Expr::StringLiteralClass:
 | 
						|
  case Expr::ArraySubscriptExprClass:
 | 
						|
  case Expr::MemberExprClass:
 | 
						|
  case Expr::CompoundAssignOperatorClass:
 | 
						|
  case Expr::CompoundLiteralExprClass:
 | 
						|
  case Expr::ExtVectorElementExprClass:
 | 
						|
  case Expr::DesignatedInitExprClass:
 | 
						|
  case Expr::ImplicitValueInitExprClass:
 | 
						|
  case Expr::ParenListExprClass:
 | 
						|
  case Expr::VAArgExprClass:
 | 
						|
  case Expr::AddrLabelExprClass:
 | 
						|
  case Expr::StmtExprClass:
 | 
						|
  case Expr::CXXMemberCallExprClass:
 | 
						|
  case Expr::CUDAKernelCallExprClass:
 | 
						|
  case Expr::CXXDynamicCastExprClass:
 | 
						|
  case Expr::CXXTypeidExprClass:
 | 
						|
  case Expr::CXXUuidofExprClass:
 | 
						|
  case Expr::MSPropertyRefExprClass:
 | 
						|
  case Expr::CXXNullPtrLiteralExprClass:
 | 
						|
  case Expr::UserDefinedLiteralClass:
 | 
						|
  case Expr::CXXThisExprClass:
 | 
						|
  case Expr::CXXThrowExprClass:
 | 
						|
  case Expr::CXXNewExprClass:
 | 
						|
  case Expr::CXXDeleteExprClass:
 | 
						|
  case Expr::CXXPseudoDestructorExprClass:
 | 
						|
  case Expr::UnresolvedLookupExprClass:
 | 
						|
  case Expr::DependentScopeDeclRefExprClass:
 | 
						|
  case Expr::CXXConstructExprClass:
 | 
						|
  case Expr::CXXBindTemporaryExprClass:
 | 
						|
  case Expr::ExprWithCleanupsClass:
 | 
						|
  case Expr::CXXTemporaryObjectExprClass:
 | 
						|
  case Expr::CXXUnresolvedConstructExprClass:
 | 
						|
  case Expr::CXXDependentScopeMemberExprClass:
 | 
						|
  case Expr::UnresolvedMemberExprClass:
 | 
						|
  case Expr::ObjCStringLiteralClass:
 | 
						|
  case Expr::ObjCBoxedExprClass:
 | 
						|
  case Expr::ObjCArrayLiteralClass:
 | 
						|
  case Expr::ObjCDictionaryLiteralClass:
 | 
						|
  case Expr::ObjCEncodeExprClass:
 | 
						|
  case Expr::ObjCMessageExprClass:
 | 
						|
  case Expr::ObjCSelectorExprClass:
 | 
						|
  case Expr::ObjCProtocolExprClass:
 | 
						|
  case Expr::ObjCIvarRefExprClass:
 | 
						|
  case Expr::ObjCPropertyRefExprClass:
 | 
						|
  case Expr::ObjCSubscriptRefExprClass:
 | 
						|
  case Expr::ObjCIsaExprClass:
 | 
						|
  case Expr::ShuffleVectorExprClass:
 | 
						|
  case Expr::BlockExprClass:
 | 
						|
  case Expr::NoStmtClass:
 | 
						|
  case Expr::OpaqueValueExprClass:
 | 
						|
  case Expr::PackExpansionExprClass:
 | 
						|
  case Expr::SubstNonTypeTemplateParmPackExprClass:
 | 
						|
  case Expr::FunctionParmPackExprClass:
 | 
						|
  case Expr::AsTypeExprClass:
 | 
						|
  case Expr::ObjCIndirectCopyRestoreExprClass:
 | 
						|
  case Expr::MaterializeTemporaryExprClass:
 | 
						|
  case Expr::PseudoObjectExprClass:
 | 
						|
  case Expr::AtomicExprClass:
 | 
						|
  case Expr::InitListExprClass:
 | 
						|
  case Expr::LambdaExprClass:
 | 
						|
    return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
 | 
						|
  case Expr::SizeOfPackExprClass:
 | 
						|
  case Expr::GNUNullExprClass:
 | 
						|
    // GCC considers the GNU __null value to be an integral constant expression.
 | 
						|
    return NoDiag();
 | 
						|
 | 
						|
  case Expr::SubstNonTypeTemplateParmExprClass:
 | 
						|
    return
 | 
						|
      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
 | 
						|
 | 
						|
  case Expr::ParenExprClass:
 | 
						|
    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
 | 
						|
  case Expr::GenericSelectionExprClass:
 | 
						|
    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
 | 
						|
  case Expr::IntegerLiteralClass:
 | 
						|
  case Expr::CharacterLiteralClass:
 | 
						|
  case Expr::ObjCBoolLiteralExprClass:
 | 
						|
  case Expr::CXXBoolLiteralExprClass:
 | 
						|
  case Expr::CXXScalarValueInitExprClass:
 | 
						|
  case Expr::UnaryTypeTraitExprClass:
 | 
						|
  case Expr::BinaryTypeTraitExprClass:
 | 
						|
  case Expr::TypeTraitExprClass:
 | 
						|
  case Expr::ArrayTypeTraitExprClass:
 | 
						|
  case Expr::ExpressionTraitExprClass:
 | 
						|
  case Expr::CXXNoexceptExprClass:
 | 
						|
    return NoDiag();
 | 
						|
  case Expr::CallExprClass:
 | 
						|
  case Expr::CXXOperatorCallExprClass: {
 | 
						|
    // C99 6.6/3 allows function calls within unevaluated subexpressions of
 | 
						|
    // constant expressions, but they can never be ICEs because an ICE cannot
 | 
						|
    // contain an operand of (pointer to) function type.
 | 
						|
    const CallExpr *CE = cast<CallExpr>(E);
 | 
						|
    if (CE->isBuiltinCall())
 | 
						|
      return CheckEvalInICE(E, Ctx);
 | 
						|
    return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
  }
 | 
						|
  case Expr::DeclRefExprClass: {
 | 
						|
    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
 | 
						|
      return NoDiag();
 | 
						|
    const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
 | 
						|
    if (Ctx.getLangOpts().CPlusPlus &&
 | 
						|
        D && IsConstNonVolatile(D->getType())) {
 | 
						|
      // Parameter variables are never constants.  Without this check,
 | 
						|
      // getAnyInitializer() can find a default argument, which leads
 | 
						|
      // to chaos.
 | 
						|
      if (isa<ParmVarDecl>(D))
 | 
						|
        return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
 | 
						|
 | 
						|
      // C++ 7.1.5.1p2
 | 
						|
      //   A variable of non-volatile const-qualified integral or enumeration
 | 
						|
      //   type initialized by an ICE can be used in ICEs.
 | 
						|
      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
 | 
						|
        if (!Dcl->getType()->isIntegralOrEnumerationType())
 | 
						|
          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
 | 
						|
 | 
						|
        const VarDecl *VD;
 | 
						|
        // Look for a declaration of this variable that has an initializer, and
 | 
						|
        // check whether it is an ICE.
 | 
						|
        if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
 | 
						|
          return NoDiag();
 | 
						|
        else
 | 
						|
          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
  }
 | 
						|
  case Expr::UnaryOperatorClass: {
 | 
						|
    const UnaryOperator *Exp = cast<UnaryOperator>(E);
 | 
						|
    switch (Exp->getOpcode()) {
 | 
						|
    case UO_PostInc:
 | 
						|
    case UO_PostDec:
 | 
						|
    case UO_PreInc:
 | 
						|
    case UO_PreDec:
 | 
						|
    case UO_AddrOf:
 | 
						|
    case UO_Deref:
 | 
						|
      // C99 6.6/3 allows increment and decrement within unevaluated
 | 
						|
      // subexpressions of constant expressions, but they can never be ICEs
 | 
						|
      // because an ICE cannot contain an lvalue operand.
 | 
						|
      return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
    case UO_Extension:
 | 
						|
    case UO_LNot:
 | 
						|
    case UO_Plus:
 | 
						|
    case UO_Minus:
 | 
						|
    case UO_Not:
 | 
						|
    case UO_Real:
 | 
						|
    case UO_Imag:
 | 
						|
      return CheckICE(Exp->getSubExpr(), Ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    // OffsetOf falls through here.
 | 
						|
  }
 | 
						|
  case Expr::OffsetOfExprClass: {
 | 
						|
    // Note that per C99, offsetof must be an ICE. And AFAIK, using
 | 
						|
    // EvaluateAsRValue matches the proposed gcc behavior for cases like
 | 
						|
    // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
 | 
						|
    // compliance: we should warn earlier for offsetof expressions with
 | 
						|
    // array subscripts that aren't ICEs, and if the array subscripts
 | 
						|
    // are ICEs, the value of the offsetof must be an integer constant.
 | 
						|
    return CheckEvalInICE(E, Ctx);
 | 
						|
  }
 | 
						|
  case Expr::UnaryExprOrTypeTraitExprClass: {
 | 
						|
    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
 | 
						|
    if ((Exp->getKind() ==  UETT_SizeOf) &&
 | 
						|
        Exp->getTypeOfArgument()->isVariableArrayType())
 | 
						|
      return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
    return NoDiag();
 | 
						|
  }
 | 
						|
  case Expr::BinaryOperatorClass: {
 | 
						|
    const BinaryOperator *Exp = cast<BinaryOperator>(E);
 | 
						|
    switch (Exp->getOpcode()) {
 | 
						|
    case BO_PtrMemD:
 | 
						|
    case BO_PtrMemI:
 | 
						|
    case BO_Assign:
 | 
						|
    case BO_MulAssign:
 | 
						|
    case BO_DivAssign:
 | 
						|
    case BO_RemAssign:
 | 
						|
    case BO_AddAssign:
 | 
						|
    case BO_SubAssign:
 | 
						|
    case BO_ShlAssign:
 | 
						|
    case BO_ShrAssign:
 | 
						|
    case BO_AndAssign:
 | 
						|
    case BO_XorAssign:
 | 
						|
    case BO_OrAssign:
 | 
						|
      // C99 6.6/3 allows assignments within unevaluated subexpressions of
 | 
						|
      // constant expressions, but they can never be ICEs because an ICE cannot
 | 
						|
      // contain an lvalue operand.
 | 
						|
      return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
 | 
						|
    case BO_Mul:
 | 
						|
    case BO_Div:
 | 
						|
    case BO_Rem:
 | 
						|
    case BO_Add:
 | 
						|
    case BO_Sub:
 | 
						|
    case BO_Shl:
 | 
						|
    case BO_Shr:
 | 
						|
    case BO_LT:
 | 
						|
    case BO_GT:
 | 
						|
    case BO_LE:
 | 
						|
    case BO_GE:
 | 
						|
    case BO_EQ:
 | 
						|
    case BO_NE:
 | 
						|
    case BO_And:
 | 
						|
    case BO_Xor:
 | 
						|
    case BO_Or:
 | 
						|
    case BO_Comma: {
 | 
						|
      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
 | 
						|
      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
 | 
						|
      if (Exp->getOpcode() == BO_Div ||
 | 
						|
          Exp->getOpcode() == BO_Rem) {
 | 
						|
        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
 | 
						|
        // we don't evaluate one.
 | 
						|
        if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
 | 
						|
          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
 | 
						|
          if (REval == 0)
 | 
						|
            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
 | 
						|
          if (REval.isSigned() && REval.isAllOnesValue()) {
 | 
						|
            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
 | 
						|
            if (LEval.isMinSignedValue())
 | 
						|
              return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Exp->getOpcode() == BO_Comma) {
 | 
						|
        if (Ctx.getLangOpts().C99) {
 | 
						|
          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
 | 
						|
          // if it isn't evaluated.
 | 
						|
          if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
 | 
						|
            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
 | 
						|
        } else {
 | 
						|
          // In both C89 and C++, commas in ICEs are illegal.
 | 
						|
          return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return Worst(LHSResult, RHSResult);
 | 
						|
    }
 | 
						|
    case BO_LAnd:
 | 
						|
    case BO_LOr: {
 | 
						|
      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
 | 
						|
      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
 | 
						|
      if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
 | 
						|
        // Rare case where the RHS has a comma "side-effect"; we need
 | 
						|
        // to actually check the condition to see whether the side
 | 
						|
        // with the comma is evaluated.
 | 
						|
        if ((Exp->getOpcode() == BO_LAnd) !=
 | 
						|
            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
 | 
						|
          return RHSResult;
 | 
						|
        return NoDiag();
 | 
						|
      }
 | 
						|
 | 
						|
      return Worst(LHSResult, RHSResult);
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case Expr::ImplicitCastExprClass:
 | 
						|
  case Expr::CStyleCastExprClass:
 | 
						|
  case Expr::CXXFunctionalCastExprClass:
 | 
						|
  case Expr::CXXStaticCastExprClass:
 | 
						|
  case Expr::CXXReinterpretCastExprClass:
 | 
						|
  case Expr::CXXConstCastExprClass:
 | 
						|
  case Expr::ObjCBridgedCastExprClass: {
 | 
						|
    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
 | 
						|
    if (isa<ExplicitCastExpr>(E)) {
 | 
						|
      if (const FloatingLiteral *FL
 | 
						|
            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
 | 
						|
        unsigned DestWidth = Ctx.getIntWidth(E->getType());
 | 
						|
        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
 | 
						|
        APSInt IgnoredVal(DestWidth, !DestSigned);
 | 
						|
        bool Ignored;
 | 
						|
        // If the value does not fit in the destination type, the behavior is
 | 
						|
        // undefined, so we are not required to treat it as a constant
 | 
						|
        // expression.
 | 
						|
        if (FL->getValue().convertToInteger(IgnoredVal,
 | 
						|
                                            llvm::APFloat::rmTowardZero,
 | 
						|
                                            &Ignored) & APFloat::opInvalidOp)
 | 
						|
          return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
        return NoDiag();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    switch (cast<CastExpr>(E)->getCastKind()) {
 | 
						|
    case CK_LValueToRValue:
 | 
						|
    case CK_AtomicToNonAtomic:
 | 
						|
    case CK_NonAtomicToAtomic:
 | 
						|
    case CK_NoOp:
 | 
						|
    case CK_IntegralToBoolean:
 | 
						|
    case CK_IntegralCast:
 | 
						|
      return CheckICE(SubExpr, Ctx);
 | 
						|
    default:
 | 
						|
      return ICEDiag(IK_NotICE, E->getLocStart());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case Expr::BinaryConditionalOperatorClass: {
 | 
						|
    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
 | 
						|
    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
 | 
						|
    if (CommonResult.Kind == IK_NotICE) return CommonResult;
 | 
						|
    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
 | 
						|
    if (FalseResult.Kind == IK_NotICE) return FalseResult;
 | 
						|
    if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
 | 
						|
    if (FalseResult.Kind == IK_ICEIfUnevaluated &&
 | 
						|
        Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
 | 
						|
    return FalseResult;
 | 
						|
  }
 | 
						|
  case Expr::ConditionalOperatorClass: {
 | 
						|
    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
 | 
						|
    // If the condition (ignoring parens) is a __builtin_constant_p call,
 | 
						|
    // then only the true side is actually considered in an integer constant
 | 
						|
    // expression, and it is fully evaluated.  This is an important GNU
 | 
						|
    // extension.  See GCC PR38377 for discussion.
 | 
						|
    if (const CallExpr *CallCE
 | 
						|
        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
 | 
						|
      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
 | 
						|
        return CheckEvalInICE(E, Ctx);
 | 
						|
    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
 | 
						|
    if (CondResult.Kind == IK_NotICE)
 | 
						|
      return CondResult;
 | 
						|
 | 
						|
    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
 | 
						|
    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
 | 
						|
 | 
						|
    if (TrueResult.Kind == IK_NotICE)
 | 
						|
      return TrueResult;
 | 
						|
    if (FalseResult.Kind == IK_NotICE)
 | 
						|
      return FalseResult;
 | 
						|
    if (CondResult.Kind == IK_ICEIfUnevaluated)
 | 
						|
      return CondResult;
 | 
						|
    if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
 | 
						|
      return NoDiag();
 | 
						|
    // Rare case where the diagnostics depend on which side is evaluated
 | 
						|
    // Note that if we get here, CondResult is 0, and at least one of
 | 
						|
    // TrueResult and FalseResult is non-zero.
 | 
						|
    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
 | 
						|
      return FalseResult;
 | 
						|
    return TrueResult;
 | 
						|
  }
 | 
						|
  case Expr::CXXDefaultArgExprClass:
 | 
						|
    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
 | 
						|
  case Expr::CXXDefaultInitExprClass:
 | 
						|
    return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
 | 
						|
  case Expr::ChooseExprClass: {
 | 
						|
    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid StmtClass!");
 | 
						|
}
 | 
						|
 | 
						|
/// Evaluate an expression as a C++11 integral constant expression.
 | 
						|
static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
 | 
						|
                                                    const Expr *E,
 | 
						|
                                                    llvm::APSInt *Value,
 | 
						|
                                                    SourceLocation *Loc) {
 | 
						|
  if (!E->getType()->isIntegralOrEnumerationType()) {
 | 
						|
    if (Loc) *Loc = E->getExprLoc();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  APValue Result;
 | 
						|
  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(Result.isInt() && "pointer cast to int is not an ICE");
 | 
						|
  if (Value) *Value = Result.getInt();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
 | 
						|
  if (Ctx.getLangOpts().CPlusPlus11)
 | 
						|
    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
 | 
						|
 | 
						|
  ICEDiag D = CheckICE(this, Ctx);
 | 
						|
  if (D.Kind != IK_ICE) {
 | 
						|
    if (Loc) *Loc = D.Loc;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
 | 
						|
                                 SourceLocation *Loc, bool isEvaluated) const {
 | 
						|
  if (Ctx.getLangOpts().CPlusPlus11)
 | 
						|
    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
 | 
						|
 | 
						|
  if (!isIntegerConstantExpr(Ctx, Loc))
 | 
						|
    return false;
 | 
						|
  if (!EvaluateAsInt(Value, Ctx))
 | 
						|
    llvm_unreachable("ICE cannot be evaluated!");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
 | 
						|
  return CheckICE(this, Ctx).Kind == IK_ICE;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
 | 
						|
                               SourceLocation *Loc) const {
 | 
						|
  // We support this checking in C++98 mode in order to diagnose compatibility
 | 
						|
  // issues.
 | 
						|
  assert(Ctx.getLangOpts().CPlusPlus);
 | 
						|
 | 
						|
  // Build evaluation settings.
 | 
						|
  Expr::EvalStatus Status;
 | 
						|
  SmallVector<PartialDiagnosticAt, 8> Diags;
 | 
						|
  Status.Diag = &Diags;
 | 
						|
  EvalInfo Info(Ctx, Status);
 | 
						|
 | 
						|
  APValue Scratch;
 | 
						|
  bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
 | 
						|
 | 
						|
  if (!Diags.empty()) {
 | 
						|
    IsConstExpr = false;
 | 
						|
    if (Loc) *Loc = Diags[0].first;
 | 
						|
  } else if (!IsConstExpr) {
 | 
						|
    // FIXME: This shouldn't happen.
 | 
						|
    if (Loc) *Loc = getExprLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  return IsConstExpr;
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
 | 
						|
                                   SmallVectorImpl<
 | 
						|
                                     PartialDiagnosticAt> &Diags) {
 | 
						|
  // FIXME: It would be useful to check constexpr function templates, but at the
 | 
						|
  // moment the constant expression evaluator cannot cope with the non-rigorous
 | 
						|
  // ASTs which we build for dependent expressions.
 | 
						|
  if (FD->isDependentContext())
 | 
						|
    return true;
 | 
						|
 | 
						|
  Expr::EvalStatus Status;
 | 
						|
  Status.Diag = &Diags;
 | 
						|
 | 
						|
  EvalInfo Info(FD->getASTContext(), Status);
 | 
						|
  Info.CheckingPotentialConstantExpression = true;
 | 
						|
 | 
						|
  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
 | 
						|
  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
 | 
						|
 | 
						|
  // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
 | 
						|
  // is a temporary being used as the 'this' pointer.
 | 
						|
  LValue This;
 | 
						|
  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
 | 
						|
  This.set(&VIE, Info.CurrentCall->Index);
 | 
						|
 | 
						|
  ArrayRef<const Expr*> Args;
 | 
						|
 | 
						|
  SourceLocation Loc = FD->getLocation();
 | 
						|
 | 
						|
  APValue Scratch;
 | 
						|
  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
 | 
						|
    HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
 | 
						|
  else
 | 
						|
    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
 | 
						|
                       Args, FD->getBody(), Info, Scratch);
 | 
						|
 | 
						|
  return Diags.empty();
 | 
						|
}
 |