forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4450 lines
		
	
	
		
			166 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4450 lines
		
	
	
		
			166 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines an instruction selector for the ARM target.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARM.h"
 | |
| #include "ARMBaseInstrInfo.h"
 | |
| #include "ARMTargetMachine.h"
 | |
| #include "MCTargetDesc/ARMAddressingModes.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "arm-isel"
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableShifterOp("disable-shifter-op", cl::Hidden,
 | |
|   cl::desc("Disable isel of shifter-op"),
 | |
|   cl::init(false));
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| /// ARMDAGToDAGISel - ARM specific code to select ARM machine
 | |
| /// instructions for SelectionDAG operations.
 | |
| ///
 | |
| namespace {
 | |
| 
 | |
| enum AddrMode2Type {
 | |
|   AM2_BASE, // Simple AM2 (+-imm12)
 | |
|   AM2_SHOP  // Shifter-op AM2
 | |
| };
 | |
| 
 | |
| class ARMDAGToDAGISel : public SelectionDAGISel {
 | |
|   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
 | |
|   /// make the right decision when generating code for different targets.
 | |
|   const ARMSubtarget *Subtarget;
 | |
| 
 | |
| public:
 | |
|   explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel)
 | |
|       : SelectionDAGISel(tm, OptLevel) {}
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override {
 | |
|     // Reset the subtarget each time through.
 | |
|     Subtarget = &MF.getSubtarget<ARMSubtarget>();
 | |
|     SelectionDAGISel::runOnMachineFunction(MF);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const char *getPassName() const override {
 | |
|     return "ARM Instruction Selection";
 | |
|   }
 | |
| 
 | |
|   void PreprocessISelDAG() override;
 | |
| 
 | |
|   /// getI32Imm - Return a target constant of type i32 with the specified
 | |
|   /// value.
 | |
|   inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
 | |
|     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | |
|   }
 | |
| 
 | |
|   void Select(SDNode *N) override;
 | |
| 
 | |
|   bool hasNoVMLxHazardUse(SDNode *N) const;
 | |
|   bool isShifterOpProfitable(const SDValue &Shift,
 | |
|                              ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
 | |
|   bool SelectRegShifterOperand(SDValue N, SDValue &A,
 | |
|                                SDValue &B, SDValue &C,
 | |
|                                bool CheckProfitability = true);
 | |
|   bool SelectImmShifterOperand(SDValue N, SDValue &A,
 | |
|                                SDValue &B, bool CheckProfitability = true);
 | |
|   bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
 | |
|                                     SDValue &B, SDValue &C) {
 | |
|     // Don't apply the profitability check
 | |
|     return SelectRegShifterOperand(N, A, B, C, false);
 | |
|   }
 | |
|   bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
 | |
|                                     SDValue &B) {
 | |
|     // Don't apply the profitability check
 | |
|     return SelectImmShifterOperand(N, A, B, false);
 | |
|   }
 | |
| 
 | |
|   bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
 | |
|   bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
 | |
| 
 | |
|   AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
 | |
|                                       SDValue &Offset, SDValue &Opc);
 | |
|   bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                            SDValue &Opc) {
 | |
|     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
 | |
|   }
 | |
| 
 | |
|   bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                            SDValue &Opc) {
 | |
|     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
 | |
|   }
 | |
| 
 | |
|   bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                        SDValue &Opc) {
 | |
|     SelectAddrMode2Worker(N, Base, Offset, Opc);
 | |
| //    return SelectAddrMode2ShOp(N, Base, Offset, Opc);
 | |
|     // This always matches one way or another.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
 | |
|     const ConstantSDNode *CN = cast<ConstantSDNode>(N);
 | |
|     Pred = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(N), MVT::i32);
 | |
|     Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
 | |
|                              SDValue &Offset, SDValue &Opc);
 | |
|   bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
 | |
|                              SDValue &Offset, SDValue &Opc);
 | |
|   bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
 | |
|                              SDValue &Offset, SDValue &Opc);
 | |
|   bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
 | |
|   bool SelectAddrMode3(SDValue N, SDValue &Base,
 | |
|                        SDValue &Offset, SDValue &Opc);
 | |
|   bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
 | |
|                              SDValue &Offset, SDValue &Opc);
 | |
|   bool SelectAddrMode5(SDValue N, SDValue &Base,
 | |
|                        SDValue &Offset);
 | |
|   bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
 | |
|   bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
 | |
| 
 | |
|   bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
 | |
| 
 | |
|   // Thumb Addressing Modes:
 | |
|   bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
 | |
|   bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
 | |
|                                 SDValue &OffImm);
 | |
|   bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
 | |
|                                  SDValue &OffImm);
 | |
|   bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
 | |
|                                  SDValue &OffImm);
 | |
|   bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
 | |
|                                  SDValue &OffImm);
 | |
|   bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
 | |
| 
 | |
|   // Thumb 2 Addressing Modes:
 | |
|   bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
 | |
|   bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
 | |
|                             SDValue &OffImm);
 | |
|   bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
 | |
|                                  SDValue &OffImm);
 | |
|   bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
 | |
|                              SDValue &OffReg, SDValue &ShImm);
 | |
|   bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
 | |
| 
 | |
|   inline bool is_so_imm(unsigned Imm) const {
 | |
|     return ARM_AM::getSOImmVal(Imm) != -1;
 | |
|   }
 | |
| 
 | |
|   inline bool is_so_imm_not(unsigned Imm) const {
 | |
|     return ARM_AM::getSOImmVal(~Imm) != -1;
 | |
|   }
 | |
| 
 | |
|   inline bool is_t2_so_imm(unsigned Imm) const {
 | |
|     return ARM_AM::getT2SOImmVal(Imm) != -1;
 | |
|   }
 | |
| 
 | |
|   inline bool is_t2_so_imm_not(unsigned Imm) const {
 | |
|     return ARM_AM::getT2SOImmVal(~Imm) != -1;
 | |
|   }
 | |
| 
 | |
|   // Include the pieces autogenerated from the target description.
 | |
| #include "ARMGenDAGISel.inc"
 | |
| 
 | |
| private:
 | |
|   /// Indexed (pre/post inc/dec) load matching code for ARM.
 | |
|   bool tryARMIndexedLoad(SDNode *N);
 | |
|   bool tryT1IndexedLoad(SDNode *N);
 | |
|   bool tryT2IndexedLoad(SDNode *N);
 | |
| 
 | |
|   /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
 | |
|   /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
 | |
|   /// loads of D registers and even subregs and odd subregs of Q registers.
 | |
|   /// For NumVecs <= 2, QOpcodes1 is not used.
 | |
|   void SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
 | |
|                  const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
 | |
|                  const uint16_t *QOpcodes1);
 | |
| 
 | |
|   /// SelectVST - Select NEON store intrinsics.  NumVecs should
 | |
|   /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
 | |
|   /// stores of D registers and even subregs and odd subregs of Q registers.
 | |
|   /// For NumVecs <= 2, QOpcodes1 is not used.
 | |
|   void SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
 | |
|                  const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
 | |
|                  const uint16_t *QOpcodes1);
 | |
| 
 | |
|   /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
 | |
|   /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
 | |
|   /// load/store of D registers and Q registers.
 | |
|   void SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
 | |
|                        unsigned NumVecs, const uint16_t *DOpcodes,
 | |
|                        const uint16_t *QOpcodes);
 | |
| 
 | |
|   /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
 | |
|   /// should be 2, 3 or 4.  The opcode array specifies the instructions used
 | |
|   /// for loading D registers.  (Q registers are not supported.)
 | |
|   void SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
 | |
|                     const uint16_t *Opcodes);
 | |
| 
 | |
|   /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2,
 | |
|   /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be
 | |
|   /// generated to force the table registers to be consecutive.
 | |
|   void SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
 | |
| 
 | |
|   /// Try to select SBFX/UBFX instructions for ARM.
 | |
|   bool tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
 | |
| 
 | |
|   // Select special operations if node forms integer ABS pattern
 | |
|   bool tryABSOp(SDNode *N);
 | |
| 
 | |
|   bool tryReadRegister(SDNode *N);
 | |
|   bool tryWriteRegister(SDNode *N);
 | |
| 
 | |
|   bool tryInlineAsm(SDNode *N);
 | |
| 
 | |
|   void SelectConcatVector(SDNode *N);
 | |
| 
 | |
|   bool trySMLAWSMULW(SDNode *N);
 | |
| 
 | |
|   void SelectCMP_SWAP(SDNode *N);
 | |
| 
 | |
|   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|   /// inline asm expressions.
 | |
|   bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
 | |
|                                     std::vector<SDValue> &OutOps) override;
 | |
| 
 | |
|   // Form pairs of consecutive R, S, D, or Q registers.
 | |
|   SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
 | |
|   SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
 | |
|   SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
 | |
|   SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
 | |
| 
 | |
|   // Form sequences of 4 consecutive S, D, or Q registers.
 | |
|   SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
 | |
|   SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
 | |
|   SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
 | |
| 
 | |
|   // Get the alignment operand for a NEON VLD or VST instruction.
 | |
|   SDValue GetVLDSTAlign(SDValue Align, const SDLoc &dl, unsigned NumVecs,
 | |
|                         bool is64BitVector);
 | |
| 
 | |
|   /// Returns the number of instructions required to materialize the given
 | |
|   /// constant in a register, or 3 if a literal pool load is needed.
 | |
|   unsigned ConstantMaterializationCost(unsigned Val) const;
 | |
| 
 | |
|   /// Checks if N is a multiplication by a constant where we can extract out a
 | |
|   /// power of two from the constant so that it can be used in a shift, but only
 | |
|   /// if it simplifies the materialization of the constant. Returns true if it
 | |
|   /// is, and assigns to PowerOfTwo the power of two that should be extracted
 | |
|   /// out and to NewMulConst the new constant to be multiplied by.
 | |
|   bool canExtractShiftFromMul(const SDValue &N, unsigned MaxShift,
 | |
|                               unsigned &PowerOfTwo, SDValue &NewMulConst) const;
 | |
| 
 | |
|   /// Replace N with M in CurDAG, in a way that also ensures that M gets
 | |
|   /// selected when N would have been selected.
 | |
|   void replaceDAGValue(const SDValue &N, SDValue M);
 | |
| };
 | |
| }
 | |
| 
 | |
| /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
 | |
| /// operand. If so Imm will receive the 32-bit value.
 | |
| static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
 | |
|   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
 | |
|     Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isInt32Immediate - This method tests to see if a constant operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isInt32Immediate(SDValue N, unsigned &Imm) {
 | |
|   return isInt32Immediate(N.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific
 | |
| // opcode and that it has a immediate integer right operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | |
|   return N->getOpcode() == Opc &&
 | |
|          isInt32Immediate(N->getOperand(1).getNode(), Imm);
 | |
| }
 | |
| 
 | |
| /// \brief Check whether a particular node is a constant value representable as
 | |
| /// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
 | |
| ///
 | |
| /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
 | |
| static bool isScaledConstantInRange(SDValue Node, int Scale,
 | |
|                                     int RangeMin, int RangeMax,
 | |
|                                     int &ScaledConstant) {
 | |
|   assert(Scale > 0 && "Invalid scale!");
 | |
| 
 | |
|   // Check that this is a constant.
 | |
|   const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   ScaledConstant = (int) C->getZExtValue();
 | |
|   if ((ScaledConstant % Scale) != 0)
 | |
|     return false;
 | |
| 
 | |
|   ScaledConstant /= Scale;
 | |
|   return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
 | |
| }
 | |
| 
 | |
| void ARMDAGToDAGISel::PreprocessISelDAG() {
 | |
|   if (!Subtarget->hasV6T2Ops())
 | |
|     return;
 | |
| 
 | |
|   bool isThumb2 = Subtarget->isThumb();
 | |
|   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | |
|        E = CurDAG->allnodes_end(); I != E; ) {
 | |
|     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
 | |
| 
 | |
|     if (N->getOpcode() != ISD::ADD)
 | |
|       continue;
 | |
| 
 | |
|     // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
 | |
|     // leading zeros, followed by consecutive set bits, followed by 1 or 2
 | |
|     // trailing zeros, e.g. 1020.
 | |
|     // Transform the expression to
 | |
|     // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
 | |
|     // of trailing zeros of c2. The left shift would be folded as an shifter
 | |
|     // operand of 'add' and the 'and' and 'srl' would become a bits extraction
 | |
|     // node (UBFX).
 | |
| 
 | |
|     SDValue N0 = N->getOperand(0);
 | |
|     SDValue N1 = N->getOperand(1);
 | |
|     unsigned And_imm = 0;
 | |
|     if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
 | |
|       if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
 | |
|         std::swap(N0, N1);
 | |
|     }
 | |
|     if (!And_imm)
 | |
|       continue;
 | |
| 
 | |
|     // Check if the AND mask is an immediate of the form: 000.....1111111100
 | |
|     unsigned TZ = countTrailingZeros(And_imm);
 | |
|     if (TZ != 1 && TZ != 2)
 | |
|       // Be conservative here. Shifter operands aren't always free. e.g. On
 | |
|       // Swift, left shifter operand of 1 / 2 for free but others are not.
 | |
|       // e.g.
 | |
|       //  ubfx   r3, r1, #16, #8
 | |
|       //  ldr.w  r3, [r0, r3, lsl #2]
 | |
|       // vs.
 | |
|       //  mov.w  r9, #1020
 | |
|       //  and.w  r2, r9, r1, lsr #14
 | |
|       //  ldr    r2, [r0, r2]
 | |
|       continue;
 | |
|     And_imm >>= TZ;
 | |
|     if (And_imm & (And_imm + 1))
 | |
|       continue;
 | |
| 
 | |
|     // Look for (and (srl X, c1), c2).
 | |
|     SDValue Srl = N1.getOperand(0);
 | |
|     unsigned Srl_imm = 0;
 | |
|     if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
 | |
|         (Srl_imm <= 2))
 | |
|       continue;
 | |
| 
 | |
|     // Make sure first operand is not a shifter operand which would prevent
 | |
|     // folding of the left shift.
 | |
|     SDValue CPTmp0;
 | |
|     SDValue CPTmp1;
 | |
|     SDValue CPTmp2;
 | |
|     if (isThumb2) {
 | |
|       if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1))
 | |
|         continue;
 | |
|     } else {
 | |
|       if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
 | |
|           SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Now make the transformation.
 | |
|     Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
 | |
|                           Srl.getOperand(0),
 | |
|                           CurDAG->getConstant(Srl_imm + TZ, SDLoc(Srl),
 | |
|                                               MVT::i32));
 | |
|     N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
 | |
|                          Srl,
 | |
|                          CurDAG->getConstant(And_imm, SDLoc(Srl), MVT::i32));
 | |
|     N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
 | |
|                          N1, CurDAG->getConstant(TZ, SDLoc(Srl), MVT::i32));
 | |
|     CurDAG->UpdateNodeOperands(N, N0, N1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
 | |
| /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
 | |
| /// least on current ARM implementations) which should be avoidded.
 | |
| bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
 | |
|   if (OptLevel == CodeGenOpt::None)
 | |
|     return true;
 | |
| 
 | |
|   if (!Subtarget->hasVMLxHazards())
 | |
|     return true;
 | |
| 
 | |
|   if (!N->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   SDNode *Use = *N->use_begin();
 | |
|   if (Use->getOpcode() == ISD::CopyToReg)
 | |
|     return true;
 | |
|   if (Use->isMachineOpcode()) {
 | |
|     const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
 | |
|         CurDAG->getSubtarget().getInstrInfo());
 | |
| 
 | |
|     const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
 | |
|     if (MCID.mayStore())
 | |
|       return true;
 | |
|     unsigned Opcode = MCID.getOpcode();
 | |
|     if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
 | |
|       return true;
 | |
|     // vmlx feeding into another vmlx. We actually want to unfold
 | |
|     // the use later in the MLxExpansion pass. e.g.
 | |
|     // vmla
 | |
|     // vmla (stall 8 cycles)
 | |
|     //
 | |
|     // vmul (5 cycles)
 | |
|     // vadd (5 cycles)
 | |
|     // vmla
 | |
|     // This adds up to about 18 - 19 cycles.
 | |
|     //
 | |
|     // vmla
 | |
|     // vmul (stall 4 cycles)
 | |
|     // vadd adds up to about 14 cycles.
 | |
|     return TII->isFpMLxInstruction(Opcode);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
 | |
|                                             ARM_AM::ShiftOpc ShOpcVal,
 | |
|                                             unsigned ShAmt) {
 | |
|   if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
 | |
|     return true;
 | |
|   if (Shift.hasOneUse())
 | |
|     return true;
 | |
|   // R << 2 is free.
 | |
|   return ShOpcVal == ARM_AM::lsl &&
 | |
|          (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
 | |
| }
 | |
| 
 | |
| unsigned ARMDAGToDAGISel::ConstantMaterializationCost(unsigned Val) const {
 | |
|   if (Subtarget->isThumb()) {
 | |
|     if (Val <= 255) return 1;                               // MOV
 | |
|     if (Subtarget->hasV6T2Ops() &&
 | |
|         (Val <= 0xffff || ARM_AM::getT2SOImmValSplatVal(Val) != -1))
 | |
|       return 1; // MOVW
 | |
|     if (Val <= 510) return 2;                               // MOV + ADDi8
 | |
|     if (~Val <= 255) return 2;                              // MOV + MVN
 | |
|     if (ARM_AM::isThumbImmShiftedVal(Val)) return 2;        // MOV + LSL
 | |
|   } else {
 | |
|     if (ARM_AM::getSOImmVal(Val) != -1) return 1;           // MOV
 | |
|     if (ARM_AM::getSOImmVal(~Val) != -1) return 1;          // MVN
 | |
|     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) return 1; // MOVW
 | |
|     if (ARM_AM::isSOImmTwoPartVal(Val)) return 2;           // two instrs
 | |
|   }
 | |
|   if (Subtarget->useMovt(*MF)) return 2; // MOVW + MOVT
 | |
|   return 3; // Literal pool load
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::canExtractShiftFromMul(const SDValue &N,
 | |
|                                              unsigned MaxShift,
 | |
|                                              unsigned &PowerOfTwo,
 | |
|                                              SDValue &NewMulConst) const {
 | |
|   assert(N.getOpcode() == ISD::MUL);
 | |
|   assert(MaxShift > 0);
 | |
| 
 | |
|   // If the multiply is used in more than one place then changing the constant
 | |
|   // will make other uses incorrect, so don't.
 | |
|   if (!N.hasOneUse()) return false;
 | |
|   // Check if the multiply is by a constant
 | |
|   ConstantSDNode *MulConst = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|   if (!MulConst) return false;
 | |
|   // If the constant is used in more than one place then modifying it will mean
 | |
|   // we need to materialize two constants instead of one, which is a bad idea.
 | |
|   if (!MulConst->hasOneUse()) return false;
 | |
|   unsigned MulConstVal = MulConst->getZExtValue();
 | |
|   if (MulConstVal == 0) return false;
 | |
| 
 | |
|   // Find the largest power of 2 that MulConstVal is a multiple of
 | |
|   PowerOfTwo = MaxShift;
 | |
|   while ((MulConstVal % (1 << PowerOfTwo)) != 0) {
 | |
|     --PowerOfTwo;
 | |
|     if (PowerOfTwo == 0) return false;
 | |
|   }
 | |
| 
 | |
|   // Only optimise if the new cost is better
 | |
|   unsigned NewMulConstVal = MulConstVal / (1 << PowerOfTwo);
 | |
|   NewMulConst = CurDAG->getConstant(NewMulConstVal, SDLoc(N), MVT::i32);
 | |
|   unsigned OldCost = ConstantMaterializationCost(MulConstVal);
 | |
|   unsigned NewCost = ConstantMaterializationCost(NewMulConstVal);
 | |
|   return NewCost < OldCost;
 | |
| }
 | |
| 
 | |
| void ARMDAGToDAGISel::replaceDAGValue(const SDValue &N, SDValue M) {
 | |
|   CurDAG->RepositionNode(N.getNode()->getIterator(), M.getNode());
 | |
|   CurDAG->ReplaceAllUsesWith(N, M);
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
 | |
|                                               SDValue &BaseReg,
 | |
|                                               SDValue &Opc,
 | |
|                                               bool CheckProfitability) {
 | |
|   if (DisableShifterOp)
 | |
|     return false;
 | |
| 
 | |
|   // If N is a multiply-by-constant and it's profitable to extract a shift and
 | |
|   // use it in a shifted operand do so.
 | |
|   if (N.getOpcode() == ISD::MUL) {
 | |
|     unsigned PowerOfTwo = 0;
 | |
|     SDValue NewMulConst;
 | |
|     if (canExtractShiftFromMul(N, 31, PowerOfTwo, NewMulConst)) {
 | |
|       HandleSDNode Handle(N);
 | |
|       replaceDAGValue(N.getOperand(1), NewMulConst);
 | |
|       BaseReg = Handle.getValue();
 | |
|       Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ARM_AM::lsl,
 | |
|                                                           PowerOfTwo),
 | |
|                                       SDLoc(N), MVT::i32);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | |
| 
 | |
|   // Don't match base register only case. That is matched to a separate
 | |
|   // lower complexity pattern with explicit register operand.
 | |
|   if (ShOpcVal == ARM_AM::no_shift) return false;
 | |
| 
 | |
|   BaseReg = N.getOperand(0);
 | |
|   unsigned ShImmVal = 0;
 | |
|   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|   if (!RHS) return false;
 | |
|   ShImmVal = RHS->getZExtValue() & 31;
 | |
|   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
 | |
|                                   SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
 | |
|                                               SDValue &BaseReg,
 | |
|                                               SDValue &ShReg,
 | |
|                                               SDValue &Opc,
 | |
|                                               bool CheckProfitability) {
 | |
|   if (DisableShifterOp)
 | |
|     return false;
 | |
| 
 | |
|   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | |
| 
 | |
|   // Don't match base register only case. That is matched to a separate
 | |
|   // lower complexity pattern with explicit register operand.
 | |
|   if (ShOpcVal == ARM_AM::no_shift) return false;
 | |
| 
 | |
|   BaseReg = N.getOperand(0);
 | |
|   unsigned ShImmVal = 0;
 | |
|   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|   if (RHS) return false;
 | |
| 
 | |
|   ShReg = N.getOperand(1);
 | |
|   if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
 | |
|     return false;
 | |
|   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
 | |
|                                   SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
 | |
|                                           SDValue &Base,
 | |
|                                           SDValue &OffImm) {
 | |
|   // Match simple R + imm12 operands.
 | |
| 
 | |
|   // Base only.
 | |
|   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | |
|       !CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     if (N.getOpcode() == ISD::FrameIndex) {
 | |
|       // Match frame index.
 | |
|       int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|       Base = CurDAG->getTargetFrameIndex(
 | |
|           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|       OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (N.getOpcode() == ARMISD::Wrapper &&
 | |
|         N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
 | |
|         N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
 | |
|         N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
 | |
|       Base = N.getOperand(0);
 | |
|     } else
 | |
|       Base = N;
 | |
|     OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|     int RHSC = (int)RHS->getSExtValue();
 | |
|     if (N.getOpcode() == ISD::SUB)
 | |
|       RHSC = -RHSC;
 | |
| 
 | |
|     if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits
 | |
|       Base   = N.getOperand(0);
 | |
|       if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|         Base = CurDAG->getTargetFrameIndex(
 | |
|             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|       }
 | |
|       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Base only.
 | |
|   Base = N;
 | |
|   OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                                       SDValue &Opc) {
 | |
|   if (N.getOpcode() == ISD::MUL &&
 | |
|       ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       // X * [3,5,9] -> X + X * [2,4,8] etc.
 | |
|       int RHSC = (int)RHS->getZExtValue();
 | |
|       if (RHSC & 1) {
 | |
|         RHSC = RHSC & ~1;
 | |
|         ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | |
|         if (RHSC < 0) {
 | |
|           AddSub = ARM_AM::sub;
 | |
|           RHSC = - RHSC;
 | |
|         }
 | |
|         if (isPowerOf2_32(RHSC)) {
 | |
|           unsigned ShAmt = Log2_32(RHSC);
 | |
|           Base = Offset = N.getOperand(0);
 | |
|           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
 | |
|                                                             ARM_AM::lsl),
 | |
|                                           SDLoc(N), MVT::i32);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | |
|       // ISD::OR that is equivalent to an ISD::ADD.
 | |
|       !CurDAG->isBaseWithConstantOffset(N))
 | |
|     return false;
 | |
| 
 | |
|   // Leave simple R +/- imm12 operands for LDRi12
 | |
|   if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
 | |
|     int RHSC;
 | |
|     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
 | |
|                                 -0x1000+1, 0x1000, RHSC)) // 12 bits.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise this is R +/- [possibly shifted] R.
 | |
|   ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
 | |
|   ARM_AM::ShiftOpc ShOpcVal =
 | |
|     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
 | |
|   unsigned ShAmt = 0;
 | |
| 
 | |
|   Base   = N.getOperand(0);
 | |
|   Offset = N.getOperand(1);
 | |
| 
 | |
|   if (ShOpcVal != ARM_AM::no_shift) {
 | |
|     // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | |
|     // it.
 | |
|     if (ConstantSDNode *Sh =
 | |
|            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
 | |
|       ShAmt = Sh->getZExtValue();
 | |
|       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
 | |
|         Offset = N.getOperand(1).getOperand(0);
 | |
|       else {
 | |
|         ShAmt = 0;
 | |
|         ShOpcVal = ARM_AM::no_shift;
 | |
|       }
 | |
|     } else {
 | |
|       ShOpcVal = ARM_AM::no_shift;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try matching (R shl C) + (R).
 | |
|   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
 | |
|       !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
 | |
|         N.getOperand(0).hasOneUse())) {
 | |
|     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
 | |
|     if (ShOpcVal != ARM_AM::no_shift) {
 | |
|       // Check to see if the RHS of the shift is a constant, if not, we can't
 | |
|       // fold it.
 | |
|       if (ConstantSDNode *Sh =
 | |
|           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
 | |
|         ShAmt = Sh->getZExtValue();
 | |
|         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
 | |
|           Offset = N.getOperand(0).getOperand(0);
 | |
|           Base = N.getOperand(1);
 | |
|         } else {
 | |
|           ShAmt = 0;
 | |
|           ShOpcVal = ARM_AM::no_shift;
 | |
|         }
 | |
|       } else {
 | |
|         ShOpcVal = ARM_AM::no_shift;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If Offset is a multiply-by-constant and it's profitable to extract a shift
 | |
|   // and use it in a shifted operand do so.
 | |
|   if (Offset.getOpcode() == ISD::MUL && N.hasOneUse()) {
 | |
|     unsigned PowerOfTwo = 0;
 | |
|     SDValue NewMulConst;
 | |
|     if (canExtractShiftFromMul(Offset, 31, PowerOfTwo, NewMulConst)) {
 | |
|       replaceDAGValue(Offset.getOperand(1), NewMulConst);
 | |
|       ShAmt = PowerOfTwo;
 | |
|       ShOpcVal = ARM_AM::lsl;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
 | |
|                                   SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----
 | |
| 
 | |
| AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
 | |
|                                                      SDValue &Base,
 | |
|                                                      SDValue &Offset,
 | |
|                                                      SDValue &Opc) {
 | |
|   if (N.getOpcode() == ISD::MUL &&
 | |
|       (!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) {
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       // X * [3,5,9] -> X + X * [2,4,8] etc.
 | |
|       int RHSC = (int)RHS->getZExtValue();
 | |
|       if (RHSC & 1) {
 | |
|         RHSC = RHSC & ~1;
 | |
|         ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | |
|         if (RHSC < 0) {
 | |
|           AddSub = ARM_AM::sub;
 | |
|           RHSC = - RHSC;
 | |
|         }
 | |
|         if (isPowerOf2_32(RHSC)) {
 | |
|           unsigned ShAmt = Log2_32(RHSC);
 | |
|           Base = Offset = N.getOperand(0);
 | |
|           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
 | |
|                                                             ARM_AM::lsl),
 | |
|                                           SDLoc(N), MVT::i32);
 | |
|           return AM2_SHOP;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | |
|       // ISD::OR that is equivalent to an ADD.
 | |
|       !CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     Base = N;
 | |
|     if (N.getOpcode() == ISD::FrameIndex) {
 | |
|       int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|       Base = CurDAG->getTargetFrameIndex(
 | |
|           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|     } else if (N.getOpcode() == ARMISD::Wrapper &&
 | |
|                N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
 | |
|                N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
 | |
|                N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
 | |
|       Base = N.getOperand(0);
 | |
|     }
 | |
|     Offset = CurDAG->getRegister(0, MVT::i32);
 | |
|     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
 | |
|                                                       ARM_AM::no_shift),
 | |
|                                     SDLoc(N), MVT::i32);
 | |
|     return AM2_BASE;
 | |
|   }
 | |
| 
 | |
|   // Match simple R +/- imm12 operands.
 | |
|   if (N.getOpcode() != ISD::SUB) {
 | |
|     int RHSC;
 | |
|     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
 | |
|                                 -0x1000+1, 0x1000, RHSC)) { // 12 bits.
 | |
|       Base = N.getOperand(0);
 | |
|       if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|         Base = CurDAG->getTargetFrameIndex(
 | |
|             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|       }
 | |
|       Offset = CurDAG->getRegister(0, MVT::i32);
 | |
| 
 | |
|       ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | |
|       if (RHSC < 0) {
 | |
|         AddSub = ARM_AM::sub;
 | |
|         RHSC = - RHSC;
 | |
|       }
 | |
|       Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
 | |
|                                                         ARM_AM::no_shift),
 | |
|                                       SDLoc(N), MVT::i32);
 | |
|       return AM2_BASE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) {
 | |
|     // Compute R +/- (R << N) and reuse it.
 | |
|     Base = N;
 | |
|     Offset = CurDAG->getRegister(0, MVT::i32);
 | |
|     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
 | |
|                                                       ARM_AM::no_shift),
 | |
|                                     SDLoc(N), MVT::i32);
 | |
|     return AM2_BASE;
 | |
|   }
 | |
| 
 | |
|   // Otherwise this is R +/- [possibly shifted] R.
 | |
|   ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
 | |
|   ARM_AM::ShiftOpc ShOpcVal =
 | |
|     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
 | |
|   unsigned ShAmt = 0;
 | |
| 
 | |
|   Base   = N.getOperand(0);
 | |
|   Offset = N.getOperand(1);
 | |
| 
 | |
|   if (ShOpcVal != ARM_AM::no_shift) {
 | |
|     // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | |
|     // it.
 | |
|     if (ConstantSDNode *Sh =
 | |
|            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
 | |
|       ShAmt = Sh->getZExtValue();
 | |
|       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
 | |
|         Offset = N.getOperand(1).getOperand(0);
 | |
|       else {
 | |
|         ShAmt = 0;
 | |
|         ShOpcVal = ARM_AM::no_shift;
 | |
|       }
 | |
|     } else {
 | |
|       ShOpcVal = ARM_AM::no_shift;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try matching (R shl C) + (R).
 | |
|   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
 | |
|       !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
 | |
|         N.getOperand(0).hasOneUse())) {
 | |
|     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
 | |
|     if (ShOpcVal != ARM_AM::no_shift) {
 | |
|       // Check to see if the RHS of the shift is a constant, if not, we can't
 | |
|       // fold it.
 | |
|       if (ConstantSDNode *Sh =
 | |
|           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
 | |
|         ShAmt = Sh->getZExtValue();
 | |
|         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
 | |
|           Offset = N.getOperand(0).getOperand(0);
 | |
|           Base = N.getOperand(1);
 | |
|         } else {
 | |
|           ShAmt = 0;
 | |
|           ShOpcVal = ARM_AM::no_shift;
 | |
|         }
 | |
|       } else {
 | |
|         ShOpcVal = ARM_AM::no_shift;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
 | |
|                                   SDLoc(N), MVT::i32);
 | |
|   return AM2_SHOP;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
 | |
|                                             SDValue &Offset, SDValue &Opc) {
 | |
|   unsigned Opcode = Op->getOpcode();
 | |
|   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | |
|     ? cast<LoadSDNode>(Op)->getAddressingMode()
 | |
|     : cast<StoreSDNode>(Op)->getAddressingMode();
 | |
|   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | |
|     ? ARM_AM::add : ARM_AM::sub;
 | |
|   int Val;
 | |
|   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
 | |
|     return false;
 | |
| 
 | |
|   Offset = N;
 | |
|   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | |
|   unsigned ShAmt = 0;
 | |
|   if (ShOpcVal != ARM_AM::no_shift) {
 | |
|     // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | |
|     // it.
 | |
|     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       ShAmt = Sh->getZExtValue();
 | |
|       if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
 | |
|         Offset = N.getOperand(0);
 | |
|       else {
 | |
|         ShAmt = 0;
 | |
|         ShOpcVal = ARM_AM::no_shift;
 | |
|       }
 | |
|     } else {
 | |
|       ShOpcVal = ARM_AM::no_shift;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
 | |
|                                   SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
 | |
|                                             SDValue &Offset, SDValue &Opc) {
 | |
|   unsigned Opcode = Op->getOpcode();
 | |
|   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | |
|     ? cast<LoadSDNode>(Op)->getAddressingMode()
 | |
|     : cast<StoreSDNode>(Op)->getAddressingMode();
 | |
|   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | |
|     ? ARM_AM::add : ARM_AM::sub;
 | |
|   int Val;
 | |
|   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
 | |
|     if (AddSub == ARM_AM::sub) Val *= -1;
 | |
|     Offset = CurDAG->getRegister(0, MVT::i32);
 | |
|     Opc = CurDAG->getTargetConstant(Val, SDLoc(Op), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
 | |
|                                             SDValue &Offset, SDValue &Opc) {
 | |
|   unsigned Opcode = Op->getOpcode();
 | |
|   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | |
|     ? cast<LoadSDNode>(Op)->getAddressingMode()
 | |
|     : cast<StoreSDNode>(Op)->getAddressingMode();
 | |
|   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | |
|     ? ARM_AM::add : ARM_AM::sub;
 | |
|   int Val;
 | |
|   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
 | |
|     Offset = CurDAG->getRegister(0, MVT::i32);
 | |
|     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
 | |
|                                                       ARM_AM::no_shift),
 | |
|                                     SDLoc(Op), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
 | |
|   Base = N;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
 | |
|                                       SDValue &Base, SDValue &Offset,
 | |
|                                       SDValue &Opc) {
 | |
|   if (N.getOpcode() == ISD::SUB) {
 | |
|     // X - C  is canonicalize to X + -C, no need to handle it here.
 | |
|     Base = N.getOperand(0);
 | |
|     Offset = N.getOperand(1);
 | |
|     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0), SDLoc(N),
 | |
|                                     MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     Base = N;
 | |
|     if (N.getOpcode() == ISD::FrameIndex) {
 | |
|       int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|       Base = CurDAG->getTargetFrameIndex(
 | |
|           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|     }
 | |
|     Offset = CurDAG->getRegister(0, MVT::i32);
 | |
|     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
 | |
|                                     MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If the RHS is +/- imm8, fold into addr mode.
 | |
|   int RHSC;
 | |
|   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
 | |
|                               -256 + 1, 256, RHSC)) { // 8 bits.
 | |
|     Base = N.getOperand(0);
 | |
|     if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|       Base = CurDAG->getTargetFrameIndex(
 | |
|           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|     }
 | |
|     Offset = CurDAG->getRegister(0, MVT::i32);
 | |
| 
 | |
|     ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | |
|     if (RHSC < 0) {
 | |
|       AddSub = ARM_AM::sub;
 | |
|       RHSC = -RHSC;
 | |
|     }
 | |
|     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC), SDLoc(N),
 | |
|                                     MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Base = N.getOperand(0);
 | |
|   Offset = N.getOperand(1);
 | |
|   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
 | |
|                                   MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
 | |
|                                             SDValue &Offset, SDValue &Opc) {
 | |
|   unsigned Opcode = Op->getOpcode();
 | |
|   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | |
|     ? cast<LoadSDNode>(Op)->getAddressingMode()
 | |
|     : cast<StoreSDNode>(Op)->getAddressingMode();
 | |
|   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | |
|     ? ARM_AM::add : ARM_AM::sub;
 | |
|   int Val;
 | |
|   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
 | |
|     Offset = CurDAG->getRegister(0, MVT::i32);
 | |
|     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), SDLoc(Op),
 | |
|                                     MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Offset = N;
 | |
|   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), SDLoc(Op),
 | |
|                                   MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
 | |
|                                       SDValue &Base, SDValue &Offset) {
 | |
|   if (!CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     Base = N;
 | |
|     if (N.getOpcode() == ISD::FrameIndex) {
 | |
|       int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|       Base = CurDAG->getTargetFrameIndex(
 | |
|           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|     } else if (N.getOpcode() == ARMISD::Wrapper &&
 | |
|                N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
 | |
|                N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
 | |
|                N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
 | |
|       Base = N.getOperand(0);
 | |
|     }
 | |
|     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
 | |
|                                        SDLoc(N), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If the RHS is +/- imm8, fold into addr mode.
 | |
|   int RHSC;
 | |
|   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
 | |
|                               -256 + 1, 256, RHSC)) {
 | |
|     Base = N.getOperand(0);
 | |
|     if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|       Base = CurDAG->getTargetFrameIndex(
 | |
|           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|     }
 | |
| 
 | |
|     ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | |
|     if (RHSC < 0) {
 | |
|       AddSub = ARM_AM::sub;
 | |
|       RHSC = -RHSC;
 | |
|     }
 | |
|     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
 | |
|                                        SDLoc(N), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Base = N;
 | |
|   Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
 | |
|                                      SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
 | |
|                                       SDValue &Align) {
 | |
|   Addr = N;
 | |
| 
 | |
|   unsigned Alignment = 0;
 | |
| 
 | |
|   MemSDNode *MemN = cast<MemSDNode>(Parent);
 | |
| 
 | |
|   if (isa<LSBaseSDNode>(MemN) ||
 | |
|       ((MemN->getOpcode() == ARMISD::VST1_UPD ||
 | |
|         MemN->getOpcode() == ARMISD::VLD1_UPD) &&
 | |
|        MemN->getConstantOperandVal(MemN->getNumOperands() - 1) == 1)) {
 | |
|     // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
 | |
|     // The maximum alignment is equal to the memory size being referenced.
 | |
|     unsigned MMOAlign = MemN->getAlignment();
 | |
|     unsigned MemSize = MemN->getMemoryVT().getSizeInBits() / 8;
 | |
|     if (MMOAlign >= MemSize && MemSize > 1)
 | |
|       Alignment = MemSize;
 | |
|   } else {
 | |
|     // All other uses of addrmode6 are for intrinsics.  For now just record
 | |
|     // the raw alignment value; it will be refined later based on the legal
 | |
|     // alignment operands for the intrinsic.
 | |
|     Alignment = MemN->getAlignment();
 | |
|   }
 | |
| 
 | |
|   Align = CurDAG->getTargetConstant(Alignment, SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
 | |
|                                             SDValue &Offset) {
 | |
|   LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
 | |
|   ISD::MemIndexedMode AM = LdSt->getAddressingMode();
 | |
|   if (AM != ISD::POST_INC)
 | |
|     return false;
 | |
|   Offset = N;
 | |
|   if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
 | |
|     if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
 | |
|       Offset = CurDAG->getRegister(0, MVT::i32);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
 | |
|                                        SDValue &Offset, SDValue &Label) {
 | |
|   if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
 | |
|     Offset = N.getOperand(0);
 | |
|     SDValue N1 = N.getOperand(1);
 | |
|     Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
 | |
|                                       SDLoc(N), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Thumb Addressing Modes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
 | |
|                                             SDValue &Base, SDValue &Offset){
 | |
|   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
 | |
|     if (!NC || !NC->isNullValue())
 | |
|       return false;
 | |
| 
 | |
|     Base = Offset = N;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Base = N.getOperand(0);
 | |
|   Offset = N.getOperand(1);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
 | |
|                                           SDValue &Base, SDValue &OffImm) {
 | |
|   if (!CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     if (N.getOpcode() == ISD::ADD) {
 | |
|       return false; // We want to select register offset instead
 | |
|     } else if (N.getOpcode() == ARMISD::Wrapper &&
 | |
|         N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
 | |
|         N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
 | |
|         N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
 | |
|       Base = N.getOperand(0);
 | |
|     } else {
 | |
|       Base = N;
 | |
|     }
 | |
| 
 | |
|     OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If the RHS is + imm5 * scale, fold into addr mode.
 | |
|   int RHSC;
 | |
|   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
 | |
|     Base = N.getOperand(0);
 | |
|     OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Offset is too large, so use register offset instead.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
 | |
|                                            SDValue &OffImm) {
 | |
|   return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
 | |
|                                            SDValue &OffImm) {
 | |
|   return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
 | |
|                                            SDValue &OffImm) {
 | |
|   return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
 | |
|                                             SDValue &Base, SDValue &OffImm) {
 | |
|   if (N.getOpcode() == ISD::FrameIndex) {
 | |
|     int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     // Only multiples of 4 are allowed for the offset, so the frame object
 | |
|     // alignment must be at least 4.
 | |
|     MachineFrameInfo &MFI = MF->getFrameInfo();
 | |
|     if (MFI.getObjectAlignment(FI) < 4)
 | |
|       MFI.setObjectAlignment(FI, 4);
 | |
|     Base = CurDAG->getTargetFrameIndex(
 | |
|         FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|     OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!CurDAG->isBaseWithConstantOffset(N))
 | |
|     return false;
 | |
| 
 | |
|   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
 | |
|   if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
 | |
|       (LHSR && LHSR->getReg() == ARM::SP)) {
 | |
|     // If the RHS is + imm8 * scale, fold into addr mode.
 | |
|     int RHSC;
 | |
|     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
 | |
|       Base = N.getOperand(0);
 | |
|       if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|         // For LHS+RHS to result in an offset that's a multiple of 4 the object
 | |
|         // indexed by the LHS must be 4-byte aligned.
 | |
|         MachineFrameInfo &MFI = MF->getFrameInfo();
 | |
|         if (MFI.getObjectAlignment(FI) < 4)
 | |
|           MFI.setObjectAlignment(FI, 4);
 | |
|         Base = CurDAG->getTargetFrameIndex(
 | |
|             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|       }
 | |
|       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Thumb 2 Addressing Modes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
 | |
|                                             SDValue &Base, SDValue &OffImm) {
 | |
|   // Match simple R + imm12 operands.
 | |
| 
 | |
|   // Base only.
 | |
|   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | |
|       !CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     if (N.getOpcode() == ISD::FrameIndex) {
 | |
|       // Match frame index.
 | |
|       int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|       Base = CurDAG->getTargetFrameIndex(
 | |
|           FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|       OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (N.getOpcode() == ARMISD::Wrapper &&
 | |
|         N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
 | |
|         N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
 | |
|         N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
 | |
|       Base = N.getOperand(0);
 | |
|       if (Base.getOpcode() == ISD::TargetConstantPool)
 | |
|         return false;  // We want to select t2LDRpci instead.
 | |
|     } else
 | |
|       Base = N;
 | |
|     OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|     if (SelectT2AddrModeImm8(N, Base, OffImm))
 | |
|       // Let t2LDRi8 handle (R - imm8).
 | |
|       return false;
 | |
| 
 | |
|     int RHSC = (int)RHS->getZExtValue();
 | |
|     if (N.getOpcode() == ISD::SUB)
 | |
|       RHSC = -RHSC;
 | |
| 
 | |
|     if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
 | |
|       Base   = N.getOperand(0);
 | |
|       if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|         Base = CurDAG->getTargetFrameIndex(
 | |
|             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|       }
 | |
|       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Base only.
 | |
|   Base = N;
 | |
|   OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
 | |
|                                            SDValue &Base, SDValue &OffImm) {
 | |
|   // Match simple R - imm8 operands.
 | |
|   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | |
|       !CurDAG->isBaseWithConstantOffset(N))
 | |
|     return false;
 | |
| 
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|     int RHSC = (int)RHS->getSExtValue();
 | |
|     if (N.getOpcode() == ISD::SUB)
 | |
|       RHSC = -RHSC;
 | |
| 
 | |
|     if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
 | |
|       Base = N.getOperand(0);
 | |
|       if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|         Base = CurDAG->getTargetFrameIndex(
 | |
|             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|       }
 | |
|       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
 | |
|                                                  SDValue &OffImm){
 | |
|   unsigned Opcode = Op->getOpcode();
 | |
|   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | |
|     ? cast<LoadSDNode>(Op)->getAddressingMode()
 | |
|     : cast<StoreSDNode>(Op)->getAddressingMode();
 | |
|   int RHSC;
 | |
|   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
 | |
|     OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
 | |
|       ? CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32)
 | |
|       : CurDAG->getTargetConstant(-RHSC, SDLoc(N), MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
 | |
|                                             SDValue &Base,
 | |
|                                             SDValue &OffReg, SDValue &ShImm) {
 | |
|   // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
 | |
|   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
 | |
|     return false;
 | |
| 
 | |
|   // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|     int RHSC = (int)RHS->getZExtValue();
 | |
|     if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
 | |
|       return false;
 | |
|     else if (RHSC < 0 && RHSC >= -255) // 8 bits
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Look for (R + R) or (R + (R << [1,2,3])).
 | |
|   unsigned ShAmt = 0;
 | |
|   Base   = N.getOperand(0);
 | |
|   OffReg = N.getOperand(1);
 | |
| 
 | |
|   // Swap if it is ((R << c) + R).
 | |
|   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
 | |
|   if (ShOpcVal != ARM_AM::lsl) {
 | |
|     ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
 | |
|     if (ShOpcVal == ARM_AM::lsl)
 | |
|       std::swap(Base, OffReg);
 | |
|   }
 | |
| 
 | |
|   if (ShOpcVal == ARM_AM::lsl) {
 | |
|     // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | |
|     // it.
 | |
|     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
 | |
|       ShAmt = Sh->getZExtValue();
 | |
|       if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
 | |
|         OffReg = OffReg.getOperand(0);
 | |
|       else {
 | |
|         ShAmt = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If OffReg is a multiply-by-constant and it's profitable to extract a shift
 | |
|   // and use it in a shifted operand do so.
 | |
|   if (OffReg.getOpcode() == ISD::MUL && N.hasOneUse()) {
 | |
|     unsigned PowerOfTwo = 0;
 | |
|     SDValue NewMulConst;
 | |
|     if (canExtractShiftFromMul(OffReg, 3, PowerOfTwo, NewMulConst)) {
 | |
|       replaceDAGValue(OffReg.getOperand(1), NewMulConst);
 | |
|       ShAmt = PowerOfTwo;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ShImm = CurDAG->getTargetConstant(ShAmt, SDLoc(N), MVT::i32);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
 | |
|                                                 SDValue &OffImm) {
 | |
|   // This *must* succeed since it's used for the irreplaceable ldrex and strex
 | |
|   // instructions.
 | |
|   Base = N;
 | |
|   OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | |
| 
 | |
|   if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
 | |
|     return true;
 | |
| 
 | |
|   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|   if (!RHS)
 | |
|     return true;
 | |
| 
 | |
|   uint32_t RHSC = (int)RHS->getZExtValue();
 | |
|   if (RHSC > 1020 || RHSC % 4 != 0)
 | |
|     return true;
 | |
| 
 | |
|   Base = N.getOperand(0);
 | |
|   if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|     int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|     Base = CurDAG->getTargetFrameIndex(
 | |
|         FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|   }
 | |
| 
 | |
|   OffImm = CurDAG->getTargetConstant(RHSC/4, SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| 
 | |
| /// getAL - Returns a ARMCC::AL immediate node.
 | |
| static inline SDValue getAL(SelectionDAG *CurDAG, const SDLoc &dl) {
 | |
|   return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, dl, MVT::i32);
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode *N) {
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|   ISD::MemIndexedMode AM = LD->getAddressingMode();
 | |
|   if (AM == ISD::UNINDEXED)
 | |
|     return false;
 | |
| 
 | |
|   EVT LoadedVT = LD->getMemoryVT();
 | |
|   SDValue Offset, AMOpc;
 | |
|   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
 | |
|   unsigned Opcode = 0;
 | |
|   bool Match = false;
 | |
|   if (LoadedVT == MVT::i32 && isPre &&
 | |
|       SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
 | |
|     Opcode = ARM::LDR_PRE_IMM;
 | |
|     Match = true;
 | |
|   } else if (LoadedVT == MVT::i32 && !isPre &&
 | |
|       SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
 | |
|     Opcode = ARM::LDR_POST_IMM;
 | |
|     Match = true;
 | |
|   } else if (LoadedVT == MVT::i32 &&
 | |
|       SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
 | |
|     Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
 | |
|     Match = true;
 | |
| 
 | |
|   } else if (LoadedVT == MVT::i16 &&
 | |
|              SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
 | |
|     Match = true;
 | |
|     Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
 | |
|       ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
 | |
|       : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
 | |
|   } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
 | |
|     if (LD->getExtensionType() == ISD::SEXTLOAD) {
 | |
|       if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
 | |
|         Match = true;
 | |
|         Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
 | |
|       }
 | |
|     } else {
 | |
|       if (isPre &&
 | |
|           SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
 | |
|         Match = true;
 | |
|         Opcode = ARM::LDRB_PRE_IMM;
 | |
|       } else if (!isPre &&
 | |
|                   SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
 | |
|         Match = true;
 | |
|         Opcode = ARM::LDRB_POST_IMM;
 | |
|       } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
 | |
|         Match = true;
 | |
|         Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Match) {
 | |
|     if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
 | |
|       SDValue Chain = LD->getChain();
 | |
|       SDValue Base = LD->getBasePtr();
 | |
|       SDValue Ops[]= { Base, AMOpc, getAL(CurDAG, SDLoc(N)),
 | |
|                        CurDAG->getRegister(0, MVT::i32), Chain };
 | |
|       ReplaceNode(N, CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
 | |
|                                             MVT::i32, MVT::Other, Ops));
 | |
|       return true;
 | |
|     } else {
 | |
|       SDValue Chain = LD->getChain();
 | |
|       SDValue Base = LD->getBasePtr();
 | |
|       SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG, SDLoc(N)),
 | |
|                        CurDAG->getRegister(0, MVT::i32), Chain };
 | |
|       ReplaceNode(N, CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
 | |
|                                             MVT::i32, MVT::Other, Ops));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode *N) {
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|   EVT LoadedVT = LD->getMemoryVT();
 | |
|   ISD::MemIndexedMode AM = LD->getAddressingMode();
 | |
|   if (AM == ISD::UNINDEXED || LD->getExtensionType() != ISD::NON_EXTLOAD ||
 | |
|       AM != ISD::POST_INC || LoadedVT.getSimpleVT().SimpleTy != MVT::i32)
 | |
|     return false;
 | |
| 
 | |
|   auto *COffs = dyn_cast<ConstantSDNode>(LD->getOffset());
 | |
|   if (!COffs || COffs->getZExtValue() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}.
 | |
|   // The encoding of LDM is not how the rest of ISel expects a post-inc load to
 | |
|   // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after
 | |
|   // ISel.
 | |
|   SDValue Chain = LD->getChain();
 | |
|   SDValue Base = LD->getBasePtr();
 | |
|   SDValue Ops[]= { Base, getAL(CurDAG, SDLoc(N)),
 | |
|                    CurDAG->getRegister(0, MVT::i32), Chain };
 | |
|   ReplaceNode(N, CurDAG->getMachineNode(ARM::tLDR_postidx, SDLoc(N), MVT::i32, MVT::i32,
 | |
|                                         MVT::Other, Ops));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode *N) {
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|   ISD::MemIndexedMode AM = LD->getAddressingMode();
 | |
|   if (AM == ISD::UNINDEXED)
 | |
|     return false;
 | |
| 
 | |
|   EVT LoadedVT = LD->getMemoryVT();
 | |
|   bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|   SDValue Offset;
 | |
|   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
 | |
|   unsigned Opcode = 0;
 | |
|   bool Match = false;
 | |
|   if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
 | |
|     switch (LoadedVT.getSimpleVT().SimpleTy) {
 | |
|     case MVT::i32:
 | |
|       Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
 | |
|       break;
 | |
|     case MVT::i16:
 | |
|       if (isSExtLd)
 | |
|         Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
 | |
|       else
 | |
|         Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
 | |
|       break;
 | |
|     case MVT::i8:
 | |
|     case MVT::i1:
 | |
|       if (isSExtLd)
 | |
|         Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
 | |
|       else
 | |
|         Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|     Match = true;
 | |
|   }
 | |
| 
 | |
|   if (Match) {
 | |
|     SDValue Chain = LD->getChain();
 | |
|     SDValue Base = LD->getBasePtr();
 | |
|     SDValue Ops[]= { Base, Offset, getAL(CurDAG, SDLoc(N)),
 | |
|                      CurDAG->getRegister(0, MVT::i32), Chain };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
 | |
|                                           MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Form a GPRPair pseudo register from a pair of GPR regs.
 | |
| SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
 | |
|   SDLoc dl(V0.getNode());
 | |
|   SDValue RegClass =
 | |
|     CurDAG->getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
 | |
|   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
 | |
|   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
 | |
|   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | |
|   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// \brief Form a D register from a pair of S registers.
 | |
| SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
 | |
|   SDLoc dl(V0.getNode());
 | |
|   SDValue RegClass =
 | |
|     CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, dl, MVT::i32);
 | |
|   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
 | |
|   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
 | |
|   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | |
|   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// \brief Form a quad register from a pair of D registers.
 | |
| SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
 | |
|   SDLoc dl(V0.getNode());
 | |
|   SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, dl,
 | |
|                                                MVT::i32);
 | |
|   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
 | |
|   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
 | |
|   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | |
|   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// \brief Form 4 consecutive D registers from a pair of Q registers.
 | |
| SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
 | |
|   SDLoc dl(V0.getNode());
 | |
|   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
 | |
|                                                MVT::i32);
 | |
|   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
 | |
|   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
 | |
|   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | |
|   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// \brief Form 4 consecutive S registers.
 | |
| SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
 | |
|                                    SDValue V2, SDValue V3) {
 | |
|   SDLoc dl(V0.getNode());
 | |
|   SDValue RegClass =
 | |
|     CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, dl, MVT::i32);
 | |
|   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
 | |
|   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
 | |
|   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, dl, MVT::i32);
 | |
|   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, dl, MVT::i32);
 | |
|   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
 | |
|                                     V2, SubReg2, V3, SubReg3 };
 | |
|   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// \brief Form 4 consecutive D registers.
 | |
| SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
 | |
|                                    SDValue V2, SDValue V3) {
 | |
|   SDLoc dl(V0.getNode());
 | |
|   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
 | |
|                                                MVT::i32);
 | |
|   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
 | |
|   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
 | |
|   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, dl, MVT::i32);
 | |
|   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, dl, MVT::i32);
 | |
|   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
 | |
|                                     V2, SubReg2, V3, SubReg3 };
 | |
|   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// \brief Form 4 consecutive Q registers.
 | |
| SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
 | |
|                                    SDValue V2, SDValue V3) {
 | |
|   SDLoc dl(V0.getNode());
 | |
|   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, dl,
 | |
|                                                MVT::i32);
 | |
|   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
 | |
|   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
 | |
|   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, dl, MVT::i32);
 | |
|   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, dl, MVT::i32);
 | |
|   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
 | |
|                                     V2, SubReg2, V3, SubReg3 };
 | |
|   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
 | |
| /// of a NEON VLD or VST instruction.  The supported values depend on the
 | |
| /// number of registers being loaded.
 | |
| SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, const SDLoc &dl,
 | |
|                                        unsigned NumVecs, bool is64BitVector) {
 | |
|   unsigned NumRegs = NumVecs;
 | |
|   if (!is64BitVector && NumVecs < 3)
 | |
|     NumRegs *= 2;
 | |
| 
 | |
|   unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
 | |
|   if (Alignment >= 32 && NumRegs == 4)
 | |
|     Alignment = 32;
 | |
|   else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
 | |
|     Alignment = 16;
 | |
|   else if (Alignment >= 8)
 | |
|     Alignment = 8;
 | |
|   else
 | |
|     Alignment = 0;
 | |
| 
 | |
|   return CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
 | |
| }
 | |
| 
 | |
| static bool isVLDfixed(unsigned Opc)
 | |
| {
 | |
|   switch (Opc) {
 | |
|   default: return false;
 | |
|   case ARM::VLD1d8wb_fixed : return true;
 | |
|   case ARM::VLD1d16wb_fixed : return true;
 | |
|   case ARM::VLD1d64Qwb_fixed : return true;
 | |
|   case ARM::VLD1d32wb_fixed : return true;
 | |
|   case ARM::VLD1d64wb_fixed : return true;
 | |
|   case ARM::VLD1d64TPseudoWB_fixed : return true;
 | |
|   case ARM::VLD1d64QPseudoWB_fixed : return true;
 | |
|   case ARM::VLD1q8wb_fixed : return true;
 | |
|   case ARM::VLD1q16wb_fixed : return true;
 | |
|   case ARM::VLD1q32wb_fixed : return true;
 | |
|   case ARM::VLD1q64wb_fixed : return true;
 | |
|   case ARM::VLD2d8wb_fixed : return true;
 | |
|   case ARM::VLD2d16wb_fixed : return true;
 | |
|   case ARM::VLD2d32wb_fixed : return true;
 | |
|   case ARM::VLD2q8PseudoWB_fixed : return true;
 | |
|   case ARM::VLD2q16PseudoWB_fixed : return true;
 | |
|   case ARM::VLD2q32PseudoWB_fixed : return true;
 | |
|   case ARM::VLD2DUPd8wb_fixed : return true;
 | |
|   case ARM::VLD2DUPd16wb_fixed : return true;
 | |
|   case ARM::VLD2DUPd32wb_fixed : return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isVSTfixed(unsigned Opc)
 | |
| {
 | |
|   switch (Opc) {
 | |
|   default: return false;
 | |
|   case ARM::VST1d8wb_fixed : return true;
 | |
|   case ARM::VST1d16wb_fixed : return true;
 | |
|   case ARM::VST1d32wb_fixed : return true;
 | |
|   case ARM::VST1d64wb_fixed : return true;
 | |
|   case ARM::VST1q8wb_fixed : return true;
 | |
|   case ARM::VST1q16wb_fixed : return true;
 | |
|   case ARM::VST1q32wb_fixed : return true;
 | |
|   case ARM::VST1q64wb_fixed : return true;
 | |
|   case ARM::VST1d64TPseudoWB_fixed : return true;
 | |
|   case ARM::VST1d64QPseudoWB_fixed : return true;
 | |
|   case ARM::VST2d8wb_fixed : return true;
 | |
|   case ARM::VST2d16wb_fixed : return true;
 | |
|   case ARM::VST2d32wb_fixed : return true;
 | |
|   case ARM::VST2q8PseudoWB_fixed : return true;
 | |
|   case ARM::VST2q16PseudoWB_fixed : return true;
 | |
|   case ARM::VST2q32PseudoWB_fixed : return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Get the register stride update opcode of a VLD/VST instruction that
 | |
| // is otherwise equivalent to the given fixed stride updating instruction.
 | |
| static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
 | |
|   assert((isVLDfixed(Opc) || isVSTfixed(Opc))
 | |
|     && "Incorrect fixed stride updating instruction.");
 | |
|   switch (Opc) {
 | |
|   default: break;
 | |
|   case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
 | |
|   case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
 | |
|   case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
 | |
|   case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
 | |
|   case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
 | |
|   case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
 | |
|   case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
 | |
|   case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
 | |
|   case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register;
 | |
|   case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register;
 | |
|   case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register;
 | |
|   case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register;
 | |
| 
 | |
|   case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
 | |
|   case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
 | |
|   case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
 | |
|   case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
 | |
|   case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
 | |
|   case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
 | |
|   case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
 | |
|   case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
 | |
|   case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
 | |
|   case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
 | |
| 
 | |
|   case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
 | |
|   case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
 | |
|   case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
 | |
|   case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
 | |
|   case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
 | |
|   case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
 | |
| 
 | |
|   case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
 | |
|   case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
 | |
|   case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
 | |
|   case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
 | |
|   case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
 | |
|   case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
 | |
| 
 | |
|   case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
 | |
|   case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
 | |
|   case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
 | |
|   }
 | |
|   return Opc; // If not one we handle, return it unchanged.
 | |
| }
 | |
| 
 | |
| void ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
 | |
|                                 const uint16_t *DOpcodes,
 | |
|                                 const uint16_t *QOpcodes0,
 | |
|                                 const uint16_t *QOpcodes1) {
 | |
|   assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   SDValue MemAddr, Align;
 | |
|   unsigned AddrOpIdx = isUpdating ? 1 : 2;
 | |
|   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | |
|     return;
 | |
| 
 | |
|   SDValue Chain = N->getOperand(0);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   bool is64BitVector = VT.is64BitVector();
 | |
|   Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
 | |
| 
 | |
|   unsigned OpcodeIndex;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("unhandled vld type");
 | |
|     // Double-register operations:
 | |
|   case MVT::v8i8:  OpcodeIndex = 0; break;
 | |
|   case MVT::v4i16: OpcodeIndex = 1; break;
 | |
|   case MVT::v2f32:
 | |
|   case MVT::v2i32: OpcodeIndex = 2; break;
 | |
|   case MVT::v1i64: OpcodeIndex = 3; break;
 | |
|     // Quad-register operations:
 | |
|   case MVT::v16i8: OpcodeIndex = 0; break;
 | |
|   case MVT::v8i16: OpcodeIndex = 1; break;
 | |
|   case MVT::v4f32:
 | |
|   case MVT::v4i32: OpcodeIndex = 2; break;
 | |
|   case MVT::v2f64:
 | |
|   case MVT::v2i64: OpcodeIndex = 3;
 | |
|     assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   EVT ResTy;
 | |
|   if (NumVecs == 1)
 | |
|     ResTy = VT;
 | |
|   else {
 | |
|     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
 | |
|     if (!is64BitVector)
 | |
|       ResTyElts *= 2;
 | |
|     ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
 | |
|   }
 | |
|   std::vector<EVT> ResTys;
 | |
|   ResTys.push_back(ResTy);
 | |
|   if (isUpdating)
 | |
|     ResTys.push_back(MVT::i32);
 | |
|   ResTys.push_back(MVT::Other);
 | |
| 
 | |
|   SDValue Pred = getAL(CurDAG, dl);
 | |
|   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
|   SDNode *VLd;
 | |
|   SmallVector<SDValue, 7> Ops;
 | |
| 
 | |
|   // Double registers and VLD1/VLD2 quad registers are directly supported.
 | |
|   if (is64BitVector || NumVecs <= 2) {
 | |
|     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
 | |
|                     QOpcodes0[OpcodeIndex]);
 | |
|     Ops.push_back(MemAddr);
 | |
|     Ops.push_back(Align);
 | |
|     if (isUpdating) {
 | |
|       SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | |
|       // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
 | |
|       // case entirely when the rest are updated to that form, too.
 | |
|       if ((NumVecs <= 2) && !isa<ConstantSDNode>(Inc.getNode()))
 | |
|         Opc = getVLDSTRegisterUpdateOpcode(Opc);
 | |
|       // FIXME: We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
 | |
|       // check for that explicitly too. Horribly hacky, but temporary.
 | |
|       if ((NumVecs > 2 && !isVLDfixed(Opc)) ||
 | |
|           !isa<ConstantSDNode>(Inc.getNode()))
 | |
|         Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
 | |
|     }
 | |
|     Ops.push_back(Pred);
 | |
|     Ops.push_back(Reg0);
 | |
|     Ops.push_back(Chain);
 | |
|     VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
| 
 | |
|   } else {
 | |
|     // Otherwise, quad registers are loaded with two separate instructions,
 | |
|     // where one loads the even registers and the other loads the odd registers.
 | |
|     EVT AddrTy = MemAddr.getValueType();
 | |
| 
 | |
|     // Load the even subregs.  This is always an updating load, so that it
 | |
|     // provides the address to the second load for the odd subregs.
 | |
|     SDValue ImplDef =
 | |
|       SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
 | |
|     const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
 | |
|     SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
 | |
|                                           ResTy, AddrTy, MVT::Other, OpsA);
 | |
|     Chain = SDValue(VLdA, 2);
 | |
| 
 | |
|     // Load the odd subregs.
 | |
|     Ops.push_back(SDValue(VLdA, 1));
 | |
|     Ops.push_back(Align);
 | |
|     if (isUpdating) {
 | |
|       SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | |
|       assert(isa<ConstantSDNode>(Inc.getNode()) &&
 | |
|              "only constant post-increment update allowed for VLD3/4");
 | |
|       (void)Inc;
 | |
|       Ops.push_back(Reg0);
 | |
|     }
 | |
|     Ops.push_back(SDValue(VLdA, 0));
 | |
|     Ops.push_back(Pred);
 | |
|     Ops.push_back(Reg0);
 | |
|     Ops.push_back(Chain);
 | |
|     VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
 | |
|   }
 | |
| 
 | |
|   // Transfer memoperands.
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
|   cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|   if (NumVecs == 1) {
 | |
|     ReplaceNode(N, VLd);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Extract out the subregisters.
 | |
|   SDValue SuperReg = SDValue(VLd, 0);
 | |
|   static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
 | |
|                     ARM::qsub_3 == ARM::qsub_0 + 3,
 | |
|                 "Unexpected subreg numbering");
 | |
|   unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
 | |
|   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
 | |
|     ReplaceUses(SDValue(N, Vec),
 | |
|                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
 | |
|   ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
 | |
|   if (isUpdating)
 | |
|     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
 | |
|   CurDAG->RemoveDeadNode(N);
 | |
| }
 | |
| 
 | |
| void ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
 | |
|                                 const uint16_t *DOpcodes,
 | |
|                                 const uint16_t *QOpcodes0,
 | |
|                                 const uint16_t *QOpcodes1) {
 | |
|   assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   SDValue MemAddr, Align;
 | |
|   unsigned AddrOpIdx = isUpdating ? 1 : 2;
 | |
|   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
 | |
|   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | |
|     return;
 | |
| 
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
| 
 | |
|   SDValue Chain = N->getOperand(0);
 | |
|   EVT VT = N->getOperand(Vec0Idx).getValueType();
 | |
|   bool is64BitVector = VT.is64BitVector();
 | |
|   Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
 | |
| 
 | |
|   unsigned OpcodeIndex;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("unhandled vst type");
 | |
|     // Double-register operations:
 | |
|   case MVT::v8i8:  OpcodeIndex = 0; break;
 | |
|   case MVT::v4i16: OpcodeIndex = 1; break;
 | |
|   case MVT::v2f32:
 | |
|   case MVT::v2i32: OpcodeIndex = 2; break;
 | |
|   case MVT::v1i64: OpcodeIndex = 3; break;
 | |
|     // Quad-register operations:
 | |
|   case MVT::v16i8: OpcodeIndex = 0; break;
 | |
|   case MVT::v8i16: OpcodeIndex = 1; break;
 | |
|   case MVT::v4f32:
 | |
|   case MVT::v4i32: OpcodeIndex = 2; break;
 | |
|   case MVT::v2f64:
 | |
|   case MVT::v2i64: OpcodeIndex = 3;
 | |
|     assert(NumVecs == 1 && "v2i64 type only supported for VST1");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   std::vector<EVT> ResTys;
 | |
|   if (isUpdating)
 | |
|     ResTys.push_back(MVT::i32);
 | |
|   ResTys.push_back(MVT::Other);
 | |
| 
 | |
|   SDValue Pred = getAL(CurDAG, dl);
 | |
|   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
|   SmallVector<SDValue, 7> Ops;
 | |
| 
 | |
|   // Double registers and VST1/VST2 quad registers are directly supported.
 | |
|   if (is64BitVector || NumVecs <= 2) {
 | |
|     SDValue SrcReg;
 | |
|     if (NumVecs == 1) {
 | |
|       SrcReg = N->getOperand(Vec0Idx);
 | |
|     } else if (is64BitVector) {
 | |
|       // Form a REG_SEQUENCE to force register allocation.
 | |
|       SDValue V0 = N->getOperand(Vec0Idx + 0);
 | |
|       SDValue V1 = N->getOperand(Vec0Idx + 1);
 | |
|       if (NumVecs == 2)
 | |
|         SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
 | |
|       else {
 | |
|         SDValue V2 = N->getOperand(Vec0Idx + 2);
 | |
|         // If it's a vst3, form a quad D-register and leave the last part as
 | |
|         // an undef.
 | |
|         SDValue V3 = (NumVecs == 3)
 | |
|           ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
 | |
|           : N->getOperand(Vec0Idx + 3);
 | |
|         SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
 | |
|       }
 | |
|     } else {
 | |
|       // Form a QQ register.
 | |
|       SDValue Q0 = N->getOperand(Vec0Idx);
 | |
|       SDValue Q1 = N->getOperand(Vec0Idx + 1);
 | |
|       SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
 | |
|     }
 | |
| 
 | |
|     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
 | |
|                     QOpcodes0[OpcodeIndex]);
 | |
|     Ops.push_back(MemAddr);
 | |
|     Ops.push_back(Align);
 | |
|     if (isUpdating) {
 | |
|       SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | |
|       // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
 | |
|       // case entirely when the rest are updated to that form, too.
 | |
|       if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
 | |
|         Opc = getVLDSTRegisterUpdateOpcode(Opc);
 | |
|       // FIXME: We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
 | |
|       // check for that explicitly too. Horribly hacky, but temporary.
 | |
|       if  (!isa<ConstantSDNode>(Inc.getNode()))
 | |
|         Ops.push_back(Inc);
 | |
|       else if (NumVecs > 2 && !isVSTfixed(Opc))
 | |
|         Ops.push_back(Reg0);
 | |
|     }
 | |
|     Ops.push_back(SrcReg);
 | |
|     Ops.push_back(Pred);
 | |
|     Ops.push_back(Reg0);
 | |
|     Ops.push_back(Chain);
 | |
|     SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
| 
 | |
|     // Transfer memoperands.
 | |
|     cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|     ReplaceNode(N, VSt);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, quad registers are stored with two separate instructions,
 | |
|   // where one stores the even registers and the other stores the odd registers.
 | |
| 
 | |
|   // Form the QQQQ REG_SEQUENCE.
 | |
|   SDValue V0 = N->getOperand(Vec0Idx + 0);
 | |
|   SDValue V1 = N->getOperand(Vec0Idx + 1);
 | |
|   SDValue V2 = N->getOperand(Vec0Idx + 2);
 | |
|   SDValue V3 = (NumVecs == 3)
 | |
|     ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
 | |
|     : N->getOperand(Vec0Idx + 3);
 | |
|   SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
 | |
| 
 | |
|   // Store the even D registers.  This is always an updating store, so that it
 | |
|   // provides the address to the second store for the odd subregs.
 | |
|   const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
 | |
|   SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
 | |
|                                         MemAddr.getValueType(),
 | |
|                                         MVT::Other, OpsA);
 | |
|   cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
 | |
|   Chain = SDValue(VStA, 1);
 | |
| 
 | |
|   // Store the odd D registers.
 | |
|   Ops.push_back(SDValue(VStA, 0));
 | |
|   Ops.push_back(Align);
 | |
|   if (isUpdating) {
 | |
|     SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | |
|     assert(isa<ConstantSDNode>(Inc.getNode()) &&
 | |
|            "only constant post-increment update allowed for VST3/4");
 | |
|     (void)Inc;
 | |
|     Ops.push_back(Reg0);
 | |
|   }
 | |
|   Ops.push_back(RegSeq);
 | |
|   Ops.push_back(Pred);
 | |
|   Ops.push_back(Reg0);
 | |
|   Ops.push_back(Chain);
 | |
|   SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
 | |
|                                         Ops);
 | |
|   cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
 | |
|   ReplaceNode(N, VStB);
 | |
| }
 | |
| 
 | |
| void ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
 | |
|                                       unsigned NumVecs,
 | |
|                                       const uint16_t *DOpcodes,
 | |
|                                       const uint16_t *QOpcodes) {
 | |
|   assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   SDValue MemAddr, Align;
 | |
|   unsigned AddrOpIdx = isUpdating ? 1 : 2;
 | |
|   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
 | |
|   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | |
|     return;
 | |
| 
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
| 
 | |
|   SDValue Chain = N->getOperand(0);
 | |
|   unsigned Lane =
 | |
|     cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
 | |
|   EVT VT = N->getOperand(Vec0Idx).getValueType();
 | |
|   bool is64BitVector = VT.is64BitVector();
 | |
| 
 | |
|   unsigned Alignment = 0;
 | |
|   if (NumVecs != 3) {
 | |
|     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
 | |
|     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
 | |
|     if (Alignment > NumBytes)
 | |
|       Alignment = NumBytes;
 | |
|     if (Alignment < 8 && Alignment < NumBytes)
 | |
|       Alignment = 0;
 | |
|     // Alignment must be a power of two; make sure of that.
 | |
|     Alignment = (Alignment & -Alignment);
 | |
|     if (Alignment == 1)
 | |
|       Alignment = 0;
 | |
|   }
 | |
|   Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
 | |
| 
 | |
|   unsigned OpcodeIndex;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("unhandled vld/vst lane type");
 | |
|     // Double-register operations:
 | |
|   case MVT::v8i8:  OpcodeIndex = 0; break;
 | |
|   case MVT::v4i16: OpcodeIndex = 1; break;
 | |
|   case MVT::v2f32:
 | |
|   case MVT::v2i32: OpcodeIndex = 2; break;
 | |
|     // Quad-register operations:
 | |
|   case MVT::v8i16: OpcodeIndex = 0; break;
 | |
|   case MVT::v4f32:
 | |
|   case MVT::v4i32: OpcodeIndex = 1; break;
 | |
|   }
 | |
| 
 | |
|   std::vector<EVT> ResTys;
 | |
|   if (IsLoad) {
 | |
|     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
 | |
|     if (!is64BitVector)
 | |
|       ResTyElts *= 2;
 | |
|     ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
 | |
|                                       MVT::i64, ResTyElts));
 | |
|   }
 | |
|   if (isUpdating)
 | |
|     ResTys.push_back(MVT::i32);
 | |
|   ResTys.push_back(MVT::Other);
 | |
| 
 | |
|   SDValue Pred = getAL(CurDAG, dl);
 | |
|   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
| 
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(MemAddr);
 | |
|   Ops.push_back(Align);
 | |
|   if (isUpdating) {
 | |
|     SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | |
|     Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
 | |
|   }
 | |
| 
 | |
|   SDValue SuperReg;
 | |
|   SDValue V0 = N->getOperand(Vec0Idx + 0);
 | |
|   SDValue V1 = N->getOperand(Vec0Idx + 1);
 | |
|   if (NumVecs == 2) {
 | |
|     if (is64BitVector)
 | |
|       SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
 | |
|     else
 | |
|       SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
 | |
|   } else {
 | |
|     SDValue V2 = N->getOperand(Vec0Idx + 2);
 | |
|     SDValue V3 = (NumVecs == 3)
 | |
|       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
 | |
|       : N->getOperand(Vec0Idx + 3);
 | |
|     if (is64BitVector)
 | |
|       SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
 | |
|     else
 | |
|       SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
 | |
|   }
 | |
|   Ops.push_back(SuperReg);
 | |
|   Ops.push_back(getI32Imm(Lane, dl));
 | |
|   Ops.push_back(Pred);
 | |
|   Ops.push_back(Reg0);
 | |
|   Ops.push_back(Chain);
 | |
| 
 | |
|   unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
 | |
|                                   QOpcodes[OpcodeIndex]);
 | |
|   SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
|   cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
 | |
|   if (!IsLoad) {
 | |
|     ReplaceNode(N, VLdLn);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Extract the subregisters.
 | |
|   SuperReg = SDValue(VLdLn, 0);
 | |
|   static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
 | |
|                     ARM::qsub_3 == ARM::qsub_0 + 3,
 | |
|                 "Unexpected subreg numbering");
 | |
|   unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
 | |
|   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
 | |
|     ReplaceUses(SDValue(N, Vec),
 | |
|                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
 | |
|   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
 | |
|   if (isUpdating)
 | |
|     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
 | |
|   CurDAG->RemoveDeadNode(N);
 | |
| }
 | |
| 
 | |
| void ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
 | |
|                                    const uint16_t *Opcodes) {
 | |
|   assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   SDValue MemAddr, Align;
 | |
|   if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
 | |
|     return;
 | |
| 
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
| 
 | |
|   SDValue Chain = N->getOperand(0);
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   unsigned Alignment = 0;
 | |
|   if (NumVecs != 3) {
 | |
|     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
 | |
|     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
 | |
|     if (Alignment > NumBytes)
 | |
|       Alignment = NumBytes;
 | |
|     if (Alignment < 8 && Alignment < NumBytes)
 | |
|       Alignment = 0;
 | |
|     // Alignment must be a power of two; make sure of that.
 | |
|     Alignment = (Alignment & -Alignment);
 | |
|     if (Alignment == 1)
 | |
|       Alignment = 0;
 | |
|   }
 | |
|   Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
 | |
| 
 | |
|   unsigned OpcodeIndex;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("unhandled vld-dup type");
 | |
|   case MVT::v8i8:  OpcodeIndex = 0; break;
 | |
|   case MVT::v4i16: OpcodeIndex = 1; break;
 | |
|   case MVT::v2f32:
 | |
|   case MVT::v2i32: OpcodeIndex = 2; break;
 | |
|   }
 | |
| 
 | |
|   SDValue Pred = getAL(CurDAG, dl);
 | |
|   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
|   SDValue SuperReg;
 | |
|   unsigned Opc = Opcodes[OpcodeIndex];
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   Ops.push_back(MemAddr);
 | |
|   Ops.push_back(Align);
 | |
|   if (isUpdating) {
 | |
|     // fixed-stride update instructions don't have an explicit writeback
 | |
|     // operand. It's implicit in the opcode itself.
 | |
|     SDValue Inc = N->getOperand(2);
 | |
|     if (!isa<ConstantSDNode>(Inc.getNode()))
 | |
|       Ops.push_back(Inc);
 | |
|     // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
 | |
|     else if (NumVecs > 2)
 | |
|       Ops.push_back(Reg0);
 | |
|   }
 | |
|   Ops.push_back(Pred);
 | |
|   Ops.push_back(Reg0);
 | |
|   Ops.push_back(Chain);
 | |
| 
 | |
|   unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
 | |
|   std::vector<EVT> ResTys;
 | |
|   ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
 | |
|   if (isUpdating)
 | |
|     ResTys.push_back(MVT::i32);
 | |
|   ResTys.push_back(MVT::Other);
 | |
|   SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
|   cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
 | |
|   SuperReg = SDValue(VLdDup, 0);
 | |
| 
 | |
|   // Extract the subregisters.
 | |
|   static_assert(ARM::dsub_7 == ARM::dsub_0 + 7, "Unexpected subreg numbering");
 | |
|   unsigned SubIdx = ARM::dsub_0;
 | |
|   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
 | |
|     ReplaceUses(SDValue(N, Vec),
 | |
|                 CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
 | |
|   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
 | |
|   if (isUpdating)
 | |
|     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
 | |
|   CurDAG->RemoveDeadNode(N);
 | |
| }
 | |
| 
 | |
| void ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
 | |
|                                  unsigned Opc) {
 | |
|   assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   unsigned FirstTblReg = IsExt ? 2 : 1;
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   SDValue RegSeq;
 | |
|   SDValue V0 = N->getOperand(FirstTblReg + 0);
 | |
|   SDValue V1 = N->getOperand(FirstTblReg + 1);
 | |
|   if (NumVecs == 2)
 | |
|     RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
 | |
|   else {
 | |
|     SDValue V2 = N->getOperand(FirstTblReg + 2);
 | |
|     // If it's a vtbl3, form a quad D-register and leave the last part as
 | |
|     // an undef.
 | |
|     SDValue V3 = (NumVecs == 3)
 | |
|       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
 | |
|       : N->getOperand(FirstTblReg + 3);
 | |
|     RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   if (IsExt)
 | |
|     Ops.push_back(N->getOperand(1));
 | |
|   Ops.push_back(RegSeq);
 | |
|   Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
 | |
|   Ops.push_back(getAL(CurDAG, dl)); // predicate
 | |
|   Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
 | |
|   ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned) {
 | |
|   if (!Subtarget->hasV6T2Ops())
 | |
|     return false;
 | |
| 
 | |
|   unsigned Opc = isSigned
 | |
|     ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
 | |
|     : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // For unsigned extracts, check for a shift right and mask
 | |
|   unsigned And_imm = 0;
 | |
|   if (N->getOpcode() == ISD::AND) {
 | |
|     if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
 | |
| 
 | |
|       // The immediate is a mask of the low bits iff imm & (imm+1) == 0
 | |
|       if (And_imm & (And_imm + 1))
 | |
|         return false;
 | |
| 
 | |
|       unsigned Srl_imm = 0;
 | |
|       if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
 | |
|                                 Srl_imm)) {
 | |
|         assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
 | |
| 
 | |
|         // Note: The width operand is encoded as width-1.
 | |
|         unsigned Width = countTrailingOnes(And_imm) - 1;
 | |
|         unsigned LSB = Srl_imm;
 | |
| 
 | |
|         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
| 
 | |
|         if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
 | |
|           // It's cheaper to use a right shift to extract the top bits.
 | |
|           if (Subtarget->isThumb()) {
 | |
|             Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
 | |
|             SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                               CurDAG->getTargetConstant(LSB, dl, MVT::i32),
 | |
|                               getAL(CurDAG, dl), Reg0, Reg0 };
 | |
|             CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | |
|             return true;
 | |
|           }
 | |
| 
 | |
|           // ARM models shift instructions as MOVsi with shifter operand.
 | |
|           ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
 | |
|           SDValue ShOpc =
 | |
|             CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB), dl,
 | |
|                                       MVT::i32);
 | |
|           SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
 | |
|                             getAL(CurDAG, dl), Reg0, Reg0 };
 | |
|           CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops);
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                           CurDAG->getTargetConstant(LSB, dl, MVT::i32),
 | |
|                           CurDAG->getTargetConstant(Width, dl, MVT::i32),
 | |
|                           getAL(CurDAG, dl), Reg0 };
 | |
|         CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we're looking for a shift of a shift
 | |
|   unsigned Shl_imm = 0;
 | |
|   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
 | |
|     assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
 | |
|     unsigned Srl_imm = 0;
 | |
|     if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
 | |
|       assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
 | |
|       // Note: The width operand is encoded as width-1.
 | |
|       unsigned Width = 32 - Srl_imm - 1;
 | |
|       int LSB = Srl_imm - Shl_imm;
 | |
|       if (LSB < 0)
 | |
|         return false;
 | |
|       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
|       SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                         CurDAG->getTargetConstant(LSB, dl, MVT::i32),
 | |
|                         CurDAG->getTargetConstant(Width, dl, MVT::i32),
 | |
|                         getAL(CurDAG, dl), Reg0 };
 | |
|       CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Or we are looking for a shift of an and, with a mask operand
 | |
|   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_imm) &&
 | |
|       isShiftedMask_32(And_imm)) {
 | |
|     unsigned Srl_imm = 0;
 | |
|     unsigned LSB = countTrailingZeros(And_imm);
 | |
|     // Shift must be the same as the ands lsb
 | |
|     if (isInt32Immediate(N->getOperand(1), Srl_imm) && Srl_imm == LSB) {
 | |
|       assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
 | |
|       unsigned MSB = 31 - countLeadingZeros(And_imm);
 | |
|       // Note: The width operand is encoded as width-1.
 | |
|       unsigned Width = MSB - LSB;
 | |
|       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
|       SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                         CurDAG->getTargetConstant(Srl_imm, dl, MVT::i32),
 | |
|                         CurDAG->getTargetConstant(Width, dl, MVT::i32),
 | |
|                         getAL(CurDAG, dl), Reg0 };
 | |
|       CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
 | |
|     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
 | |
|     unsigned LSB = 0;
 | |
|     if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) &&
 | |
|         !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB))
 | |
|       return false;
 | |
| 
 | |
|     if (LSB + Width > 32)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
|     SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                       CurDAG->getTargetConstant(LSB, dl, MVT::i32),
 | |
|                       CurDAG->getTargetConstant(Width - 1, dl, MVT::i32),
 | |
|                       getAL(CurDAG, dl), Reg0 };
 | |
|     CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Target-specific DAG combining for ISD::XOR.
 | |
| /// Target-independent combining lowers SELECT_CC nodes of the form
 | |
| /// select_cc setg[ge] X,  0,  X, -X
 | |
| /// select_cc setgt    X, -1,  X, -X
 | |
| /// select_cc setl[te] X,  0, -X,  X
 | |
| /// select_cc setlt    X,  1, -X,  X
 | |
| /// which represent Integer ABS into:
 | |
| /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
 | |
| /// ARM instruction selection detects the latter and matches it to
 | |
| /// ARM::ABS or ARM::t2ABS machine node.
 | |
| bool ARMDAGToDAGISel::tryABSOp(SDNode *N){
 | |
|   SDValue XORSrc0 = N->getOperand(0);
 | |
|   SDValue XORSrc1 = N->getOperand(1);
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return false;
 | |
| 
 | |
|   if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
 | |
|     return false;
 | |
| 
 | |
|   SDValue ADDSrc0 = XORSrc0.getOperand(0);
 | |
|   SDValue ADDSrc1 = XORSrc0.getOperand(1);
 | |
|   SDValue SRASrc0 = XORSrc1.getOperand(0);
 | |
|   SDValue SRASrc1 = XORSrc1.getOperand(1);
 | |
|   ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
 | |
|   EVT XType = SRASrc0.getValueType();
 | |
|   unsigned Size = XType.getSizeInBits() - 1;
 | |
| 
 | |
|   if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
 | |
|       XType.isInteger() && SRAConstant != nullptr &&
 | |
|       Size == SRAConstant->getZExtValue()) {
 | |
|     unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
 | |
|     CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool SearchSignedMulShort(SDValue SignExt, unsigned *Opc, SDValue &Src1,
 | |
|                                  bool Accumulate) {
 | |
|   // For SM*WB, we need to some form of sext.
 | |
|   // For SM*WT, we need to search for (sra X, 16)
 | |
|   // Src1 then gets set to X.
 | |
|   if ((SignExt.getOpcode() == ISD::SIGN_EXTEND ||
 | |
|        SignExt.getOpcode() == ISD::SIGN_EXTEND_INREG ||
 | |
|        SignExt.getOpcode() == ISD::AssertSext) &&
 | |
|        SignExt.getValueType() == MVT::i32) {
 | |
| 
 | |
|     *Opc = Accumulate ? ARM::SMLAWB : ARM::SMULWB;
 | |
|     Src1 = SignExt.getOperand(0);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (SignExt.getOpcode() != ISD::SRA)
 | |
|     return false;
 | |
| 
 | |
|   ConstantSDNode *SRASrc1 = dyn_cast<ConstantSDNode>(SignExt.getOperand(1));
 | |
|   if (!SRASrc1 || SRASrc1->getZExtValue() != 16)
 | |
|     return false;
 | |
| 
 | |
|   SDValue Op0 = SignExt.getOperand(0);
 | |
| 
 | |
|   // The sign extend operand for SM*WB could be generated by a shl and ashr.
 | |
|   if (Op0.getOpcode() == ISD::SHL) {
 | |
|     SDValue SHL = Op0;
 | |
|     ConstantSDNode *SHLSrc1 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
 | |
|     if (!SHLSrc1 || SHLSrc1->getZExtValue() != 16)
 | |
|       return false;
 | |
| 
 | |
|     *Opc = Accumulate ? ARM::SMLAWB : ARM::SMULWB;
 | |
|     Src1 = Op0.getOperand(0);
 | |
|     return true;
 | |
|   }
 | |
|   *Opc = Accumulate ? ARM::SMLAWT : ARM::SMULWT;
 | |
|   Src1 = SignExt.getOperand(0);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool SearchSignedMulLong(SDValue OR, unsigned *Opc, SDValue &Src0,
 | |
|                                 SDValue &Src1, bool Accumulate) {
 | |
|   // First we look for:
 | |
|   // (add (or (srl ?, 16), (shl ?, 16)))
 | |
|   if (OR.getOpcode() != ISD::OR)
 | |
|     return false;
 | |
| 
 | |
|   SDValue SRL = OR.getOperand(0);
 | |
|   SDValue SHL = OR.getOperand(1);
 | |
| 
 | |
|   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
 | |
|     SRL = OR.getOperand(1);
 | |
|     SHL = OR.getOperand(0);
 | |
|     if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   ConstantSDNode *SRLSrc1 = dyn_cast<ConstantSDNode>(SRL.getOperand(1));
 | |
|   ConstantSDNode *SHLSrc1 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
 | |
|   if (!SRLSrc1 || !SHLSrc1 || SRLSrc1->getZExtValue() != 16 ||
 | |
|       SHLSrc1->getZExtValue() != 16)
 | |
|     return false;
 | |
| 
 | |
|   // The first operands to the shifts need to be the two results from the
 | |
|   // same smul_lohi node.
 | |
|   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
 | |
|        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
 | |
|     return false;
 | |
| 
 | |
|   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
 | |
|   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
 | |
|       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
 | |
|     return false;
 | |
| 
 | |
|   // Now we have:
 | |
|   // (add (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
 | |
|   // For SMLAW[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
 | |
|   // For SMLAWB the 16-bit value will signed extended somehow.
 | |
|   // For SMLAWT only the SRA is required.
 | |
| 
 | |
|   // Check both sides of SMUL_LOHI
 | |
|   if (SearchSignedMulShort(SMULLOHI->getOperand(0), Opc, Src1, Accumulate)) {
 | |
|     Src0 = SMULLOHI->getOperand(1);
 | |
|   } else if (SearchSignedMulShort(SMULLOHI->getOperand(1), Opc, Src1,
 | |
|                                   Accumulate)) {
 | |
|     Src0 = SMULLOHI->getOperand(0);
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::trySMLAWSMULW(SDNode *N) {
 | |
|   if (!Subtarget->hasV6Ops() ||
 | |
|       (Subtarget->isThumb() && !Subtarget->hasThumb2()))
 | |
|     return false;
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   SDValue Src0 = N->getOperand(0);
 | |
|   SDValue Src1 = N->getOperand(1);
 | |
|   SDValue A, B;
 | |
|   unsigned Opc = 0;
 | |
| 
 | |
|   if (N->getOpcode() == ISD::ADD) {
 | |
|     if (Src0.getOpcode() != ISD::OR && Src1.getOpcode() != ISD::OR)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Acc;
 | |
|     if (SearchSignedMulLong(Src0, &Opc, A, B, true)) {
 | |
|       Acc = Src1;
 | |
|     } else if (SearchSignedMulLong(Src1, &Opc, A, B, true)) {
 | |
|       Acc = Src0;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|     if (Opc == 0)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Ops[] = { A, B, Acc, getAL(CurDAG, dl),
 | |
|                       CurDAG->getRegister(0, MVT::i32) };
 | |
|     CurDAG->SelectNodeTo(N, Opc, MVT::i32, MVT::Other, Ops);
 | |
|     return true;
 | |
|   } else if (N->getOpcode() == ISD::OR &&
 | |
|              SearchSignedMulLong(SDValue(N, 0), &Opc, A, B, false)) {
 | |
|     if (Opc == 0)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Ops[] = { A, B, getAL(CurDAG, dl),
 | |
|                       CurDAG->getRegister(0, MVT::i32)};
 | |
|     CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// We've got special pseudo-instructions for these
 | |
| void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
 | |
|   unsigned Opcode;
 | |
|   EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
 | |
|   if (MemTy == MVT::i8)
 | |
|     Opcode = ARM::CMP_SWAP_8;
 | |
|   else if (MemTy == MVT::i16)
 | |
|     Opcode = ARM::CMP_SWAP_16;
 | |
|   else if (MemTy == MVT::i32)
 | |
|     Opcode = ARM::CMP_SWAP_32;
 | |
|   else
 | |
|     llvm_unreachable("Unknown AtomicCmpSwap type");
 | |
| 
 | |
|   SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
 | |
|                    N->getOperand(0)};
 | |
|   SDNode *CmpSwap = CurDAG->getMachineNode(
 | |
|       Opcode, SDLoc(N),
 | |
|       CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other), Ops);
 | |
| 
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
 | |
|   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|   ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
 | |
|   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
 | |
|   CurDAG->RemoveDeadNode(N);
 | |
| }
 | |
| 
 | |
| void ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
 | |
|   // The only time a CONCAT_VECTORS operation can have legal types is when
 | |
|   // two 64-bit vectors are concatenated to a 128-bit vector.
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (!VT.is128BitVector() || N->getNumOperands() != 2)
 | |
|     llvm_unreachable("unexpected CONCAT_VECTORS");
 | |
|   ReplaceNode(N, createDRegPairNode(VT, N->getOperand(0), N->getOperand(1)));
 | |
| }
 | |
| 
 | |
| void ARMDAGToDAGISel::Select(SDNode *N) {
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   if (N->isMachineOpcode()) {
 | |
|     N->setNodeId(-1);
 | |
|     return;   // Already selected.
 | |
|   }
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::ADD:
 | |
|   case ISD::OR:
 | |
|     if (trySMLAWSMULW(N))
 | |
|       return;
 | |
|     break;
 | |
|   case ISD::WRITE_REGISTER:
 | |
|     if (tryWriteRegister(N))
 | |
|       return;
 | |
|     break;
 | |
|   case ISD::READ_REGISTER:
 | |
|     if (tryReadRegister(N))
 | |
|       return;
 | |
|     break;
 | |
|   case ISD::INLINEASM:
 | |
|     if (tryInlineAsm(N))
 | |
|       return;
 | |
|     break;
 | |
|   case ISD::XOR:
 | |
|     // Select special operations if XOR node forms integer ABS pattern
 | |
|     if (tryABSOp(N))
 | |
|       return;
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   case ISD::Constant: {
 | |
|     unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|     // If we can't materialize the constant we need to use a literal pool
 | |
|     if (ConstantMaterializationCost(Val) > 2) {
 | |
|       SDValue CPIdx = CurDAG->getTargetConstantPool(
 | |
|           ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val),
 | |
|           TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
| 
 | |
|       SDNode *ResNode;
 | |
|       if (Subtarget->isThumb()) {
 | |
|         SDValue Pred = getAL(CurDAG, dl);
 | |
|         SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | |
|         SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
 | |
|         ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
 | |
|                                          Ops);
 | |
|       } else {
 | |
|         SDValue Ops[] = {
 | |
|           CPIdx,
 | |
|           CurDAG->getTargetConstant(0, dl, MVT::i32),
 | |
|           getAL(CurDAG, dl),
 | |
|           CurDAG->getRegister(0, MVT::i32),
 | |
|           CurDAG->getEntryNode()
 | |
|         };
 | |
|         ResNode = CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
 | |
|                                          Ops);
 | |
|       }
 | |
|       ReplaceNode(N, ResNode);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FrameIndex: {
 | |
|     // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
 | |
|     int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     SDValue TFI = CurDAG->getTargetFrameIndex(
 | |
|         FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|     if (Subtarget->isThumb1Only()) {
 | |
|       // Set the alignment of the frame object to 4, to avoid having to generate
 | |
|       // more than one ADD
 | |
|       MachineFrameInfo &MFI = MF->getFrameInfo();
 | |
|       if (MFI.getObjectAlignment(FI) < 4)
 | |
|         MFI.setObjectAlignment(FI, 4);
 | |
|       CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI,
 | |
|                            CurDAG->getTargetConstant(0, dl, MVT::i32));
 | |
|       return;
 | |
|     } else {
 | |
|       unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
 | |
|                       ARM::t2ADDri : ARM::ADDri);
 | |
|       SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, dl, MVT::i32),
 | |
|                         getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
 | |
|                         CurDAG->getRegister(0, MVT::i32) };
 | |
|       CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   case ISD::SRL:
 | |
|     if (tryV6T2BitfieldExtractOp(N, false))
 | |
|       return;
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|   case ISD::SRA:
 | |
|     if (tryV6T2BitfieldExtractOp(N, true))
 | |
|       return;
 | |
|     break;
 | |
|   case ISD::MUL:
 | |
|     if (Subtarget->isThumb1Only())
 | |
|       break;
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | |
|       unsigned RHSV = C->getZExtValue();
 | |
|       if (!RHSV) break;
 | |
|       if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
 | |
|         unsigned ShImm = Log2_32(RHSV-1);
 | |
|         if (ShImm >= 32)
 | |
|           break;
 | |
|         SDValue V = N->getOperand(0);
 | |
|         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
 | |
|         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
 | |
|         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
|         if (Subtarget->isThumb()) {
 | |
|           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
 | |
|           CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops);
 | |
|           return;
 | |
|         } else {
 | |
|           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
 | |
|                             Reg0 };
 | |
|           CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
 | |
|         unsigned ShImm = Log2_32(RHSV+1);
 | |
|         if (ShImm >= 32)
 | |
|           break;
 | |
|         SDValue V = N->getOperand(0);
 | |
|         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
 | |
|         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
 | |
|         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | |
|         if (Subtarget->isThumb()) {
 | |
|           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
 | |
|           CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops);
 | |
|           return;
 | |
|         } else {
 | |
|           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
 | |
|                             Reg0 };
 | |
|           CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::AND: {
 | |
|     // Check for unsigned bitfield extract
 | |
|     if (tryV6T2BitfieldExtractOp(N, false))
 | |
|       return;
 | |
| 
 | |
|     // If an immediate is used in an AND node, it is possible that the immediate
 | |
|     // can be more optimally materialized when negated. If this is the case we
 | |
|     // can negate the immediate and use a BIC instead.
 | |
|     auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|     if (N1C && N1C->hasOneUse() && Subtarget->isThumb()) {
 | |
|       uint32_t Imm = (uint32_t) N1C->getZExtValue();
 | |
| 
 | |
|       // In Thumb2 mode, an AND can take a 12-bit immediate. If this
 | |
|       // immediate can be negated and fit in the immediate operand of
 | |
|       // a t2BIC, don't do any manual transform here as this can be
 | |
|       // handled by the generic ISel machinery.
 | |
|       bool PreferImmediateEncoding =
 | |
|         Subtarget->hasThumb2() && (is_t2_so_imm(Imm) || is_t2_so_imm_not(Imm));
 | |
|       if (!PreferImmediateEncoding &&
 | |
|           ConstantMaterializationCost(Imm) >
 | |
|               ConstantMaterializationCost(~Imm)) {
 | |
|         // The current immediate costs more to materialize than a negated
 | |
|         // immediate, so negate the immediate and use a BIC.
 | |
|         SDValue NewImm =
 | |
|           CurDAG->getConstant(~N1C->getZExtValue(), dl, MVT::i32);
 | |
|         // If the new constant didn't exist before, reposition it in the topological
 | |
|         // ordering so it is just before N. Otherwise, don't touch its location.
 | |
|         if (NewImm->getNodeId() == -1)
 | |
|           CurDAG->RepositionNode(N->getIterator(), NewImm.getNode());
 | |
| 
 | |
|         if (!Subtarget->hasThumb2()) {
 | |
|           SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32),
 | |
|                            N->getOperand(0), NewImm, getAL(CurDAG, dl),
 | |
|                            CurDAG->getRegister(0, MVT::i32)};
 | |
|           ReplaceNode(N, CurDAG->getMachineNode(ARM::tBIC, dl, MVT::i32, Ops));
 | |
|           return;
 | |
|         } else {
 | |
|           SDValue Ops[] = {N->getOperand(0), NewImm, getAL(CurDAG, dl),
 | |
|                            CurDAG->getRegister(0, MVT::i32),
 | |
|                            CurDAG->getRegister(0, MVT::i32)};
 | |
|           ReplaceNode(N,
 | |
|                       CurDAG->getMachineNode(ARM::t2BICrr, dl, MVT::i32, Ops));
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
 | |
|     // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
 | |
|     // are entirely contributed by c2 and lower 16-bits are entirely contributed
 | |
|     // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
 | |
|     // Select it to: "movt x, ((c1 & 0xffff) >> 16)
 | |
|     EVT VT = N->getValueType(0);
 | |
|     if (VT != MVT::i32)
 | |
|       break;
 | |
|     unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
 | |
|       ? ARM::t2MOVTi16
 | |
|       : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
 | |
|     if (!Opc)
 | |
|       break;
 | |
|     SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
 | |
|     N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|     if (!N1C)
 | |
|       break;
 | |
|     if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
 | |
|       SDValue N2 = N0.getOperand(1);
 | |
|       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
 | |
|       if (!N2C)
 | |
|         break;
 | |
|       unsigned N1CVal = N1C->getZExtValue();
 | |
|       unsigned N2CVal = N2C->getZExtValue();
 | |
|       if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
 | |
|           (N1CVal & 0xffffU) == 0xffffU &&
 | |
|           (N2CVal & 0xffffU) == 0x0U) {
 | |
|         SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
 | |
|                                                   dl, MVT::i32);
 | |
|         SDValue Ops[] = { N0.getOperand(0), Imm16,
 | |
|                           getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32) };
 | |
|         ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ARMISD::VMOVRRD:
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
 | |
|                                           N->getOperand(0), getAL(CurDAG, dl),
 | |
|                                           CurDAG->getRegister(0, MVT::i32)));
 | |
|     return;
 | |
|   case ISD::UMUL_LOHI: {
 | |
|     if (Subtarget->isThumb1Only())
 | |
|       break;
 | |
|     if (Subtarget->isThumb()) {
 | |
|       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | |
|                         getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32) };
 | |
|       ReplaceNode(
 | |
|           N, CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops));
 | |
|       return;
 | |
|     } else {
 | |
|       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | |
|                         getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
 | |
|                         CurDAG->getRegister(0, MVT::i32) };
 | |
|       ReplaceNode(N, CurDAG->getMachineNode(
 | |
|                          Subtarget->hasV6Ops() ? ARM::UMULL : ARM::UMULLv5, dl,
 | |
|                          MVT::i32, MVT::i32, Ops));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   case ISD::SMUL_LOHI: {
 | |
|     if (Subtarget->isThumb1Only())
 | |
|       break;
 | |
|     if (Subtarget->isThumb()) {
 | |
|       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | |
|                         getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32) };
 | |
|       ReplaceNode(
 | |
|           N, CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops));
 | |
|       return;
 | |
|     } else {
 | |
|       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | |
|                         getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
 | |
|                         CurDAG->getRegister(0, MVT::i32) };
 | |
|       ReplaceNode(N, CurDAG->getMachineNode(
 | |
|                          Subtarget->hasV6Ops() ? ARM::SMULL : ARM::SMULLv5, dl,
 | |
|                          MVT::i32, MVT::i32, Ops));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   case ARMISD::UMAAL: {
 | |
|     unsigned Opc = Subtarget->isThumb() ? ARM::t2UMAAL : ARM::UMAAL;
 | |
|     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | |
|                       N->getOperand(2), N->getOperand(3),
 | |
|                       getAL(CurDAG, dl),
 | |
|                       CurDAG->getRegister(0, MVT::i32) };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::i32, Ops));
 | |
|     return;
 | |
|   }
 | |
|   case ARMISD::UMLAL:{
 | |
|     // UMAAL is similar to UMLAL but it adds two 32-bit values to the
 | |
|     // 64-bit multiplication result.
 | |
|     if (Subtarget->hasV6Ops() && N->getOperand(2).getOpcode() == ARMISD::ADDC &&
 | |
|         N->getOperand(3).getOpcode() == ARMISD::ADDE) {
 | |
| 
 | |
|       SDValue Addc = N->getOperand(2);
 | |
|       SDValue Adde = N->getOperand(3);
 | |
| 
 | |
|       if (Adde.getOperand(2).getNode() == Addc.getNode()) {
 | |
| 
 | |
|         ConstantSDNode *Op0 = dyn_cast<ConstantSDNode>(Adde.getOperand(0));
 | |
|         ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Adde.getOperand(1));
 | |
| 
 | |
|         if (Op0 && Op1 && Op0->getZExtValue() == 0 && Op1->getZExtValue() == 0)
 | |
|         {
 | |
|           // Select UMAAL instead: UMAAL RdLo, RdHi, Rn, Rm
 | |
|           // RdLo = one operand to be added, lower 32-bits of res
 | |
|           // RdHi = other operand to be added, upper 32-bits of res
 | |
|           // Rn = first multiply operand
 | |
|           // Rm = second multiply operand
 | |
|           SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | |
|                             Addc.getOperand(0), Addc.getOperand(1),
 | |
|                             getAL(CurDAG, dl),
 | |
|                             CurDAG->getRegister(0, MVT::i32) };
 | |
|           unsigned opc = Subtarget->isThumb() ? ARM::t2UMAAL : ARM::UMAAL;
 | |
|           CurDAG->SelectNodeTo(N, opc, MVT::i32, MVT::i32, Ops);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Subtarget->isThumb()) {
 | |
|       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | |
|                         N->getOperand(3), getAL(CurDAG, dl),
 | |
|                         CurDAG->getRegister(0, MVT::i32)};
 | |
|       ReplaceNode(
 | |
|           N, CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops));
 | |
|       return;
 | |
|     }else{
 | |
|       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | |
|                         N->getOperand(3), getAL(CurDAG, dl),
 | |
|                         CurDAG->getRegister(0, MVT::i32),
 | |
|                         CurDAG->getRegister(0, MVT::i32) };
 | |
|       ReplaceNode(N, CurDAG->getMachineNode(
 | |
|                          Subtarget->hasV6Ops() ? ARM::UMLAL : ARM::UMLALv5, dl,
 | |
|                          MVT::i32, MVT::i32, Ops));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   case ARMISD::SMLAL:{
 | |
|     if (Subtarget->isThumb()) {
 | |
|       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | |
|                         N->getOperand(3), getAL(CurDAG, dl),
 | |
|                         CurDAG->getRegister(0, MVT::i32)};
 | |
|       ReplaceNode(
 | |
|           N, CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops));
 | |
|       return;
 | |
|     }else{
 | |
|       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | |
|                         N->getOperand(3), getAL(CurDAG, dl),
 | |
|                         CurDAG->getRegister(0, MVT::i32),
 | |
|                         CurDAG->getRegister(0, MVT::i32) };
 | |
|       ReplaceNode(N, CurDAG->getMachineNode(
 | |
|                          Subtarget->hasV6Ops() ? ARM::SMLAL : ARM::SMLALv5, dl,
 | |
|                          MVT::i32, MVT::i32, Ops));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   case ARMISD::SUBE: {
 | |
|     if (!Subtarget->hasV6Ops())
 | |
|       break;
 | |
|     // Look for a pattern to match SMMLS
 | |
|     // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b))))
 | |
|     if (N->getOperand(1).getOpcode() != ISD::SMUL_LOHI ||
 | |
|         N->getOperand(2).getOpcode() != ARMISD::SUBC ||
 | |
|         !SDValue(N, 1).use_empty())
 | |
|       break;
 | |
| 
 | |
|     if (Subtarget->isThumb())
 | |
|       assert(Subtarget->hasThumb2() &&
 | |
|              "This pattern should not be generated for Thumb");
 | |
| 
 | |
|     SDValue SmulLoHi = N->getOperand(1);
 | |
|     SDValue Subc = N->getOperand(2);
 | |
|     auto *Zero = dyn_cast<ConstantSDNode>(Subc.getOperand(0));
 | |
| 
 | |
|     if (!Zero || Zero->getZExtValue() != 0 ||
 | |
|         Subc.getOperand(1) != SmulLoHi.getValue(0) ||
 | |
|         N->getOperand(1) != SmulLoHi.getValue(1) ||
 | |
|         N->getOperand(2) != Subc.getValue(1))
 | |
|       break;
 | |
| 
 | |
|     unsigned Opc = Subtarget->isThumb2() ? ARM::t2SMMLS : ARM::SMMLS;
 | |
|     SDValue Ops[] = { SmulLoHi.getOperand(0), SmulLoHi.getOperand(1),
 | |
|                       N->getOperand(0), getAL(CurDAG, dl),
 | |
|                       CurDAG->getRegister(0, MVT::i32) };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops));
 | |
|     return;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     if (Subtarget->isThumb() && Subtarget->hasThumb2()) {
 | |
|       if (tryT2IndexedLoad(N))
 | |
|         return;
 | |
|     } else if (Subtarget->isThumb()) {
 | |
|       if (tryT1IndexedLoad(N))
 | |
|         return;
 | |
|     } else if (tryARMIndexedLoad(N))
 | |
|       return;
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ARMISD::BRCOND: {
 | |
|     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
 | |
|     // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
 | |
|     // Pattern complexity = 6  cost = 1  size = 0
 | |
| 
 | |
|     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
 | |
|     // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
 | |
|     // Pattern complexity = 6  cost = 1  size = 0
 | |
| 
 | |
|     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
 | |
|     // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
 | |
|     // Pattern complexity = 6  cost = 1  size = 0
 | |
| 
 | |
|     unsigned Opc = Subtarget->isThumb() ?
 | |
|       ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
 | |
|     SDValue Chain = N->getOperand(0);
 | |
|     SDValue N1 = N->getOperand(1);
 | |
|     SDValue N2 = N->getOperand(2);
 | |
|     SDValue N3 = N->getOperand(3);
 | |
|     SDValue InFlag = N->getOperand(4);
 | |
|     assert(N1.getOpcode() == ISD::BasicBlock);
 | |
|     assert(N2.getOpcode() == ISD::Constant);
 | |
|     assert(N3.getOpcode() == ISD::Register);
 | |
| 
 | |
|     SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
 | |
|                                cast<ConstantSDNode>(N2)->getZExtValue()), dl,
 | |
|                                MVT::i32);
 | |
|     SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
 | |
|     SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
 | |
|                                              MVT::Glue, Ops);
 | |
|     Chain = SDValue(ResNode, 0);
 | |
|     if (N->getNumValues() == 2) {
 | |
|       InFlag = SDValue(ResNode, 1);
 | |
|       ReplaceUses(SDValue(N, 1), InFlag);
 | |
|     }
 | |
|     ReplaceUses(SDValue(N, 0),
 | |
|                 SDValue(Chain.getNode(), Chain.getResNo()));
 | |
|     CurDAG->RemoveDeadNode(N);
 | |
|     return;
 | |
|   }
 | |
|   case ARMISD::VZIP: {
 | |
|     unsigned Opc = 0;
 | |
|     EVT VT = N->getValueType(0);
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default: return;
 | |
|     case MVT::v8i8:  Opc = ARM::VZIPd8; break;
 | |
|     case MVT::v4i16: Opc = ARM::VZIPd16; break;
 | |
|     case MVT::v2f32:
 | |
|     // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
 | |
|     case MVT::v2i32: Opc = ARM::VTRNd32; break;
 | |
|     case MVT::v16i8: Opc = ARM::VZIPq8; break;
 | |
|     case MVT::v8i16: Opc = ARM::VZIPq16; break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32: Opc = ARM::VZIPq32; break;
 | |
|     }
 | |
|     SDValue Pred = getAL(CurDAG, dl);
 | |
|     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | |
|     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
 | |
|     return;
 | |
|   }
 | |
|   case ARMISD::VUZP: {
 | |
|     unsigned Opc = 0;
 | |
|     EVT VT = N->getValueType(0);
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default: return;
 | |
|     case MVT::v8i8:  Opc = ARM::VUZPd8; break;
 | |
|     case MVT::v4i16: Opc = ARM::VUZPd16; break;
 | |
|     case MVT::v2f32:
 | |
|     // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
 | |
|     case MVT::v2i32: Opc = ARM::VTRNd32; break;
 | |
|     case MVT::v16i8: Opc = ARM::VUZPq8; break;
 | |
|     case MVT::v8i16: Opc = ARM::VUZPq16; break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32: Opc = ARM::VUZPq32; break;
 | |
|     }
 | |
|     SDValue Pred = getAL(CurDAG, dl);
 | |
|     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | |
|     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
 | |
|     return;
 | |
|   }
 | |
|   case ARMISD::VTRN: {
 | |
|     unsigned Opc = 0;
 | |
|     EVT VT = N->getValueType(0);
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default: return;
 | |
|     case MVT::v8i8:  Opc = ARM::VTRNd8; break;
 | |
|     case MVT::v4i16: Opc = ARM::VTRNd16; break;
 | |
|     case MVT::v2f32:
 | |
|     case MVT::v2i32: Opc = ARM::VTRNd32; break;
 | |
|     case MVT::v16i8: Opc = ARM::VTRNq8; break;
 | |
|     case MVT::v8i16: Opc = ARM::VTRNq16; break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32: Opc = ARM::VTRNq32; break;
 | |
|     }
 | |
|     SDValue Pred = getAL(CurDAG, dl);
 | |
|     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | |
|     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
 | |
|     return;
 | |
|   }
 | |
|   case ARMISD::BUILD_VECTOR: {
 | |
|     EVT VecVT = N->getValueType(0);
 | |
|     EVT EltVT = VecVT.getVectorElementType();
 | |
|     unsigned NumElts = VecVT.getVectorNumElements();
 | |
|     if (EltVT == MVT::f64) {
 | |
|       assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
 | |
|       ReplaceNode(
 | |
|           N, createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
 | |
|       return;
 | |
|     }
 | |
|     assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
 | |
|     if (NumElts == 2) {
 | |
|       ReplaceNode(
 | |
|           N, createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
 | |
|       return;
 | |
|     }
 | |
|     assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
 | |
|     ReplaceNode(N,
 | |
|                 createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
 | |
|                                     N->getOperand(2), N->getOperand(3)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD2DUP: {
 | |
|     static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
 | |
|                                         ARM::VLD2DUPd32 };
 | |
|     SelectVLDDup(N, false, 2, Opcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD3DUP: {
 | |
|     static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
 | |
|                                         ARM::VLD3DUPd16Pseudo,
 | |
|                                         ARM::VLD3DUPd32Pseudo };
 | |
|     SelectVLDDup(N, false, 3, Opcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD4DUP: {
 | |
|     static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
 | |
|                                         ARM::VLD4DUPd16Pseudo,
 | |
|                                         ARM::VLD4DUPd32Pseudo };
 | |
|     SelectVLDDup(N, false, 4, Opcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD2DUP_UPD: {
 | |
|     static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
 | |
|                                         ARM::VLD2DUPd16wb_fixed,
 | |
|                                         ARM::VLD2DUPd32wb_fixed };
 | |
|     SelectVLDDup(N, true, 2, Opcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD3DUP_UPD: {
 | |
|     static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
 | |
|                                         ARM::VLD3DUPd16Pseudo_UPD,
 | |
|                                         ARM::VLD3DUPd32Pseudo_UPD };
 | |
|     SelectVLDDup(N, true, 3, Opcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD4DUP_UPD: {
 | |
|     static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
 | |
|                                         ARM::VLD4DUPd16Pseudo_UPD,
 | |
|                                         ARM::VLD4DUPd32Pseudo_UPD };
 | |
|     SelectVLDDup(N, true, 4, Opcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD1_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
 | |
|                                          ARM::VLD1d16wb_fixed,
 | |
|                                          ARM::VLD1d32wb_fixed,
 | |
|                                          ARM::VLD1d64wb_fixed };
 | |
|     static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
 | |
|                                          ARM::VLD1q16wb_fixed,
 | |
|                                          ARM::VLD1q32wb_fixed,
 | |
|                                          ARM::VLD1q64wb_fixed };
 | |
|     SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD2_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
 | |
|                                          ARM::VLD2d16wb_fixed,
 | |
|                                          ARM::VLD2d32wb_fixed,
 | |
|                                          ARM::VLD1q64wb_fixed};
 | |
|     static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
 | |
|                                          ARM::VLD2q16PseudoWB_fixed,
 | |
|                                          ARM::VLD2q32PseudoWB_fixed };
 | |
|     SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD3_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
 | |
|                                          ARM::VLD3d16Pseudo_UPD,
 | |
|                                          ARM::VLD3d32Pseudo_UPD,
 | |
|                                          ARM::VLD1d64TPseudoWB_fixed};
 | |
|     static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
 | |
|                                           ARM::VLD3q16Pseudo_UPD,
 | |
|                                           ARM::VLD3q32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
 | |
|                                           ARM::VLD3q16oddPseudo_UPD,
 | |
|                                           ARM::VLD3q32oddPseudo_UPD };
 | |
|     SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD4_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
 | |
|                                          ARM::VLD4d16Pseudo_UPD,
 | |
|                                          ARM::VLD4d32Pseudo_UPD,
 | |
|                                          ARM::VLD1d64QPseudoWB_fixed};
 | |
|     static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
 | |
|                                           ARM::VLD4q16Pseudo_UPD,
 | |
|                                           ARM::VLD4q32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
 | |
|                                           ARM::VLD4q16oddPseudo_UPD,
 | |
|                                           ARM::VLD4q32oddPseudo_UPD };
 | |
|     SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD2LN_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
 | |
|                                          ARM::VLD2LNd16Pseudo_UPD,
 | |
|                                          ARM::VLD2LNd32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
 | |
|                                          ARM::VLD2LNq32Pseudo_UPD };
 | |
|     SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD3LN_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
 | |
|                                          ARM::VLD3LNd16Pseudo_UPD,
 | |
|                                          ARM::VLD3LNd32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
 | |
|                                          ARM::VLD3LNq32Pseudo_UPD };
 | |
|     SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VLD4LN_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
 | |
|                                          ARM::VLD4LNd16Pseudo_UPD,
 | |
|                                          ARM::VLD4LNd32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
 | |
|                                          ARM::VLD4LNq32Pseudo_UPD };
 | |
|     SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VST1_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
 | |
|                                          ARM::VST1d16wb_fixed,
 | |
|                                          ARM::VST1d32wb_fixed,
 | |
|                                          ARM::VST1d64wb_fixed };
 | |
|     static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
 | |
|                                          ARM::VST1q16wb_fixed,
 | |
|                                          ARM::VST1q32wb_fixed,
 | |
|                                          ARM::VST1q64wb_fixed };
 | |
|     SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VST2_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
 | |
|                                          ARM::VST2d16wb_fixed,
 | |
|                                          ARM::VST2d32wb_fixed,
 | |
|                                          ARM::VST1q64wb_fixed};
 | |
|     static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
 | |
|                                          ARM::VST2q16PseudoWB_fixed,
 | |
|                                          ARM::VST2q32PseudoWB_fixed };
 | |
|     SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VST3_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
 | |
|                                          ARM::VST3d16Pseudo_UPD,
 | |
|                                          ARM::VST3d32Pseudo_UPD,
 | |
|                                          ARM::VST1d64TPseudoWB_fixed};
 | |
|     static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
 | |
|                                           ARM::VST3q16Pseudo_UPD,
 | |
|                                           ARM::VST3q32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
 | |
|                                           ARM::VST3q16oddPseudo_UPD,
 | |
|                                           ARM::VST3q32oddPseudo_UPD };
 | |
|     SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VST4_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
 | |
|                                          ARM::VST4d16Pseudo_UPD,
 | |
|                                          ARM::VST4d32Pseudo_UPD,
 | |
|                                          ARM::VST1d64QPseudoWB_fixed};
 | |
|     static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
 | |
|                                           ARM::VST4q16Pseudo_UPD,
 | |
|                                           ARM::VST4q32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
 | |
|                                           ARM::VST4q16oddPseudo_UPD,
 | |
|                                           ARM::VST4q32oddPseudo_UPD };
 | |
|     SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VST2LN_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
 | |
|                                          ARM::VST2LNd16Pseudo_UPD,
 | |
|                                          ARM::VST2LNd32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
 | |
|                                          ARM::VST2LNq32Pseudo_UPD };
 | |
|     SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VST3LN_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
 | |
|                                          ARM::VST3LNd16Pseudo_UPD,
 | |
|                                          ARM::VST3LNd32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
 | |
|                                          ARM::VST3LNq32Pseudo_UPD };
 | |
|     SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VST4LN_UPD: {
 | |
|     static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
 | |
|                                          ARM::VST4LNd16Pseudo_UPD,
 | |
|                                          ARM::VST4LNd32Pseudo_UPD };
 | |
|     static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
 | |
|                                          ARM::VST4LNq32Pseudo_UPD };
 | |
|     SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | |
|     switch (IntNo) {
 | |
|     default:
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::arm_mrrc:
 | |
|     case Intrinsic::arm_mrrc2: {
 | |
|       SDLoc dl(N);
 | |
|       SDValue Chain = N->getOperand(0);
 | |
|       unsigned Opc;
 | |
| 
 | |
|       if (Subtarget->isThumb())
 | |
|         Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::t2MRRC : ARM::t2MRRC2);
 | |
|       else
 | |
|         Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::MRRC : ARM::MRRC2);
 | |
| 
 | |
|       SmallVector<SDValue, 5> Ops;
 | |
|       Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(), dl)); /* coproc */
 | |
|       Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(), dl)); /* opc */
 | |
|       Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(4))->getZExtValue(), dl)); /* CRm */
 | |
| 
 | |
|       // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded
 | |
|       // instruction will always be '1111' but it is possible in assembly language to specify
 | |
|       // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction.
 | |
|       if (Opc != ARM::MRRC2) {
 | |
|         Ops.push_back(getAL(CurDAG, dl));
 | |
|         Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | |
|       }
 | |
| 
 | |
|       Ops.push_back(Chain);
 | |
| 
 | |
|       // Writes to two registers.
 | |
|       const EVT RetType[] = {MVT::i32, MVT::i32, MVT::Other};
 | |
| 
 | |
|       ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, RetType, Ops));
 | |
|       return;
 | |
|     }
 | |
|     case Intrinsic::arm_ldaexd:
 | |
|     case Intrinsic::arm_ldrexd: {
 | |
|       SDLoc dl(N);
 | |
|       SDValue Chain = N->getOperand(0);
 | |
|       SDValue MemAddr = N->getOperand(2);
 | |
|       bool isThumb = Subtarget->isThumb() && Subtarget->hasV8MBaselineOps();
 | |
| 
 | |
|       bool IsAcquire = IntNo == Intrinsic::arm_ldaexd;
 | |
|       unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD)
 | |
|                                 : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD);
 | |
| 
 | |
|       // arm_ldrexd returns a i64 value in {i32, i32}
 | |
|       std::vector<EVT> ResTys;
 | |
|       if (isThumb) {
 | |
|         ResTys.push_back(MVT::i32);
 | |
|         ResTys.push_back(MVT::i32);
 | |
|       } else
 | |
|         ResTys.push_back(MVT::Untyped);
 | |
|       ResTys.push_back(MVT::Other);
 | |
| 
 | |
|       // Place arguments in the right order.
 | |
|       SDValue Ops[] = {MemAddr, getAL(CurDAG, dl),
 | |
|                        CurDAG->getRegister(0, MVT::i32), Chain};
 | |
|       SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
 | |
|       // Transfer memoperands.
 | |
|       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
|       cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|       // Remap uses.
 | |
|       SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
 | |
|       if (!SDValue(N, 0).use_empty()) {
 | |
|         SDValue Result;
 | |
|         if (isThumb)
 | |
|           Result = SDValue(Ld, 0);
 | |
|         else {
 | |
|           SDValue SubRegIdx =
 | |
|             CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
 | |
|           SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
 | |
|               dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
 | |
|           Result = SDValue(ResNode,0);
 | |
|         }
 | |
|         ReplaceUses(SDValue(N, 0), Result);
 | |
|       }
 | |
|       if (!SDValue(N, 1).use_empty()) {
 | |
|         SDValue Result;
 | |
|         if (isThumb)
 | |
|           Result = SDValue(Ld, 1);
 | |
|         else {
 | |
|           SDValue SubRegIdx =
 | |
|             CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
 | |
|           SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
 | |
|               dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
 | |
|           Result = SDValue(ResNode,0);
 | |
|         }
 | |
|         ReplaceUses(SDValue(N, 1), Result);
 | |
|       }
 | |
|       ReplaceUses(SDValue(N, 2), OutChain);
 | |
|       CurDAG->RemoveDeadNode(N);
 | |
|       return;
 | |
|     }
 | |
|     case Intrinsic::arm_stlexd:
 | |
|     case Intrinsic::arm_strexd: {
 | |
|       SDLoc dl(N);
 | |
|       SDValue Chain = N->getOperand(0);
 | |
|       SDValue Val0 = N->getOperand(2);
 | |
|       SDValue Val1 = N->getOperand(3);
 | |
|       SDValue MemAddr = N->getOperand(4);
 | |
| 
 | |
|       // Store exclusive double return a i32 value which is the return status
 | |
|       // of the issued store.
 | |
|       const EVT ResTys[] = {MVT::i32, MVT::Other};
 | |
| 
 | |
|       bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
 | |
|       // Place arguments in the right order.
 | |
|       SmallVector<SDValue, 7> Ops;
 | |
|       if (isThumb) {
 | |
|         Ops.push_back(Val0);
 | |
|         Ops.push_back(Val1);
 | |
|       } else
 | |
|         // arm_strexd uses GPRPair.
 | |
|         Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
 | |
|       Ops.push_back(MemAddr);
 | |
|       Ops.push_back(getAL(CurDAG, dl));
 | |
|       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | |
|       Ops.push_back(Chain);
 | |
| 
 | |
|       bool IsRelease = IntNo == Intrinsic::arm_stlexd;
 | |
|       unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD)
 | |
|                                 : (IsRelease ? ARM::STLEXD : ARM::STREXD);
 | |
| 
 | |
|       SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
 | |
|       // Transfer memoperands.
 | |
|       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
|       cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|       ReplaceNode(N, St);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vld1: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
 | |
|                                            ARM::VLD1d32, ARM::VLD1d64 };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
 | |
|                                            ARM::VLD1q32, ARM::VLD1q64};
 | |
|       SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vld2: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
 | |
|                                            ARM::VLD2d32, ARM::VLD1q64 };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
 | |
|                                            ARM::VLD2q32Pseudo };
 | |
|       SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vld3: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
 | |
|                                            ARM::VLD3d16Pseudo,
 | |
|                                            ARM::VLD3d32Pseudo,
 | |
|                                            ARM::VLD1d64TPseudo };
 | |
|       static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
 | |
|                                             ARM::VLD3q16Pseudo_UPD,
 | |
|                                             ARM::VLD3q32Pseudo_UPD };
 | |
|       static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
 | |
|                                             ARM::VLD3q16oddPseudo,
 | |
|                                             ARM::VLD3q32oddPseudo };
 | |
|       SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vld4: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
 | |
|                                            ARM::VLD4d16Pseudo,
 | |
|                                            ARM::VLD4d32Pseudo,
 | |
|                                            ARM::VLD1d64QPseudo };
 | |
|       static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
 | |
|                                             ARM::VLD4q16Pseudo_UPD,
 | |
|                                             ARM::VLD4q32Pseudo_UPD };
 | |
|       static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
 | |
|                                             ARM::VLD4q16oddPseudo,
 | |
|                                             ARM::VLD4q32oddPseudo };
 | |
|       SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vld2lane: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
 | |
|                                            ARM::VLD2LNd16Pseudo,
 | |
|                                            ARM::VLD2LNd32Pseudo };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
 | |
|                                            ARM::VLD2LNq32Pseudo };
 | |
|       SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vld3lane: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
 | |
|                                            ARM::VLD3LNd16Pseudo,
 | |
|                                            ARM::VLD3LNd32Pseudo };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
 | |
|                                            ARM::VLD3LNq32Pseudo };
 | |
|       SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vld4lane: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
 | |
|                                            ARM::VLD4LNd16Pseudo,
 | |
|                                            ARM::VLD4LNd32Pseudo };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
 | |
|                                            ARM::VLD4LNq32Pseudo };
 | |
|       SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vst1: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
 | |
|                                            ARM::VST1d32, ARM::VST1d64 };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
 | |
|                                            ARM::VST1q32, ARM::VST1q64 };
 | |
|       SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vst2: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
 | |
|                                            ARM::VST2d32, ARM::VST1q64 };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
 | |
|                                            ARM::VST2q32Pseudo };
 | |
|       SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vst3: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
 | |
|                                            ARM::VST3d16Pseudo,
 | |
|                                            ARM::VST3d32Pseudo,
 | |
|                                            ARM::VST1d64TPseudo };
 | |
|       static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
 | |
|                                             ARM::VST3q16Pseudo_UPD,
 | |
|                                             ARM::VST3q32Pseudo_UPD };
 | |
|       static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
 | |
|                                             ARM::VST3q16oddPseudo,
 | |
|                                             ARM::VST3q32oddPseudo };
 | |
|       SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vst4: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
 | |
|                                            ARM::VST4d16Pseudo,
 | |
|                                            ARM::VST4d32Pseudo,
 | |
|                                            ARM::VST1d64QPseudo };
 | |
|       static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
 | |
|                                             ARM::VST4q16Pseudo_UPD,
 | |
|                                             ARM::VST4q32Pseudo_UPD };
 | |
|       static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
 | |
|                                             ARM::VST4q16oddPseudo,
 | |
|                                             ARM::VST4q32oddPseudo };
 | |
|       SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vst2lane: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
 | |
|                                            ARM::VST2LNd16Pseudo,
 | |
|                                            ARM::VST2LNd32Pseudo };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
 | |
|                                            ARM::VST2LNq32Pseudo };
 | |
|       SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vst3lane: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
 | |
|                                            ARM::VST3LNd16Pseudo,
 | |
|                                            ARM::VST3LNd32Pseudo };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
 | |
|                                            ARM::VST3LNq32Pseudo };
 | |
|       SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::arm_neon_vst4lane: {
 | |
|       static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
 | |
|                                            ARM::VST4LNd16Pseudo,
 | |
|                                            ARM::VST4LNd32Pseudo };
 | |
|       static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
 | |
|                                            ARM::VST4LNq32Pseudo };
 | |
|       SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
 | |
|       return;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | |
|     switch (IntNo) {
 | |
|     default:
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::arm_neon_vtbl2:
 | |
|       SelectVTBL(N, false, 2, ARM::VTBL2);
 | |
|       return;
 | |
|     case Intrinsic::arm_neon_vtbl3:
 | |
|       SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
 | |
|       return;
 | |
|     case Intrinsic::arm_neon_vtbl4:
 | |
|       SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
 | |
|       return;
 | |
| 
 | |
|     case Intrinsic::arm_neon_vtbx2:
 | |
|       SelectVTBL(N, true, 2, ARM::VTBX2);
 | |
|       return;
 | |
|     case Intrinsic::arm_neon_vtbx3:
 | |
|       SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
 | |
|       return;
 | |
|     case Intrinsic::arm_neon_vtbx4:
 | |
|       SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ARMISD::VTBL1: {
 | |
|     SDLoc dl(N);
 | |
|     EVT VT = N->getValueType(0);
 | |
|     SDValue Ops[] = {N->getOperand(0), N->getOperand(1),
 | |
|                      getAL(CurDAG, dl),                 // Predicate
 | |
|                      CurDAG->getRegister(0, MVT::i32)}; // Predicate Register
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops));
 | |
|     return;
 | |
|   }
 | |
|   case ARMISD::VTBL2: {
 | |
|     SDLoc dl(N);
 | |
|     EVT VT = N->getValueType(0);
 | |
| 
 | |
|     // Form a REG_SEQUENCE to force register allocation.
 | |
|     SDValue V0 = N->getOperand(0);
 | |
|     SDValue V1 = N->getOperand(1);
 | |
|     SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
 | |
| 
 | |
|     SDValue Ops[] = {RegSeq, N->getOperand(2), getAL(CurDAG, dl), // Predicate
 | |
|                      CurDAG->getRegister(0, MVT::i32)}; // Predicate Register
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(ARM::VTBL2, dl, VT, Ops));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     SelectConcatVector(N);
 | |
|     return;
 | |
| 
 | |
|   case ISD::ATOMIC_CMP_SWAP:
 | |
|     SelectCMP_SWAP(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SelectCode(N);
 | |
| }
 | |
| 
 | |
| // Inspect a register string of the form
 | |
| // cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
 | |
| // cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
 | |
| // and obtain the integer operands from them, adding these operands to the
 | |
| // provided vector.
 | |
| static void getIntOperandsFromRegisterString(StringRef RegString,
 | |
|                                              SelectionDAG *CurDAG,
 | |
|                                              const SDLoc &DL,
 | |
|                                              std::vector<SDValue> &Ops) {
 | |
|   SmallVector<StringRef, 5> Fields;
 | |
|   RegString.split(Fields, ':');
 | |
| 
 | |
|   if (Fields.size() > 1) {
 | |
|     bool AllIntFields = true;
 | |
| 
 | |
|     for (StringRef Field : Fields) {
 | |
|       // Need to trim out leading 'cp' characters and get the integer field.
 | |
|       unsigned IntField;
 | |
|       AllIntFields &= !Field.trim("CPcp").getAsInteger(10, IntField);
 | |
|       Ops.push_back(CurDAG->getTargetConstant(IntField, DL, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     assert(AllIntFields &&
 | |
|             "Unexpected non-integer value in special register string.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Maps a Banked Register string to its mask value. The mask value returned is
 | |
| // for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
 | |
| // mask operand, which expresses which register is to be used, e.g. r8, and in
 | |
| // which mode it is to be used, e.g. usr. Returns -1 to signify that the string
 | |
| // was invalid.
 | |
| static inline int getBankedRegisterMask(StringRef RegString) {
 | |
|   return StringSwitch<int>(RegString.lower())
 | |
|           .Case("r8_usr", 0x00)
 | |
|           .Case("r9_usr", 0x01)
 | |
|           .Case("r10_usr", 0x02)
 | |
|           .Case("r11_usr", 0x03)
 | |
|           .Case("r12_usr", 0x04)
 | |
|           .Case("sp_usr", 0x05)
 | |
|           .Case("lr_usr", 0x06)
 | |
|           .Case("r8_fiq", 0x08)
 | |
|           .Case("r9_fiq", 0x09)
 | |
|           .Case("r10_fiq", 0x0a)
 | |
|           .Case("r11_fiq", 0x0b)
 | |
|           .Case("r12_fiq", 0x0c)
 | |
|           .Case("sp_fiq", 0x0d)
 | |
|           .Case("lr_fiq", 0x0e)
 | |
|           .Case("lr_irq", 0x10)
 | |
|           .Case("sp_irq", 0x11)
 | |
|           .Case("lr_svc", 0x12)
 | |
|           .Case("sp_svc", 0x13)
 | |
|           .Case("lr_abt", 0x14)
 | |
|           .Case("sp_abt", 0x15)
 | |
|           .Case("lr_und", 0x16)
 | |
|           .Case("sp_und", 0x17)
 | |
|           .Case("lr_mon", 0x1c)
 | |
|           .Case("sp_mon", 0x1d)
 | |
|           .Case("elr_hyp", 0x1e)
 | |
|           .Case("sp_hyp", 0x1f)
 | |
|           .Case("spsr_fiq", 0x2e)
 | |
|           .Case("spsr_irq", 0x30)
 | |
|           .Case("spsr_svc", 0x32)
 | |
|           .Case("spsr_abt", 0x34)
 | |
|           .Case("spsr_und", 0x36)
 | |
|           .Case("spsr_mon", 0x3c)
 | |
|           .Case("spsr_hyp", 0x3e)
 | |
|           .Default(-1);
 | |
| }
 | |
| 
 | |
| // Maps a MClass special register string to its value for use in the
 | |
| // t2MRS_M / t2MSR_M instruction nodes as the SYSm value operand.
 | |
| // Returns -1 to signify that the string was invalid.
 | |
| static inline int getMClassRegisterSYSmValueMask(StringRef RegString) {
 | |
|   return StringSwitch<int>(RegString.lower())
 | |
|           .Case("apsr", 0x0)
 | |
|           .Case("iapsr", 0x1)
 | |
|           .Case("eapsr", 0x2)
 | |
|           .Case("xpsr", 0x3)
 | |
|           .Case("ipsr", 0x5)
 | |
|           .Case("epsr", 0x6)
 | |
|           .Case("iepsr", 0x7)
 | |
|           .Case("msp", 0x8)
 | |
|           .Case("psp", 0x9)
 | |
|           .Case("primask", 0x10)
 | |
|           .Case("basepri", 0x11)
 | |
|           .Case("basepri_max", 0x12)
 | |
|           .Case("faultmask", 0x13)
 | |
|           .Case("control", 0x14)
 | |
|           .Case("msplim", 0x0a)
 | |
|           .Case("psplim", 0x0b)
 | |
|           .Case("sp", 0x18)
 | |
|           .Default(-1);
 | |
| }
 | |
| 
 | |
| // The flags here are common to those allowed for apsr in the A class cores and
 | |
| // those allowed for the special registers in the M class cores. Returns a
 | |
| // value representing which flags were present, -1 if invalid.
 | |
| static inline int getMClassFlagsMask(StringRef Flags, bool hasDSP) {
 | |
|   if (Flags.empty())
 | |
|     return 0x2 | (int)hasDSP;
 | |
| 
 | |
|   return StringSwitch<int>(Flags)
 | |
|           .Case("g", 0x1)
 | |
|           .Case("nzcvq", 0x2)
 | |
|           .Case("nzcvqg", 0x3)
 | |
|           .Default(-1);
 | |
| }
 | |
| 
 | |
| static int getMClassRegisterMask(StringRef Reg, StringRef Flags, bool IsRead,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   // Ensure that the register (without flags) was a valid M Class special
 | |
|   // register.
 | |
|   int SYSmvalue = getMClassRegisterSYSmValueMask(Reg);
 | |
|   if (SYSmvalue == -1)
 | |
|     return -1;
 | |
| 
 | |
|   // basepri, basepri_max and faultmask are only valid for V7m.
 | |
|   if (!Subtarget->hasV7Ops() && SYSmvalue >= 0x11 && SYSmvalue <= 0x13)
 | |
|     return -1;
 | |
| 
 | |
|   if (Subtarget->has8MSecExt() && Flags.lower() == "ns") {
 | |
|     Flags = "";
 | |
|     SYSmvalue |= 0x80;
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget->has8MSecExt() &&
 | |
|       (SYSmvalue == 0xa || SYSmvalue == 0xb || SYSmvalue > 0x14))
 | |
|     return -1;
 | |
| 
 | |
|   if (!Subtarget->hasV8MMainlineOps() &&
 | |
|       (SYSmvalue == 0x8a || SYSmvalue == 0x8b || SYSmvalue == 0x91 ||
 | |
|        SYSmvalue == 0x93))
 | |
|     return -1;
 | |
| 
 | |
|   // If it was a read then we won't be expecting flags and so at this point
 | |
|   // we can return the mask.
 | |
|   if (IsRead) {
 | |
|     if (Flags.empty())
 | |
|       return SYSmvalue;
 | |
|     else
 | |
|       return -1;
 | |
|   }
 | |
| 
 | |
|   // We know we are now handling a write so need to get the mask for the flags.
 | |
|   int Mask = getMClassFlagsMask(Flags, Subtarget->hasDSP());
 | |
| 
 | |
|   // Only apsr, iapsr, eapsr, xpsr can have flags. The other register values
 | |
|   // shouldn't have flags present.
 | |
|   if ((SYSmvalue < 0x4 && Mask == -1) || (SYSmvalue > 0x4 && !Flags.empty()))
 | |
|     return -1;
 | |
| 
 | |
|   // The _g and _nzcvqg versions are only valid if the DSP extension is
 | |
|   // available.
 | |
|   if (!Subtarget->hasDSP() && (Mask & 0x1))
 | |
|     return -1;
 | |
| 
 | |
|   // The register was valid so need to put the mask in the correct place
 | |
|   // (the flags need to be in bits 11-10) and combine with the SYSmvalue to
 | |
|   // construct the operand for the instruction node.
 | |
|   if (SYSmvalue < 0x4)
 | |
|     return SYSmvalue | Mask << 10;
 | |
| 
 | |
|   return SYSmvalue;
 | |
| }
 | |
| 
 | |
| static int getARClassRegisterMask(StringRef Reg, StringRef Flags) {
 | |
|   // The mask operand contains the special register (R Bit) in bit 4, whether
 | |
|   // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
 | |
|   // bits 3-0 contains the fields to be accessed in the special register, set by
 | |
|   // the flags provided with the register.
 | |
|   int Mask = 0;
 | |
|   if (Reg == "apsr") {
 | |
|     // The flags permitted for apsr are the same flags that are allowed in
 | |
|     // M class registers. We get the flag value and then shift the flags into
 | |
|     // the correct place to combine with the mask.
 | |
|     Mask = getMClassFlagsMask(Flags, true);
 | |
|     if (Mask == -1)
 | |
|       return -1;
 | |
|     return Mask << 2;
 | |
|   }
 | |
| 
 | |
|   if (Reg != "cpsr" && Reg != "spsr") {
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   // This is the same as if the flags were "fc"
 | |
|   if (Flags.empty() || Flags == "all")
 | |
|     return Mask | 0x9;
 | |
| 
 | |
|   // Inspect the supplied flags string and set the bits in the mask for
 | |
|   // the relevant and valid flags allowed for cpsr and spsr.
 | |
|   for (char Flag : Flags) {
 | |
|     int FlagVal;
 | |
|     switch (Flag) {
 | |
|       case 'c':
 | |
|         FlagVal = 0x1;
 | |
|         break;
 | |
|       case 'x':
 | |
|         FlagVal = 0x2;
 | |
|         break;
 | |
|       case 's':
 | |
|         FlagVal = 0x4;
 | |
|         break;
 | |
|       case 'f':
 | |
|         FlagVal = 0x8;
 | |
|         break;
 | |
|       default:
 | |
|         FlagVal = 0;
 | |
|     }
 | |
| 
 | |
|     // This avoids allowing strings where the same flag bit appears twice.
 | |
|     if (!FlagVal || (Mask & FlagVal))
 | |
|       return -1;
 | |
|     Mask |= FlagVal;
 | |
|   }
 | |
| 
 | |
|   // If the register is spsr then we need to set the R bit.
 | |
|   if (Reg == "spsr")
 | |
|     Mask |= 0x10;
 | |
| 
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| // Lower the read_register intrinsic to ARM specific DAG nodes
 | |
| // using the supplied metadata string to select the instruction node to use
 | |
| // and the registers/masks to construct as operands for the node.
 | |
| bool ARMDAGToDAGISel::tryReadRegister(SDNode *N){
 | |
|   const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
 | |
|   const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
 | |
|   bool IsThumb2 = Subtarget->isThumb2();
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   std::vector<SDValue> Ops;
 | |
|   getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
 | |
| 
 | |
|   if (!Ops.empty()) {
 | |
|     // If the special register string was constructed of fields (as defined
 | |
|     // in the ACLE) then need to lower to MRC node (32 bit) or
 | |
|     // MRRC node(64 bit), we can make the distinction based on the number of
 | |
|     // operands we have.
 | |
|     unsigned Opcode;
 | |
|     SmallVector<EVT, 3> ResTypes;
 | |
|     if (Ops.size() == 5){
 | |
|       Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC;
 | |
|       ResTypes.append({ MVT::i32, MVT::Other });
 | |
|     } else {
 | |
|       assert(Ops.size() == 3 &&
 | |
|               "Invalid number of fields in special register string.");
 | |
|       Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC;
 | |
|       ResTypes.append({ MVT::i32, MVT::i32, MVT::Other });
 | |
|     }
 | |
| 
 | |
|     Ops.push_back(getAL(CurDAG, DL));
 | |
|     Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | |
|     Ops.push_back(N->getOperand(0));
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, ResTypes, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   std::string SpecialReg = RegString->getString().lower();
 | |
| 
 | |
|   int BankedReg = getBankedRegisterMask(SpecialReg);
 | |
|   if (BankedReg != -1) {
 | |
|     Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32),
 | |
|             getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | |
|             N->getOperand(0) };
 | |
|     ReplaceNode(
 | |
|         N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked,
 | |
|                                   DL, MVT::i32, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The VFP registers are read by creating SelectionDAG nodes with opcodes
 | |
|   // corresponding to the register that is being read from. So we switch on the
 | |
|   // string to find which opcode we need to use.
 | |
|   unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
 | |
|                     .Case("fpscr", ARM::VMRS)
 | |
|                     .Case("fpexc", ARM::VMRS_FPEXC)
 | |
|                     .Case("fpsid", ARM::VMRS_FPSID)
 | |
|                     .Case("mvfr0", ARM::VMRS_MVFR0)
 | |
|                     .Case("mvfr1", ARM::VMRS_MVFR1)
 | |
|                     .Case("mvfr2", ARM::VMRS_MVFR2)
 | |
|                     .Case("fpinst", ARM::VMRS_FPINST)
 | |
|                     .Case("fpinst2", ARM::VMRS_FPINST2)
 | |
|                     .Default(0);
 | |
| 
 | |
|   // If an opcode was found then we can lower the read to a VFP instruction.
 | |
|   if (Opcode) {
 | |
|     if (!Subtarget->hasVFP2())
 | |
|       return false;
 | |
|     if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8())
 | |
|       return false;
 | |
| 
 | |
|     Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | |
|             N->getOperand(0) };
 | |
|     ReplaceNode(N,
 | |
|                 CurDAG->getMachineNode(Opcode, DL, MVT::i32, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If the target is M Class then need to validate that the register string
 | |
|   // is an acceptable value, so check that a mask can be constructed from the
 | |
|   // string.
 | |
|   if (Subtarget->isMClass()) {
 | |
|     StringRef Flags = "", Reg = SpecialReg;
 | |
|     if (Reg.endswith("_ns")) {
 | |
|       Flags = "ns";
 | |
|       Reg = Reg.drop_back(3);
 | |
|     }
 | |
| 
 | |
|     int SYSmValue = getMClassRegisterMask(Reg, Flags, true, Subtarget);
 | |
|     if (SYSmValue == -1)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
 | |
|                       getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | |
|                       N->getOperand(0) };
 | |
|     ReplaceNode(
 | |
|         N, CurDAG->getMachineNode(ARM::t2MRS_M, DL, MVT::i32, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Here we know the target is not M Class so we need to check if it is one
 | |
|   // of the remaining possible values which are apsr, cpsr or spsr.
 | |
|   if (SpecialReg == "apsr" || SpecialReg == "cpsr") {
 | |
|     Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | |
|             N->getOperand(0) };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRS_AR : ARM::MRS,
 | |
|                                           DL, MVT::i32, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (SpecialReg == "spsr") {
 | |
|     Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | |
|             N->getOperand(0) };
 | |
|     ReplaceNode(
 | |
|         N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys, DL,
 | |
|                                   MVT::i32, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Lower the write_register intrinsic to ARM specific DAG nodes
 | |
| // using the supplied metadata string to select the instruction node to use
 | |
| // and the registers/masks to use in the nodes
 | |
| bool ARMDAGToDAGISel::tryWriteRegister(SDNode *N){
 | |
|   const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
 | |
|   const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
 | |
|   bool IsThumb2 = Subtarget->isThumb2();
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   std::vector<SDValue> Ops;
 | |
|   getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
 | |
| 
 | |
|   if (!Ops.empty()) {
 | |
|     // If the special register string was constructed of fields (as defined
 | |
|     // in the ACLE) then need to lower to MCR node (32 bit) or
 | |
|     // MCRR node(64 bit), we can make the distinction based on the number of
 | |
|     // operands we have.
 | |
|     unsigned Opcode;
 | |
|     if (Ops.size() == 5) {
 | |
|       Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR;
 | |
|       Ops.insert(Ops.begin()+2, N->getOperand(2));
 | |
|     } else {
 | |
|       assert(Ops.size() == 3 &&
 | |
|               "Invalid number of fields in special register string.");
 | |
|       Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR;
 | |
|       SDValue WriteValue[] = { N->getOperand(2), N->getOperand(3) };
 | |
|       Ops.insert(Ops.begin()+2, WriteValue, WriteValue+2);
 | |
|     }
 | |
| 
 | |
|     Ops.push_back(getAL(CurDAG, DL));
 | |
|     Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | |
|     Ops.push_back(N->getOperand(0));
 | |
| 
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   std::string SpecialReg = RegString->getString().lower();
 | |
|   int BankedReg = getBankedRegisterMask(SpecialReg);
 | |
|   if (BankedReg != -1) {
 | |
|     Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), N->getOperand(2),
 | |
|             getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | |
|             N->getOperand(0) };
 | |
|     ReplaceNode(
 | |
|         N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked,
 | |
|                                   DL, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The VFP registers are written to by creating SelectionDAG nodes with
 | |
|   // opcodes corresponding to the register that is being written. So we switch
 | |
|   // on the string to find which opcode we need to use.
 | |
|   unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
 | |
|                     .Case("fpscr", ARM::VMSR)
 | |
|                     .Case("fpexc", ARM::VMSR_FPEXC)
 | |
|                     .Case("fpsid", ARM::VMSR_FPSID)
 | |
|                     .Case("fpinst", ARM::VMSR_FPINST)
 | |
|                     .Case("fpinst2", ARM::VMSR_FPINST2)
 | |
|                     .Default(0);
 | |
| 
 | |
|   if (Opcode) {
 | |
|     if (!Subtarget->hasVFP2())
 | |
|       return false;
 | |
|     Ops = { N->getOperand(2), getAL(CurDAG, DL),
 | |
|             CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   std::pair<StringRef, StringRef> Fields;
 | |
|   Fields = StringRef(SpecialReg).rsplit('_');
 | |
|   std::string Reg = Fields.first.str();
 | |
|   StringRef Flags = Fields.second;
 | |
| 
 | |
|   // If the target was M Class then need to validate the special register value
 | |
|   // and retrieve the mask for use in the instruction node.
 | |
|   if (Subtarget->isMClass()) {
 | |
|     // basepri_max gets split so need to correct Reg and Flags.
 | |
|     if (SpecialReg == "basepri_max") {
 | |
|       Reg = SpecialReg;
 | |
|       Flags = "";
 | |
|     }
 | |
|     int SYSmValue = getMClassRegisterMask(Reg, Flags, false, Subtarget);
 | |
|     if (SYSmValue == -1)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
 | |
|                       N->getOperand(2), getAL(CurDAG, DL),
 | |
|                       CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(ARM::t2MSR_M, DL, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We then check to see if a valid mask can be constructed for one of the
 | |
|   // register string values permitted for the A and R class cores. These values
 | |
|   // are apsr, spsr and cpsr; these are also valid on older cores.
 | |
|   int Mask = getARClassRegisterMask(Reg, Flags);
 | |
|   if (Mask != -1) {
 | |
|     Ops = { CurDAG->getTargetConstant(Mask, DL, MVT::i32), N->getOperand(2),
 | |
|             getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | |
|             N->getOperand(0) };
 | |
|     ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSR_AR : ARM::MSR,
 | |
|                                           DL, MVT::Other, Ops));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMDAGToDAGISel::tryInlineAsm(SDNode *N){
 | |
|   std::vector<SDValue> AsmNodeOperands;
 | |
|   unsigned Flag, Kind;
 | |
|   bool Changed = false;
 | |
|   unsigned NumOps = N->getNumOperands();
 | |
| 
 | |
|   // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
 | |
|   // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
 | |
|   // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
 | |
|   // respectively. Since there is no constraint to explicitly specify a
 | |
|   // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
 | |
|   // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
 | |
|   // them into a GPRPair.
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1)
 | |
|                                    : SDValue(nullptr,0);
 | |
| 
 | |
|   SmallVector<bool, 8> OpChanged;
 | |
|   // Glue node will be appended late.
 | |
|   for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
 | |
|     SDValue op = N->getOperand(i);
 | |
|     AsmNodeOperands.push_back(op);
 | |
| 
 | |
|     if (i < InlineAsm::Op_FirstOperand)
 | |
|       continue;
 | |
| 
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
 | |
|       Flag = C->getZExtValue();
 | |
|       Kind = InlineAsm::getKind(Flag);
 | |
|     }
 | |
|     else
 | |
|       continue;
 | |
| 
 | |
|     // Immediate operands to inline asm in the SelectionDAG are modeled with
 | |
|     // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
 | |
|     // the second is a constant with the value of the immediate. If we get here
 | |
|     // and we have a Kind_Imm, skip the next operand, and continue.
 | |
|     if (Kind == InlineAsm::Kind_Imm) {
 | |
|       SDValue op = N->getOperand(++i);
 | |
|       AsmNodeOperands.push_back(op);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
 | |
|     if (NumRegs)
 | |
|       OpChanged.push_back(false);
 | |
| 
 | |
|     unsigned DefIdx = 0;
 | |
|     bool IsTiedToChangedOp = false;
 | |
|     // If it's a use that is tied with a previous def, it has no
 | |
|     // reg class constraint.
 | |
|     if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
 | |
|       IsTiedToChangedOp = OpChanged[DefIdx];
 | |
| 
 | |
|     // Memory operands to inline asm in the SelectionDAG are modeled with two
 | |
|     // operands: a constant of value InlineAsm::Kind_Mem followed by the input
 | |
|     // operand. If we get here and we have a Kind_Mem, skip the next operand (so
 | |
|     // it doesn't get misinterpreted), and continue. We do this here because
 | |
|     // it's important to update the OpChanged array correctly before moving on.
 | |
|     if (Kind == InlineAsm::Kind_Mem) {
 | |
|       SDValue op = N->getOperand(++i);
 | |
|       AsmNodeOperands.push_back(op);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
 | |
|         && Kind != InlineAsm::Kind_RegDefEarlyClobber)
 | |
|       continue;
 | |
| 
 | |
|     unsigned RC;
 | |
|     bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
 | |
|     if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
 | |
|         || NumRegs != 2)
 | |
|       continue;
 | |
| 
 | |
|     assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
 | |
|     SDValue V0 = N->getOperand(i+1);
 | |
|     SDValue V1 = N->getOperand(i+2);
 | |
|     unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
 | |
|     unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
 | |
|     SDValue PairedReg;
 | |
|     MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
| 
 | |
|     if (Kind == InlineAsm::Kind_RegDef ||
 | |
|         Kind == InlineAsm::Kind_RegDefEarlyClobber) {
 | |
|       // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
 | |
|       // the original GPRs.
 | |
| 
 | |
|       unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
 | |
|       PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
 | |
|       SDValue Chain = SDValue(N,0);
 | |
| 
 | |
|       SDNode *GU = N->getGluedUser();
 | |
|       SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
 | |
|                                                Chain.getValue(1));
 | |
| 
 | |
|       // Extract values from a GPRPair reg and copy to the original GPR reg.
 | |
|       SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
 | |
|                                                     RegCopy);
 | |
|       SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
 | |
|                                                     RegCopy);
 | |
|       SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
 | |
|                                         RegCopy.getValue(1));
 | |
|       SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
 | |
| 
 | |
|       // Update the original glue user.
 | |
|       std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
 | |
|       Ops.push_back(T1.getValue(1));
 | |
|       CurDAG->UpdateNodeOperands(GU, Ops);
 | |
|     }
 | |
|     else {
 | |
|       // For Kind  == InlineAsm::Kind_RegUse, we first copy two GPRs into a
 | |
|       // GPRPair and then pass the GPRPair to the inline asm.
 | |
|       SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
 | |
| 
 | |
|       // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
 | |
|       SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
 | |
|                                           Chain.getValue(1));
 | |
|       SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
 | |
|                                           T0.getValue(1));
 | |
|       SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
 | |
| 
 | |
|       // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
 | |
|       // i32 VRs of inline asm with it.
 | |
|       unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
 | |
|       PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
 | |
|       Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
 | |
| 
 | |
|       AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
 | |
|       Glue = Chain.getValue(1);
 | |
|     }
 | |
| 
 | |
|     Changed = true;
 | |
| 
 | |
|     if(PairedReg.getNode()) {
 | |
|       OpChanged[OpChanged.size() -1 ] = true;
 | |
|       Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
 | |
|       if (IsTiedToChangedOp)
 | |
|         Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
 | |
|       else
 | |
|         Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
 | |
|       // Replace the current flag.
 | |
|       AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
 | |
|           Flag, dl, MVT::i32);
 | |
|       // Add the new register node and skip the original two GPRs.
 | |
|       AsmNodeOperands.push_back(PairedReg);
 | |
|       // Skip the next two GPRs.
 | |
|       i += 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Glue.getNode())
 | |
|     AsmNodeOperands.push_back(Glue);
 | |
|   if (!Changed)
 | |
|     return false;
 | |
| 
 | |
|   SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
 | |
|       CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
 | |
|   New->setNodeId(-1);
 | |
|   ReplaceNode(N, New.getNode());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ARMDAGToDAGISel::
 | |
| SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
 | |
|                              std::vector<SDValue> &OutOps) {
 | |
|   switch(ConstraintID) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected asm memory constraint");
 | |
|   case InlineAsm::Constraint_i:
 | |
|     // FIXME: It seems strange that 'i' is needed here since it's supposed to
 | |
|     //        be an immediate and not a memory constraint.
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case InlineAsm::Constraint_m:
 | |
|   case InlineAsm::Constraint_o:
 | |
|   case InlineAsm::Constraint_Q:
 | |
|   case InlineAsm::Constraint_Um:
 | |
|   case InlineAsm::Constraint_Un:
 | |
|   case InlineAsm::Constraint_Uq:
 | |
|   case InlineAsm::Constraint_Us:
 | |
|   case InlineAsm::Constraint_Ut:
 | |
|   case InlineAsm::Constraint_Uv:
 | |
|   case InlineAsm::Constraint_Uy:
 | |
|     // Require the address to be in a register.  That is safe for all ARM
 | |
|     // variants and it is hard to do anything much smarter without knowing
 | |
|     // how the operand is used.
 | |
|     OutOps.push_back(Op);
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// createARMISelDag - This pass converts a legalized DAG into a
 | |
| /// ARM-specific DAG, ready for instruction scheduling.
 | |
| ///
 | |
| FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
 | |
|                                      CodeGenOpt::Level OptLevel) {
 | |
|   return new ARMDAGToDAGISel(TM, OptLevel);
 | |
| }
 |