forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			520 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARMTargetTransformInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/CostTable.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "armtti"
 | |
| 
 | |
| int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|  unsigned Bits = Ty->getPrimitiveSizeInBits();
 | |
|  if (Bits == 0 || Imm.getActiveBits() >= 64)
 | |
|    return 4;
 | |
| 
 | |
|   int64_t SImmVal = Imm.getSExtValue();
 | |
|   uint64_t ZImmVal = Imm.getZExtValue();
 | |
|   if (!ST->isThumb()) {
 | |
|     if ((SImmVal >= 0 && SImmVal < 65536) ||
 | |
|         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
 | |
|         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
 | |
|       return 1;
 | |
|     return ST->hasV6T2Ops() ? 2 : 3;
 | |
|   }
 | |
|   if (ST->isThumb2()) {
 | |
|     if ((SImmVal >= 0 && SImmVal < 65536) ||
 | |
|         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
 | |
|         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
 | |
|       return 1;
 | |
|     return ST->hasV6T2Ops() ? 2 : 3;
 | |
|   }
 | |
|   // Thumb1.
 | |
|   if (SImmVal >= 0 && SImmVal < 256)
 | |
|     return 1;
 | |
|   if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
 | |
|     return 2;
 | |
|   // Load from constantpool.
 | |
|   return 3;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Constants smaller than 256 fit in the immediate field of
 | |
| // Thumb1 instructions so we return a zero cost and 1 otherwise.
 | |
| int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
 | |
|                                       const APInt &Imm, Type *Ty) {
 | |
|   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
 | |
|     return 0;
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
 | |
|                               Type *Ty) {
 | |
|   // Division by a constant can be turned into multiplication, but only if we
 | |
|   // know it's constant. So it's not so much that the immediate is cheap (it's
 | |
|   // not), but that the alternative is worse.
 | |
|   // FIXME: this is probably unneeded with GlobalISel.
 | |
|   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
 | |
|        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
 | |
|       Idx == 1)
 | |
|     return 0;
 | |
| 
 | |
|   return getIntImmCost(Imm, Ty);
 | |
| }
 | |
| 
 | |
| 
 | |
| int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   // Single to/from double precision conversions.
 | |
|   static const CostTblEntry NEONFltDblTbl[] = {
 | |
|     // Vector fptrunc/fpext conversions.
 | |
|     { ISD::FP_ROUND,   MVT::v2f64, 2 },
 | |
|     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
 | |
|     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
 | |
|   };
 | |
| 
 | |
|   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
 | |
|                                           ISD == ISD::FP_EXTEND)) {
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
 | |
|     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   EVT SrcTy = TLI->getValueType(DL, Src);
 | |
|   EVT DstTy = TLI->getValueType(DL, Dst);
 | |
| 
 | |
|   if (!SrcTy.isSimple() || !DstTy.isSimple())
 | |
|     return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | |
| 
 | |
|   // Some arithmetic, load and store operations have specific instructions
 | |
|   // to cast up/down their types automatically at no extra cost.
 | |
|   // TODO: Get these tables to know at least what the related operations are.
 | |
|   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
 | |
| 
 | |
|     // The number of vmovl instructions for the extension.
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
 | |
| 
 | |
|     // Operations that we legalize using splitting.
 | |
|     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
 | |
| 
 | |
|     // Vector float <-> i32 conversions.
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | |
| 
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
 | |
| 
 | |
|     // Vector double <-> i32 conversions.
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | |
| 
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
 | |
|   };
 | |
| 
 | |
|   if (SrcTy.isVector() && ST->hasNEON()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
 | |
|                                                    DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   // Scalar float to integer conversions.
 | |
|   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
 | |
|     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
 | |
|   };
 | |
|   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
 | |
|                                                    DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   // Scalar integer to float conversions.
 | |
|   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
 | |
|   };
 | |
| 
 | |
|   if (SrcTy.isInteger() && ST->hasNEON()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
 | |
|                                                    ISD, DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   // Scalar integer conversion costs.
 | |
|   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
 | |
|     // i16 -> i64 requires two dependent operations.
 | |
|     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
 | |
| 
 | |
|     // Truncates on i64 are assumed to be free.
 | |
|     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
 | |
|     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
 | |
|     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
 | |
|     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
 | |
|   };
 | |
| 
 | |
|   if (SrcTy.isInteger()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
 | |
|                                                    DstTy.getSimpleVT(),
 | |
|                                                    SrcTy.getSimpleVT()))
 | |
|       return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | |
| }
 | |
| 
 | |
| int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                    unsigned Index) {
 | |
|   // Penalize inserting into an D-subregister. We end up with a three times
 | |
|   // lower estimated throughput on swift.
 | |
|   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
 | |
|       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
 | |
|     return 3;
 | |
| 
 | |
|   if ((Opcode == Instruction::InsertElement ||
 | |
|        Opcode == Instruction::ExtractElement)) {
 | |
|     // Cross-class copies are expensive on many microarchitectures,
 | |
|     // so assume they are expensive by default.
 | |
|     if (ValTy->getVectorElementType()->isIntegerTy())
 | |
|       return 3;
 | |
| 
 | |
|     // Even if it's not a cross class copy, this likely leads to mixing
 | |
|     // of NEON and VFP code and should be therefore penalized.
 | |
|     if (ValTy->isVectorTy() &&
 | |
|         ValTy->getScalarSizeInBits() <= 32)
 | |
|       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
 | |
|   }
 | |
| 
 | |
|   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
 | |
| }
 | |
| 
 | |
| int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   // On NEON a a vector select gets lowered to vbsl.
 | |
|   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
 | |
|     // Lowering of some vector selects is currently far from perfect.
 | |
|     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
 | |
|       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
 | |
|       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
 | |
|     };
 | |
| 
 | |
|     EVT SelCondTy = TLI->getValueType(DL, CondTy);
 | |
|     EVT SelValTy = TLI->getValueType(DL, ValTy);
 | |
|     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
 | |
|       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
 | |
|                                                      SelCondTy.getSimpleVT(),
 | |
|                                                      SelValTy.getSimpleVT()))
 | |
|         return Entry->Cost;
 | |
|     }
 | |
| 
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
 | |
|     return LT.first;
 | |
|   }
 | |
| 
 | |
|   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | |
| }
 | |
| 
 | |
| int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
 | |
|   // Address computations in vectorized code with non-consecutive addresses will
 | |
|   // likely result in more instructions compared to scalar code where the
 | |
|   // computation can more often be merged into the index mode. The resulting
 | |
|   // extra micro-ops can significantly decrease throughput.
 | |
|   unsigned NumVectorInstToHideOverhead = 10;
 | |
| 
 | |
|   if (Ty->isVectorTy() && IsComplex)
 | |
|     return NumVectorInstToHideOverhead;
 | |
| 
 | |
|   // In many cases the address computation is not merged into the instruction
 | |
|   // addressing mode.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| int ARMTTIImpl::getFPOpCost(Type *Ty) {
 | |
|   // Use similar logic that's in ARMISelLowering:
 | |
|   // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access
 | |
|   // to VFP.
 | |
| 
 | |
|   if (ST->hasVFP2() && !ST->isThumb1Only()) {
 | |
|     if (Ty->isFloatTy()) {
 | |
|       return TargetTransformInfo::TCC_Basic;
 | |
|     }
 | |
| 
 | |
|     if (Ty->isDoubleTy()) {
 | |
|       return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive :
 | |
|         TargetTransformInfo::TCC_Basic;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetTransformInfo::TCC_Expensive;
 | |
| }
 | |
| 
 | |
| int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
 | |
|                                Type *SubTp) {
 | |
|   // We only handle costs of reverse and alternate shuffles for now.
 | |
|   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
 | |
|     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
| 
 | |
|   if (Kind == TTI::SK_Reverse) {
 | |
|     static const CostTblEntry NEONShuffleTbl[] = {
 | |
|         // Reverse shuffle cost one instruction if we are shuffling within a
 | |
|         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
 | |
| 
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
 | |
| 
 | |
|     if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
 | |
|                                             LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
|   }
 | |
|   if (Kind == TTI::SK_Alternate) {
 | |
|     static const CostTblEntry NEONAltShuffleTbl[] = {
 | |
|         // Alt shuffle cost table for ARM. Cost is the number of instructions
 | |
|         // required to create the shuffled vector.
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
 | |
| 
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
 | |
|     if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl,
 | |
|                                             ISD::VECTOR_SHUFFLE, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
|   }
 | |
|   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
| }
 | |
| 
 | |
| int ARMTTIImpl::getArithmeticInstrCost(
 | |
|     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
 | |
|     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
 | |
|     TTI::OperandValueProperties Opd2PropInfo) {
 | |
| 
 | |
|   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
 | |
| 
 | |
|   const unsigned FunctionCallDivCost = 20;
 | |
|   const unsigned ReciprocalDivCost = 10;
 | |
|   static const CostTblEntry CostTbl[] = {
 | |
|     // Division.
 | |
|     // These costs are somewhat random. Choose a cost of 20 to indicate that
 | |
|     // vectorizing devision (added function call) is going to be very expensive.
 | |
|     // Double registers types.
 | |
|     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
 | |
|     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
 | |
|     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
 | |
|     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
 | |
|     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
 | |
|     // Quad register types.
 | |
|     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
 | |
|     // Multiplication.
 | |
|   };
 | |
| 
 | |
|   if (ST->hasNEON())
 | |
|     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
 | |
|                                            Opd1PropInfo, Opd2PropInfo);
 | |
| 
 | |
|   // This is somewhat of a hack. The problem that we are facing is that SROA
 | |
|   // creates a sequence of shift, and, or instructions to construct values.
 | |
|   // These sequences are recognized by the ISel and have zero-cost. Not so for
 | |
|   // the vectorized code. Because we have support for v2i64 but not i64 those
 | |
|   // sequences look particularly beneficial to vectorize.
 | |
|   // To work around this we increase the cost of v2i64 operations to make them
 | |
|   // seem less beneficial.
 | |
|   if (LT.second == MVT::v2i64 &&
 | |
|       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
 | |
|     Cost += 4;
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | |
|                                 unsigned AddressSpace) {
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
 | |
| 
 | |
|   if (Src->isVectorTy() && Alignment != 16 &&
 | |
|       Src->getVectorElementType()->isDoubleTy()) {
 | |
|     // Unaligned loads/stores are extremely inefficient.
 | |
|     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
 | |
|     return LT.first * 4;
 | |
|   }
 | |
|   return LT.first;
 | |
| }
 | |
| 
 | |
| int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
 | |
|                                            unsigned Factor,
 | |
|                                            ArrayRef<unsigned> Indices,
 | |
|                                            unsigned Alignment,
 | |
|                                            unsigned AddressSpace) {
 | |
|   assert(Factor >= 2 && "Invalid interleave factor");
 | |
|   assert(isa<VectorType>(VecTy) && "Expect a vector type");
 | |
| 
 | |
|   // vldN/vstN doesn't support vector types of i64/f64 element.
 | |
|   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
 | |
| 
 | |
|   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
 | |
|     unsigned NumElts = VecTy->getVectorNumElements();
 | |
|     Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
 | |
|     unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
 | |
| 
 | |
|     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
 | |
|     if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
 | |
|       return Factor;
 | |
|   }
 | |
| 
 | |
|   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | |
|                                            Alignment, AddressSpace);
 | |
| }
 |