forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3081 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3081 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the ARM-specific support for the FastISel class. Some
 | |
| // of the target-specific code is generated by tablegen in the file
 | |
| // ARMGenFastISel.inc, which is #included here.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARM.h"
 | |
| #include "ARMBaseRegisterInfo.h"
 | |
| #include "ARMCallingConv.h"
 | |
| #include "ARMConstantPoolValue.h"
 | |
| #include "ARMISelLowering.h"
 | |
| #include "ARMMachineFunctionInfo.h"
 | |
| #include "ARMSubtarget.h"
 | |
| #include "MCTargetDesc/ARMAddressingModes.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   // All possible address modes, plus some.
 | |
|   typedef struct Address {
 | |
|     enum {
 | |
|       RegBase,
 | |
|       FrameIndexBase
 | |
|     } BaseType;
 | |
| 
 | |
|     union {
 | |
|       unsigned Reg;
 | |
|       int FI;
 | |
|     } Base;
 | |
| 
 | |
|     int Offset;
 | |
| 
 | |
|     // Innocuous defaults for our address.
 | |
|     Address()
 | |
|      : BaseType(RegBase), Offset(0) {
 | |
|        Base.Reg = 0;
 | |
|      }
 | |
|   } Address;
 | |
| 
 | |
| class ARMFastISel final : public FastISel {
 | |
| 
 | |
|   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
 | |
|   /// make the right decision when generating code for different targets.
 | |
|   const ARMSubtarget *Subtarget;
 | |
|   Module &M;
 | |
|   const TargetMachine &TM;
 | |
|   const TargetInstrInfo &TII;
 | |
|   const TargetLowering &TLI;
 | |
|   ARMFunctionInfo *AFI;
 | |
| 
 | |
|   // Convenience variables to avoid some queries.
 | |
|   bool isThumb2;
 | |
|   LLVMContext *Context;
 | |
| 
 | |
|   public:
 | |
|     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
 | |
|                          const TargetLibraryInfo *libInfo)
 | |
|         : FastISel(funcInfo, libInfo),
 | |
|           Subtarget(
 | |
|               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
 | |
|           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
 | |
|           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
 | |
|           TLI(*Subtarget->getTargetLowering()) {
 | |
|       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
 | |
|       isThumb2 = AFI->isThumbFunction();
 | |
|       Context = &funcInfo.Fn->getContext();
 | |
|     }
 | |
| 
 | |
|     // Code from FastISel.cpp.
 | |
|   private:
 | |
|     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
 | |
|                             const TargetRegisterClass *RC,
 | |
|                             unsigned Op0, bool Op0IsKill);
 | |
|     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
 | |
|                              const TargetRegisterClass *RC,
 | |
|                              unsigned Op0, bool Op0IsKill,
 | |
|                              unsigned Op1, bool Op1IsKill);
 | |
|     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
 | |
|                              const TargetRegisterClass *RC,
 | |
|                              unsigned Op0, bool Op0IsKill,
 | |
|                              uint64_t Imm);
 | |
|     unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
 | |
|                               const TargetRegisterClass *RC,
 | |
|                               unsigned Op0, bool Op0IsKill,
 | |
|                               unsigned Op1, bool Op1IsKill,
 | |
|                               uint64_t Imm);
 | |
|     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
 | |
|                             const TargetRegisterClass *RC,
 | |
|                             uint64_t Imm);
 | |
| 
 | |
|     // Backend specific FastISel code.
 | |
|   private:
 | |
|     bool fastSelectInstruction(const Instruction *I) override;
 | |
|     unsigned fastMaterializeConstant(const Constant *C) override;
 | |
|     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
 | |
|     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
 | |
|                              const LoadInst *LI) override;
 | |
|     bool fastLowerArguments() override;
 | |
|   private:
 | |
|   #include "ARMGenFastISel.inc"
 | |
| 
 | |
|     // Instruction selection routines.
 | |
|   private:
 | |
|     bool SelectLoad(const Instruction *I);
 | |
|     bool SelectStore(const Instruction *I);
 | |
|     bool SelectBranch(const Instruction *I);
 | |
|     bool SelectIndirectBr(const Instruction *I);
 | |
|     bool SelectCmp(const Instruction *I);
 | |
|     bool SelectFPExt(const Instruction *I);
 | |
|     bool SelectFPTrunc(const Instruction *I);
 | |
|     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
 | |
|     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
 | |
|     bool SelectIToFP(const Instruction *I, bool isSigned);
 | |
|     bool SelectFPToI(const Instruction *I, bool isSigned);
 | |
|     bool SelectDiv(const Instruction *I, bool isSigned);
 | |
|     bool SelectRem(const Instruction *I, bool isSigned);
 | |
|     bool SelectCall(const Instruction *I, const char *IntrMemName);
 | |
|     bool SelectIntrinsicCall(const IntrinsicInst &I);
 | |
|     bool SelectSelect(const Instruction *I);
 | |
|     bool SelectRet(const Instruction *I);
 | |
|     bool SelectTrunc(const Instruction *I);
 | |
|     bool SelectIntExt(const Instruction *I);
 | |
|     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
 | |
| 
 | |
|     // Utility routines.
 | |
|   private:
 | |
|     bool isPositionIndependent() const;
 | |
|     bool isTypeLegal(Type *Ty, MVT &VT);
 | |
|     bool isLoadTypeLegal(Type *Ty, MVT &VT);
 | |
|     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
 | |
|                     bool isZExt);
 | |
|     bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
 | |
|                      unsigned Alignment = 0, bool isZExt = true,
 | |
|                      bool allocReg = true);
 | |
|     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
 | |
|                       unsigned Alignment = 0);
 | |
|     bool ARMComputeAddress(const Value *Obj, Address &Addr);
 | |
|     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
 | |
|     bool ARMIsMemCpySmall(uint64_t Len);
 | |
|     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
 | |
|                                unsigned Alignment);
 | |
|     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
 | |
|     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
 | |
|     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
 | |
|     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
 | |
|     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
 | |
|     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
 | |
|     unsigned ARMSelectCallOp(bool UseReg);
 | |
|     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
 | |
| 
 | |
|     const TargetLowering *getTargetLowering() { return &TLI; }
 | |
| 
 | |
|     // Call handling routines.
 | |
|   private:
 | |
|     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
 | |
|                                   bool Return,
 | |
|                                   bool isVarArg);
 | |
|     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
 | |
|                          SmallVectorImpl<unsigned> &ArgRegs,
 | |
|                          SmallVectorImpl<MVT> &ArgVTs,
 | |
|                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
 | |
|                          SmallVectorImpl<unsigned> &RegArgs,
 | |
|                          CallingConv::ID CC,
 | |
|                          unsigned &NumBytes,
 | |
|                          bool isVarArg);
 | |
|     unsigned getLibcallReg(const Twine &Name);
 | |
|     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
 | |
|                     const Instruction *I, CallingConv::ID CC,
 | |
|                     unsigned &NumBytes, bool isVarArg);
 | |
|     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
 | |
| 
 | |
|     // OptionalDef handling routines.
 | |
|   private:
 | |
|     bool isARMNEONPred(const MachineInstr *MI);
 | |
|     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
 | |
|     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
 | |
|     void AddLoadStoreOperands(MVT VT, Address &Addr,
 | |
|                               const MachineInstrBuilder &MIB,
 | |
|                               MachineMemOperand::Flags Flags, bool useAM3);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| #include "ARMGenCallingConv.inc"
 | |
| 
 | |
| // DefinesOptionalPredicate - This is different from DefinesPredicate in that
 | |
| // we don't care about implicit defs here, just places we'll need to add a
 | |
| // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
 | |
| bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
 | |
|   if (!MI->hasOptionalDef())
 | |
|     return false;
 | |
| 
 | |
|   // Look to see if our OptionalDef is defining CPSR or CCR.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef()) continue;
 | |
|     if (MO.getReg() == ARM::CPSR)
 | |
|       *CPSR = true;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
| 
 | |
|   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
 | |
|   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
 | |
|        AFI->isThumb2Function())
 | |
|     return MI->isPredicable();
 | |
| 
 | |
|   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
 | |
|     if (MCID.OpInfo[i].isPredicate())
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // If the machine is predicable go ahead and add the predicate operands, if
 | |
| // it needs default CC operands add those.
 | |
| // TODO: If we want to support thumb1 then we'll need to deal with optional
 | |
| // CPSR defs that need to be added before the remaining operands. See s_cc_out
 | |
| // for descriptions why.
 | |
| const MachineInstrBuilder &
 | |
| ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
 | |
|   MachineInstr *MI = &*MIB;
 | |
| 
 | |
|   // Do we use a predicate? or...
 | |
|   // Are we NEON in ARM mode and have a predicate operand? If so, I know
 | |
|   // we're not predicable but add it anyways.
 | |
|   if (isARMNEONPred(MI))
 | |
|     AddDefaultPred(MIB);
 | |
| 
 | |
|   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
 | |
|   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
 | |
|   bool CPSR = false;
 | |
|   if (DefinesOptionalPredicate(MI, &CPSR)) {
 | |
|     if (CPSR)
 | |
|       AddDefaultT1CC(MIB);
 | |
|     else
 | |
|       AddDefaultCC(MIB);
 | |
|   }
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
 | |
|                                      const TargetRegisterClass *RC,
 | |
|                                      unsigned Op0, bool Op0IsKill) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   // Make sure the input operand is sufficiently constrained to be legal
 | |
|   // for this instruction.
 | |
|   Op0 = constrainOperandRegClass(II, Op0, 1);
 | |
|   if (II.getNumDefs() >= 1) {
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
 | |
|                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
 | |
|   } else {
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|                    .addReg(Op0, Op0IsKill * RegState::Kill));
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                    TII.get(TargetOpcode::COPY), ResultReg)
 | |
|                    .addReg(II.ImplicitDefs[0]));
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
 | |
|                                       const TargetRegisterClass *RC,
 | |
|                                       unsigned Op0, bool Op0IsKill,
 | |
|                                       unsigned Op1, bool Op1IsKill) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   // Make sure the input operands are sufficiently constrained to be legal
 | |
|   // for this instruction.
 | |
|   Op0 = constrainOperandRegClass(II, Op0, 1);
 | |
|   Op1 = constrainOperandRegClass(II, Op1, 2);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1) {
 | |
|     AddOptionalDefs(
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|             .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|             .addReg(Op1, Op1IsKill * RegState::Kill));
 | |
|   } else {
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|                    .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|                    .addReg(Op1, Op1IsKill * RegState::Kill));
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                            TII.get(TargetOpcode::COPY), ResultReg)
 | |
|                    .addReg(II.ImplicitDefs[0]));
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
 | |
|                                       const TargetRegisterClass *RC,
 | |
|                                       unsigned Op0, bool Op0IsKill,
 | |
|                                       uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   // Make sure the input operand is sufficiently constrained to be legal
 | |
|   // for this instruction.
 | |
|   Op0 = constrainOperandRegClass(II, Op0, 1);
 | |
|   if (II.getNumDefs() >= 1) {
 | |
|     AddOptionalDefs(
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|             .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|             .addImm(Imm));
 | |
|   } else {
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|                    .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|                    .addImm(Imm));
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                            TII.get(TargetOpcode::COPY), ResultReg)
 | |
|                    .addReg(II.ImplicitDefs[0]));
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
 | |
|                                        const TargetRegisterClass *RC,
 | |
|                                        unsigned Op0, bool Op0IsKill,
 | |
|                                        unsigned Op1, bool Op1IsKill,
 | |
|                                        uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   // Make sure the input operands are sufficiently constrained to be legal
 | |
|   // for this instruction.
 | |
|   Op0 = constrainOperandRegClass(II, Op0, 1);
 | |
|   Op1 = constrainOperandRegClass(II, Op1, 2);
 | |
|   if (II.getNumDefs() >= 1) {
 | |
|     AddOptionalDefs(
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|             .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|             .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|             .addImm(Imm));
 | |
|   } else {
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|                    .addReg(Op0, Op0IsKill * RegState::Kill)
 | |
|                    .addReg(Op1, Op1IsKill * RegState::Kill)
 | |
|                    .addImm(Imm));
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                            TII.get(TargetOpcode::COPY), ResultReg)
 | |
|                    .addReg(II.ImplicitDefs[0]));
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
 | |
|                                      const TargetRegisterClass *RC,
 | |
|                                      uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1) {
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
 | |
|                             ResultReg).addImm(Imm));
 | |
|   } else {
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|                    .addImm(Imm));
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                            TII.get(TargetOpcode::COPY), ResultReg)
 | |
|                    .addReg(II.ImplicitDefs[0]));
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| // TODO: Don't worry about 64-bit now, but when this is fixed remove the
 | |
| // checks from the various callers.
 | |
| unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
 | |
|   if (VT == MVT::f64) return 0;
 | |
| 
 | |
|   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(ARM::VMOVSR), MoveReg)
 | |
|                   .addReg(SrcReg));
 | |
|   return MoveReg;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
 | |
|   if (VT == MVT::i64) return 0;
 | |
| 
 | |
|   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(ARM::VMOVRS), MoveReg)
 | |
|                   .addReg(SrcReg));
 | |
|   return MoveReg;
 | |
| }
 | |
| 
 | |
| // For double width floating point we need to materialize two constants
 | |
| // (the high and the low) into integer registers then use a move to get
 | |
| // the combined constant into an FP reg.
 | |
| unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
 | |
|   const APFloat Val = CFP->getValueAPF();
 | |
|   bool is64bit = VT == MVT::f64;
 | |
| 
 | |
|   // This checks to see if we can use VFP3 instructions to materialize
 | |
|   // a constant, otherwise we have to go through the constant pool.
 | |
|   if (TLI.isFPImmLegal(Val, VT)) {
 | |
|     int Imm;
 | |
|     unsigned Opc;
 | |
|     if (is64bit) {
 | |
|       Imm = ARM_AM::getFP64Imm(Val);
 | |
|       Opc = ARM::FCONSTD;
 | |
|     } else {
 | |
|       Imm = ARM_AM::getFP32Imm(Val);
 | |
|       Opc = ARM::FCONSTS;
 | |
|     }
 | |
|     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                             TII.get(Opc), DestReg).addImm(Imm));
 | |
|     return DestReg;
 | |
|   }
 | |
| 
 | |
|   // Require VFP2 for loading fp constants.
 | |
|   if (!Subtarget->hasVFP2()) return false;
 | |
| 
 | |
|   // MachineConstantPool wants an explicit alignment.
 | |
|   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
 | |
|   if (Align == 0) {
 | |
|     // TODO: Figure out if this is correct.
 | |
|     Align = DL.getTypeAllocSize(CFP->getType());
 | |
|   }
 | |
|   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
 | |
|   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
 | |
| 
 | |
|   // The extra reg is for addrmode5.
 | |
|   AddOptionalDefs(
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
 | |
|           .addConstantPoolIndex(Idx)
 | |
|           .addReg(0));
 | |
|   return DestReg;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
 | |
| 
 | |
|   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
 | |
|     return 0;
 | |
| 
 | |
|   // If we can do this in a single instruction without a constant pool entry
 | |
|   // do so now.
 | |
|   const ConstantInt *CI = cast<ConstantInt>(C);
 | |
|   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
 | |
|     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
 | |
|     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
 | |
|       &ARM::GPRRegClass;
 | |
|     unsigned ImmReg = createResultReg(RC);
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                             TII.get(Opc), ImmReg)
 | |
|                     .addImm(CI->getZExtValue()));
 | |
|     return ImmReg;
 | |
|   }
 | |
| 
 | |
|   // Use MVN to emit negative constants.
 | |
|   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
 | |
|     unsigned Imm = (unsigned)~(CI->getSExtValue());
 | |
|     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
 | |
|       (ARM_AM::getSOImmVal(Imm) != -1);
 | |
|     if (UseImm) {
 | |
|       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
 | |
|       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
 | |
|                                                  &ARM::GPRRegClass;
 | |
|       unsigned ImmReg = createResultReg(RC);
 | |
|       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                               TII.get(Opc), ImmReg)
 | |
|                       .addImm(Imm));
 | |
|       return ImmReg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned ResultReg = 0;
 | |
|   if (Subtarget->useMovt(*FuncInfo.MF))
 | |
|     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
 | |
| 
 | |
|   if (ResultReg)
 | |
|     return ResultReg;
 | |
| 
 | |
|   // Load from constant pool.  For now 32-bit only.
 | |
|   if (VT != MVT::i32)
 | |
|     return 0;
 | |
| 
 | |
|   // MachineConstantPool wants an explicit alignment.
 | |
|   unsigned Align = DL.getPrefTypeAlignment(C->getType());
 | |
|   if (Align == 0) {
 | |
|     // TODO: Figure out if this is correct.
 | |
|     Align = DL.getTypeAllocSize(C->getType());
 | |
|   }
 | |
|   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
 | |
|   ResultReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|   if (isThumb2)
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                             TII.get(ARM::t2LDRpci), ResultReg)
 | |
|                       .addConstantPoolIndex(Idx));
 | |
|   else {
 | |
|     // The extra immediate is for addrmode2.
 | |
|     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                             TII.get(ARM::LDRcp), ResultReg)
 | |
|                       .addConstantPoolIndex(Idx)
 | |
|                       .addImm(0));
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::isPositionIndependent() const {
 | |
|   return TLI.isPositionIndependent();
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
 | |
|   // For now 32-bit only.
 | |
|   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
 | |
| 
 | |
|   // ROPI/RWPI not currently supported.
 | |
|   if (Subtarget->isROPI() || Subtarget->isRWPI())
 | |
|     return 0;
 | |
| 
 | |
|   bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
 | |
|   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
 | |
|                                            : &ARM::GPRRegClass;
 | |
|   unsigned DestReg = createResultReg(RC);
 | |
| 
 | |
|   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
 | |
|   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
 | |
|   bool IsThreadLocal = GVar && GVar->isThreadLocal();
 | |
|   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
 | |
| 
 | |
|   bool IsPositionIndependent = isPositionIndependent();
 | |
|   // Use movw+movt when possible, it avoids constant pool entries.
 | |
|   // Non-darwin targets only support static movt relocations in FastISel.
 | |
|   if (Subtarget->useMovt(*FuncInfo.MF) &&
 | |
|       (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
 | |
|     unsigned Opc;
 | |
|     unsigned char TF = 0;
 | |
|     if (Subtarget->isTargetMachO())
 | |
|       TF = ARMII::MO_NONLAZY;
 | |
| 
 | |
|     if (IsPositionIndependent)
 | |
|       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
 | |
|     else
 | |
|       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
 | |
|   } else {
 | |
|     // MachineConstantPool wants an explicit alignment.
 | |
|     unsigned Align = DL.getPrefTypeAlignment(GV->getType());
 | |
|     if (Align == 0) {
 | |
|       // TODO: Figure out if this is correct.
 | |
|       Align = DL.getTypeAllocSize(GV->getType());
 | |
|     }
 | |
| 
 | |
|     if (Subtarget->isTargetELF() && IsPositionIndependent)
 | |
|       return ARMLowerPICELF(GV, Align, VT);
 | |
| 
 | |
|     // Grab index.
 | |
|     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
 | |
|     unsigned Id = AFI->createPICLabelUId();
 | |
|     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
 | |
|                                                                 ARMCP::CPValue,
 | |
|                                                                 PCAdj);
 | |
|     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
 | |
| 
 | |
|     // Load value.
 | |
|     MachineInstrBuilder MIB;
 | |
|     if (isThumb2) {
 | |
|       unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
 | |
|       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
 | |
|                     DestReg).addConstantPoolIndex(Idx);
 | |
|       if (IsPositionIndependent)
 | |
|         MIB.addImm(Id);
 | |
|       AddOptionalDefs(MIB);
 | |
|     } else {
 | |
|       // The extra immediate is for addrmode2.
 | |
|       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
 | |
|       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                     TII.get(ARM::LDRcp), DestReg)
 | |
|                 .addConstantPoolIndex(Idx)
 | |
|                 .addImm(0);
 | |
|       AddOptionalDefs(MIB);
 | |
| 
 | |
|       if (IsPositionIndependent) {
 | |
|         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
 | |
|         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
 | |
| 
 | |
|         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                           DbgLoc, TII.get(Opc), NewDestReg)
 | |
|                                   .addReg(DestReg)
 | |
|                                   .addImm(Id);
 | |
|         AddOptionalDefs(MIB);
 | |
|         return NewDestReg;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsIndirect) {
 | |
|     MachineInstrBuilder MIB;
 | |
|     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     if (isThumb2)
 | |
|       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                     TII.get(ARM::t2LDRi12), NewDestReg)
 | |
|             .addReg(DestReg)
 | |
|             .addImm(0);
 | |
|     else
 | |
|       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                     TII.get(ARM::LDRi12), NewDestReg)
 | |
|                 .addReg(DestReg)
 | |
|                 .addImm(0);
 | |
|     DestReg = NewDestReg;
 | |
|     AddOptionalDefs(MIB);
 | |
|   }
 | |
| 
 | |
|   return DestReg;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
 | |
|   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
 | |
| 
 | |
|   // Only handle simple types.
 | |
|   if (!CEVT.isSimple()) return 0;
 | |
|   MVT VT = CEVT.getSimpleVT();
 | |
| 
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
 | |
|     return ARMMaterializeFP(CFP, VT);
 | |
|   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|     return ARMMaterializeGV(GV, VT);
 | |
|   else if (isa<ConstantInt>(C))
 | |
|     return ARMMaterializeInt(C, VT);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
 | |
| 
 | |
| unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
 | |
|   // Don't handle dynamic allocas.
 | |
|   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
 | |
| 
 | |
|   DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|     FuncInfo.StaticAllocaMap.find(AI);
 | |
| 
 | |
|   // This will get lowered later into the correct offsets and registers
 | |
|   // via rewriteXFrameIndex.
 | |
|   if (SI != FuncInfo.StaticAllocaMap.end()) {
 | |
|     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
 | |
|     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
 | |
|     unsigned ResultReg = createResultReg(RC);
 | |
|     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
 | |
| 
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                             TII.get(Opc), ResultReg)
 | |
|                             .addFrameIndex(SI->second)
 | |
|                             .addImm(0));
 | |
|     return ResultReg;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
 | |
|   EVT evt = TLI.getValueType(DL, Ty, true);
 | |
| 
 | |
|   // Only handle simple types.
 | |
|   if (evt == MVT::Other || !evt.isSimple()) return false;
 | |
|   VT = evt.getSimpleVT();
 | |
| 
 | |
|   // Handle all legal types, i.e. a register that will directly hold this
 | |
|   // value.
 | |
|   return TLI.isTypeLegal(VT);
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
 | |
|   if (isTypeLegal(Ty, VT)) return true;
 | |
| 
 | |
|   // If this is a type than can be sign or zero-extended to a basic operation
 | |
|   // go ahead and accept it now.
 | |
|   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Computes the address to get to an object.
 | |
| bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
 | |
|   // Some boilerplate from the X86 FastISel.
 | |
|   const User *U = nullptr;
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
 | |
|     // Don't walk into other basic blocks unless the object is an alloca from
 | |
|     // another block, otherwise it may not have a virtual register assigned.
 | |
|     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
 | |
|         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
 | |
|       Opcode = I->getOpcode();
 | |
|       U = I;
 | |
|     }
 | |
|   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
 | |
|     Opcode = C->getOpcode();
 | |
|     U = C;
 | |
|   }
 | |
| 
 | |
|   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
 | |
|     if (Ty->getAddressSpace() > 255)
 | |
|       // Fast instruction selection doesn't support the special
 | |
|       // address spaces.
 | |
|       return false;
 | |
| 
 | |
|   switch (Opcode) {
 | |
|     default:
 | |
|     break;
 | |
|     case Instruction::BitCast:
 | |
|       // Look through bitcasts.
 | |
|       return ARMComputeAddress(U->getOperand(0), Addr);
 | |
|     case Instruction::IntToPtr:
 | |
|       // Look past no-op inttoptrs.
 | |
|       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
 | |
|           TLI.getPointerTy(DL))
 | |
|         return ARMComputeAddress(U->getOperand(0), Addr);
 | |
|       break;
 | |
|     case Instruction::PtrToInt:
 | |
|       // Look past no-op ptrtoints.
 | |
|       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
 | |
|         return ARMComputeAddress(U->getOperand(0), Addr);
 | |
|       break;
 | |
|     case Instruction::GetElementPtr: {
 | |
|       Address SavedAddr = Addr;
 | |
|       int TmpOffset = Addr.Offset;
 | |
| 
 | |
|       // Iterate through the GEP folding the constants into offsets where
 | |
|       // we can.
 | |
|       gep_type_iterator GTI = gep_type_begin(U);
 | |
|       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
 | |
|            i != e; ++i, ++GTI) {
 | |
|         const Value *Op = *i;
 | |
|         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|           const StructLayout *SL = DL.getStructLayout(STy);
 | |
|           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
 | |
|           TmpOffset += SL->getElementOffset(Idx);
 | |
|         } else {
 | |
|           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
 | |
|           for (;;) {
 | |
|             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | |
|               // Constant-offset addressing.
 | |
|               TmpOffset += CI->getSExtValue() * S;
 | |
|               break;
 | |
|             }
 | |
|             if (canFoldAddIntoGEP(U, Op)) {
 | |
|               // A compatible add with a constant operand. Fold the constant.
 | |
|               ConstantInt *CI =
 | |
|               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
 | |
|               TmpOffset += CI->getSExtValue() * S;
 | |
|               // Iterate on the other operand.
 | |
|               Op = cast<AddOperator>(Op)->getOperand(0);
 | |
|               continue;
 | |
|             }
 | |
|             // Unsupported
 | |
|             goto unsupported_gep;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Try to grab the base operand now.
 | |
|       Addr.Offset = TmpOffset;
 | |
|       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
 | |
| 
 | |
|       // We failed, restore everything and try the other options.
 | |
|       Addr = SavedAddr;
 | |
| 
 | |
|       unsupported_gep:
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Alloca: {
 | |
|       const AllocaInst *AI = cast<AllocaInst>(Obj);
 | |
|       DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|         FuncInfo.StaticAllocaMap.find(AI);
 | |
|       if (SI != FuncInfo.StaticAllocaMap.end()) {
 | |
|         Addr.BaseType = Address::FrameIndexBase;
 | |
|         Addr.Base.FI = SI->second;
 | |
|         return true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to get this in a register if nothing else has worked.
 | |
|   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
 | |
|   return Addr.Base.Reg != 0;
 | |
| }
 | |
| 
 | |
| void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
 | |
|   bool needsLowering = false;
 | |
|   switch (VT.SimpleTy) {
 | |
|     default: llvm_unreachable("Unhandled load/store type!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|       if (!useAM3) {
 | |
|         // Integer loads/stores handle 12-bit offsets.
 | |
|         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
 | |
|         // Handle negative offsets.
 | |
|         if (needsLowering && isThumb2)
 | |
|           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
 | |
|                             Addr.Offset > -256);
 | |
|       } else {
 | |
|         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
 | |
|         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
 | |
|       }
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       // Floating point operands handle 8-bit offsets.
 | |
|       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // If this is a stack pointer and the offset needs to be simplified then
 | |
|   // put the alloca address into a register, set the base type back to
 | |
|   // register and continue. This should almost never happen.
 | |
|   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
 | |
|     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
 | |
|                                              : &ARM::GPRRegClass;
 | |
|     unsigned ResultReg = createResultReg(RC);
 | |
|     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                             TII.get(Opc), ResultReg)
 | |
|                             .addFrameIndex(Addr.Base.FI)
 | |
|                             .addImm(0));
 | |
|     Addr.Base.Reg = ResultReg;
 | |
|     Addr.BaseType = Address::RegBase;
 | |
|   }
 | |
| 
 | |
|   // Since the offset is too large for the load/store instruction
 | |
|   // get the reg+offset into a register.
 | |
|   if (needsLowering) {
 | |
|     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
 | |
|                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
 | |
|     Addr.Offset = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
 | |
|                                        const MachineInstrBuilder &MIB,
 | |
|                                        MachineMemOperand::Flags Flags,
 | |
|                                        bool useAM3) {
 | |
|   // addrmode5 output depends on the selection dag addressing dividing the
 | |
|   // offset by 4 that it then later multiplies. Do this here as well.
 | |
|   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
 | |
|     Addr.Offset /= 4;
 | |
| 
 | |
|   // Frame base works a bit differently. Handle it separately.
 | |
|   if (Addr.BaseType == Address::FrameIndexBase) {
 | |
|     int FI = Addr.Base.FI;
 | |
|     int Offset = Addr.Offset;
 | |
|     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
 | |
|         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
 | |
|         MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
 | |
|     // Now add the rest of the operands.
 | |
|     MIB.addFrameIndex(FI);
 | |
| 
 | |
|     // ARM halfword load/stores and signed byte loads need an additional
 | |
|     // operand.
 | |
|     if (useAM3) {
 | |
|       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
 | |
|       MIB.addReg(0);
 | |
|       MIB.addImm(Imm);
 | |
|     } else {
 | |
|       MIB.addImm(Addr.Offset);
 | |
|     }
 | |
|     MIB.addMemOperand(MMO);
 | |
|   } else {
 | |
|     // Now add the rest of the operands.
 | |
|     MIB.addReg(Addr.Base.Reg);
 | |
| 
 | |
|     // ARM halfword load/stores and signed byte loads need an additional
 | |
|     // operand.
 | |
|     if (useAM3) {
 | |
|       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
 | |
|       MIB.addReg(0);
 | |
|       MIB.addImm(Imm);
 | |
|     } else {
 | |
|       MIB.addImm(Addr.Offset);
 | |
|     }
 | |
|   }
 | |
|   AddOptionalDefs(MIB);
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
 | |
|                               unsigned Alignment, bool isZExt, bool allocReg) {
 | |
|   unsigned Opc;
 | |
|   bool useAM3 = false;
 | |
|   bool needVMOV = false;
 | |
|   const TargetRegisterClass *RC;
 | |
|   switch (VT.SimpleTy) {
 | |
|     // This is mostly going to be Neon/vector support.
 | |
|     default: return false;
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|       if (isThumb2) {
 | |
|         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
 | |
|           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
 | |
|         else
 | |
|           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
 | |
|       } else {
 | |
|         if (isZExt) {
 | |
|           Opc = ARM::LDRBi12;
 | |
|         } else {
 | |
|           Opc = ARM::LDRSB;
 | |
|           useAM3 = true;
 | |
|         }
 | |
|       }
 | |
|       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
 | |
|       break;
 | |
|     case MVT::i16:
 | |
|       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
 | |
|         return false;
 | |
| 
 | |
|       if (isThumb2) {
 | |
|         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
 | |
|           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
 | |
|         else
 | |
|           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
 | |
|       } else {
 | |
|         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
 | |
|         useAM3 = true;
 | |
|       }
 | |
|       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
 | |
|       break;
 | |
|     case MVT::i32:
 | |
|       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
 | |
|         return false;
 | |
| 
 | |
|       if (isThumb2) {
 | |
|         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
 | |
|           Opc = ARM::t2LDRi8;
 | |
|         else
 | |
|           Opc = ARM::t2LDRi12;
 | |
|       } else {
 | |
|         Opc = ARM::LDRi12;
 | |
|       }
 | |
|       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|       if (!Subtarget->hasVFP2()) return false;
 | |
|       // Unaligned loads need special handling. Floats require word-alignment.
 | |
|       if (Alignment && Alignment < 4) {
 | |
|         needVMOV = true;
 | |
|         VT = MVT::i32;
 | |
|         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
 | |
|         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
 | |
|       } else {
 | |
|         Opc = ARM::VLDRS;
 | |
|         RC = TLI.getRegClassFor(VT);
 | |
|       }
 | |
|       break;
 | |
|     case MVT::f64:
 | |
|       if (!Subtarget->hasVFP2()) return false;
 | |
|       // FIXME: Unaligned loads need special handling.  Doublewords require
 | |
|       // word-alignment.
 | |
|       if (Alignment && Alignment < 4)
 | |
|         return false;
 | |
| 
 | |
|       Opc = ARM::VLDRD;
 | |
|       RC = TLI.getRegClassFor(VT);
 | |
|       break;
 | |
|   }
 | |
|   // Simplify this down to something we can handle.
 | |
|   ARMSimplifyAddress(Addr, VT, useAM3);
 | |
| 
 | |
|   // Create the base instruction, then add the operands.
 | |
|   if (allocReg)
 | |
|     ResultReg = createResultReg(RC);
 | |
|   assert (ResultReg > 255 && "Expected an allocated virtual register.");
 | |
|   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                     TII.get(Opc), ResultReg);
 | |
|   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
 | |
| 
 | |
|   // If we had an unaligned load of a float we've converted it to an regular
 | |
|   // load.  Now we must move from the GRP to the FP register.
 | |
|   if (needVMOV) {
 | |
|     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                             TII.get(ARM::VMOVSR), MoveReg)
 | |
|                     .addReg(ResultReg));
 | |
|     ResultReg = MoveReg;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectLoad(const Instruction *I) {
 | |
|   // Atomic loads need special handling.
 | |
|   if (cast<LoadInst>(I)->isAtomic())
 | |
|     return false;
 | |
| 
 | |
|   const Value *SV = I->getOperand(0);
 | |
|   if (TLI.supportSwiftError()) {
 | |
|     // Swifterror values can come from either a function parameter with
 | |
|     // swifterror attribute or an alloca with swifterror attribute.
 | |
|     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
 | |
|       if (Arg->hasSwiftErrorAttr())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
 | |
|       if (Alloca->isSwiftError())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify we have a legal type before going any further.
 | |
|   MVT VT;
 | |
|   if (!isLoadTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   // See if we can handle this address.
 | |
|   Address Addr;
 | |
|   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
 | |
| 
 | |
|   unsigned ResultReg;
 | |
|   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
 | |
|     return false;
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
 | |
|                                unsigned Alignment) {
 | |
|   unsigned StrOpc;
 | |
|   bool useAM3 = false;
 | |
|   switch (VT.SimpleTy) {
 | |
|     // This is mostly going to be Neon/vector support.
 | |
|     default: return false;
 | |
|     case MVT::i1: {
 | |
|       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
 | |
|                                               : &ARM::GPRRegClass);
 | |
|       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
 | |
|       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
 | |
|       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                               TII.get(Opc), Res)
 | |
|                       .addReg(SrcReg).addImm(1));
 | |
|       SrcReg = Res;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     }
 | |
|     case MVT::i8:
 | |
|       if (isThumb2) {
 | |
|         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
 | |
|           StrOpc = ARM::t2STRBi8;
 | |
|         else
 | |
|           StrOpc = ARM::t2STRBi12;
 | |
|       } else {
 | |
|         StrOpc = ARM::STRBi12;
 | |
|       }
 | |
|       break;
 | |
|     case MVT::i16:
 | |
|       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
 | |
|         return false;
 | |
| 
 | |
|       if (isThumb2) {
 | |
|         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
 | |
|           StrOpc = ARM::t2STRHi8;
 | |
|         else
 | |
|           StrOpc = ARM::t2STRHi12;
 | |
|       } else {
 | |
|         StrOpc = ARM::STRH;
 | |
|         useAM3 = true;
 | |
|       }
 | |
|       break;
 | |
|     case MVT::i32:
 | |
|       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
 | |
|         return false;
 | |
| 
 | |
|       if (isThumb2) {
 | |
|         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
 | |
|           StrOpc = ARM::t2STRi8;
 | |
|         else
 | |
|           StrOpc = ARM::t2STRi12;
 | |
|       } else {
 | |
|         StrOpc = ARM::STRi12;
 | |
|       }
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|       if (!Subtarget->hasVFP2()) return false;
 | |
|       // Unaligned stores need special handling. Floats require word-alignment.
 | |
|       if (Alignment && Alignment < 4) {
 | |
|         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
 | |
|         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                 TII.get(ARM::VMOVRS), MoveReg)
 | |
|                         .addReg(SrcReg));
 | |
|         SrcReg = MoveReg;
 | |
|         VT = MVT::i32;
 | |
|         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
 | |
|       } else {
 | |
|         StrOpc = ARM::VSTRS;
 | |
|       }
 | |
|       break;
 | |
|     case MVT::f64:
 | |
|       if (!Subtarget->hasVFP2()) return false;
 | |
|       // FIXME: Unaligned stores need special handling.  Doublewords require
 | |
|       // word-alignment.
 | |
|       if (Alignment && Alignment < 4)
 | |
|           return false;
 | |
| 
 | |
|       StrOpc = ARM::VSTRD;
 | |
|       break;
 | |
|   }
 | |
|   // Simplify this down to something we can handle.
 | |
|   ARMSimplifyAddress(Addr, VT, useAM3);
 | |
| 
 | |
|   // Create the base instruction, then add the operands.
 | |
|   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
 | |
|   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                     TII.get(StrOpc))
 | |
|                             .addReg(SrcReg);
 | |
|   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectStore(const Instruction *I) {
 | |
|   Value *Op0 = I->getOperand(0);
 | |
|   unsigned SrcReg = 0;
 | |
| 
 | |
|   // Atomic stores need special handling.
 | |
|   if (cast<StoreInst>(I)->isAtomic())
 | |
|     return false;
 | |
| 
 | |
|   const Value *PtrV = I->getOperand(1);
 | |
|   if (TLI.supportSwiftError()) {
 | |
|     // Swifterror values can come from either a function parameter with
 | |
|     // swifterror attribute or an alloca with swifterror attribute.
 | |
|     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
 | |
|       if (Arg->hasSwiftErrorAttr())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
 | |
|       if (Alloca->isSwiftError())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify we have a legal type before going any further.
 | |
|   MVT VT;
 | |
|   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   // Get the value to be stored into a register.
 | |
|   SrcReg = getRegForValue(Op0);
 | |
|   if (SrcReg == 0) return false;
 | |
| 
 | |
|   // See if we can handle this address.
 | |
|   Address Addr;
 | |
|   if (!ARMComputeAddress(I->getOperand(1), Addr))
 | |
|     return false;
 | |
| 
 | |
|   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
 | |
|   switch (Pred) {
 | |
|     // Needs two compares...
 | |
|     case CmpInst::FCMP_ONE:
 | |
|     case CmpInst::FCMP_UEQ:
 | |
|     default:
 | |
|       // AL is our "false" for now. The other two need more compares.
 | |
|       return ARMCC::AL;
 | |
|     case CmpInst::ICMP_EQ:
 | |
|     case CmpInst::FCMP_OEQ:
 | |
|       return ARMCC::EQ;
 | |
|     case CmpInst::ICMP_SGT:
 | |
|     case CmpInst::FCMP_OGT:
 | |
|       return ARMCC::GT;
 | |
|     case CmpInst::ICMP_SGE:
 | |
|     case CmpInst::FCMP_OGE:
 | |
|       return ARMCC::GE;
 | |
|     case CmpInst::ICMP_UGT:
 | |
|     case CmpInst::FCMP_UGT:
 | |
|       return ARMCC::HI;
 | |
|     case CmpInst::FCMP_OLT:
 | |
|       return ARMCC::MI;
 | |
|     case CmpInst::ICMP_ULE:
 | |
|     case CmpInst::FCMP_OLE:
 | |
|       return ARMCC::LS;
 | |
|     case CmpInst::FCMP_ORD:
 | |
|       return ARMCC::VC;
 | |
|     case CmpInst::FCMP_UNO:
 | |
|       return ARMCC::VS;
 | |
|     case CmpInst::FCMP_UGE:
 | |
|       return ARMCC::PL;
 | |
|     case CmpInst::ICMP_SLT:
 | |
|     case CmpInst::FCMP_ULT:
 | |
|       return ARMCC::LT;
 | |
|     case CmpInst::ICMP_SLE:
 | |
|     case CmpInst::FCMP_ULE:
 | |
|       return ARMCC::LE;
 | |
|     case CmpInst::FCMP_UNE:
 | |
|     case CmpInst::ICMP_NE:
 | |
|       return ARMCC::NE;
 | |
|     case CmpInst::ICMP_UGE:
 | |
|       return ARMCC::HS;
 | |
|     case CmpInst::ICMP_ULT:
 | |
|       return ARMCC::LO;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectBranch(const Instruction *I) {
 | |
|   const BranchInst *BI = cast<BranchInst>(I);
 | |
|   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
 | |
|   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
 | |
| 
 | |
|   // Simple branch support.
 | |
| 
 | |
|   // If we can, avoid recomputing the compare - redoing it could lead to wonky
 | |
|   // behavior.
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
 | |
|     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
 | |
| 
 | |
|       // Get the compare predicate.
 | |
|       // Try to take advantage of fallthrough opportunities.
 | |
|       CmpInst::Predicate Predicate = CI->getPredicate();
 | |
|       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
 | |
|         std::swap(TBB, FBB);
 | |
|         Predicate = CmpInst::getInversePredicate(Predicate);
 | |
|       }
 | |
| 
 | |
|       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
 | |
| 
 | |
|       // We may not handle every CC for now.
 | |
|       if (ARMPred == ARMCC::AL) return false;
 | |
| 
 | |
|       // Emit the compare.
 | |
|       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
 | |
|         return false;
 | |
| 
 | |
|       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
 | |
|       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
 | |
|       finishCondBranch(BI->getParent(), TBB, FBB);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
 | |
|     MVT SourceVT;
 | |
|     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
 | |
|         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
 | |
|       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
 | |
|       unsigned OpReg = getRegForValue(TI->getOperand(0));
 | |
|       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
 | |
|       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                               TII.get(TstOpc))
 | |
|                       .addReg(OpReg).addImm(1));
 | |
| 
 | |
|       unsigned CCMode = ARMCC::NE;
 | |
|       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
 | |
|         std::swap(TBB, FBB);
 | |
|         CCMode = ARMCC::EQ;
 | |
|       }
 | |
| 
 | |
|       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
 | |
|       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
 | |
| 
 | |
|       finishCondBranch(BI->getParent(), TBB, FBB);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (const ConstantInt *CI =
 | |
|              dyn_cast<ConstantInt>(BI->getCondition())) {
 | |
|     uint64_t Imm = CI->getZExtValue();
 | |
|     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
 | |
|     fastEmitBranch(Target, DbgLoc);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   unsigned CmpReg = getRegForValue(BI->getCondition());
 | |
|   if (CmpReg == 0) return false;
 | |
| 
 | |
|   // We've been divorced from our compare!  Our block was split, and
 | |
|   // now our compare lives in a predecessor block.  We musn't
 | |
|   // re-compare here, as the children of the compare aren't guaranteed
 | |
|   // live across the block boundary (we *could* check for this).
 | |
|   // Regardless, the compare has been done in the predecessor block,
 | |
|   // and it left a value for us in a virtual register.  Ergo, we test
 | |
|   // the one-bit value left in the virtual register.
 | |
|   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
 | |
|   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
 | |
|   AddOptionalDefs(
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
 | |
|           .addReg(CmpReg)
 | |
|           .addImm(1));
 | |
| 
 | |
|   unsigned CCMode = ARMCC::NE;
 | |
|   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
 | |
|     std::swap(TBB, FBB);
 | |
|     CCMode = ARMCC::EQ;
 | |
|   }
 | |
| 
 | |
|   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
 | |
|                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
 | |
|   finishCondBranch(BI->getParent(), TBB, FBB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
 | |
|   unsigned AddrReg = getRegForValue(I->getOperand(0));
 | |
|   if (AddrReg == 0) return false;
 | |
| 
 | |
|   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(Opc)).addReg(AddrReg));
 | |
| 
 | |
|   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
 | |
|   for (const BasicBlock *SuccBB : IB->successors())
 | |
|     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
 | |
|                              bool isZExt) {
 | |
|   Type *Ty = Src1Value->getType();
 | |
|   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
 | |
|   if (!SrcEVT.isSimple()) return false;
 | |
|   MVT SrcVT = SrcEVT.getSimpleVT();
 | |
| 
 | |
|   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
 | |
|   if (isFloat && !Subtarget->hasVFP2())
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if the 2nd operand is a constant that we can encode directly
 | |
|   // in the compare.
 | |
|   int Imm = 0;
 | |
|   bool UseImm = false;
 | |
|   bool isNegativeImm = false;
 | |
|   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
 | |
|   // Thus, Src1Value may be a ConstantInt, but we're missing it.
 | |
|   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
 | |
|     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
 | |
|         SrcVT == MVT::i1) {
 | |
|       const APInt &CIVal = ConstInt->getValue();
 | |
|       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
 | |
|       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
 | |
|       // then a cmn, because there is no way to represent 2147483648 as a
 | |
|       // signed 32-bit int.
 | |
|       if (Imm < 0 && Imm != (int)0x80000000) {
 | |
|         isNegativeImm = true;
 | |
|         Imm = -Imm;
 | |
|       }
 | |
|       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
 | |
|         (ARM_AM::getSOImmVal(Imm) != -1);
 | |
|     }
 | |
|   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
 | |
|     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
 | |
|       if (ConstFP->isZero() && !ConstFP->isNegative())
 | |
|         UseImm = true;
 | |
|   }
 | |
| 
 | |
|   unsigned CmpOpc;
 | |
|   bool isICmp = true;
 | |
|   bool needsExt = false;
 | |
|   switch (SrcVT.SimpleTy) {
 | |
|     default: return false;
 | |
|     // TODO: Verify compares.
 | |
|     case MVT::f32:
 | |
|       isICmp = false;
 | |
|       CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
 | |
|       break;
 | |
|     case MVT::f64:
 | |
|       isICmp = false;
 | |
|       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
 | |
|       break;
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|       needsExt = true;
 | |
|     // Intentional fall-through.
 | |
|     case MVT::i32:
 | |
|       if (isThumb2) {
 | |
|         if (!UseImm)
 | |
|           CmpOpc = ARM::t2CMPrr;
 | |
|         else
 | |
|           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
 | |
|       } else {
 | |
|         if (!UseImm)
 | |
|           CmpOpc = ARM::CMPrr;
 | |
|         else
 | |
|           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
 | |
|       }
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   unsigned SrcReg1 = getRegForValue(Src1Value);
 | |
|   if (SrcReg1 == 0) return false;
 | |
| 
 | |
|   unsigned SrcReg2 = 0;
 | |
|   if (!UseImm) {
 | |
|     SrcReg2 = getRegForValue(Src2Value);
 | |
|     if (SrcReg2 == 0) return false;
 | |
|   }
 | |
| 
 | |
|   // We have i1, i8, or i16, we need to either zero extend or sign extend.
 | |
|   if (needsExt) {
 | |
|     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
 | |
|     if (SrcReg1 == 0) return false;
 | |
|     if (!UseImm) {
 | |
|       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
 | |
|       if (SrcReg2 == 0) return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const MCInstrDesc &II = TII.get(CmpOpc);
 | |
|   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
 | |
|   if (!UseImm) {
 | |
|     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|                     .addReg(SrcReg1).addReg(SrcReg2));
 | |
|   } else {
 | |
|     MachineInstrBuilder MIB;
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|       .addReg(SrcReg1);
 | |
| 
 | |
|     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
 | |
|     if (isICmp)
 | |
|       MIB.addImm(Imm);
 | |
|     AddOptionalDefs(MIB);
 | |
|   }
 | |
| 
 | |
|   // For floating point we need to move the result to a comparison register
 | |
|   // that we can then use for branches.
 | |
|   if (Ty->isFloatTy() || Ty->isDoubleTy())
 | |
|     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                             TII.get(ARM::FMSTAT)));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectCmp(const Instruction *I) {
 | |
|   const CmpInst *CI = cast<CmpInst>(I);
 | |
| 
 | |
|   // Get the compare predicate.
 | |
|   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
 | |
| 
 | |
|   // We may not handle every CC for now.
 | |
|   if (ARMPred == ARMCC::AL) return false;
 | |
| 
 | |
|   // Emit the compare.
 | |
|   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
 | |
|     return false;
 | |
| 
 | |
|   // Now set a register based on the comparison. Explicitly set the predicates
 | |
|   // here.
 | |
|   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
 | |
|   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
 | |
|                                            : &ARM::GPRRegClass;
 | |
|   unsigned DestReg = createResultReg(RC);
 | |
|   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
 | |
|   unsigned ZeroReg = fastMaterializeConstant(Zero);
 | |
|   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
 | |
|           .addReg(ZeroReg).addImm(1)
 | |
|           .addImm(ARMPred).addReg(ARM::CPSR);
 | |
| 
 | |
|   updateValueMap(I, DestReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectFPExt(const Instruction *I) {
 | |
|   // Make sure we have VFP and that we're extending float to double.
 | |
|   if (!Subtarget->hasVFP2()) return false;
 | |
| 
 | |
|   Value *V = I->getOperand(0);
 | |
|   if (!I->getType()->isDoubleTy() ||
 | |
|       !V->getType()->isFloatTy()) return false;
 | |
| 
 | |
|   unsigned Op = getRegForValue(V);
 | |
|   if (Op == 0) return false;
 | |
| 
 | |
|   unsigned Result = createResultReg(&ARM::DPRRegClass);
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(ARM::VCVTDS), Result)
 | |
|                   .addReg(Op));
 | |
|   updateValueMap(I, Result);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
 | |
|   // Make sure we have VFP and that we're truncating double to float.
 | |
|   if (!Subtarget->hasVFP2()) return false;
 | |
| 
 | |
|   Value *V = I->getOperand(0);
 | |
|   if (!(I->getType()->isFloatTy() &&
 | |
|         V->getType()->isDoubleTy())) return false;
 | |
| 
 | |
|   unsigned Op = getRegForValue(V);
 | |
|   if (Op == 0) return false;
 | |
| 
 | |
|   unsigned Result = createResultReg(&ARM::SPRRegClass);
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(ARM::VCVTSD), Result)
 | |
|                   .addReg(Op));
 | |
|   updateValueMap(I, Result);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
 | |
|   // Make sure we have VFP.
 | |
|   if (!Subtarget->hasVFP2()) return false;
 | |
| 
 | |
|   MVT DstVT;
 | |
|   Type *Ty = I->getType();
 | |
|   if (!isTypeLegal(Ty, DstVT))
 | |
|     return false;
 | |
| 
 | |
|   Value *Src = I->getOperand(0);
 | |
|   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
 | |
|   if (!SrcEVT.isSimple())
 | |
|     return false;
 | |
|   MVT SrcVT = SrcEVT.getSimpleVT();
 | |
|   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcReg = getRegForValue(Src);
 | |
|   if (SrcReg == 0) return false;
 | |
| 
 | |
|   // Handle sign-extension.
 | |
|   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
 | |
|     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
 | |
|                                        /*isZExt*/!isSigned);
 | |
|     if (SrcReg == 0) return false;
 | |
|   }
 | |
| 
 | |
|   // The conversion routine works on fp-reg to fp-reg and the operand above
 | |
|   // was an integer, move it to the fp registers if possible.
 | |
|   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
 | |
|   if (FP == 0) return false;
 | |
| 
 | |
|   unsigned Opc;
 | |
|   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
 | |
|   else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
 | |
|   else return false;
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(Opc), ResultReg).addReg(FP));
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
 | |
|   // Make sure we have VFP.
 | |
|   if (!Subtarget->hasVFP2()) return false;
 | |
| 
 | |
|   MVT DstVT;
 | |
|   Type *RetTy = I->getType();
 | |
|   if (!isTypeLegal(RetTy, DstVT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned Op = getRegForValue(I->getOperand(0));
 | |
|   if (Op == 0) return false;
 | |
| 
 | |
|   unsigned Opc;
 | |
|   Type *OpTy = I->getOperand(0)->getType();
 | |
|   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
 | |
|   else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
 | |
|   else return false;
 | |
| 
 | |
|   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
 | |
|   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(Opc), ResultReg).addReg(Op));
 | |
| 
 | |
|   // This result needs to be in an integer register, but the conversion only
 | |
|   // takes place in fp-regs.
 | |
|   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
 | |
|   if (IntReg == 0) return false;
 | |
| 
 | |
|   updateValueMap(I, IntReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectSelect(const Instruction *I) {
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   // Things need to be register sized for register moves.
 | |
|   if (VT != MVT::i32) return false;
 | |
| 
 | |
|   unsigned CondReg = getRegForValue(I->getOperand(0));
 | |
|   if (CondReg == 0) return false;
 | |
|   unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | |
|   if (Op1Reg == 0) return false;
 | |
| 
 | |
|   // Check to see if we can use an immediate in the conditional move.
 | |
|   int Imm = 0;
 | |
|   bool UseImm = false;
 | |
|   bool isNegativeImm = false;
 | |
|   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
 | |
|     assert (VT == MVT::i32 && "Expecting an i32.");
 | |
|     Imm = (int)ConstInt->getValue().getZExtValue();
 | |
|     if (Imm < 0) {
 | |
|       isNegativeImm = true;
 | |
|       Imm = ~Imm;
 | |
|     }
 | |
|     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
 | |
|       (ARM_AM::getSOImmVal(Imm) != -1);
 | |
|   }
 | |
| 
 | |
|   unsigned Op2Reg = 0;
 | |
|   if (!UseImm) {
 | |
|     Op2Reg = getRegForValue(I->getOperand(2));
 | |
|     if (Op2Reg == 0) return false;
 | |
|   }
 | |
| 
 | |
|   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
 | |
|   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
 | |
|   AddOptionalDefs(
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
 | |
|           .addReg(CondReg)
 | |
|           .addImm(1));
 | |
| 
 | |
|   unsigned MovCCOpc;
 | |
|   const TargetRegisterClass *RC;
 | |
|   if (!UseImm) {
 | |
|     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
 | |
|     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
 | |
|   } else {
 | |
|     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
 | |
|     if (!isNegativeImm)
 | |
|       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
 | |
|     else
 | |
|       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
 | |
|   }
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   if (!UseImm) {
 | |
|     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
 | |
|     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
 | |
|             ResultReg)
 | |
|         .addReg(Op2Reg)
 | |
|         .addReg(Op1Reg)
 | |
|         .addImm(ARMCC::NE)
 | |
|         .addReg(ARM::CPSR);
 | |
|   } else {
 | |
|     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
 | |
|             ResultReg)
 | |
|         .addReg(Op1Reg)
 | |
|         .addImm(Imm)
 | |
|         .addImm(ARMCC::EQ)
 | |
|         .addReg(ARM::CPSR);
 | |
|   }
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
 | |
|   MVT VT;
 | |
|   Type *Ty = I->getType();
 | |
|   if (!isTypeLegal(Ty, VT))
 | |
|     return false;
 | |
| 
 | |
|   // If we have integer div support we should have selected this automagically.
 | |
|   // In case we have a real miss go ahead and return false and we'll pick
 | |
|   // it up later.
 | |
|   if (Subtarget->hasDivide()) return false;
 | |
| 
 | |
|   // Otherwise emit a libcall.
 | |
|   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
 | |
|   if (VT == MVT::i8)
 | |
|     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
 | |
|   else if (VT == MVT::i16)
 | |
|     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
 | |
|   else if (VT == MVT::i32)
 | |
|     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
 | |
|   else if (VT == MVT::i64)
 | |
|     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
 | |
|   else if (VT == MVT::i128)
 | |
|     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
 | |
|   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
 | |
| 
 | |
|   return ARMEmitLibcall(I, LC);
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
 | |
|   MVT VT;
 | |
|   Type *Ty = I->getType();
 | |
|   if (!isTypeLegal(Ty, VT))
 | |
|     return false;
 | |
| 
 | |
|   // Many ABIs do not provide a libcall for standalone remainder, so we need to
 | |
|   // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
 | |
|   // multi-reg returns, we'll have to bail out.
 | |
|   if (!TLI.hasStandaloneRem(VT)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
 | |
|   if (VT == MVT::i8)
 | |
|     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
 | |
|   else if (VT == MVT::i16)
 | |
|     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
 | |
|   else if (VT == MVT::i32)
 | |
|     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
 | |
|   else if (VT == MVT::i64)
 | |
|     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
 | |
|   else if (VT == MVT::i128)
 | |
|     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
 | |
|   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
 | |
| 
 | |
|   return ARMEmitLibcall(I, LC);
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
 | |
|   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
 | |
| 
 | |
|   // We can get here in the case when we have a binary operation on a non-legal
 | |
|   // type and the target independent selector doesn't know how to handle it.
 | |
|   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Opc;
 | |
|   switch (ISDOpcode) {
 | |
|     default: return false;
 | |
|     case ISD::ADD:
 | |
|       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
 | |
|       break;
 | |
|     case ISD::OR:
 | |
|       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
 | |
|       break;
 | |
|     case ISD::SUB:
 | |
|       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
 | |
|   if (SrcReg1 == 0) return false;
 | |
| 
 | |
|   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
 | |
|   // in the instruction, rather then materializing the value in a register.
 | |
|   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
 | |
|   if (SrcReg2 == 0) return false;
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
 | |
|   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
 | |
|   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(Opc), ResultReg)
 | |
|                   .addReg(SrcReg1).addReg(SrcReg2));
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
 | |
|   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
 | |
|   if (!FPVT.isSimple()) return false;
 | |
|   MVT VT = FPVT.getSimpleVT();
 | |
| 
 | |
|   // FIXME: Support vector types where possible.
 | |
|   if (VT.isVector())
 | |
|     return false;
 | |
| 
 | |
|   // We can get here in the case when we want to use NEON for our fp
 | |
|   // operations, but can't figure out how to. Just use the vfp instructions
 | |
|   // if we have them.
 | |
|   // FIXME: It'd be nice to use NEON instructions.
 | |
|   Type *Ty = I->getType();
 | |
|   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
 | |
|   if (isFloat && !Subtarget->hasVFP2())
 | |
|     return false;
 | |
| 
 | |
|   unsigned Opc;
 | |
|   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
 | |
|   switch (ISDOpcode) {
 | |
|     default: return false;
 | |
|     case ISD::FADD:
 | |
|       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
 | |
|       break;
 | |
|     case ISD::FSUB:
 | |
|       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
 | |
|       break;
 | |
|     case ISD::FMUL:
 | |
|       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
 | |
|       break;
 | |
|   }
 | |
|   unsigned Op1 = getRegForValue(I->getOperand(0));
 | |
|   if (Op1 == 0) return false;
 | |
| 
 | |
|   unsigned Op2 = getRegForValue(I->getOperand(1));
 | |
|   if (Op2 == 0) return false;
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(Opc), ResultReg)
 | |
|                   .addReg(Op1).addReg(Op2));
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Call Handling Code
 | |
| 
 | |
| // This is largely taken directly from CCAssignFnForNode
 | |
| // TODO: We may not support all of this.
 | |
| CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
 | |
|                                            bool Return,
 | |
|                                            bool isVarArg) {
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported calling convention");
 | |
|   case CallingConv::Fast:
 | |
|     if (Subtarget->hasVFP2() && !isVarArg) {
 | |
|       if (!Subtarget->isAAPCS_ABI())
 | |
|         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
 | |
|       // For AAPCS ABI targets, just use VFP variant of the calling convention.
 | |
|       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case CallingConv::C:
 | |
|   case CallingConv::CXX_FAST_TLS:
 | |
|     // Use target triple & subtarget features to do actual dispatch.
 | |
|     if (Subtarget->isAAPCS_ABI()) {
 | |
|       if (Subtarget->hasVFP2() &&
 | |
|           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
 | |
|         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
 | |
|       else
 | |
|         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
 | |
|     } else {
 | |
|       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
 | |
|     }
 | |
|   case CallingConv::ARM_AAPCS_VFP:
 | |
|   case CallingConv::Swift:
 | |
|     if (!isVarArg)
 | |
|       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
 | |
|     // Fall through to soft float variant, variadic functions don't
 | |
|     // use hard floating point ABI.
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case CallingConv::ARM_AAPCS:
 | |
|     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
 | |
|   case CallingConv::ARM_APCS:
 | |
|     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
 | |
|   case CallingConv::GHC:
 | |
|     if (Return)
 | |
|       llvm_unreachable("Can't return in GHC call convention");
 | |
|     else
 | |
|       return CC_ARM_APCS_GHC;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
 | |
|                                   SmallVectorImpl<unsigned> &ArgRegs,
 | |
|                                   SmallVectorImpl<MVT> &ArgVTs,
 | |
|                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
 | |
|                                   SmallVectorImpl<unsigned> &RegArgs,
 | |
|                                   CallingConv::ID CC,
 | |
|                                   unsigned &NumBytes,
 | |
|                                   bool isVarArg) {
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
 | |
|   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
 | |
|                              CCAssignFnForCall(CC, false, isVarArg));
 | |
| 
 | |
|   // Check that we can handle all of the arguments. If we can't, then bail out
 | |
|   // now before we add code to the MBB.
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     MVT ArgVT = ArgVTs[VA.getValNo()];
 | |
| 
 | |
|     // We don't handle NEON/vector parameters yet.
 | |
|     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
 | |
|       return false;
 | |
| 
 | |
|     // Now copy/store arg to correct locations.
 | |
|     if (VA.isRegLoc() && !VA.needsCustom()) {
 | |
|       continue;
 | |
|     } else if (VA.needsCustom()) {
 | |
|       // TODO: We need custom lowering for vector (v2f64) args.
 | |
|       if (VA.getLocVT() != MVT::f64 ||
 | |
|           // TODO: Only handle register args for now.
 | |
|           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
 | |
|         return false;
 | |
|     } else {
 | |
|       switch (ArgVT.SimpleTy) {
 | |
|       default:
 | |
|         return false;
 | |
|       case MVT::i1:
 | |
|       case MVT::i8:
 | |
|       case MVT::i16:
 | |
|       case MVT::i32:
 | |
|         break;
 | |
|       case MVT::f32:
 | |
|         if (!Subtarget->hasVFP2())
 | |
|           return false;
 | |
|         break;
 | |
|       case MVT::f64:
 | |
|         if (!Subtarget->hasVFP2())
 | |
|           return false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // At the point, we are able to handle the call's arguments in fast isel.
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   // Issue CALLSEQ_START
 | |
|   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(AdjStackDown))
 | |
|                   .addImm(NumBytes));
 | |
| 
 | |
|   // Process the args.
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     const Value *ArgVal = Args[VA.getValNo()];
 | |
|     unsigned Arg = ArgRegs[VA.getValNo()];
 | |
|     MVT ArgVT = ArgVTs[VA.getValNo()];
 | |
| 
 | |
|     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
 | |
|            "We don't handle NEON/vector parameters yet.");
 | |
| 
 | |
|     // Handle arg promotion, etc.
 | |
|     switch (VA.getLocInfo()) {
 | |
|       case CCValAssign::Full: break;
 | |
|       case CCValAssign::SExt: {
 | |
|         MVT DestVT = VA.getLocVT();
 | |
|         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
 | |
|         assert (Arg != 0 && "Failed to emit a sext");
 | |
|         ArgVT = DestVT;
 | |
|         break;
 | |
|       }
 | |
|       case CCValAssign::AExt:
 | |
|         // Intentional fall-through.  Handle AExt and ZExt.
 | |
|       case CCValAssign::ZExt: {
 | |
|         MVT DestVT = VA.getLocVT();
 | |
|         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
 | |
|         assert (Arg != 0 && "Failed to emit a zext");
 | |
|         ArgVT = DestVT;
 | |
|         break;
 | |
|       }
 | |
|       case CCValAssign::BCvt: {
 | |
|         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
 | |
|                                  /*TODO: Kill=*/false);
 | |
|         assert(BC != 0 && "Failed to emit a bitcast!");
 | |
|         Arg = BC;
 | |
|         ArgVT = VA.getLocVT();
 | |
|         break;
 | |
|       }
 | |
|       default: llvm_unreachable("Unknown arg promotion!");
 | |
|     }
 | |
| 
 | |
|     // Now copy/store arg to correct locations.
 | |
|     if (VA.isRegLoc() && !VA.needsCustom()) {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
 | |
|       RegArgs.push_back(VA.getLocReg());
 | |
|     } else if (VA.needsCustom()) {
 | |
|       // TODO: We need custom lowering for vector (v2f64) args.
 | |
|       assert(VA.getLocVT() == MVT::f64 &&
 | |
|              "Custom lowering for v2f64 args not available");
 | |
| 
 | |
|       CCValAssign &NextVA = ArgLocs[++i];
 | |
| 
 | |
|       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
 | |
|              "We only handle register args!");
 | |
| 
 | |
|       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                               TII.get(ARM::VMOVRRD), VA.getLocReg())
 | |
|                       .addReg(NextVA.getLocReg(), RegState::Define)
 | |
|                       .addReg(Arg));
 | |
|       RegArgs.push_back(VA.getLocReg());
 | |
|       RegArgs.push_back(NextVA.getLocReg());
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
|       // Need to store on the stack.
 | |
| 
 | |
|       // Don't emit stores for undef values.
 | |
|       if (isa<UndefValue>(ArgVal))
 | |
|         continue;
 | |
| 
 | |
|       Address Addr;
 | |
|       Addr.BaseType = Address::RegBase;
 | |
|       Addr.Base.Reg = ARM::SP;
 | |
|       Addr.Offset = VA.getLocMemOffset();
 | |
| 
 | |
|       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
 | |
|       assert(EmitRet && "Could not emit a store for argument!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
 | |
|                              const Instruction *I, CallingConv::ID CC,
 | |
|                              unsigned &NumBytes, bool isVarArg) {
 | |
|   // Issue CALLSEQ_END
 | |
|   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
 | |
|   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                           TII.get(AdjStackUp))
 | |
|                   .addImm(NumBytes).addImm(0));
 | |
| 
 | |
|   // Now the return value.
 | |
|   if (RetVT != MVT::isVoid) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs;
 | |
|     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
 | |
|     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
 | |
| 
 | |
|     // Copy all of the result registers out of their specified physreg.
 | |
|     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
 | |
|       // For this move we copy into two registers and then move into the
 | |
|       // double fp reg we want.
 | |
|       MVT DestVT = RVLocs[0].getValVT();
 | |
|       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
 | |
|       unsigned ResultReg = createResultReg(DstRC);
 | |
|       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                               TII.get(ARM::VMOVDRR), ResultReg)
 | |
|                       .addReg(RVLocs[0].getLocReg())
 | |
|                       .addReg(RVLocs[1].getLocReg()));
 | |
| 
 | |
|       UsedRegs.push_back(RVLocs[0].getLocReg());
 | |
|       UsedRegs.push_back(RVLocs[1].getLocReg());
 | |
| 
 | |
|       // Finally update the result.
 | |
|       updateValueMap(I, ResultReg);
 | |
|     } else {
 | |
|       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
 | |
|       MVT CopyVT = RVLocs[0].getValVT();
 | |
| 
 | |
|       // Special handling for extended integers.
 | |
|       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
 | |
|         CopyVT = MVT::i32;
 | |
| 
 | |
|       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
 | |
| 
 | |
|       unsigned ResultReg = createResultReg(DstRC);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY),
 | |
|               ResultReg).addReg(RVLocs[0].getLocReg());
 | |
|       UsedRegs.push_back(RVLocs[0].getLocReg());
 | |
| 
 | |
|       // Finally update the result.
 | |
|       updateValueMap(I, ResultReg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectRet(const Instruction *I) {
 | |
|   const ReturnInst *Ret = cast<ReturnInst>(I);
 | |
|   const Function &F = *I->getParent()->getParent();
 | |
| 
 | |
|   if (!FuncInfo.CanLowerReturn)
 | |
|     return false;
 | |
| 
 | |
|   if (TLI.supportSwiftError() &&
 | |
|       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
 | |
|     return false;
 | |
| 
 | |
|   if (TLI.supportSplitCSR(FuncInfo.MF))
 | |
|     return false;
 | |
| 
 | |
|   // Build a list of return value registers.
 | |
|   SmallVector<unsigned, 4> RetRegs;
 | |
| 
 | |
|   CallingConv::ID CC = F.getCallingConv();
 | |
|   if (Ret->getNumOperands() > 0) {
 | |
|     SmallVector<ISD::OutputArg, 4> Outs;
 | |
|     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
 | |
| 
 | |
|     // Analyze operands of the call, assigning locations to each operand.
 | |
|     SmallVector<CCValAssign, 16> ValLocs;
 | |
|     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
 | |
|     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
 | |
|                                                  F.isVarArg()));
 | |
| 
 | |
|     const Value *RV = Ret->getOperand(0);
 | |
|     unsigned Reg = getRegForValue(RV);
 | |
|     if (Reg == 0)
 | |
|       return false;
 | |
| 
 | |
|     // Only handle a single return value for now.
 | |
|     if (ValLocs.size() != 1)
 | |
|       return false;
 | |
| 
 | |
|     CCValAssign &VA = ValLocs[0];
 | |
| 
 | |
|     // Don't bother handling odd stuff for now.
 | |
|     if (VA.getLocInfo() != CCValAssign::Full)
 | |
|       return false;
 | |
|     // Only handle register returns for now.
 | |
|     if (!VA.isRegLoc())
 | |
|       return false;
 | |
| 
 | |
|     unsigned SrcReg = Reg + VA.getValNo();
 | |
|     EVT RVEVT = TLI.getValueType(DL, RV->getType());
 | |
|     if (!RVEVT.isSimple()) return false;
 | |
|     MVT RVVT = RVEVT.getSimpleVT();
 | |
|     MVT DestVT = VA.getValVT();
 | |
|     // Special handling for extended integers.
 | |
|     if (RVVT != DestVT) {
 | |
|       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
 | |
|         return false;
 | |
| 
 | |
|       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
 | |
| 
 | |
|       // Perform extension if flagged as either zext or sext.  Otherwise, do
 | |
|       // nothing.
 | |
|       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
 | |
|         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
 | |
|         if (SrcReg == 0) return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Make the copy.
 | |
|     unsigned DstReg = VA.getLocReg();
 | |
|     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
 | |
|     // Avoid a cross-class copy. This is very unlikely.
 | |
|     if (!SrcRC->contains(DstReg))
 | |
|       return false;
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
 | |
| 
 | |
|     // Add register to return instruction.
 | |
|     RetRegs.push_back(VA.getLocReg());
 | |
|   }
 | |
| 
 | |
|   unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
 | |
|   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                     TII.get(RetOpc));
 | |
|   AddOptionalDefs(MIB);
 | |
|   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
 | |
|     MIB.addReg(RetRegs[i], RegState::Implicit);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
 | |
|   if (UseReg)
 | |
|     return isThumb2 ? ARM::tBLXr : ARM::BLX;
 | |
|   else
 | |
|     return isThumb2 ? ARM::tBL : ARM::BL;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
 | |
|   // Manually compute the global's type to avoid building it when unnecessary.
 | |
|   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
 | |
|   EVT LCREVT = TLI.getValueType(DL, GVTy);
 | |
|   if (!LCREVT.isSimple()) return 0;
 | |
| 
 | |
|   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
 | |
|                                        GlobalValue::ExternalLinkage, nullptr,
 | |
|                                        Name);
 | |
|   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
 | |
|   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
 | |
| }
 | |
| 
 | |
| // A quick function that will emit a call for a named libcall in F with the
 | |
| // vector of passed arguments for the Instruction in I. We can assume that we
 | |
| // can emit a call for any libcall we can produce. This is an abridged version
 | |
| // of the full call infrastructure since we won't need to worry about things
 | |
| // like computed function pointers or strange arguments at call sites.
 | |
| // TODO: Try to unify this and the normal call bits for ARM, then try to unify
 | |
| // with X86.
 | |
| bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
 | |
|   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
 | |
| 
 | |
|   // Handle *simple* calls for now.
 | |
|   Type *RetTy = I->getType();
 | |
|   MVT RetVT;
 | |
|   if (RetTy->isVoidTy())
 | |
|     RetVT = MVT::isVoid;
 | |
|   else if (!isTypeLegal(RetTy, RetVT))
 | |
|     return false;
 | |
| 
 | |
|   // Can't handle non-double multi-reg retvals.
 | |
|   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs;
 | |
|     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
 | |
|     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
 | |
|     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Set up the argument vectors.
 | |
|   SmallVector<Value*, 8> Args;
 | |
|   SmallVector<unsigned, 8> ArgRegs;
 | |
|   SmallVector<MVT, 8> ArgVTs;
 | |
|   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
 | |
|   Args.reserve(I->getNumOperands());
 | |
|   ArgRegs.reserve(I->getNumOperands());
 | |
|   ArgVTs.reserve(I->getNumOperands());
 | |
|   ArgFlags.reserve(I->getNumOperands());
 | |
|   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
 | |
|     Value *Op = I->getOperand(i);
 | |
|     unsigned Arg = getRegForValue(Op);
 | |
|     if (Arg == 0) return false;
 | |
| 
 | |
|     Type *ArgTy = Op->getType();
 | |
|     MVT ArgVT;
 | |
|     if (!isTypeLegal(ArgTy, ArgVT)) return false;
 | |
| 
 | |
|     ISD::ArgFlagsTy Flags;
 | |
|     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
 | |
|     Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|     Args.push_back(Op);
 | |
|     ArgRegs.push_back(Arg);
 | |
|     ArgVTs.push_back(ArgVT);
 | |
|     ArgFlags.push_back(Flags);
 | |
|   }
 | |
| 
 | |
|   // Handle the arguments now that we've gotten them.
 | |
|   SmallVector<unsigned, 4> RegArgs;
 | |
|   unsigned NumBytes;
 | |
|   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
 | |
|                        RegArgs, CC, NumBytes, false))
 | |
|     return false;
 | |
| 
 | |
|   unsigned CalleeReg = 0;
 | |
|   if (Subtarget->genLongCalls()) {
 | |
|     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
 | |
|     if (CalleeReg == 0) return false;
 | |
|   }
 | |
| 
 | |
|   // Issue the call.
 | |
|   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
 | |
|   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                     DbgLoc, TII.get(CallOpc));
 | |
|   // BL / BLX don't take a predicate, but tBL / tBLX do.
 | |
|   if (isThumb2)
 | |
|     AddDefaultPred(MIB);
 | |
|   if (Subtarget->genLongCalls())
 | |
|     MIB.addReg(CalleeReg);
 | |
|   else
 | |
|     MIB.addExternalSymbol(TLI.getLibcallName(Call));
 | |
| 
 | |
|   // Add implicit physical register uses to the call.
 | |
|   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
 | |
|     MIB.addReg(RegArgs[i], RegState::Implicit);
 | |
| 
 | |
|   // Add a register mask with the call-preserved registers.
 | |
|   // Proper defs for return values will be added by setPhysRegsDeadExcept().
 | |
|   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
 | |
| 
 | |
|   // Finish off the call including any return values.
 | |
|   SmallVector<unsigned, 4> UsedRegs;
 | |
|   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
 | |
| 
 | |
|   // Set all unused physreg defs as dead.
 | |
|   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectCall(const Instruction *I,
 | |
|                              const char *IntrMemName = nullptr) {
 | |
|   const CallInst *CI = cast<CallInst>(I);
 | |
|   const Value *Callee = CI->getCalledValue();
 | |
| 
 | |
|   // Can't handle inline asm.
 | |
|   if (isa<InlineAsm>(Callee)) return false;
 | |
| 
 | |
|   // Allow SelectionDAG isel to handle tail calls.
 | |
|   if (CI->isTailCall()) return false;
 | |
| 
 | |
|   // Check the calling convention.
 | |
|   ImmutableCallSite CS(CI);
 | |
|   CallingConv::ID CC = CS.getCallingConv();
 | |
| 
 | |
|   // TODO: Avoid some calling conventions?
 | |
| 
 | |
|   FunctionType *FTy = CS.getFunctionType();
 | |
|   bool isVarArg = FTy->isVarArg();
 | |
| 
 | |
|   // Handle *simple* calls for now.
 | |
|   Type *RetTy = I->getType();
 | |
|   MVT RetVT;
 | |
|   if (RetTy->isVoidTy())
 | |
|     RetVT = MVT::isVoid;
 | |
|   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
 | |
|            RetVT != MVT::i8  && RetVT != MVT::i1)
 | |
|     return false;
 | |
| 
 | |
|   // Can't handle non-double multi-reg retvals.
 | |
|   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
 | |
|       RetVT != MVT::i16 && RetVT != MVT::i32) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs;
 | |
|     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
 | |
|     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
 | |
|     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Set up the argument vectors.
 | |
|   SmallVector<Value*, 8> Args;
 | |
|   SmallVector<unsigned, 8> ArgRegs;
 | |
|   SmallVector<MVT, 8> ArgVTs;
 | |
|   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
 | |
|   unsigned arg_size = CS.arg_size();
 | |
|   Args.reserve(arg_size);
 | |
|   ArgRegs.reserve(arg_size);
 | |
|   ArgVTs.reserve(arg_size);
 | |
|   ArgFlags.reserve(arg_size);
 | |
|   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | |
|        i != e; ++i) {
 | |
|     // If we're lowering a memory intrinsic instead of a regular call, skip the
 | |
|     // last two arguments, which shouldn't be passed to the underlying function.
 | |
|     if (IntrMemName && e-i <= 2)
 | |
|       break;
 | |
| 
 | |
|     ISD::ArgFlagsTy Flags;
 | |
|     unsigned AttrInd = i - CS.arg_begin() + 1;
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
 | |
|       Flags.setSExt();
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
 | |
|       Flags.setZExt();
 | |
| 
 | |
|     // FIXME: Only handle *easy* calls for now.
 | |
|     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
 | |
|         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
 | |
|         CS.paramHasAttr(AttrInd, Attribute::SwiftSelf) ||
 | |
|         CS.paramHasAttr(AttrInd, Attribute::SwiftError) ||
 | |
|         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
 | |
|         CS.paramHasAttr(AttrInd, Attribute::ByVal))
 | |
|       return false;
 | |
| 
 | |
|     Type *ArgTy = (*i)->getType();
 | |
|     MVT ArgVT;
 | |
|     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
 | |
|         ArgVT != MVT::i1)
 | |
|       return false;
 | |
| 
 | |
|     unsigned Arg = getRegForValue(*i);
 | |
|     if (Arg == 0)
 | |
|       return false;
 | |
| 
 | |
|     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
 | |
|     Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|     Args.push_back(*i);
 | |
|     ArgRegs.push_back(Arg);
 | |
|     ArgVTs.push_back(ArgVT);
 | |
|     ArgFlags.push_back(Flags);
 | |
|   }
 | |
| 
 | |
|   // Handle the arguments now that we've gotten them.
 | |
|   SmallVector<unsigned, 4> RegArgs;
 | |
|   unsigned NumBytes;
 | |
|   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
 | |
|                        RegArgs, CC, NumBytes, isVarArg))
 | |
|     return false;
 | |
| 
 | |
|   bool UseReg = false;
 | |
|   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
 | |
|   if (!GV || Subtarget->genLongCalls()) UseReg = true;
 | |
| 
 | |
|   unsigned CalleeReg = 0;
 | |
|   if (UseReg) {
 | |
|     if (IntrMemName)
 | |
|       CalleeReg = getLibcallReg(IntrMemName);
 | |
|     else
 | |
|       CalleeReg = getRegForValue(Callee);
 | |
| 
 | |
|     if (CalleeReg == 0) return false;
 | |
|   }
 | |
| 
 | |
|   // Issue the call.
 | |
|   unsigned CallOpc = ARMSelectCallOp(UseReg);
 | |
|   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | |
|                                     DbgLoc, TII.get(CallOpc));
 | |
| 
 | |
|   // ARM calls don't take a predicate, but tBL / tBLX do.
 | |
|   if(isThumb2)
 | |
|     AddDefaultPred(MIB);
 | |
|   if (UseReg)
 | |
|     MIB.addReg(CalleeReg);
 | |
|   else if (!IntrMemName)
 | |
|     MIB.addGlobalAddress(GV, 0, 0);
 | |
|   else
 | |
|     MIB.addExternalSymbol(IntrMemName, 0);
 | |
| 
 | |
|   // Add implicit physical register uses to the call.
 | |
|   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
 | |
|     MIB.addReg(RegArgs[i], RegState::Implicit);
 | |
| 
 | |
|   // Add a register mask with the call-preserved registers.
 | |
|   // Proper defs for return values will be added by setPhysRegsDeadExcept().
 | |
|   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
 | |
| 
 | |
|   // Finish off the call including any return values.
 | |
|   SmallVector<unsigned, 4> UsedRegs;
 | |
|   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
 | |
|     return false;
 | |
| 
 | |
|   // Set all unused physreg defs as dead.
 | |
|   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
 | |
|   return Len <= 16;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
 | |
|                                         uint64_t Len, unsigned Alignment) {
 | |
|   // Make sure we don't bloat code by inlining very large memcpy's.
 | |
|   if (!ARMIsMemCpySmall(Len))
 | |
|     return false;
 | |
| 
 | |
|   while (Len) {
 | |
|     MVT VT;
 | |
|     if (!Alignment || Alignment >= 4) {
 | |
|       if (Len >= 4)
 | |
|         VT = MVT::i32;
 | |
|       else if (Len >= 2)
 | |
|         VT = MVT::i16;
 | |
|       else {
 | |
|         assert (Len == 1 && "Expected a length of 1!");
 | |
|         VT = MVT::i8;
 | |
|       }
 | |
|     } else {
 | |
|       // Bound based on alignment.
 | |
|       if (Len >= 2 && Alignment == 2)
 | |
|         VT = MVT::i16;
 | |
|       else {
 | |
|         VT = MVT::i8;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool RV;
 | |
|     unsigned ResultReg;
 | |
|     RV = ARMEmitLoad(VT, ResultReg, Src);
 | |
|     assert (RV == true && "Should be able to handle this load.");
 | |
|     RV = ARMEmitStore(VT, ResultReg, Dest);
 | |
|     assert (RV == true && "Should be able to handle this store.");
 | |
|     (void)RV;
 | |
| 
 | |
|     unsigned Size = VT.getSizeInBits()/8;
 | |
|     Len -= Size;
 | |
|     Dest.Offset += Size;
 | |
|     Src.Offset += Size;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
 | |
|   // FIXME: Handle more intrinsics.
 | |
|   switch (I.getIntrinsicID()) {
 | |
|   default: return false;
 | |
|   case Intrinsic::frameaddress: {
 | |
|     MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
 | |
|     MFI.setFrameAddressIsTaken(true);
 | |
| 
 | |
|     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
 | |
|     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
 | |
|                                              : &ARM::GPRRegClass;
 | |
| 
 | |
|     const ARMBaseRegisterInfo *RegInfo =
 | |
|         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
 | |
|     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
 | |
|     unsigned SrcReg = FramePtr;
 | |
| 
 | |
|     // Recursively load frame address
 | |
|     // ldr r0 [fp]
 | |
|     // ldr r0 [r0]
 | |
|     // ldr r0 [r0]
 | |
|     // ...
 | |
|     unsigned DestReg;
 | |
|     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
 | |
|     while (Depth--) {
 | |
|       DestReg = createResultReg(RC);
 | |
|       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                               TII.get(LdrOpc), DestReg)
 | |
|                       .addReg(SrcReg).addImm(0));
 | |
|       SrcReg = DestReg;
 | |
|     }
 | |
|     updateValueMap(&I, SrcReg);
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::memcpy:
 | |
|   case Intrinsic::memmove: {
 | |
|     const MemTransferInst &MTI = cast<MemTransferInst>(I);
 | |
|     // Don't handle volatile.
 | |
|     if (MTI.isVolatile())
 | |
|       return false;
 | |
| 
 | |
|     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
 | |
|     // we would emit dead code because we don't currently handle memmoves.
 | |
|     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
 | |
|     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
 | |
|       // Small memcpy's are common enough that we want to do them without a call
 | |
|       // if possible.
 | |
|       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
 | |
|       if (ARMIsMemCpySmall(Len)) {
 | |
|         Address Dest, Src;
 | |
|         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
 | |
|             !ARMComputeAddress(MTI.getRawSource(), Src))
 | |
|           return false;
 | |
|         unsigned Alignment = MTI.getAlignment();
 | |
|         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!MTI.getLength()->getType()->isIntegerTy(32))
 | |
|       return false;
 | |
| 
 | |
|     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
 | |
|       return false;
 | |
| 
 | |
|     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
 | |
|     return SelectCall(&I, IntrMemName);
 | |
|   }
 | |
|   case Intrinsic::memset: {
 | |
|     const MemSetInst &MSI = cast<MemSetInst>(I);
 | |
|     // Don't handle volatile.
 | |
|     if (MSI.isVolatile())
 | |
|       return false;
 | |
| 
 | |
|     if (!MSI.getLength()->getType()->isIntegerTy(32))
 | |
|       return false;
 | |
| 
 | |
|     if (MSI.getDestAddressSpace() > 255)
 | |
|       return false;
 | |
| 
 | |
|     return SelectCall(&I, "memset");
 | |
|   }
 | |
|   case Intrinsic::trap: {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
 | |
|       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectTrunc(const Instruction *I) {
 | |
|   // The high bits for a type smaller than the register size are assumed to be
 | |
|   // undefined.
 | |
|   Value *Op = I->getOperand(0);
 | |
| 
 | |
|   EVT SrcVT, DestVT;
 | |
|   SrcVT = TLI.getValueType(DL, Op->getType(), true);
 | |
|   DestVT = TLI.getValueType(DL, I->getType(), true);
 | |
| 
 | |
|   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
 | |
|     return false;
 | |
|   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcReg = getRegForValue(Op);
 | |
|   if (!SrcReg) return false;
 | |
| 
 | |
|   // Because the high bits are undefined, a truncate doesn't generate
 | |
|   // any code.
 | |
|   updateValueMap(I, SrcReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
 | |
|                                     bool isZExt) {
 | |
|   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
 | |
|     return 0;
 | |
|   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
 | |
|     return 0;
 | |
| 
 | |
|   // Table of which combinations can be emitted as a single instruction,
 | |
|   // and which will require two.
 | |
|   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
 | |
|     //            ARM                     Thumb
 | |
|     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
 | |
|     //    ext:     s  z      s  z          s  z      s  z
 | |
|     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
 | |
|     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
 | |
|     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
 | |
|   };
 | |
| 
 | |
|   // Target registers for:
 | |
|   //  - For ARM can never be PC.
 | |
|   //  - For 16-bit Thumb are restricted to lower 8 registers.
 | |
|   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
 | |
|   static const TargetRegisterClass *RCTbl[2][2] = {
 | |
|     // Instructions: Two                     Single
 | |
|     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
 | |
|     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
 | |
|   };
 | |
| 
 | |
|   // Table governing the instruction(s) to be emitted.
 | |
|   static const struct InstructionTable {
 | |
|     uint32_t Opc   : 16;
 | |
|     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
 | |
|     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
 | |
|     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
 | |
|   } IT[2][2][3][2] = {
 | |
|     { // Two instructions (first is left shift, second is in this table).
 | |
|       { // ARM                Opc           S  Shift             Imm
 | |
|         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
 | |
|         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
 | |
|         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
 | |
|         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
 | |
|         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
 | |
|         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
 | |
|       },
 | |
|       { // Thumb              Opc           S  Shift             Imm
 | |
|         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
 | |
|         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
 | |
|         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
 | |
|         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
 | |
|         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
 | |
|         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
 | |
|       }
 | |
|     },
 | |
|     { // Single instruction.
 | |
|       { // ARM                Opc           S  Shift             Imm
 | |
|         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
 | |
|         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
 | |
|         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
 | |
|         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
 | |
|         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
 | |
|         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
 | |
|       },
 | |
|       { // Thumb              Opc           S  Shift             Imm
 | |
|         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
 | |
|         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
 | |
|         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
 | |
|         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
 | |
|         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
 | |
|         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   unsigned SrcBits = SrcVT.getSizeInBits();
 | |
|   unsigned DestBits = DestVT.getSizeInBits();
 | |
|   (void) DestBits;
 | |
|   assert((SrcBits < DestBits) && "can only extend to larger types");
 | |
|   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
 | |
|          "other sizes unimplemented");
 | |
|   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
 | |
|          "other sizes unimplemented");
 | |
| 
 | |
|   bool hasV6Ops = Subtarget->hasV6Ops();
 | |
|   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
 | |
|   assert((Bitness < 3) && "sanity-check table bounds");
 | |
| 
 | |
|   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
 | |
|   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
 | |
|   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
 | |
|   unsigned Opc = ITP->Opc;
 | |
|   assert(ARM::KILL != Opc && "Invalid table entry");
 | |
|   unsigned hasS = ITP->hasS;
 | |
|   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
 | |
|   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
 | |
|          "only MOVsi has shift operand addressing mode");
 | |
|   unsigned Imm = ITP->Imm;
 | |
| 
 | |
|   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
 | |
|   bool setsCPSR = &ARM::tGPRRegClass == RC;
 | |
|   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
 | |
|   unsigned ResultReg;
 | |
|   // MOVsi encodes shift and immediate in shift operand addressing mode.
 | |
|   // The following condition has the same value when emitting two
 | |
|   // instruction sequences: both are shifts.
 | |
|   bool ImmIsSO = (Shift != ARM_AM::no_shift);
 | |
| 
 | |
|   // Either one or two instructions are emitted.
 | |
|   // They're always of the form:
 | |
|   //   dst = in OP imm
 | |
|   // CPSR is set only by 16-bit Thumb instructions.
 | |
|   // Predicate, if any, is AL.
 | |
|   // S bit, if available, is always 0.
 | |
|   // When two are emitted the first's result will feed as the second's input,
 | |
|   // that value is then dead.
 | |
|   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
 | |
|   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
 | |
|     ResultReg = createResultReg(RC);
 | |
|     bool isLsl = (0 == Instr) && !isSingleInstr;
 | |
|     unsigned Opcode = isLsl ? LSLOpc : Opc;
 | |
|     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
 | |
|     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
 | |
|     bool isKill = 1 == Instr;
 | |
|     MachineInstrBuilder MIB = BuildMI(
 | |
|         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
 | |
|     if (setsCPSR)
 | |
|       MIB.addReg(ARM::CPSR, RegState::Define);
 | |
|     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
 | |
|     AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
 | |
|     if (hasS)
 | |
|       AddDefaultCC(MIB);
 | |
|     // Second instruction consumes the first's result.
 | |
|     SrcReg = ResultReg;
 | |
|   }
 | |
| 
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectIntExt(const Instruction *I) {
 | |
|   // On ARM, in general, integer casts don't involve legal types; this code
 | |
|   // handles promotable integers.
 | |
|   Type *DestTy = I->getType();
 | |
|   Value *Src = I->getOperand(0);
 | |
|   Type *SrcTy = Src->getType();
 | |
| 
 | |
|   bool isZExt = isa<ZExtInst>(I);
 | |
|   unsigned SrcReg = getRegForValue(Src);
 | |
|   if (!SrcReg) return false;
 | |
| 
 | |
|   EVT SrcEVT, DestEVT;
 | |
|   SrcEVT = TLI.getValueType(DL, SrcTy, true);
 | |
|   DestEVT = TLI.getValueType(DL, DestTy, true);
 | |
|   if (!SrcEVT.isSimple()) return false;
 | |
|   if (!DestEVT.isSimple()) return false;
 | |
| 
 | |
|   MVT SrcVT = SrcEVT.getSimpleVT();
 | |
|   MVT DestVT = DestEVT.getSimpleVT();
 | |
|   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
 | |
|   if (ResultReg == 0) return false;
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::SelectShift(const Instruction *I,
 | |
|                               ARM_AM::ShiftOpc ShiftTy) {
 | |
|   // We handle thumb2 mode by target independent selector
 | |
|   // or SelectionDAG ISel.
 | |
|   if (isThumb2)
 | |
|     return false;
 | |
| 
 | |
|   // Only handle i32 now.
 | |
|   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
 | |
|   if (DestVT != MVT::i32)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Opc = ARM::MOVsr;
 | |
|   unsigned ShiftImm;
 | |
|   Value *Src2Value = I->getOperand(1);
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
 | |
|     ShiftImm = CI->getZExtValue();
 | |
| 
 | |
|     // Fall back to selection DAG isel if the shift amount
 | |
|     // is zero or greater than the width of the value type.
 | |
|     if (ShiftImm == 0 || ShiftImm >=32)
 | |
|       return false;
 | |
| 
 | |
|     Opc = ARM::MOVsi;
 | |
|   }
 | |
| 
 | |
|   Value *Src1Value = I->getOperand(0);
 | |
|   unsigned Reg1 = getRegForValue(Src1Value);
 | |
|   if (Reg1 == 0) return false;
 | |
| 
 | |
|   unsigned Reg2 = 0;
 | |
|   if (Opc == ARM::MOVsr) {
 | |
|     Reg2 = getRegForValue(Src2Value);
 | |
|     if (Reg2 == 0) return false;
 | |
|   }
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
 | |
|   if(ResultReg == 0) return false;
 | |
| 
 | |
|   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                     TII.get(Opc), ResultReg)
 | |
|                             .addReg(Reg1);
 | |
| 
 | |
|   if (Opc == ARM::MOVsi)
 | |
|     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
 | |
|   else if (Opc == ARM::MOVsr) {
 | |
|     MIB.addReg(Reg2);
 | |
|     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
 | |
|   }
 | |
| 
 | |
|   AddOptionalDefs(MIB);
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // TODO: SoftFP support.
 | |
| bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::Load:
 | |
|       return SelectLoad(I);
 | |
|     case Instruction::Store:
 | |
|       return SelectStore(I);
 | |
|     case Instruction::Br:
 | |
|       return SelectBranch(I);
 | |
|     case Instruction::IndirectBr:
 | |
|       return SelectIndirectBr(I);
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp:
 | |
|       return SelectCmp(I);
 | |
|     case Instruction::FPExt:
 | |
|       return SelectFPExt(I);
 | |
|     case Instruction::FPTrunc:
 | |
|       return SelectFPTrunc(I);
 | |
|     case Instruction::SIToFP:
 | |
|       return SelectIToFP(I, /*isSigned*/ true);
 | |
|     case Instruction::UIToFP:
 | |
|       return SelectIToFP(I, /*isSigned*/ false);
 | |
|     case Instruction::FPToSI:
 | |
|       return SelectFPToI(I, /*isSigned*/ true);
 | |
|     case Instruction::FPToUI:
 | |
|       return SelectFPToI(I, /*isSigned*/ false);
 | |
|     case Instruction::Add:
 | |
|       return SelectBinaryIntOp(I, ISD::ADD);
 | |
|     case Instruction::Or:
 | |
|       return SelectBinaryIntOp(I, ISD::OR);
 | |
|     case Instruction::Sub:
 | |
|       return SelectBinaryIntOp(I, ISD::SUB);
 | |
|     case Instruction::FAdd:
 | |
|       return SelectBinaryFPOp(I, ISD::FADD);
 | |
|     case Instruction::FSub:
 | |
|       return SelectBinaryFPOp(I, ISD::FSUB);
 | |
|     case Instruction::FMul:
 | |
|       return SelectBinaryFPOp(I, ISD::FMUL);
 | |
|     case Instruction::SDiv:
 | |
|       return SelectDiv(I, /*isSigned*/ true);
 | |
|     case Instruction::UDiv:
 | |
|       return SelectDiv(I, /*isSigned*/ false);
 | |
|     case Instruction::SRem:
 | |
|       return SelectRem(I, /*isSigned*/ true);
 | |
|     case Instruction::URem:
 | |
|       return SelectRem(I, /*isSigned*/ false);
 | |
|     case Instruction::Call:
 | |
|       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | |
|         return SelectIntrinsicCall(*II);
 | |
|       return SelectCall(I);
 | |
|     case Instruction::Select:
 | |
|       return SelectSelect(I);
 | |
|     case Instruction::Ret:
 | |
|       return SelectRet(I);
 | |
|     case Instruction::Trunc:
 | |
|       return SelectTrunc(I);
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|       return SelectIntExt(I);
 | |
|     case Instruction::Shl:
 | |
|       return SelectShift(I, ARM_AM::lsl);
 | |
|     case Instruction::LShr:
 | |
|       return SelectShift(I, ARM_AM::lsr);
 | |
|     case Instruction::AShr:
 | |
|       return SelectShift(I, ARM_AM::asr);
 | |
|     default: break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // This table describes sign- and zero-extend instructions which can be
 | |
| // folded into a preceding load. All of these extends have an immediate
 | |
| // (sometimes a mask and sometimes a shift) that's applied after
 | |
| // extension.
 | |
| const struct FoldableLoadExtendsStruct {
 | |
|   uint16_t Opc[2];  // ARM, Thumb.
 | |
|   uint8_t ExpectedImm;
 | |
|   uint8_t isZExt     : 1;
 | |
|   uint8_t ExpectedVT : 7;
 | |
| } FoldableLoadExtends[] = {
 | |
|   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
 | |
|   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
 | |
|   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
 | |
|   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
 | |
|   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// \brief The specified machine instr operand is a vreg, and that
 | |
| /// vreg is being provided by the specified load instruction.  If possible,
 | |
| /// try to fold the load as an operand to the instruction, returning true if
 | |
| /// successful.
 | |
| bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
 | |
|                                       const LoadInst *LI) {
 | |
|   // Verify we have a legal type before going any further.
 | |
|   MVT VT;
 | |
|   if (!isLoadTypeLegal(LI->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   // Combine load followed by zero- or sign-extend.
 | |
|   // ldrb r1, [r0]       ldrb r1, [r0]
 | |
|   // uxtb r2, r1     =>
 | |
|   // mov  r3, r2         mov  r3, r1
 | |
|   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
 | |
|     return false;
 | |
|   const uint64_t Imm = MI->getOperand(2).getImm();
 | |
| 
 | |
|   bool Found = false;
 | |
|   bool isZExt;
 | |
|   for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
 | |
|        i != e; ++i) {
 | |
|     if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
 | |
|         (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
 | |
|         MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
 | |
|       Found = true;
 | |
|       isZExt = FoldableLoadExtends[i].isZExt;
 | |
|     }
 | |
|   }
 | |
|   if (!Found) return false;
 | |
| 
 | |
|   // See if we can handle this address.
 | |
|   Address Addr;
 | |
|   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
 | |
| 
 | |
|   unsigned ResultReg = MI->getOperand(0).getReg();
 | |
|   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
 | |
|     return false;
 | |
|   MI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
 | |
|                                      unsigned Align, MVT VT) {
 | |
|   bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
 | |
| 
 | |
|   LLVMContext *Context = &MF->getFunction()->getContext();
 | |
|   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | |
|   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
 | |
|       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
 | |
|       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
 | |
|       /*AddCurrentAddress=*/UseGOT_PREL);
 | |
| 
 | |
|   unsigned ConstAlign =
 | |
|       MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
 | |
|   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
 | |
| 
 | |
|   unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
 | |
|   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
 | |
|   MachineInstrBuilder MIB =
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
 | |
|           .addConstantPoolIndex(Idx);
 | |
|   if (Opc == ARM::LDRcp)
 | |
|     MIB.addImm(0);
 | |
|   AddDefaultPred(MIB);
 | |
| 
 | |
|   // Fix the address by adding pc.
 | |
|   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
 | |
|                                                           : ARM::PICADD;
 | |
|   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
 | |
|   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
 | |
|             .addReg(TempReg)
 | |
|             .addImm(ARMPCLabelIndex);
 | |
|   if (!Subtarget->isThumb())
 | |
|     AddDefaultPred(MIB);
 | |
| 
 | |
|   if (UseGOT_PREL && Subtarget->isThumb()) {
 | |
|     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                   TII.get(ARM::t2LDRi12), NewDestReg)
 | |
|               .addReg(DestReg)
 | |
|               .addImm(0);
 | |
|     DestReg = NewDestReg;
 | |
|     AddOptionalDefs(MIB);
 | |
|   }
 | |
|   return DestReg;
 | |
| }
 | |
| 
 | |
| bool ARMFastISel::fastLowerArguments() {
 | |
|   if (!FuncInfo.CanLowerReturn)
 | |
|     return false;
 | |
| 
 | |
|   const Function *F = FuncInfo.Fn;
 | |
|   if (F->isVarArg())
 | |
|     return false;
 | |
| 
 | |
|   CallingConv::ID CC = F->getCallingConv();
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     return false;
 | |
|   case CallingConv::Fast:
 | |
|   case CallingConv::C:
 | |
|   case CallingConv::ARM_AAPCS_VFP:
 | |
|   case CallingConv::ARM_AAPCS:
 | |
|   case CallingConv::ARM_APCS:
 | |
|   case CallingConv::Swift:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
 | |
|   // which are passed in r0 - r3.
 | |
|   unsigned Idx = 1;
 | |
|   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I, ++Idx) {
 | |
|     if (Idx > 4)
 | |
|       return false;
 | |
| 
 | |
|     if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
 | |
|         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
 | |
|         F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
 | |
|         F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
 | |
|         F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
 | |
|       return false;
 | |
| 
 | |
|     Type *ArgTy = I->getType();
 | |
|     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
 | |
|       return false;
 | |
| 
 | |
|     EVT ArgVT = TLI.getValueType(DL, ArgTy);
 | |
|     if (!ArgVT.isSimple()) return false;
 | |
|     switch (ArgVT.getSimpleVT().SimpleTy) {
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   static const MCPhysReg GPRArgRegs[] = {
 | |
|     ARM::R0, ARM::R1, ARM::R2, ARM::R3
 | |
|   };
 | |
| 
 | |
|   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
 | |
|   Idx = 0;
 | |
|   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I, ++Idx) {
 | |
|     unsigned SrcReg = GPRArgRegs[Idx];
 | |
|     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
 | |
|     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
 | |
|     // Without this, EmitLiveInCopies may eliminate the livein if its only
 | |
|     // use is a bitcast (which isn't turned into an instruction).
 | |
|     unsigned ResultReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY),
 | |
|             ResultReg).addReg(DstReg, getKillRegState(true));
 | |
|     updateValueMap(&*I, ResultReg);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
 | |
|                                 const TargetLibraryInfo *libInfo) {
 | |
|     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
 | |
|       return new ARMFastISel(funcInfo, libInfo);
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 |