forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1247 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1247 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a trivial dead store elimination that only considers
 | |
| // basic-block local redundant stores.
 | |
| //
 | |
| // FIXME: This should eventually be extended to be a post-dominator tree
 | |
| // traversal.  Doing so would be pretty trivial.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "dse"
 | |
| 
 | |
| STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
 | |
| STATISTIC(NumFastStores, "Number of stores deleted");
 | |
| STATISTIC(NumFastOther , "Number of other instrs removed");
 | |
| STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
 | |
|   cl::init(true), cl::Hidden,
 | |
|   cl::desc("Enable partial-overwrite tracking in DSE"));
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| typedef std::map<int64_t, int64_t> OverlapIntervalsTy;
 | |
| typedef DenseMap<Instruction *, OverlapIntervalsTy> InstOverlapIntervalsTy;
 | |
| 
 | |
| /// Delete this instruction.  Before we do, go through and zero out all the
 | |
| /// operands of this instruction.  If any of them become dead, delete them and
 | |
| /// the computation tree that feeds them.
 | |
| /// If ValueSet is non-null, remove any deleted instructions from it as well.
 | |
| static void
 | |
| deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
 | |
|                       MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
 | |
|                       InstOverlapIntervalsTy &IOL,
 | |
|                       DenseMap<Instruction*, size_t> *InstrOrdering,
 | |
|                       SmallSetVector<Value *, 16> *ValueSet = nullptr) {
 | |
|   SmallVector<Instruction*, 32> NowDeadInsts;
 | |
| 
 | |
|   NowDeadInsts.push_back(I);
 | |
|   --NumFastOther;
 | |
| 
 | |
|   // Keeping the iterator straight is a pain, so we let this routine tell the
 | |
|   // caller what the next instruction is after we're done mucking about.
 | |
|   BasicBlock::iterator NewIter = *BBI;
 | |
| 
 | |
|   // Before we touch this instruction, remove it from memdep!
 | |
|   do {
 | |
|     Instruction *DeadInst = NowDeadInsts.pop_back_val();
 | |
|     ++NumFastOther;
 | |
| 
 | |
|     // This instruction is dead, zap it, in stages.  Start by removing it from
 | |
|     // MemDep, which needs to know the operands and needs it to be in the
 | |
|     // function.
 | |
|     MD.removeInstruction(DeadInst);
 | |
| 
 | |
|     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
 | |
|       Value *Op = DeadInst->getOperand(op);
 | |
|       DeadInst->setOperand(op, nullptr);
 | |
| 
 | |
|       // If this operand just became dead, add it to the NowDeadInsts list.
 | |
|       if (!Op->use_empty()) continue;
 | |
| 
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(Op))
 | |
|         if (isInstructionTriviallyDead(OpI, &TLI))
 | |
|           NowDeadInsts.push_back(OpI);
 | |
|     }
 | |
| 
 | |
|     if (ValueSet) ValueSet->remove(DeadInst);
 | |
|     InstrOrdering->erase(DeadInst);
 | |
|     IOL.erase(DeadInst);
 | |
| 
 | |
|     if (NewIter == DeadInst->getIterator())
 | |
|       NewIter = DeadInst->eraseFromParent();
 | |
|     else
 | |
|       DeadInst->eraseFromParent();
 | |
|   } while (!NowDeadInsts.empty());
 | |
|   *BBI = NewIter;
 | |
| }
 | |
| 
 | |
| /// Does this instruction write some memory?  This only returns true for things
 | |
| /// that we can analyze with other helpers below.
 | |
| static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo &TLI) {
 | |
|   if (isa<StoreInst>(I))
 | |
|     return true;
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Intrinsic::memset:
 | |
|     case Intrinsic::memmove:
 | |
|     case Intrinsic::memcpy:
 | |
|     case Intrinsic::init_trampoline:
 | |
|     case Intrinsic::lifetime_end:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   if (auto CS = CallSite(I)) {
 | |
|     if (Function *F = CS.getCalledFunction()) {
 | |
|       StringRef FnName = F->getName();
 | |
|       if (TLI.has(LibFunc::strcpy) && FnName == TLI.getName(LibFunc::strcpy))
 | |
|         return true;
 | |
|       if (TLI.has(LibFunc::strncpy) && FnName == TLI.getName(LibFunc::strncpy))
 | |
|         return true;
 | |
|       if (TLI.has(LibFunc::strcat) && FnName == TLI.getName(LibFunc::strcat))
 | |
|         return true;
 | |
|       if (TLI.has(LibFunc::strncat) && FnName == TLI.getName(LibFunc::strncat))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return a Location stored to by the specified instruction. If isRemovable
 | |
| /// returns true, this function and getLocForRead completely describe the memory
 | |
| /// operations for this instruction.
 | |
| static MemoryLocation getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|     return MemoryLocation::get(SI);
 | |
| 
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
 | |
|     // memcpy/memmove/memset.
 | |
|     MemoryLocation Loc = MemoryLocation::getForDest(MI);
 | |
|     return Loc;
 | |
|   }
 | |
| 
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
 | |
|   if (!II)
 | |
|     return MemoryLocation();
 | |
| 
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   default:
 | |
|     return MemoryLocation(); // Unhandled intrinsic.
 | |
|   case Intrinsic::init_trampoline:
 | |
|     // FIXME: We don't know the size of the trampoline, so we can't really
 | |
|     // handle it here.
 | |
|     return MemoryLocation(II->getArgOperand(0));
 | |
|   case Intrinsic::lifetime_end: {
 | |
|     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
 | |
|     return MemoryLocation(II->getArgOperand(1), Len);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return the location read by the specified "hasMemoryWrite" instruction if
 | |
| /// any.
 | |
| static MemoryLocation getLocForRead(Instruction *Inst,
 | |
|                                     const TargetLibraryInfo &TLI) {
 | |
|   assert(hasMemoryWrite(Inst, TLI) && "Unknown instruction case");
 | |
| 
 | |
|   // The only instructions that both read and write are the mem transfer
 | |
|   // instructions (memcpy/memmove).
 | |
|   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
 | |
|     return MemoryLocation::getForSource(MTI);
 | |
|   return MemoryLocation();
 | |
| }
 | |
| 
 | |
| /// If the value of this instruction and the memory it writes to is unused, may
 | |
| /// we delete this instruction?
 | |
| static bool isRemovable(Instruction *I) {
 | |
|   // Don't remove volatile/atomic stores.
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->isUnordered();
 | |
| 
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
 | |
|     case Intrinsic::lifetime_end:
 | |
|       // Never remove dead lifetime_end's, e.g. because it is followed by a
 | |
|       // free.
 | |
|       return false;
 | |
|     case Intrinsic::init_trampoline:
 | |
|       // Always safe to remove init_trampoline.
 | |
|       return true;
 | |
| 
 | |
|     case Intrinsic::memset:
 | |
|     case Intrinsic::memmove:
 | |
|     case Intrinsic::memcpy:
 | |
|       // Don't remove volatile memory intrinsics.
 | |
|       return !cast<MemIntrinsic>(II)->isVolatile();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto CS = CallSite(I))
 | |
|     return CS.getInstruction()->use_empty();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Returns true if the end of this instruction can be safely shortened in
 | |
| /// length.
 | |
| static bool isShortenableAtTheEnd(Instruction *I) {
 | |
|   // Don't shorten stores for now
 | |
|   if (isa<StoreInst>(I))
 | |
|     return false;
 | |
| 
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|       default: return false;
 | |
|       case Intrinsic::memset:
 | |
|       case Intrinsic::memcpy:
 | |
|         // Do shorten memory intrinsics.
 | |
|         // FIXME: Add memmove if it's also safe to transform.
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Don't shorten libcalls calls for now.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if the beginning of this instruction can be safely shortened
 | |
| /// in length.
 | |
| static bool isShortenableAtTheBeginning(Instruction *I) {
 | |
|   // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
 | |
|   // easily done by offsetting the source address.
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
 | |
|   return II && II->getIntrinsicID() == Intrinsic::memset;
 | |
| }
 | |
| 
 | |
| /// Return the pointer that is being written to.
 | |
| static Value *getStoredPointerOperand(Instruction *I) {
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->getPointerOperand();
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | |
|     return MI->getDest();
 | |
| 
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: llvm_unreachable("Unexpected intrinsic!");
 | |
|     case Intrinsic::init_trampoline:
 | |
|       return II->getArgOperand(0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CallSite CS(I);
 | |
|   // All the supported functions so far happen to have dest as their first
 | |
|   // argument.
 | |
|   return CS.getArgument(0);
 | |
| }
 | |
| 
 | |
| static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
 | |
|                                const TargetLibraryInfo &TLI) {
 | |
|   uint64_t Size;
 | |
|   if (getObjectSize(V, Size, DL, &TLI))
 | |
|     return Size;
 | |
|   return MemoryLocation::UnknownSize;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| enum OverwriteResult {
 | |
|   OverwriteBegin,
 | |
|   OverwriteComplete,
 | |
|   OverwriteEnd,
 | |
|   OverwriteUnknown
 | |
| };
 | |
| }
 | |
| 
 | |
| /// Return 'OverwriteComplete' if a store to the 'Later' location completely
 | |
| /// overwrites a store to the 'Earlier' location, 'OverwriteEnd' if the end of
 | |
| /// the 'Earlier' location is completely overwritten by 'Later',
 | |
| /// 'OverwriteBegin' if the beginning of the 'Earlier' location is overwritten
 | |
| /// by 'Later', or 'OverwriteUnknown' if nothing can be determined.
 | |
| static OverwriteResult isOverwrite(const MemoryLocation &Later,
 | |
|                                    const MemoryLocation &Earlier,
 | |
|                                    const DataLayout &DL,
 | |
|                                    const TargetLibraryInfo &TLI,
 | |
|                                    int64_t &EarlierOff, int64_t &LaterOff,
 | |
|                                    Instruction *DepWrite,
 | |
|                                    InstOverlapIntervalsTy &IOL) {
 | |
|   // If we don't know the sizes of either access, then we can't do a comparison.
 | |
|   if (Later.Size == MemoryLocation::UnknownSize ||
 | |
|       Earlier.Size == MemoryLocation::UnknownSize)
 | |
|     return OverwriteUnknown;
 | |
| 
 | |
|   const Value *P1 = Earlier.Ptr->stripPointerCasts();
 | |
|   const Value *P2 = Later.Ptr->stripPointerCasts();
 | |
| 
 | |
|   // If the start pointers are the same, we just have to compare sizes to see if
 | |
|   // the later store was larger than the earlier store.
 | |
|   if (P1 == P2) {
 | |
|     // Make sure that the Later size is >= the Earlier size.
 | |
|     if (Later.Size >= Earlier.Size)
 | |
|       return OverwriteComplete;
 | |
|   }
 | |
| 
 | |
|   // Check to see if the later store is to the entire object (either a global,
 | |
|   // an alloca, or a byval/inalloca argument).  If so, then it clearly
 | |
|   // overwrites any other store to the same object.
 | |
|   const Value *UO1 = GetUnderlyingObject(P1, DL),
 | |
|               *UO2 = GetUnderlyingObject(P2, DL);
 | |
| 
 | |
|   // If we can't resolve the same pointers to the same object, then we can't
 | |
|   // analyze them at all.
 | |
|   if (UO1 != UO2)
 | |
|     return OverwriteUnknown;
 | |
| 
 | |
|   // If the "Later" store is to a recognizable object, get its size.
 | |
|   uint64_t ObjectSize = getPointerSize(UO2, DL, TLI);
 | |
|   if (ObjectSize != MemoryLocation::UnknownSize)
 | |
|     if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
 | |
|       return OverwriteComplete;
 | |
| 
 | |
|   // Okay, we have stores to two completely different pointers.  Try to
 | |
|   // decompose the pointer into a "base + constant_offset" form.  If the base
 | |
|   // pointers are equal, then we can reason about the two stores.
 | |
|   EarlierOff = 0;
 | |
|   LaterOff = 0;
 | |
|   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
 | |
|   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
 | |
| 
 | |
|   // If the base pointers still differ, we have two completely different stores.
 | |
|   if (BP1 != BP2)
 | |
|     return OverwriteUnknown;
 | |
| 
 | |
|   // The later store completely overlaps the earlier store if:
 | |
|   //
 | |
|   // 1. Both start at the same offset and the later one's size is greater than
 | |
|   //    or equal to the earlier one's, or
 | |
|   //
 | |
|   //      |--earlier--|
 | |
|   //      |--   later   --|
 | |
|   //
 | |
|   // 2. The earlier store has an offset greater than the later offset, but which
 | |
|   //    still lies completely within the later store.
 | |
|   //
 | |
|   //        |--earlier--|
 | |
|   //    |-----  later  ------|
 | |
|   //
 | |
|   // We have to be careful here as *Off is signed while *.Size is unsigned.
 | |
|   if (EarlierOff >= LaterOff &&
 | |
|       Later.Size >= Earlier.Size &&
 | |
|       uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
 | |
|     return OverwriteComplete;
 | |
| 
 | |
|   // We may now overlap, although the overlap is not complete. There might also
 | |
|   // be other incomplete overlaps, and together, they might cover the complete
 | |
|   // earlier write.
 | |
|   // Note: The correctness of this logic depends on the fact that this function
 | |
|   // is not even called providing DepWrite when there are any intervening reads.
 | |
|   if (EnablePartialOverwriteTracking &&
 | |
|       LaterOff < int64_t(EarlierOff + Earlier.Size) &&
 | |
|       int64_t(LaterOff + Later.Size) >= EarlierOff) {
 | |
| 
 | |
|     // Insert our part of the overlap into the map.
 | |
|     auto &IM = IOL[DepWrite];
 | |
|     DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff << ", " <<
 | |
|                     int64_t(EarlierOff + Earlier.Size) << ") Later [" <<
 | |
|                     LaterOff << ", " << int64_t(LaterOff + Later.Size) << ")\n");
 | |
| 
 | |
|     // Make sure that we only insert non-overlapping intervals and combine
 | |
|     // adjacent intervals. The intervals are stored in the map with the ending
 | |
|     // offset as the key (in the half-open sense) and the starting offset as
 | |
|     // the value.
 | |
|     int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + Later.Size;
 | |
| 
 | |
|     // Find any intervals ending at, or after, LaterIntStart which start
 | |
|     // before LaterIntEnd.
 | |
|     auto ILI = IM.lower_bound(LaterIntStart);
 | |
|     if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
 | |
|       // This existing interval is overlapped with the current store somewhere
 | |
|       // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
 | |
|       // intervals and adjusting our start and end.
 | |
|       LaterIntStart = std::min(LaterIntStart, ILI->second);
 | |
|       LaterIntEnd = std::max(LaterIntEnd, ILI->first);
 | |
|       ILI = IM.erase(ILI);
 | |
| 
 | |
|       // Continue erasing and adjusting our end in case other previous
 | |
|       // intervals are also overlapped with the current store.
 | |
|       //
 | |
|       // |--- ealier 1 ---|  |--- ealier 2 ---|
 | |
|       //     |------- later---------|
 | |
|       //
 | |
|       while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
 | |
|         assert(ILI->second > LaterIntStart && "Unexpected interval");
 | |
|         LaterIntEnd = std::max(LaterIntEnd, ILI->first);
 | |
|         ILI = IM.erase(ILI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     IM[LaterIntEnd] = LaterIntStart;
 | |
| 
 | |
|     ILI = IM.begin();
 | |
|     if (ILI->second <= EarlierOff &&
 | |
|         ILI->first >= int64_t(EarlierOff + Earlier.Size)) {
 | |
|       DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier [" <<
 | |
|                       EarlierOff << ", " <<
 | |
|                       int64_t(EarlierOff + Earlier.Size) <<
 | |
|                       ") Composite Later [" <<
 | |
|                       ILI->second << ", " << ILI->first << ")\n");
 | |
|       ++NumCompletePartials;
 | |
|       return OverwriteComplete;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Another interesting case is if the later store overwrites the end of the
 | |
|   // earlier store.
 | |
|   //
 | |
|   //      |--earlier--|
 | |
|   //                |--   later   --|
 | |
|   //
 | |
|   // In this case we may want to trim the size of earlier to avoid generating
 | |
|   // writes to addresses which will definitely be overwritten later
 | |
|   if (!EnablePartialOverwriteTracking &&
 | |
|       (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + Earlier.Size) &&
 | |
|        int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size)))
 | |
|     return OverwriteEnd;
 | |
| 
 | |
|   // Finally, we also need to check if the later store overwrites the beginning
 | |
|   // of the earlier store.
 | |
|   //
 | |
|   //                |--earlier--|
 | |
|   //      |--   later   --|
 | |
|   //
 | |
|   // In this case we may want to move the destination address and trim the size
 | |
|   // of earlier to avoid generating writes to addresses which will definitely
 | |
|   // be overwritten later.
 | |
|   if (!EnablePartialOverwriteTracking &&
 | |
|       (LaterOff <= EarlierOff && int64_t(LaterOff + Later.Size) > EarlierOff)) {
 | |
|     assert(int64_t(LaterOff + Later.Size) <
 | |
|                int64_t(EarlierOff + Earlier.Size) &&
 | |
|            "Expect to be handled as OverwriteComplete");
 | |
|     return OverwriteBegin;
 | |
|   }
 | |
|   // Otherwise, they don't completely overlap.
 | |
|   return OverwriteUnknown;
 | |
| }
 | |
| 
 | |
| /// If 'Inst' might be a self read (i.e. a noop copy of a
 | |
| /// memory region into an identical pointer) then it doesn't actually make its
 | |
| /// input dead in the traditional sense.  Consider this case:
 | |
| ///
 | |
| ///   memcpy(A <- B)
 | |
| ///   memcpy(A <- A)
 | |
| ///
 | |
| /// In this case, the second store to A does not make the first store to A dead.
 | |
| /// The usual situation isn't an explicit A<-A store like this (which can be
 | |
| /// trivially removed) but a case where two pointers may alias.
 | |
| ///
 | |
| /// This function detects when it is unsafe to remove a dependent instruction
 | |
| /// because the DSE inducing instruction may be a self-read.
 | |
| static bool isPossibleSelfRead(Instruction *Inst,
 | |
|                                const MemoryLocation &InstStoreLoc,
 | |
|                                Instruction *DepWrite,
 | |
|                                const TargetLibraryInfo &TLI,
 | |
|                                AliasAnalysis &AA) {
 | |
|   // Self reads can only happen for instructions that read memory.  Get the
 | |
|   // location read.
 | |
|   MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
 | |
|   if (!InstReadLoc.Ptr) return false;  // Not a reading instruction.
 | |
| 
 | |
|   // If the read and written loc obviously don't alias, it isn't a read.
 | |
|   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
 | |
| 
 | |
|   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
 | |
|   // DepWrite instruction if we can prove that it reads from the same location
 | |
|   // as Inst.  This handles useful cases like:
 | |
|   //   memcpy(A <- B)
 | |
|   //   memcpy(A <- B)
 | |
|   // Here we don't know if A/B may alias, but we do know that B/B are must
 | |
|   // aliases, so removing the first memcpy is safe (assuming it writes <= #
 | |
|   // bytes as the second one.
 | |
|   MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
 | |
| 
 | |
|   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
 | |
|     return false;
 | |
| 
 | |
|   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
 | |
|   // then it can't be considered dead.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns true if the memory which is accessed by the second instruction is not
 | |
| /// modified between the first and the second instruction.
 | |
| /// Precondition: Second instruction must be dominated by the first
 | |
| /// instruction.
 | |
| static bool memoryIsNotModifiedBetween(Instruction *FirstI,
 | |
|                                        Instruction *SecondI,
 | |
|                                        AliasAnalysis *AA) {
 | |
|   SmallVector<BasicBlock *, 16> WorkList;
 | |
|   SmallPtrSet<BasicBlock *, 8> Visited;
 | |
|   BasicBlock::iterator FirstBBI(FirstI);
 | |
|   ++FirstBBI;
 | |
|   BasicBlock::iterator SecondBBI(SecondI);
 | |
|   BasicBlock *FirstBB = FirstI->getParent();
 | |
|   BasicBlock *SecondBB = SecondI->getParent();
 | |
|   MemoryLocation MemLoc = MemoryLocation::get(SecondI);
 | |
| 
 | |
|   // Start checking the store-block.
 | |
|   WorkList.push_back(SecondBB);
 | |
|   bool isFirstBlock = true;
 | |
| 
 | |
|   // Check all blocks going backward until we reach the load-block.
 | |
|   while (!WorkList.empty()) {
 | |
|     BasicBlock *B = WorkList.pop_back_val();
 | |
| 
 | |
|     // Ignore instructions before LI if this is the FirstBB.
 | |
|     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
 | |
| 
 | |
|     BasicBlock::iterator EI;
 | |
|     if (isFirstBlock) {
 | |
|       // Ignore instructions after SI if this is the first visit of SecondBB.
 | |
|       assert(B == SecondBB && "first block is not the store block");
 | |
|       EI = SecondBBI;
 | |
|       isFirstBlock = false;
 | |
|     } else {
 | |
|       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
 | |
|       // In this case we also have to look at instructions after SI.
 | |
|       EI = B->end();
 | |
|     }
 | |
|     for (; BI != EI; ++BI) {
 | |
|       Instruction *I = &*BI;
 | |
|       if (I->mayWriteToMemory() && I != SecondI) {
 | |
|         auto Res = AA->getModRefInfo(I, MemLoc);
 | |
|         if (Res != MRI_NoModRef)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     if (B != FirstBB) {
 | |
|       assert(B != &FirstBB->getParent()->getEntryBlock() &&
 | |
|           "Should not hit the entry block because SI must be dominated by LI");
 | |
|       for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
 | |
|         if (!Visited.insert(*PredI).second)
 | |
|           continue;
 | |
|         WorkList.push_back(*PredI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Find all blocks that will unconditionally lead to the block BB and append
 | |
| /// them to F.
 | |
| static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
 | |
|                                    BasicBlock *BB, DominatorTree *DT) {
 | |
|   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
 | |
|     BasicBlock *Pred = *I;
 | |
|     if (Pred == BB) continue;
 | |
|     TerminatorInst *PredTI = Pred->getTerminator();
 | |
|     if (PredTI->getNumSuccessors() != 1)
 | |
|       continue;
 | |
| 
 | |
|     if (DT->isReachableFromEntry(Pred))
 | |
|       Blocks.push_back(Pred);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Handle frees of entire structures whose dependency is a store
 | |
| /// to a field of that structure.
 | |
| static bool handleFree(CallInst *F, AliasAnalysis *AA,
 | |
|                        MemoryDependenceResults *MD, DominatorTree *DT,
 | |
|                        const TargetLibraryInfo *TLI,
 | |
|                        InstOverlapIntervalsTy &IOL,
 | |
|                        DenseMap<Instruction*, size_t> *InstrOrdering) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   MemoryLocation Loc = MemoryLocation(F->getOperand(0));
 | |
|   SmallVector<BasicBlock *, 16> Blocks;
 | |
|   Blocks.push_back(F->getParent());
 | |
|   const DataLayout &DL = F->getModule()->getDataLayout();
 | |
| 
 | |
|   while (!Blocks.empty()) {
 | |
|     BasicBlock *BB = Blocks.pop_back_val();
 | |
|     Instruction *InstPt = BB->getTerminator();
 | |
|     if (BB == F->getParent()) InstPt = F;
 | |
| 
 | |
|     MemDepResult Dep =
 | |
|         MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
 | |
|     while (Dep.isDef() || Dep.isClobber()) {
 | |
|       Instruction *Dependency = Dep.getInst();
 | |
|       if (!hasMemoryWrite(Dependency, *TLI) || !isRemovable(Dependency))
 | |
|         break;
 | |
| 
 | |
|       Value *DepPointer =
 | |
|           GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
 | |
| 
 | |
|       // Check for aliasing.
 | |
|       if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
 | |
|         break;
 | |
| 
 | |
|       DEBUG(dbgs() << "DSE: Dead Store to soon to be freed memory:\n  DEAD: "
 | |
|                    << *Dependency << '\n');
 | |
| 
 | |
|       // DCE instructions only used to calculate that store.
 | |
|       BasicBlock::iterator BBI(Dependency);
 | |
|       deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, InstrOrdering);
 | |
|       ++NumFastStores;
 | |
|       MadeChange = true;
 | |
| 
 | |
|       // Inst's old Dependency is now deleted. Compute the next dependency,
 | |
|       // which may also be dead, as in
 | |
|       //    s[0] = 0;
 | |
|       //    s[1] = 0; // This has just been deleted.
 | |
|       //    free(s);
 | |
|       Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
 | |
|     }
 | |
| 
 | |
|     if (Dep.isNonLocal())
 | |
|       findUnconditionalPreds(Blocks, BB, DT);
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// Check to see if the specified location may alias any of the stack objects in
 | |
| /// the DeadStackObjects set. If so, they become live because the location is
 | |
| /// being loaded.
 | |
| static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
 | |
|                                   SmallSetVector<Value *, 16> &DeadStackObjects,
 | |
|                                   const DataLayout &DL, AliasAnalysis *AA,
 | |
|                                   const TargetLibraryInfo *TLI) {
 | |
|   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
 | |
| 
 | |
|   // A constant can't be in the dead pointer set.
 | |
|   if (isa<Constant>(UnderlyingPointer))
 | |
|     return;
 | |
| 
 | |
|   // If the kill pointer can be easily reduced to an alloca, don't bother doing
 | |
|   // extraneous AA queries.
 | |
|   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
 | |
|     DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Remove objects that could alias LoadedLoc.
 | |
|   DeadStackObjects.remove_if([&](Value *I) {
 | |
|     // See if the loaded location could alias the stack location.
 | |
|     MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI));
 | |
|     return !AA->isNoAlias(StackLoc, LoadedLoc);
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// Remove dead stores to stack-allocated locations in the function end block.
 | |
| /// Ex:
 | |
| /// %A = alloca i32
 | |
| /// ...
 | |
| /// store i32 1, i32* %A
 | |
| /// ret void
 | |
| static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
 | |
|                              MemoryDependenceResults *MD,
 | |
|                              const TargetLibraryInfo *TLI,
 | |
|                              InstOverlapIntervalsTy &IOL,
 | |
|                              DenseMap<Instruction*, size_t> *InstrOrdering) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Keep track of all of the stack objects that are dead at the end of the
 | |
|   // function.
 | |
|   SmallSetVector<Value*, 16> DeadStackObjects;
 | |
| 
 | |
|   // Find all of the alloca'd pointers in the entry block.
 | |
|   BasicBlock &Entry = BB.getParent()->front();
 | |
|   for (Instruction &I : Entry) {
 | |
|     if (isa<AllocaInst>(&I))
 | |
|       DeadStackObjects.insert(&I);
 | |
| 
 | |
|     // Okay, so these are dead heap objects, but if the pointer never escapes
 | |
|     // then it's leaked by this function anyways.
 | |
|     else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
 | |
|       DeadStackObjects.insert(&I);
 | |
|   }
 | |
| 
 | |
|   // Treat byval or inalloca arguments the same, stores to them are dead at the
 | |
|   // end of the function.
 | |
|   for (Argument &AI : BB.getParent()->args())
 | |
|     if (AI.hasByValOrInAllocaAttr())
 | |
|       DeadStackObjects.insert(&AI);
 | |
| 
 | |
|   const DataLayout &DL = BB.getModule()->getDataLayout();
 | |
| 
 | |
|   // Scan the basic block backwards
 | |
|   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
 | |
|     --BBI;
 | |
| 
 | |
|     // If we find a store, check to see if it points into a dead stack value.
 | |
|     if (hasMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
 | |
|       // See through pointer-to-pointer bitcasts
 | |
|       SmallVector<Value *, 4> Pointers;
 | |
|       GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
 | |
| 
 | |
|       // Stores to stack values are valid candidates for removal.
 | |
|       bool AllDead = true;
 | |
|       for (Value *Pointer : Pointers)
 | |
|         if (!DeadStackObjects.count(Pointer)) {
 | |
|           AllDead = false;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       if (AllDead) {
 | |
|         Instruction *Dead = &*BBI;
 | |
| 
 | |
|         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
 | |
|                      << *Dead << "\n  Objects: ";
 | |
|               for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
 | |
|                    E = Pointers.end(); I != E; ++I) {
 | |
|                 dbgs() << **I;
 | |
|                 if (std::next(I) != E)
 | |
|                   dbgs() << ", ";
 | |
|               }
 | |
|               dbgs() << '\n');
 | |
| 
 | |
|         // DCE instructions only used to calculate that store.
 | |
|         deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
 | |
|         ++NumFastStores;
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Remove any dead non-memory-mutating instructions.
 | |
|     if (isInstructionTriviallyDead(&*BBI, TLI)) {
 | |
|       DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n  DEAD: "
 | |
|                    << *&*BBI << '\n');
 | |
|       deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
 | |
|       ++NumFastOther;
 | |
|       MadeChange = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (isa<AllocaInst>(BBI)) {
 | |
|       // Remove allocas from the list of dead stack objects; there can't be
 | |
|       // any references before the definition.
 | |
|       DeadStackObjects.remove(&*BBI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (auto CS = CallSite(&*BBI)) {
 | |
|       // Remove allocation function calls from the list of dead stack objects;
 | |
|       // there can't be any references before the definition.
 | |
|       if (isAllocLikeFn(&*BBI, TLI))
 | |
|         DeadStackObjects.remove(&*BBI);
 | |
| 
 | |
|       // If this call does not access memory, it can't be loading any of our
 | |
|       // pointers.
 | |
|       if (AA->doesNotAccessMemory(CS))
 | |
|         continue;
 | |
| 
 | |
|       // If the call might load from any of our allocas, then any store above
 | |
|       // the call is live.
 | |
|       DeadStackObjects.remove_if([&](Value *I) {
 | |
|         // See if the call site touches the value.
 | |
|         ModRefInfo A = AA->getModRefInfo(CS, I, getPointerSize(I, DL, *TLI));
 | |
| 
 | |
|         return A == MRI_ModRef || A == MRI_Ref;
 | |
|       });
 | |
| 
 | |
|       // If all of the allocas were clobbered by the call then we're not going
 | |
|       // to find anything else to process.
 | |
|       if (DeadStackObjects.empty())
 | |
|         break;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We can remove the dead stores, irrespective of the fence and its ordering
 | |
|     // (release/acquire/seq_cst). Fences only constraints the ordering of
 | |
|     // already visible stores, it does not make a store visible to other
 | |
|     // threads. So, skipping over a fence does not change a store from being
 | |
|     // dead.
 | |
|     if (isa<FenceInst>(*BBI))
 | |
|       continue;
 | |
| 
 | |
|     MemoryLocation LoadedLoc;
 | |
| 
 | |
|     // If we encounter a use of the pointer, it is no longer considered dead
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (!L->isUnordered()) // Be conservative with atomic/volatile load
 | |
|         break;
 | |
|       LoadedLoc = MemoryLocation::get(L);
 | |
|     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
 | |
|       LoadedLoc = MemoryLocation::get(V);
 | |
|     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
 | |
|       LoadedLoc = MemoryLocation::getForSource(MTI);
 | |
|     } else if (!BBI->mayReadFromMemory()) {
 | |
|       // Instruction doesn't read memory.  Note that stores that weren't removed
 | |
|       // above will hit this case.
 | |
|       continue;
 | |
|     } else {
 | |
|       // Unknown inst; assume it clobbers everything.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Remove any allocas from the DeadPointer set that are loaded, as this
 | |
|     // makes any stores above the access live.
 | |
|     removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI);
 | |
| 
 | |
|     // If all of the allocas were clobbered by the access then we're not going
 | |
|     // to find anything else to process.
 | |
|     if (DeadStackObjects.empty())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
 | |
|                          int64_t &EarlierSize, int64_t LaterOffset,
 | |
|                          int64_t LaterSize, bool IsOverwriteEnd) {
 | |
|   // TODO: base this on the target vector size so that if the earlier
 | |
|   // store was too small to get vector writes anyway then its likely
 | |
|   // a good idea to shorten it
 | |
|   // Power of 2 vector writes are probably always a bad idea to optimize
 | |
|   // as any store/memset/memcpy is likely using vector instructions so
 | |
|   // shortening it to not vector size is likely to be slower
 | |
|   MemIntrinsic *EarlierIntrinsic = cast<MemIntrinsic>(EarlierWrite);
 | |
|   unsigned EarlierWriteAlign = EarlierIntrinsic->getAlignment();
 | |
|   if (!IsOverwriteEnd)
 | |
|     LaterOffset = int64_t(LaterOffset + LaterSize);
 | |
| 
 | |
|   if (!(llvm::isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
 | |
|       !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
 | |
|                << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *EarlierWrite
 | |
|                << "\n  KILLER (offset " << LaterOffset << ", " << EarlierSize
 | |
|                << ")\n");
 | |
| 
 | |
|   int64_t NewLength = IsOverwriteEnd
 | |
|                           ? LaterOffset - EarlierOffset
 | |
|                           : EarlierSize - (LaterOffset - EarlierOffset);
 | |
| 
 | |
|   Value *EarlierWriteLength = EarlierIntrinsic->getLength();
 | |
|   Value *TrimmedLength =
 | |
|       ConstantInt::get(EarlierWriteLength->getType(), NewLength);
 | |
|   EarlierIntrinsic->setLength(TrimmedLength);
 | |
| 
 | |
|   EarlierSize = NewLength;
 | |
|   if (!IsOverwriteEnd) {
 | |
|     int64_t OffsetMoved = (LaterOffset - EarlierOffset);
 | |
|     Value *Indices[1] = {
 | |
|         ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
 | |
|     GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
 | |
|         EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
 | |
|     EarlierIntrinsic->setDest(NewDestGEP);
 | |
|     EarlierOffset = EarlierOffset + OffsetMoved;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool tryToShortenEnd(Instruction *EarlierWrite,
 | |
|                             OverlapIntervalsTy &IntervalMap,
 | |
|                             int64_t &EarlierStart, int64_t &EarlierSize) {
 | |
|   if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
 | |
|     return false;
 | |
| 
 | |
|   OverlapIntervalsTy::iterator OII = --IntervalMap.end();
 | |
|   int64_t LaterStart = OII->second;
 | |
|   int64_t LaterSize = OII->first - LaterStart;
 | |
| 
 | |
|   if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
 | |
|       LaterStart + LaterSize >= EarlierStart + EarlierSize) {
 | |
|     if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
 | |
|                      LaterSize, true)) {
 | |
|       IntervalMap.erase(OII);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool tryToShortenBegin(Instruction *EarlierWrite,
 | |
|                               OverlapIntervalsTy &IntervalMap,
 | |
|                               int64_t &EarlierStart, int64_t &EarlierSize) {
 | |
|   if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
 | |
|     return false;
 | |
| 
 | |
|   OverlapIntervalsTy::iterator OII = IntervalMap.begin();
 | |
|   int64_t LaterStart = OII->second;
 | |
|   int64_t LaterSize = OII->first - LaterStart;
 | |
| 
 | |
|   if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
 | |
|     assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
 | |
|            "Should have been handled as OverwriteComplete");
 | |
|     if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
 | |
|                      LaterSize, false)) {
 | |
|       IntervalMap.erase(OII);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
 | |
|                                             const DataLayout &DL,
 | |
|                                             InstOverlapIntervalsTy &IOL) {
 | |
|   bool Changed = false;
 | |
|   for (auto OI : IOL) {
 | |
|     Instruction *EarlierWrite = OI.first;
 | |
|     MemoryLocation Loc = getLocForWrite(EarlierWrite, *AA);
 | |
|     assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
 | |
|     assert(Loc.Size != MemoryLocation::UnknownSize && "Unexpected mem loc");
 | |
| 
 | |
|     const Value *Ptr = Loc.Ptr->stripPointerCasts();
 | |
|     int64_t EarlierStart = 0;
 | |
|     int64_t EarlierSize = int64_t(Loc.Size);
 | |
|     GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
 | |
|     OverlapIntervalsTy &IntervalMap = OI.second;
 | |
|     Changed |=
 | |
|         tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
 | |
|     if (IntervalMap.empty())
 | |
|       continue;
 | |
|     Changed |=
 | |
|         tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
 | |
|                                AliasAnalysis *AA, MemoryDependenceResults *MD,
 | |
|                                const DataLayout &DL,
 | |
|                                const TargetLibraryInfo *TLI,
 | |
|                                InstOverlapIntervalsTy &IOL,
 | |
|                                DenseMap<Instruction*, size_t> *InstrOrdering) {
 | |
|   // Must be a store instruction.
 | |
|   StoreInst *SI = dyn_cast<StoreInst>(Inst);
 | |
|   if (!SI)
 | |
|     return false;
 | |
| 
 | |
|   // If we're storing the same value back to a pointer that we just loaded from,
 | |
|   // then the store can be removed.
 | |
|   if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
 | |
|     if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
 | |
|         isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
 | |
| 
 | |
|       DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  LOAD: "
 | |
|                    << *DepLoad << "\n  STORE: " << *SI << '\n');
 | |
| 
 | |
|       deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
 | |
|       ++NumRedundantStores;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove null stores into the calloc'ed objects
 | |
|   Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
 | |
|   if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
 | |
|     Instruction *UnderlyingPointer =
 | |
|         dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
 | |
| 
 | |
|     if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
 | |
|         memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
 | |
|       DEBUG(
 | |
|           dbgs() << "DSE: Remove null store to the calloc'ed object:\n  DEAD: "
 | |
|                  << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n');
 | |
| 
 | |
|       deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
 | |
|       ++NumRedundantStores;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
 | |
|                                 MemoryDependenceResults *MD, DominatorTree *DT,
 | |
|                                 const TargetLibraryInfo *TLI) {
 | |
|   const DataLayout &DL = BB.getModule()->getDataLayout();
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // FIXME: Maybe change this to use some abstraction like OrderedBasicBlock?
 | |
|   // The current OrderedBasicBlock can't deal with mutation at the moment.
 | |
|   size_t LastThrowingInstIndex = 0;
 | |
|   DenseMap<Instruction*, size_t> InstrOrdering;
 | |
|   size_t InstrIndex = 1;
 | |
| 
 | |
|   // A map of interval maps representing partially-overwritten value parts.
 | |
|   InstOverlapIntervalsTy IOL;
 | |
| 
 | |
|   // Do a top-down walk on the BB.
 | |
|   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
 | |
|     // Handle 'free' calls specially.
 | |
|     if (CallInst *F = isFreeCall(&*BBI, TLI)) {
 | |
|       MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, &InstrOrdering);
 | |
|       // Increment BBI after handleFree has potentially deleted instructions.
 | |
|       // This ensures we maintain a valid iterator.
 | |
|       ++BBI;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Instruction *Inst = &*BBI++;
 | |
| 
 | |
|     size_t CurInstNumber = InstrIndex++;
 | |
|     InstrOrdering.insert(std::make_pair(Inst, CurInstNumber));
 | |
|     if (Inst->mayThrow()) {
 | |
|       LastThrowingInstIndex = CurInstNumber;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check to see if Inst writes to memory.  If not, continue.
 | |
|     if (!hasMemoryWrite(Inst, *TLI))
 | |
|       continue;
 | |
| 
 | |
|     // eliminateNoopStore will update in iterator, if necessary.
 | |
|     if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, &InstrOrdering)) {
 | |
|       MadeChange = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we find something that writes memory, get its memory dependence.
 | |
|     MemDepResult InstDep = MD->getDependency(Inst);
 | |
| 
 | |
|     // Ignore any store where we can't find a local dependence.
 | |
|     // FIXME: cross-block DSE would be fun. :)
 | |
|     if (!InstDep.isDef() && !InstDep.isClobber())
 | |
|       continue;
 | |
| 
 | |
|     // Figure out what location is being stored to.
 | |
|     MemoryLocation Loc = getLocForWrite(Inst, *AA);
 | |
| 
 | |
|     // If we didn't get a useful location, fail.
 | |
|     if (!Loc.Ptr)
 | |
|       continue;
 | |
| 
 | |
|     // Loop until we find a store we can eliminate or a load that
 | |
|     // invalidates the analysis. Without an upper bound on the number of
 | |
|     // instructions examined, this analysis can become very time-consuming.
 | |
|     // However, the potential gain diminishes as we process more instructions
 | |
|     // without eliminating any of them. Therefore, we limit the number of
 | |
|     // instructions we look at.
 | |
|     auto Limit = MD->getDefaultBlockScanLimit();
 | |
|     while (InstDep.isDef() || InstDep.isClobber()) {
 | |
|       // Get the memory clobbered by the instruction we depend on.  MemDep will
 | |
|       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
 | |
|       // end up depending on a may- or must-aliased load, then we can't optimize
 | |
|       // away the store and we bail out.  However, if we depend on something
 | |
|       // that overwrites the memory location we *can* potentially optimize it.
 | |
|       //
 | |
|       // Find out what memory location the dependent instruction stores.
 | |
|       Instruction *DepWrite = InstDep.getInst();
 | |
|       MemoryLocation DepLoc = getLocForWrite(DepWrite, *AA);
 | |
|       // If we didn't get a useful location, or if it isn't a size, bail out.
 | |
|       if (!DepLoc.Ptr)
 | |
|         break;
 | |
| 
 | |
|       // Make sure we don't look past a call which might throw. This is an
 | |
|       // issue because MemoryDependenceAnalysis works in the wrong direction:
 | |
|       // it finds instructions which dominate the current instruction, rather than
 | |
|       // instructions which are post-dominated by the current instruction.
 | |
|       //
 | |
|       // If the underlying object is a non-escaping memory allocation, any store
 | |
|       // to it is dead along the unwind edge. Otherwise, we need to preserve
 | |
|       // the store.
 | |
|       size_t DepIndex = InstrOrdering.lookup(DepWrite);
 | |
|       assert(DepIndex && "Unexpected instruction");
 | |
|       if (DepIndex <= LastThrowingInstIndex) {
 | |
|         const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
 | |
|         bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
 | |
|         if (!IsStoreDeadOnUnwind) {
 | |
|             // We're looking for a call to an allocation function
 | |
|             // where the allocation doesn't escape before the last
 | |
|             // throwing instruction; PointerMayBeCaptured
 | |
|             // reasonably fast approximation.
 | |
|             IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
 | |
|                 !PointerMayBeCaptured(Underlying, false, true);
 | |
|         }
 | |
|         if (!IsStoreDeadOnUnwind)
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       // If we find a write that is a) removable (i.e., non-volatile), b) is
 | |
|       // completely obliterated by the store to 'Loc', and c) which we know that
 | |
|       // 'Inst' doesn't load from, then we can remove it.
 | |
|       if (isRemovable(DepWrite) &&
 | |
|           !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
 | |
|         int64_t InstWriteOffset, DepWriteOffset;
 | |
|         OverwriteResult OR =
 | |
|             isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset, InstWriteOffset,
 | |
|                         DepWrite, IOL);
 | |
|         if (OR == OverwriteComplete) {
 | |
|           DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
 | |
|                 << *DepWrite << "\n  KILLER: " << *Inst << '\n');
 | |
| 
 | |
|           // Delete the store and now-dead instructions that feed it.
 | |
|           deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, &InstrOrdering);
 | |
|           ++NumFastStores;
 | |
|           MadeChange = true;
 | |
| 
 | |
|           // We erased DepWrite; start over.
 | |
|           InstDep = MD->getDependency(Inst);
 | |
|           continue;
 | |
|         } else if ((OR == OverwriteEnd && isShortenableAtTheEnd(DepWrite)) ||
 | |
|                    ((OR == OverwriteBegin &&
 | |
|                      isShortenableAtTheBeginning(DepWrite)))) {
 | |
|           assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
 | |
|                                                     "when partial-overwrite "
 | |
|                                                     "tracking is enabled");
 | |
|           int64_t EarlierSize = DepLoc.Size;
 | |
|           int64_t LaterSize = Loc.Size;
 | |
|           bool IsOverwriteEnd = (OR == OverwriteEnd);
 | |
|           MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
 | |
|                                     InstWriteOffset, LaterSize, IsOverwriteEnd);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this is a may-aliased store that is clobbering the store value, we
 | |
|       // can keep searching past it for another must-aliased pointer that stores
 | |
|       // to the same location.  For example, in:
 | |
|       //   store -> P
 | |
|       //   store -> Q
 | |
|       //   store -> P
 | |
|       // we can remove the first store to P even though we don't know if P and Q
 | |
|       // alias.
 | |
|       if (DepWrite == &BB.front()) break;
 | |
| 
 | |
|       // Can't look past this instruction if it might read 'Loc'.
 | |
|       if (AA->getModRefInfo(DepWrite, Loc) & MRI_Ref)
 | |
|         break;
 | |
| 
 | |
|       InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
 | |
|                                              DepWrite->getIterator(), &BB,
 | |
|                                              /*QueryInst=*/ nullptr, &Limit);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (EnablePartialOverwriteTracking)
 | |
|     MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
 | |
| 
 | |
|   // If this block ends in a return, unwind, or unreachable, all allocas are
 | |
|   // dead at its end, which means stores to them are also dead.
 | |
|   if (BB.getTerminator()->getNumSuccessors() == 0)
 | |
|     MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, &InstrOrdering);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
 | |
|                                 MemoryDependenceResults *MD, DominatorTree *DT,
 | |
|                                 const TargetLibraryInfo *TLI) {
 | |
|   bool MadeChange = false;
 | |
|   for (BasicBlock &BB : F)
 | |
|     // Only check non-dead blocks.  Dead blocks may have strange pointer
 | |
|     // cycles that will confuse alias analysis.
 | |
|     if (DT->isReachableFromEntry(&BB))
 | |
|       MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSE Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   AliasAnalysis *AA = &AM.getResult<AAManager>(F);
 | |
|   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
 | |
|   const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
 | |
| 
 | |
|   if (!eliminateDeadStores(F, AA, MD, DT, TLI))
 | |
|     return PreservedAnalyses::all();
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserve<DominatorTreeAnalysis>();
 | |
|   PA.preserve<GlobalsAA>();
 | |
|   PA.preserve<MemoryDependenceAnalysis>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
 | |
| class DSELegacyPass : public FunctionPass {
 | |
| public:
 | |
|   DSELegacyPass() : FunctionPass(ID) {
 | |
|     initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipFunction(F))
 | |
|       return false;
 | |
| 
 | |
|     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|     MemoryDependenceResults *MD =
 | |
|         &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
 | |
|     const TargetLibraryInfo *TLI =
 | |
|         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
| 
 | |
|     return eliminateDeadStores(F, AA, MD, DT, TLI);
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     AU.addRequired<MemoryDependenceWrapperPass>();
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|     AU.addPreserved<MemoryDependenceWrapperPass>();
 | |
|   }
 | |
| 
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char DSELegacyPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
 | |
|                       false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
 | |
|                     false)
 | |
| 
 | |
| FunctionPass *llvm::createDeadStoreEliminationPass() {
 | |
|   return new DSELegacyPass();
 | |
| }
 |