forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			813 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			813 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- FuzzerTraceState.cpp - Trace-based fuzzer mutator ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // This file implements a mutation algorithm based on instruction traces and
 | |
| // on taint analysis feedback from DFSan.
 | |
| //
 | |
| // Instruction traces are special hooks inserted by the compiler around
 | |
| // interesting instructions. Currently supported traces:
 | |
| //   * __sanitizer_cov_trace_cmp -- inserted before every ICMP instruction,
 | |
| //    receives the type, size and arguments of ICMP.
 | |
| //
 | |
| // Every time a traced event is intercepted we analyse the data involved
 | |
| // in the event and suggest a mutation for future executions.
 | |
| // For example if 4 bytes of data that derive from input bytes {4,5,6,7}
 | |
| // are compared with a constant 12345,
 | |
| // we try to insert 12345, 12344, 12346 into bytes
 | |
| // {4,5,6,7} of the next fuzzed inputs.
 | |
| //
 | |
| // The fuzzer can work only with the traces, or with both traces and DFSan.
 | |
| //
 | |
| // DataFlowSanitizer (DFSan) is a tool for
 | |
| // generalised dynamic data flow (taint) analysis:
 | |
| // http://clang.llvm.org/docs/DataFlowSanitizer.html .
 | |
| //
 | |
| // The approach with DFSan-based fuzzing has some similarity to
 | |
| // "Taint-based Directed Whitebox Fuzzing"
 | |
| // by Vijay Ganesh & Tim Leek & Martin Rinard:
 | |
| // http://dspace.mit.edu/openaccess-disseminate/1721.1/59320,
 | |
| // but it uses a full blown LLVM IR taint analysis and separate instrumentation
 | |
| // to analyze all of the "attack points" at once.
 | |
| //
 | |
| // Workflow with DFSan:
 | |
| //   * lib/Fuzzer/Fuzzer*.cpp is compiled w/o any instrumentation.
 | |
| //   * The code under test is compiled with DFSan *and* with instruction traces.
 | |
| //   * Every call to HOOK(a,b) is replaced by DFSan with
 | |
| //     __dfsw_HOOK(a, b, label(a), label(b)) so that __dfsw_HOOK
 | |
| //     gets all the taint labels for the arguments.
 | |
| //   * At the Fuzzer startup we assign a unique DFSan label
 | |
| //     to every byte of the input string (Fuzzer::CurrentUnitData) so that
 | |
| //     for any chunk of data we know which input bytes it has derived from.
 | |
| //   * The __dfsw_* functions (implemented in this file) record the
 | |
| //     parameters (i.e. the application data and the corresponding taint labels)
 | |
| //     in a global state.
 | |
| //
 | |
| // Parts of this code will not function when DFSan is not linked in.
 | |
| // Instead of using ifdefs and thus requiring a separate build of lib/Fuzzer
 | |
| // we redeclare the dfsan_* interface functions as weak and check if they
 | |
| // are nullptr before calling.
 | |
| // If this approach proves to be useful we may add attribute(weak) to the
 | |
| // dfsan declarations in dfsan_interface.h
 | |
| //
 | |
| // This module is in the "proof of concept" stage.
 | |
| // It is capable of solving only the simplest puzzles
 | |
| // like test/dfsan/DFSanSimpleCmpTest.cpp.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /* Example of manual usage (-fsanitize=dataflow is optional):
 | |
| (
 | |
|   cd $LLVM/lib/Fuzzer/
 | |
|   clang  -fPIC -c -g -O2 -std=c++11 Fuzzer*.cpp
 | |
|   clang++ -O0 -std=c++11 -fsanitize-coverage=edge,trace-cmp \
 | |
|     -fsanitize=dataflow \
 | |
|     test/SimpleCmpTest.cpp Fuzzer*.o
 | |
|   ./a.out -use_traces=1
 | |
| )
 | |
| */
 | |
| 
 | |
| #include "FuzzerDFSan.h"
 | |
| #include "FuzzerInternal.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstring>
 | |
| #include <thread>
 | |
| #include <map>
 | |
| #include <set>
 | |
| 
 | |
| #if !LLVM_FUZZER_SUPPORTS_DFSAN
 | |
| // Stubs for dfsan for platforms where dfsan does not exist and weak
 | |
| // functions don't work.
 | |
| extern "C" {
 | |
| dfsan_label dfsan_create_label(const char *desc, void *userdata) { return 0; }
 | |
| void dfsan_set_label(dfsan_label label, void *addr, size_t size) {}
 | |
| void dfsan_add_label(dfsan_label label, void *addr, size_t size) {}
 | |
| const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) {
 | |
|   return nullptr;
 | |
| }
 | |
| dfsan_label dfsan_read_label(const void *addr, size_t size) { return 0; }
 | |
| }  // extern "C"
 | |
| #endif  // !LLVM_FUZZER_SUPPORTS_DFSAN
 | |
| 
 | |
| namespace fuzzer {
 | |
| 
 | |
| // These values are copied from include/llvm/IR/InstrTypes.h.
 | |
| // We do not include the LLVM headers here to remain independent.
 | |
| // If these values ever change, an assertion in ComputeCmp will fail.
 | |
| enum Predicate {
 | |
|   ICMP_EQ = 32,  ///< equal
 | |
|   ICMP_NE = 33,  ///< not equal
 | |
|   ICMP_UGT = 34, ///< unsigned greater than
 | |
|   ICMP_UGE = 35, ///< unsigned greater or equal
 | |
|   ICMP_ULT = 36, ///< unsigned less than
 | |
|   ICMP_ULE = 37, ///< unsigned less or equal
 | |
|   ICMP_SGT = 38, ///< signed greater than
 | |
|   ICMP_SGE = 39, ///< signed greater or equal
 | |
|   ICMP_SLT = 40, ///< signed less than
 | |
|   ICMP_SLE = 41, ///< signed less or equal
 | |
| };
 | |
| 
 | |
| template <class U, class S>
 | |
| bool ComputeCmp(size_t CmpType, U Arg1, U Arg2) {
 | |
|   switch(CmpType) {
 | |
|     case ICMP_EQ : return Arg1 == Arg2;
 | |
|     case ICMP_NE : return Arg1 != Arg2;
 | |
|     case ICMP_UGT: return Arg1 > Arg2;
 | |
|     case ICMP_UGE: return Arg1 >= Arg2;
 | |
|     case ICMP_ULT: return Arg1 < Arg2;
 | |
|     case ICMP_ULE: return Arg1 <= Arg2;
 | |
|     case ICMP_SGT: return (S)Arg1 > (S)Arg2;
 | |
|     case ICMP_SGE: return (S)Arg1 >= (S)Arg2;
 | |
|     case ICMP_SLT: return (S)Arg1 < (S)Arg2;
 | |
|     case ICMP_SLE: return (S)Arg1 <= (S)Arg2;
 | |
|     default: assert(0 && "unsupported CmpType");
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool ComputeCmp(size_t CmpSize, size_t CmpType, uint64_t Arg1,
 | |
|                        uint64_t Arg2) {
 | |
|   if (CmpSize == 8) return ComputeCmp<uint64_t, int64_t>(CmpType, Arg1, Arg2);
 | |
|   if (CmpSize == 4) return ComputeCmp<uint32_t, int32_t>(CmpType, Arg1, Arg2);
 | |
|   if (CmpSize == 2) return ComputeCmp<uint16_t, int16_t>(CmpType, Arg1, Arg2);
 | |
|   if (CmpSize == 1) return ComputeCmp<uint8_t, int8_t>(CmpType, Arg1, Arg2);
 | |
|   // Other size, ==
 | |
|   if (CmpType == ICMP_EQ) return Arg1 == Arg2;
 | |
|   // assert(0 && "unsupported cmp and type size combination");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // As a simplification we use the range of input bytes instead of a set of input
 | |
| // bytes.
 | |
| struct LabelRange {
 | |
|   uint16_t Beg, End;  // Range is [Beg, End), thus Beg==End is an empty range.
 | |
| 
 | |
|   LabelRange(uint16_t Beg = 0, uint16_t End = 0) : Beg(Beg), End(End) {}
 | |
| 
 | |
|   static LabelRange Join(LabelRange LR1, LabelRange LR2) {
 | |
|     if (LR1.Beg == LR1.End) return LR2;
 | |
|     if (LR2.Beg == LR2.End) return LR1;
 | |
|     return {std::min(LR1.Beg, LR2.Beg), std::max(LR1.End, LR2.End)};
 | |
|   }
 | |
|   LabelRange &Join(LabelRange LR) {
 | |
|     return *this = Join(*this, LR);
 | |
|   }
 | |
|   static LabelRange Singleton(const dfsan_label_info *LI) {
 | |
|     uint16_t Idx = (uint16_t)(uintptr_t)LI->userdata;
 | |
|     assert(Idx > 0);
 | |
|     return {(uint16_t)(Idx - 1), Idx};
 | |
|   }
 | |
| };
 | |
| 
 | |
| // For now, very simple: put Size bytes of Data at position Pos.
 | |
| struct TraceBasedMutation {
 | |
|   uint32_t Pos;
 | |
|   Word W;
 | |
| };
 | |
| 
 | |
| // Declared as static globals for faster checks inside the hooks.
 | |
| static bool RecordingTraces = false;
 | |
| static bool RecordingMemcmp = false;
 | |
| static bool RecordingMemmem = false;
 | |
| static bool RecordingValueProfile = false;
 | |
| static bool DoingMyOwnMemmem = false;
 | |
| 
 | |
| struct ScopedDoingMyOwnMemmem {
 | |
|   ScopedDoingMyOwnMemmem() { DoingMyOwnMemmem = true; }
 | |
|   ~ScopedDoingMyOwnMemmem() { DoingMyOwnMemmem = false; }
 | |
| };
 | |
| 
 | |
| class TraceState {
 | |
| public:
 | |
|   TraceState(MutationDispatcher &MD, const FuzzingOptions &Options,
 | |
|              const Fuzzer *F)
 | |
|       : MD(MD), Options(Options), F(F) {}
 | |
| 
 | |
|   LabelRange GetLabelRange(dfsan_label L);
 | |
|   void DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
 | |
|                         uint64_t Arg1, uint64_t Arg2, dfsan_label L1,
 | |
|                         dfsan_label L2);
 | |
|   void DFSanMemcmpCallback(size_t CmpSize, const uint8_t *Data1,
 | |
|                            const uint8_t *Data2, dfsan_label L1,
 | |
|                            dfsan_label L2);
 | |
|   void DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits, uint64_t Val,
 | |
|                            size_t NumCases, uint64_t *Cases, dfsan_label L);
 | |
|   void TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
 | |
|                         uint64_t Arg1, uint64_t Arg2);
 | |
|   void TraceMemcmpCallback(size_t CmpSize, const uint8_t *Data1,
 | |
|                            const uint8_t *Data2);
 | |
| 
 | |
|   void TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits, uint64_t Val,
 | |
|                            size_t NumCases, uint64_t *Cases);
 | |
|   int TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData,
 | |
|                           size_t DataSize);
 | |
|   int TryToAddDesiredData(const uint8_t *PresentData,
 | |
|                           const uint8_t *DesiredData, size_t DataSize);
 | |
| 
 | |
|   void StartTraceRecording() {
 | |
|     if (!Options.UseTraces && !Options.UseMemcmp)
 | |
|       return;
 | |
|     RecordingTraces = Options.UseTraces;
 | |
|     RecordingMemcmp = Options.UseMemcmp;
 | |
|     RecordingMemmem = Options.UseMemmem;
 | |
|     NumMutations = 0;
 | |
|     InterestingWords.clear();
 | |
|     MD.ClearAutoDictionary();
 | |
|   }
 | |
| 
 | |
|   void StopTraceRecording() {
 | |
|     if (!RecordingTraces && !RecordingMemcmp)
 | |
|       return;
 | |
|     RecordingTraces = false;
 | |
|     RecordingMemcmp = false;
 | |
|     for (size_t i = 0; i < NumMutations; i++) {
 | |
|       auto &M = Mutations[i];
 | |
|       if (Options.Verbosity >= 2) {
 | |
|         AutoDictUnitCounts[M.W]++;
 | |
|         AutoDictAdds++;
 | |
|         if ((AutoDictAdds & (AutoDictAdds - 1)) == 0) {
 | |
|           typedef std::pair<size_t, Word> CU;
 | |
|           std::vector<CU> CountedUnits;
 | |
|           for (auto &I : AutoDictUnitCounts)
 | |
|             CountedUnits.push_back(std::make_pair(I.second, I.first));
 | |
|           std::sort(CountedUnits.begin(), CountedUnits.end(),
 | |
|                     [](const CU &a, const CU &b) { return a.first > b.first; });
 | |
|           Printf("AutoDict:\n");
 | |
|           for (auto &I : CountedUnits) {
 | |
|             Printf("   %zd ", I.first);
 | |
|             PrintASCII(I.second);
 | |
|             Printf("\n");
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       MD.AddWordToAutoDictionary({M.W, M.Pos});
 | |
|     }
 | |
|     for (auto &W : InterestingWords)
 | |
|       MD.AddWordToAutoDictionary({W});
 | |
|   }
 | |
| 
 | |
|   void AddMutation(uint32_t Pos, uint32_t Size, const uint8_t *Data) {
 | |
|     if (NumMutations >= kMaxMutations) return;
 | |
|     auto &M = Mutations[NumMutations++];
 | |
|     M.Pos = Pos;
 | |
|     M.W.Set(Data, Size);
 | |
|   }
 | |
| 
 | |
|   void AddMutation(uint32_t Pos, uint32_t Size, uint64_t Data) {
 | |
|     assert(Size <= sizeof(Data));
 | |
|     AddMutation(Pos, Size, reinterpret_cast<uint8_t*>(&Data));
 | |
|   }
 | |
| 
 | |
|   void AddInterestingWord(const uint8_t *Data, size_t Size) {
 | |
|     if (!RecordingMemmem || !F->InFuzzingThread()) return;
 | |
|     if (Size <= 1) return;
 | |
|     Size = std::min(Size, Word::GetMaxSize());
 | |
|     Word W(Data, Size);
 | |
|     InterestingWords.insert(W);
 | |
|   }
 | |
| 
 | |
|   void EnsureDfsanLabels(size_t Size) {
 | |
|     for (; LastDfsanLabel < Size; LastDfsanLabel++) {
 | |
|       dfsan_label L = dfsan_create_label("input", (void *)(LastDfsanLabel + 1));
 | |
|       // We assume that no one else has called dfsan_create_label before.
 | |
|       if (L != LastDfsanLabel + 1) {
 | |
|         Printf("DFSan labels are not starting from 1, exiting\n");
 | |
|         exit(1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   bool IsTwoByteData(uint64_t Data) {
 | |
|     int64_t Signed = static_cast<int64_t>(Data);
 | |
|     Signed >>= 16;
 | |
|     return Signed == 0 || Signed == -1L;
 | |
|   }
 | |
| 
 | |
|   // We don't want to create too many trace-based mutations as it is both
 | |
|   // expensive and useless. So after some number of mutations is collected,
 | |
|   // start rejecting some of them. The more there are mutations the more we
 | |
|   // reject.
 | |
|   bool WantToHandleOneMoreMutation() {
 | |
|     const size_t FirstN = 64;
 | |
|     // Gladly handle first N mutations.
 | |
|     if (NumMutations <= FirstN) return true;
 | |
|     size_t Diff = NumMutations - FirstN;
 | |
|     size_t DiffLog = sizeof(long) * 8 - __builtin_clzl((long)Diff);
 | |
|     assert(DiffLog > 0 && DiffLog < 64);
 | |
|     bool WantThisOne = MD.GetRand()(1 << DiffLog) == 0;  // 1 out of DiffLog.
 | |
|     return WantThisOne;
 | |
|   }
 | |
| 
 | |
|   static const size_t kMaxMutations = 1 << 16;
 | |
|   size_t NumMutations;
 | |
|   TraceBasedMutation Mutations[kMaxMutations];
 | |
|   // TODO: std::set is too inefficient, need to have a custom DS here.
 | |
|   std::set<Word> InterestingWords;
 | |
|   LabelRange LabelRanges[1 << (sizeof(dfsan_label) * 8)];
 | |
|   size_t LastDfsanLabel = 0;
 | |
|   MutationDispatcher &MD;
 | |
|   const FuzzingOptions Options;
 | |
|   const Fuzzer *F;
 | |
|   std::map<Word, size_t> AutoDictUnitCounts;
 | |
|   size_t AutoDictAdds = 0;
 | |
| };
 | |
| 
 | |
| 
 | |
| LabelRange TraceState::GetLabelRange(dfsan_label L) {
 | |
|   LabelRange &LR = LabelRanges[L];
 | |
|   if (LR.Beg < LR.End || L == 0)
 | |
|     return LR;
 | |
|   const dfsan_label_info *LI = dfsan_get_label_info(L);
 | |
|   if (LI->l1 || LI->l2)
 | |
|     return LR = LabelRange::Join(GetLabelRange(LI->l1), GetLabelRange(LI->l2));
 | |
|   return LR = LabelRange::Singleton(LI);
 | |
| }
 | |
| 
 | |
| void TraceState::DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
 | |
|                                   uint64_t Arg1, uint64_t Arg2, dfsan_label L1,
 | |
|                                   dfsan_label L2) {
 | |
|   assert(ReallyHaveDFSan());
 | |
|   if (!RecordingTraces || !F->InFuzzingThread()) return;
 | |
|   if (L1 == 0 && L2 == 0)
 | |
|     return;  // Not actionable.
 | |
|   if (L1 != 0 && L2 != 0)
 | |
|     return;  // Probably still actionable.
 | |
|   bool Res = ComputeCmp(CmpSize, CmpType, Arg1, Arg2);
 | |
|   uint64_t Data = L1 ? Arg2 : Arg1;
 | |
|   LabelRange LR = L1 ? GetLabelRange(L1) : GetLabelRange(L2);
 | |
| 
 | |
|   for (size_t Pos = LR.Beg; Pos + CmpSize <= LR.End; Pos++) {
 | |
|     AddMutation(Pos, CmpSize, Data);
 | |
|     AddMutation(Pos, CmpSize, Data + 1);
 | |
|     AddMutation(Pos, CmpSize, Data - 1);
 | |
|   }
 | |
| 
 | |
|   if (CmpSize > (size_t)(LR.End - LR.Beg))
 | |
|     AddMutation(LR.Beg, (unsigned)(LR.End - LR.Beg), Data);
 | |
| 
 | |
| 
 | |
|   if (Options.Verbosity >= 3)
 | |
|     Printf("DFSanCmpCallback: PC %lx S %zd T %zd A1 %llx A2 %llx R %d L1 %d L2 "
 | |
|            "%d MU %zd\n",
 | |
|            PC, CmpSize, CmpType, Arg1, Arg2, Res, L1, L2, NumMutations);
 | |
| }
 | |
| 
 | |
| void TraceState::DFSanMemcmpCallback(size_t CmpSize, const uint8_t *Data1,
 | |
|                                      const uint8_t *Data2, dfsan_label L1,
 | |
|                                      dfsan_label L2) {
 | |
| 
 | |
|   assert(ReallyHaveDFSan());
 | |
|   if (!RecordingMemcmp || !F->InFuzzingThread()) return;
 | |
|   if (L1 == 0 && L2 == 0)
 | |
|     return;  // Not actionable.
 | |
|   if (L1 != 0 && L2 != 0)
 | |
|     return;  // Probably still actionable.
 | |
| 
 | |
|   const uint8_t *Data = L1 ? Data2 : Data1;
 | |
|   LabelRange LR = L1 ? GetLabelRange(L1) : GetLabelRange(L2);
 | |
|   for (size_t Pos = LR.Beg; Pos + CmpSize <= LR.End; Pos++) {
 | |
|     AddMutation(Pos, CmpSize, Data);
 | |
|     if (Options.Verbosity >= 3)
 | |
|       Printf("DFSanMemcmpCallback: Pos %d Size %d\n", Pos, CmpSize);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TraceState::DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits,
 | |
|                                      uint64_t Val, size_t NumCases,
 | |
|                                      uint64_t *Cases, dfsan_label L) {
 | |
|   assert(ReallyHaveDFSan());
 | |
|   if (!RecordingTraces || !F->InFuzzingThread()) return;
 | |
|   if (!L) return;  // Not actionable.
 | |
|   LabelRange LR = GetLabelRange(L);
 | |
|   size_t ValSize = ValSizeInBits / 8;
 | |
|   bool TryShort = IsTwoByteData(Val);
 | |
|   for (size_t i = 0; i < NumCases; i++)
 | |
|     TryShort &= IsTwoByteData(Cases[i]);
 | |
| 
 | |
|   for (size_t Pos = LR.Beg; Pos + ValSize <= LR.End; Pos++)
 | |
|     for (size_t i = 0; i < NumCases; i++)
 | |
|       AddMutation(Pos, ValSize, Cases[i]);
 | |
| 
 | |
|   if (TryShort)
 | |
|     for (size_t Pos = LR.Beg; Pos + 2 <= LR.End; Pos++)
 | |
|       for (size_t i = 0; i < NumCases; i++)
 | |
|         AddMutation(Pos, 2, Cases[i]);
 | |
| 
 | |
|   if (Options.Verbosity >= 3)
 | |
|     Printf("DFSanSwitchCallback: PC %lx Val %zd SZ %zd # %zd L %d: {%d, %d} "
 | |
|            "TryShort %d\n",
 | |
|            PC, Val, ValSize, NumCases, L, LR.Beg, LR.End, TryShort);
 | |
| }
 | |
| 
 | |
| int TraceState::TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData,
 | |
|                                     size_t DataSize) {
 | |
|   if (NumMutations >= kMaxMutations || !WantToHandleOneMoreMutation()) return 0;
 | |
|   ScopedDoingMyOwnMemmem scoped_doing_my_own_memmem;
 | |
|   const uint8_t *UnitData;
 | |
|   auto UnitSize = F->GetCurrentUnitInFuzzingThead(&UnitData);
 | |
|   int Res = 0;
 | |
|   const uint8_t *Beg = UnitData;
 | |
|   const uint8_t *End = Beg + UnitSize;
 | |
|   for (const uint8_t *Cur = Beg; Cur < End; Cur++) {
 | |
|     Cur = (uint8_t *)memmem(Cur, End - Cur, &PresentData, DataSize);
 | |
|     if (!Cur)
 | |
|       break;
 | |
|     size_t Pos = Cur - Beg;
 | |
|     assert(Pos < UnitSize);
 | |
|     AddMutation(Pos, DataSize, DesiredData);
 | |
|     AddMutation(Pos, DataSize, DesiredData + 1);
 | |
|     AddMutation(Pos, DataSize, DesiredData - 1);
 | |
|     Res++;
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| int TraceState::TryToAddDesiredData(const uint8_t *PresentData,
 | |
|                                     const uint8_t *DesiredData,
 | |
|                                     size_t DataSize) {
 | |
|   if (NumMutations >= kMaxMutations || !WantToHandleOneMoreMutation()) return 0;
 | |
|   ScopedDoingMyOwnMemmem scoped_doing_my_own_memmem;
 | |
|   const uint8_t *UnitData;
 | |
|   auto UnitSize = F->GetCurrentUnitInFuzzingThead(&UnitData);
 | |
|   int Res = 0;
 | |
|   const uint8_t *Beg = UnitData;
 | |
|   const uint8_t *End = Beg + UnitSize;
 | |
|   for (const uint8_t *Cur = Beg; Cur < End; Cur++) {
 | |
|     Cur = (uint8_t *)memmem(Cur, End - Cur, PresentData, DataSize);
 | |
|     if (!Cur)
 | |
|       break;
 | |
|     size_t Pos = Cur - Beg;
 | |
|     assert(Pos < UnitSize);
 | |
|     AddMutation(Pos, DataSize, DesiredData);
 | |
|     Res++;
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| void TraceState::TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType,
 | |
|                                   uint64_t Arg1, uint64_t Arg2) {
 | |
|   if (!RecordingTraces || !F->InFuzzingThread()) return;
 | |
|   if ((CmpType == ICMP_EQ || CmpType == ICMP_NE) && Arg1 == Arg2)
 | |
|     return;  // No reason to mutate.
 | |
|   int Added = 0;
 | |
|   Added += TryToAddDesiredData(Arg1, Arg2, CmpSize);
 | |
|   Added += TryToAddDesiredData(Arg2, Arg1, CmpSize);
 | |
|   if (!Added && CmpSize == 4 && IsTwoByteData(Arg1) && IsTwoByteData(Arg2)) {
 | |
|     Added += TryToAddDesiredData(Arg1, Arg2, 2);
 | |
|     Added += TryToAddDesiredData(Arg2, Arg1, 2);
 | |
|   }
 | |
|   if (Options.Verbosity >= 3 && Added)
 | |
|     Printf("TraceCmp %zd/%zd: %p %zd %zd\n", CmpSize, CmpType, PC, Arg1, Arg2);
 | |
| }
 | |
| 
 | |
| void TraceState::TraceMemcmpCallback(size_t CmpSize, const uint8_t *Data1,
 | |
|                                      const uint8_t *Data2) {
 | |
|   if (!RecordingMemcmp || !F->InFuzzingThread()) return;
 | |
|   CmpSize = std::min(CmpSize, Word::GetMaxSize());
 | |
|   int Added2 = TryToAddDesiredData(Data1, Data2, CmpSize);
 | |
|   int Added1 = TryToAddDesiredData(Data2, Data1, CmpSize);
 | |
|   if ((Added1 || Added2) && Options.Verbosity >= 3) {
 | |
|     Printf("MemCmp Added %d%d: ", Added1, Added2);
 | |
|     if (Added1) PrintASCII(Data1, CmpSize);
 | |
|     if (Added2) PrintASCII(Data2, CmpSize);
 | |
|     Printf("\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TraceState::TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits,
 | |
|                                      uint64_t Val, size_t NumCases,
 | |
|                                      uint64_t *Cases) {
 | |
|   if (!RecordingTraces || !F->InFuzzingThread()) return;
 | |
|   size_t ValSize = ValSizeInBits / 8;
 | |
|   bool TryShort = IsTwoByteData(Val);
 | |
|   for (size_t i = 0; i < NumCases; i++)
 | |
|     TryShort &= IsTwoByteData(Cases[i]);
 | |
| 
 | |
|   if (Options.Verbosity >= 3)
 | |
|     Printf("TraceSwitch: %p %zd # %zd; TryShort %d\n", PC, Val, NumCases,
 | |
|            TryShort);
 | |
| 
 | |
|   for (size_t i = 0; i < NumCases; i++) {
 | |
|     TryToAddDesiredData(Val, Cases[i], ValSize);
 | |
|     if (TryShort)
 | |
|       TryToAddDesiredData(Val, Cases[i], 2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static TraceState *TS;
 | |
| 
 | |
| void Fuzzer::StartTraceRecording() {
 | |
|   if (!TS) return;
 | |
|   TS->StartTraceRecording();
 | |
| }
 | |
| 
 | |
| void Fuzzer::StopTraceRecording() {
 | |
|   if (!TS) return;
 | |
|   TS->StopTraceRecording();
 | |
| }
 | |
| 
 | |
| void Fuzzer::AssignTaintLabels(uint8_t *Data, size_t Size) {
 | |
|   if (!Options.UseTraces && !Options.UseMemcmp) return;
 | |
|   if (!ReallyHaveDFSan()) return;
 | |
|   TS->EnsureDfsanLabels(Size);
 | |
|   for (size_t i = 0; i < Size; i++)
 | |
|     dfsan_set_label(i + 1, &Data[i], 1);
 | |
| }
 | |
| 
 | |
| void Fuzzer::InitializeTraceState() {
 | |
|   if (!Options.UseTraces && !Options.UseMemcmp) return;
 | |
|   TS = new TraceState(MD, Options, this);
 | |
| }
 | |
| 
 | |
| static size_t InternalStrnlen(const char *S, size_t MaxLen) {
 | |
|   size_t Len = 0;
 | |
|   for (; Len < MaxLen && S[Len]; Len++) {}
 | |
|   return Len;
 | |
| }
 | |
| 
 | |
| // Value profile.
 | |
| // We keep track of various values that affect control flow.
 | |
| // These values are inserted into a bit-set-based hash map (ValueBitMap VP).
 | |
| // Every new bit in the map is treated as a new coverage.
 | |
| //
 | |
| // For memcmp/strcmp/etc the interesting value is the length of the common
 | |
| // prefix of the parameters.
 | |
| // For cmp instructions the interesting value is a XOR of the parameters.
 | |
| // The interesting value is mixed up with the PC and is then added to the map.
 | |
| static ValueBitMap VP;
 | |
| 
 | |
| void EnableValueProfile() { RecordingValueProfile = true; }
 | |
| 
 | |
| size_t VPMapMergeFromCurrent(ValueBitMap &M) {
 | |
|   if (!RecordingValueProfile) return 0;
 | |
|   return M.MergeFrom(VP);
 | |
| }
 | |
| 
 | |
| static void AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2,
 | |
|                               size_t n) {
 | |
|   if (!n) return;
 | |
|   size_t Len = std::min(n, (size_t)32);
 | |
|   const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
 | |
|   const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
 | |
|   size_t I = 0;
 | |
|   for (; I < Len; I++)
 | |
|     if (A1[I] != A2[I])
 | |
|       break;
 | |
|   size_t PC = reinterpret_cast<size_t>(caller_pc);
 | |
|   size_t Idx = I;
 | |
|   // if (I < Len)
 | |
|   //  Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1;
 | |
|   VP.AddValue((PC & 4095) | (Idx << 12));
 | |
| }
 | |
| 
 | |
| static void AddValueForStrcmp(void *caller_pc, const char *s1, const char *s2,
 | |
|                               size_t n) {
 | |
|   if (!n) return;
 | |
|   size_t Len = std::min(n, (size_t)32);
 | |
|   const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
 | |
|   const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
 | |
|   size_t I = 0;
 | |
|   for (; I < Len; I++)
 | |
|     if (A1[I] != A2[I] || A1[I] == 0)
 | |
|       break;
 | |
|   size_t PC = reinterpret_cast<size_t>(caller_pc);
 | |
|   size_t Idx = I;
 | |
|   // if (I < Len && A1[I])
 | |
|   //  Idx += __builtin_popcountl((A1[I] ^ A2[I])) - 1;
 | |
|   VP.AddValue((PC & 4095) | (Idx << 12));
 | |
| }
 | |
| 
 | |
| ATTRIBUTE_TARGET_POPCNT
 | |
| static void AddValueForCmp(void *PCptr, uint64_t Arg1, uint64_t Arg2) {
 | |
|   if (Arg1 == Arg2)
 | |
|     return;
 | |
|   uintptr_t PC = reinterpret_cast<uintptr_t>(PCptr);
 | |
|   uint64_t ArgDistance = __builtin_popcountl(Arg1 ^ Arg2) - 1; // [0,63]
 | |
|   uintptr_t Idx = (PC & 4095) | (ArgDistance << 12);
 | |
|   VP.AddValue(Idx);
 | |
| }
 | |
| 
 | |
| static void AddValueForSingleVal(void *PCptr, uintptr_t Val) {
 | |
|   if (!Val) return;
 | |
|   uintptr_t PC = reinterpret_cast<uintptr_t>(PCptr);
 | |
|   uint64_t ArgDistance = __builtin_popcountl(Val) - 1; // [0,63]
 | |
|   uintptr_t Idx = (PC & 4095) | (ArgDistance << 12);
 | |
|   VP.AddValue(Idx);
 | |
| }
 | |
| 
 | |
| }  // namespace fuzzer
 | |
| 
 | |
| using fuzzer::TS;
 | |
| using fuzzer::RecordingTraces;
 | |
| using fuzzer::RecordingMemcmp;
 | |
| using fuzzer::RecordingValueProfile;
 | |
| 
 | |
| extern "C" {
 | |
| void __dfsw___sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1,
 | |
|                                       uint64_t Arg2, dfsan_label L0,
 | |
|                                       dfsan_label L1, dfsan_label L2) {
 | |
|   if (!RecordingTraces) return;
 | |
|   assert(L0 == 0);
 | |
|   uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
 | |
|   uint64_t CmpSize = (SizeAndType >> 32) / 8;
 | |
|   uint64_t Type = (SizeAndType << 32) >> 32;
 | |
|   TS->DFSanCmpCallback(PC, CmpSize, Type, Arg1, Arg2, L1, L2);
 | |
| }
 | |
| 
 | |
| #define DFSAN_CMP_CALLBACK(N)                                                  \
 | |
|   void __dfsw___sanitizer_cov_trace_cmp##N(uint64_t Arg1, uint64_t Arg2,       \
 | |
|                                            dfsan_label L1, dfsan_label L2) {   \
 | |
|     if (RecordingTraces)                                                       \
 | |
|       TS->DFSanCmpCallback(                                                    \
 | |
|           reinterpret_cast<uintptr_t>(__builtin_return_address(0)), N,         \
 | |
|           fuzzer::ICMP_EQ, Arg1, Arg2, L1, L2);                                \
 | |
|   }
 | |
| 
 | |
| DFSAN_CMP_CALLBACK(1)
 | |
| DFSAN_CMP_CALLBACK(2)
 | |
| DFSAN_CMP_CALLBACK(4)
 | |
| DFSAN_CMP_CALLBACK(8)
 | |
| #undef DFSAN_CMP_CALLBACK
 | |
| 
 | |
| void __dfsw___sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases,
 | |
|                                          dfsan_label L1, dfsan_label L2) {
 | |
|   if (!RecordingTraces) return;
 | |
|   uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
 | |
|   TS->DFSanSwitchCallback(PC, Cases[1], Val, Cases[0], Cases+2, L1);
 | |
| }
 | |
| 
 | |
| void dfsan_weak_hook_memcmp(void *caller_pc, const void *s1, const void *s2,
 | |
|                             size_t n, dfsan_label s1_label,
 | |
|                             dfsan_label s2_label, dfsan_label n_label) {
 | |
|   if (!RecordingMemcmp) return;
 | |
|   dfsan_label L1 = dfsan_read_label(s1, n);
 | |
|   dfsan_label L2 = dfsan_read_label(s2, n);
 | |
|   TS->DFSanMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1),
 | |
|                           reinterpret_cast<const uint8_t *>(s2), L1, L2);
 | |
| }
 | |
| 
 | |
| void dfsan_weak_hook_strncmp(void *caller_pc, const char *s1, const char *s2,
 | |
|                              size_t n, dfsan_label s1_label,
 | |
|                              dfsan_label s2_label, dfsan_label n_label) {
 | |
|   if (!RecordingMemcmp) return;
 | |
|   n = std::min(n, fuzzer::InternalStrnlen(s1, n));
 | |
|   n = std::min(n, fuzzer::InternalStrnlen(s2, n));
 | |
|   dfsan_label L1 = dfsan_read_label(s1, n);
 | |
|   dfsan_label L2 = dfsan_read_label(s2, n);
 | |
|   TS->DFSanMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1),
 | |
|                           reinterpret_cast<const uint8_t *>(s2), L1, L2);
 | |
| }
 | |
| 
 | |
| void dfsan_weak_hook_strcmp(void *caller_pc, const char *s1, const char *s2,
 | |
|                             dfsan_label s1_label, dfsan_label s2_label) {
 | |
|   if (!RecordingMemcmp) return;
 | |
|   size_t Len1 = strlen(s1);
 | |
|   size_t Len2 = strlen(s2);
 | |
|   size_t N = std::min(Len1, Len2);
 | |
|   if (N <= 1) return;  // Not interesting.
 | |
|   dfsan_label L1 = dfsan_read_label(s1, Len1);
 | |
|   dfsan_label L2 = dfsan_read_label(s2, Len2);
 | |
|   TS->DFSanMemcmpCallback(N, reinterpret_cast<const uint8_t *>(s1),
 | |
|                           reinterpret_cast<const uint8_t *>(s2), L1, L2);
 | |
| }
 | |
| 
 | |
| // We may need to avoid defining weak hooks to stay compatible with older clang.
 | |
| #ifndef LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS
 | |
| # define LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS 1
 | |
| #endif
 | |
| 
 | |
| #if LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS
 | |
| void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1,
 | |
|                                   const void *s2, size_t n, int result) {
 | |
|   if (RecordingValueProfile)
 | |
|     fuzzer::AddValueForMemcmp(caller_pc, s1, s2, n);
 | |
|   if (!RecordingMemcmp) return;
 | |
|   if (result == 0) return;  // No reason to mutate.
 | |
|   if (n <= 1) return;  // Not interesting.
 | |
|   TS->TraceMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1),
 | |
|                           reinterpret_cast<const uint8_t *>(s2));
 | |
| }
 | |
| 
 | |
| void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1,
 | |
|                                    const char *s2, size_t n, int result) {
 | |
|   if (RecordingValueProfile)
 | |
|     fuzzer::AddValueForStrcmp(caller_pc, s1, s2, n);
 | |
|   if (!RecordingMemcmp) return;
 | |
|   if (result == 0) return;  // No reason to mutate.
 | |
|   size_t Len1 = fuzzer::InternalStrnlen(s1, n);
 | |
|   size_t Len2 = fuzzer::InternalStrnlen(s2, n);
 | |
|   n = std::min(n, Len1);
 | |
|   n = std::min(n, Len2);
 | |
|   if (n <= 1) return;  // Not interesting.
 | |
|   TS->TraceMemcmpCallback(n, reinterpret_cast<const uint8_t *>(s1),
 | |
|                           reinterpret_cast<const uint8_t *>(s2));
 | |
| }
 | |
| 
 | |
| void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1,
 | |
|                                    const char *s2, int result) {
 | |
|   if (RecordingValueProfile)
 | |
|     fuzzer::AddValueForStrcmp(caller_pc, s1, s2, 64);
 | |
|   if (!RecordingMemcmp) return;
 | |
|   if (result == 0) return;  // No reason to mutate.
 | |
|   size_t Len1 = strlen(s1);
 | |
|   size_t Len2 = strlen(s2);
 | |
|   size_t N = std::min(Len1, Len2);
 | |
|   if (N <= 1) return;  // Not interesting.
 | |
|   TS->TraceMemcmpCallback(N, reinterpret_cast<const uint8_t *>(s1),
 | |
|                           reinterpret_cast<const uint8_t *>(s2));
 | |
| }
 | |
| 
 | |
| void __sanitizer_weak_hook_strncasecmp(void *called_pc, const char *s1,
 | |
|                                        const char *s2, size_t n, int result) {
 | |
|   return __sanitizer_weak_hook_strncmp(called_pc, s1, s2, n, result);
 | |
| }
 | |
| void __sanitizer_weak_hook_strcasecmp(void *called_pc, const char *s1,
 | |
|                                       const char *s2, int result) {
 | |
|   return __sanitizer_weak_hook_strcmp(called_pc, s1, s2, result);
 | |
| }
 | |
| void __sanitizer_weak_hook_strstr(void *called_pc, const char *s1,
 | |
|                                   const char *s2, char *result) {
 | |
|   TS->AddInterestingWord(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
 | |
| }
 | |
| void __sanitizer_weak_hook_strcasestr(void *called_pc, const char *s1,
 | |
|                                       const char *s2, char *result) {
 | |
|   TS->AddInterestingWord(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
 | |
| }
 | |
| void __sanitizer_weak_hook_memmem(void *called_pc, const void *s1, size_t len1,
 | |
|                                   const void *s2, size_t len2, void *result) {
 | |
|   if (fuzzer::DoingMyOwnMemmem) return;
 | |
|   TS->AddInterestingWord(reinterpret_cast<const uint8_t *>(s2), len2);
 | |
| }
 | |
| 
 | |
| #endif  // LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS
 | |
| 
 | |
| // TODO: this one will not be used with the newest clang. Remove it.
 | |
| __attribute__((visibility("default")))
 | |
| void __sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1,
 | |
|                                uint64_t Arg2) {
 | |
|   if (RecordingTraces) {
 | |
|     uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
 | |
|     uint64_t CmpSize = (SizeAndType >> 32) / 8;
 | |
|     uint64_t Type = (SizeAndType << 32) >> 32;
 | |
|     TS->TraceCmpCallback(PC, CmpSize, Type, Arg1, Arg2);
 | |
|   }
 | |
|   if (RecordingValueProfile)
 | |
|     fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
 | |
| }
 | |
| 
 | |
| // Adding if(RecordingTraces){...} slows down the VP callbacks.
 | |
| // Once we prove that VP is as strong as traces, delete this.
 | |
| #define MAYBE_RECORD_TRACE(N)                                                  \
 | |
|   if (RecordingTraces) {                                                       \
 | |
|     uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));   \
 | |
|     TS->TraceCmpCallback(PC, N, fuzzer::ICMP_EQ, Arg1, Arg2);                  \
 | |
|   }
 | |
| 
 | |
| __attribute__((visibility("default")))
 | |
| void __sanitizer_cov_trace_cmp8(uint64_t Arg1, int64_t Arg2) {
 | |
|   fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
 | |
|   MAYBE_RECORD_TRACE(8);
 | |
| }
 | |
| __attribute__((visibility("default")))
 | |
| void __sanitizer_cov_trace_cmp4(uint32_t Arg1, int32_t Arg2) {
 | |
|   fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
 | |
|   MAYBE_RECORD_TRACE(4);
 | |
| }
 | |
| __attribute__((visibility("default")))
 | |
| void __sanitizer_cov_trace_cmp2(uint16_t Arg1, int16_t Arg2) {
 | |
|   fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
 | |
|   MAYBE_RECORD_TRACE(2);
 | |
| }
 | |
| __attribute__((visibility("default")))
 | |
| void __sanitizer_cov_trace_cmp1(uint8_t Arg1, int8_t Arg2) {
 | |
|   fuzzer::AddValueForCmp(__builtin_return_address(0), Arg1, Arg2);
 | |
|   MAYBE_RECORD_TRACE(1);
 | |
| }
 | |
| 
 | |
| __attribute__((visibility("default")))
 | |
| void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) {
 | |
|   if (!RecordingTraces) return;
 | |
|   uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
 | |
|   TS->TraceSwitchCallback(PC, Cases[1], Val, Cases[0], Cases + 2);
 | |
| }
 | |
| 
 | |
| __attribute__((visibility("default")))
 | |
| void __sanitizer_cov_trace_div4(uint32_t Val) {
 | |
|   fuzzer::AddValueForSingleVal(__builtin_return_address(0), Val);
 | |
| }
 | |
| __attribute__((visibility("default")))
 | |
| void __sanitizer_cov_trace_div8(uint64_t Val) {
 | |
|   fuzzer::AddValueForSingleVal(__builtin_return_address(0), Val);
 | |
| }
 | |
| __attribute__((visibility("default")))
 | |
| void __sanitizer_cov_trace_gep(uintptr_t Idx) {
 | |
|   fuzzer::AddValueForSingleVal(__builtin_return_address(0), Idx);
 | |
| }
 | |
| 
 | |
| }  // extern "C"
 |