forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			605 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			605 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implement a loop-aware load elimination pass.
 | |
| //
 | |
| // It uses LoopAccessAnalysis to identify loop-carried dependences with a
 | |
| // distance of one between stores and loads.  These form the candidates for the
 | |
| // transformation.  The source value of each store then propagated to the user
 | |
| // of the corresponding load.  This makes the load dead.
 | |
| //
 | |
| // The pass can also version the loop and add memchecks in order to prove that
 | |
| // may-aliasing stores can't change the value in memory before it's read by the
 | |
| // load.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/LoopAccessAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/LoopVersioning.h"
 | |
| #include <forward_list>
 | |
| 
 | |
| #define LLE_OPTION "loop-load-elim"
 | |
| #define DEBUG_TYPE LLE_OPTION
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<unsigned> CheckPerElim(
 | |
|     "runtime-check-per-loop-load-elim", cl::Hidden,
 | |
|     cl::desc("Max number of memchecks allowed per eliminated load on average"),
 | |
|     cl::init(1));
 | |
| 
 | |
| static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
 | |
|     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
 | |
|     cl::desc("The maximum number of SCEV checks allowed for Loop "
 | |
|              "Load Elimination"));
 | |
| 
 | |
| 
 | |
| STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// \brief Represent a store-to-forwarding candidate.
 | |
| struct StoreToLoadForwardingCandidate {
 | |
|   LoadInst *Load;
 | |
|   StoreInst *Store;
 | |
| 
 | |
|   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
 | |
|       : Load(Load), Store(Store) {}
 | |
| 
 | |
|   /// \brief Return true if the dependence from the store to the load has a
 | |
|   /// distance of one.  E.g. A[i+1] = A[i]
 | |
|   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
 | |
|                                  Loop *L) const {
 | |
|     Value *LoadPtr = Load->getPointerOperand();
 | |
|     Value *StorePtr = Store->getPointerOperand();
 | |
|     Type *LoadPtrType = LoadPtr->getType();
 | |
|     Type *LoadType = LoadPtrType->getPointerElementType();
 | |
| 
 | |
|     assert(LoadPtrType->getPointerAddressSpace() ==
 | |
|                StorePtr->getType()->getPointerAddressSpace() &&
 | |
|            LoadType == StorePtr->getType()->getPointerElementType() &&
 | |
|            "Should be a known dependence");
 | |
| 
 | |
|     // Currently we only support accesses with unit stride.  FIXME: we should be
 | |
|     // able to handle non unit stirde as well as long as the stride is equal to
 | |
|     // the dependence distance.
 | |
|     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
 | |
|         getPtrStride(PSE, StorePtr, L) != 1)
 | |
|       return false;
 | |
| 
 | |
|     auto &DL = Load->getParent()->getModule()->getDataLayout();
 | |
|     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
 | |
| 
 | |
|     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
 | |
|     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
 | |
| 
 | |
|     // We don't need to check non-wrapping here because forward/backward
 | |
|     // dependence wouldn't be valid if these weren't monotonic accesses.
 | |
|     auto *Dist = cast<SCEVConstant>(
 | |
|         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
 | |
|     const APInt &Val = Dist->getAPInt();
 | |
|     return Val == TypeByteSize;
 | |
|   }
 | |
| 
 | |
|   Value *getLoadPtr() const { return Load->getPointerOperand(); }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   friend raw_ostream &operator<<(raw_ostream &OS,
 | |
|                                  const StoreToLoadForwardingCandidate &Cand) {
 | |
|     OS << *Cand.Store << " -->\n";
 | |
|     OS.indent(2) << *Cand.Load << "\n";
 | |
|     return OS;
 | |
|   }
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /// \brief Check if the store dominates all latches, so as long as there is no
 | |
| /// intervening store this value will be loaded in the next iteration.
 | |
| bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
 | |
|                                   DominatorTree *DT) {
 | |
|   SmallVector<BasicBlock *, 8> Latches;
 | |
|   L->getLoopLatches(Latches);
 | |
|   return all_of(Latches, [&](const BasicBlock *Latch) {
 | |
|     return DT->dominates(StoreBlock, Latch);
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// \brief Return true if the load is not executed on all paths in the loop.
 | |
| static bool isLoadConditional(LoadInst *Load, Loop *L) {
 | |
|   return Load->getParent() != L->getHeader();
 | |
| }
 | |
| 
 | |
| /// \brief The per-loop class that does most of the work.
 | |
| class LoadEliminationForLoop {
 | |
| public:
 | |
|   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
 | |
|                          DominatorTree *DT)
 | |
|       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
 | |
| 
 | |
|   /// \brief Look through the loop-carried and loop-independent dependences in
 | |
|   /// this loop and find store->load dependences.
 | |
|   ///
 | |
|   /// Note that no candidate is returned if LAA has failed to analyze the loop
 | |
|   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
 | |
|   std::forward_list<StoreToLoadForwardingCandidate>
 | |
|   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
 | |
|     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
 | |
| 
 | |
|     const auto *Deps = LAI.getDepChecker().getDependences();
 | |
|     if (!Deps)
 | |
|       return Candidates;
 | |
| 
 | |
|     // Find store->load dependences (consequently true dep).  Both lexically
 | |
|     // forward and backward dependences qualify.  Disqualify loads that have
 | |
|     // other unknown dependences.
 | |
| 
 | |
|     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
 | |
| 
 | |
|     for (const auto &Dep : *Deps) {
 | |
|       Instruction *Source = Dep.getSource(LAI);
 | |
|       Instruction *Destination = Dep.getDestination(LAI);
 | |
| 
 | |
|       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
 | |
|         if (isa<LoadInst>(Source))
 | |
|           LoadsWithUnknownDepedence.insert(Source);
 | |
|         if (isa<LoadInst>(Destination))
 | |
|           LoadsWithUnknownDepedence.insert(Destination);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (Dep.isBackward())
 | |
|         // Note that the designations source and destination follow the program
 | |
|         // order, i.e. source is always first.  (The direction is given by the
 | |
|         // DepType.)
 | |
|         std::swap(Source, Destination);
 | |
|       else
 | |
|         assert(Dep.isForward() && "Needs to be a forward dependence");
 | |
| 
 | |
|       auto *Store = dyn_cast<StoreInst>(Source);
 | |
|       if (!Store)
 | |
|         continue;
 | |
|       auto *Load = dyn_cast<LoadInst>(Destination);
 | |
|       if (!Load)
 | |
|         continue;
 | |
| 
 | |
|       // Only progagate the value if they are of the same type.
 | |
|       if (Store->getPointerOperand()->getType() !=
 | |
|           Load->getPointerOperand()->getType())
 | |
|         continue;
 | |
| 
 | |
|       Candidates.emplace_front(Load, Store);
 | |
|     }
 | |
| 
 | |
|     if (!LoadsWithUnknownDepedence.empty())
 | |
|       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
 | |
|         return LoadsWithUnknownDepedence.count(C.Load);
 | |
|       });
 | |
| 
 | |
|     return Candidates;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return the index of the instruction according to program order.
 | |
|   unsigned getInstrIndex(Instruction *Inst) {
 | |
|     auto I = InstOrder.find(Inst);
 | |
|     assert(I != InstOrder.end() && "No index for instruction");
 | |
|     return I->second;
 | |
|   }
 | |
| 
 | |
|   /// \brief If a load has multiple candidates associated (i.e. different
 | |
|   /// stores), it means that it could be forwarding from multiple stores
 | |
|   /// depending on control flow.  Remove these candidates.
 | |
|   ///
 | |
|   /// Here, we rely on LAA to include the relevant loop-independent dependences.
 | |
|   /// LAA is known to omit these in the very simple case when the read and the
 | |
|   /// write within an alias set always takes place using the *same* pointer.
 | |
|   ///
 | |
|   /// However, we know that this is not the case here, i.e. we can rely on LAA
 | |
|   /// to provide us with loop-independent dependences for the cases we're
 | |
|   /// interested.  Consider the case for example where a loop-independent
 | |
|   /// dependece S1->S2 invalidates the forwarding S3->S2.
 | |
|   ///
 | |
|   ///         A[i]   = ...   (S1)
 | |
|   ///         ...    = A[i]  (S2)
 | |
|   ///         A[i+1] = ...   (S3)
 | |
|   ///
 | |
|   /// LAA will perform dependence analysis here because there are two
 | |
|   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
 | |
|   void removeDependencesFromMultipleStores(
 | |
|       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
 | |
|     // If Store is nullptr it means that we have multiple stores forwarding to
 | |
|     // this store.
 | |
|     typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
 | |
|         LoadToSingleCandT;
 | |
|     LoadToSingleCandT LoadToSingleCand;
 | |
| 
 | |
|     for (const auto &Cand : Candidates) {
 | |
|       bool NewElt;
 | |
|       LoadToSingleCandT::iterator Iter;
 | |
| 
 | |
|       std::tie(Iter, NewElt) =
 | |
|           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
 | |
|       if (!NewElt) {
 | |
|         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
 | |
|         // Already multiple stores forward to this load.
 | |
|         if (OtherCand == nullptr)
 | |
|           continue;
 | |
| 
 | |
|         // Handle the very basic case when the two stores are in the same block
 | |
|         // so deciding which one forwards is easy.  The later one forwards as
 | |
|         // long as they both have a dependence distance of one to the load.
 | |
|         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
 | |
|             Cand.isDependenceDistanceOfOne(PSE, L) &&
 | |
|             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
 | |
|           // They are in the same block, the later one will forward to the load.
 | |
|           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
 | |
|             OtherCand = &Cand;
 | |
|         } else
 | |
|           OtherCand = nullptr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
 | |
|       if (LoadToSingleCand[Cand.Load] != &Cand) {
 | |
|         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
 | |
|                      << "  The load may have multiple stores forwarding to "
 | |
|                      << "it\n");
 | |
|         return true;
 | |
|       }
 | |
|       return false;
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   /// \brief Given two pointers operations by their RuntimePointerChecking
 | |
|   /// indices, return true if they require an alias check.
 | |
|   ///
 | |
|   /// We need a check if one is a pointer for a candidate load and the other is
 | |
|   /// a pointer for a possibly intervening store.
 | |
|   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
 | |
|                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
 | |
|                      const std::set<Value *> &CandLoadPtrs) {
 | |
|     Value *Ptr1 =
 | |
|         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
 | |
|     Value *Ptr2 =
 | |
|         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
 | |
|     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
 | |
|             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
 | |
|   }
 | |
| 
 | |
|   /// \brief Return pointers that are possibly written to on the path from a
 | |
|   /// forwarding store to a load.
 | |
|   ///
 | |
|   /// These pointers need to be alias-checked against the forwarding candidates.
 | |
|   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
 | |
|       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
 | |
|     // From FirstStore to LastLoad neither of the elimination candidate loads
 | |
|     // should overlap with any of the stores.
 | |
|     //
 | |
|     // E.g.:
 | |
|     //
 | |
|     // st1 C[i]
 | |
|     // ld1 B[i] <-------,
 | |
|     // ld0 A[i] <----,  |              * LastLoad
 | |
|     // ...           |  |
 | |
|     // st2 E[i]      |  |
 | |
|     // st3 B[i+1] -- | -'              * FirstStore
 | |
|     // st0 A[i+1] ---'
 | |
|     // st4 D[i]
 | |
|     //
 | |
|     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
 | |
|     // ld0.
 | |
| 
 | |
|     LoadInst *LastLoad =
 | |
|         std::max_element(Candidates.begin(), Candidates.end(),
 | |
|                          [&](const StoreToLoadForwardingCandidate &A,
 | |
|                              const StoreToLoadForwardingCandidate &B) {
 | |
|                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
 | |
|                          })
 | |
|             ->Load;
 | |
|     StoreInst *FirstStore =
 | |
|         std::min_element(Candidates.begin(), Candidates.end(),
 | |
|                          [&](const StoreToLoadForwardingCandidate &A,
 | |
|                              const StoreToLoadForwardingCandidate &B) {
 | |
|                            return getInstrIndex(A.Store) <
 | |
|                                   getInstrIndex(B.Store);
 | |
|                          })
 | |
|             ->Store;
 | |
| 
 | |
|     // We're looking for stores after the first forwarding store until the end
 | |
|     // of the loop, then from the beginning of the loop until the last
 | |
|     // forwarded-to load.  Collect the pointer for the stores.
 | |
|     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
 | |
| 
 | |
|     auto InsertStorePtr = [&](Instruction *I) {
 | |
|       if (auto *S = dyn_cast<StoreInst>(I))
 | |
|         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
 | |
|     };
 | |
|     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
 | |
|     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
 | |
|                   MemInstrs.end(), InsertStorePtr);
 | |
|     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
 | |
|                   InsertStorePtr);
 | |
| 
 | |
|     return PtrsWrittenOnFwdingPath;
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine the pointer alias checks to prove that there are no
 | |
|   /// intervening stores.
 | |
|   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
 | |
|       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
 | |
| 
 | |
|     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
 | |
|         findPointersWrittenOnForwardingPath(Candidates);
 | |
| 
 | |
|     // Collect the pointers of the candidate loads.
 | |
|     // FIXME: SmallSet does not work with std::inserter.
 | |
|     std::set<Value *> CandLoadPtrs;
 | |
|     transform(Candidates,
 | |
|                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
 | |
|                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
 | |
| 
 | |
|     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
 | |
|     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
 | |
| 
 | |
|     std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
 | |
|                  [&](const RuntimePointerChecking::PointerCheck &Check) {
 | |
|                    for (auto PtrIdx1 : Check.first->Members)
 | |
|                      for (auto PtrIdx2 : Check.second->Members)
 | |
|                        if (needsChecking(PtrIdx1, PtrIdx2,
 | |
|                                          PtrsWrittenOnFwdingPath, CandLoadPtrs))
 | |
|                          return true;
 | |
|                    return false;
 | |
|                  });
 | |
| 
 | |
|     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
 | |
|     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
 | |
| 
 | |
|     return Checks;
 | |
|   }
 | |
| 
 | |
|   /// \brief Perform the transformation for a candidate.
 | |
|   void
 | |
|   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
 | |
|                                   SCEVExpander &SEE) {
 | |
|     //
 | |
|     // loop:
 | |
|     //      %x = load %gep_i
 | |
|     //         = ... %x
 | |
|     //      store %y, %gep_i_plus_1
 | |
|     //
 | |
|     // =>
 | |
|     //
 | |
|     // ph:
 | |
|     //      %x.initial = load %gep_0
 | |
|     // loop:
 | |
|     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
 | |
|     //      %x = load %gep_i            <---- now dead
 | |
|     //         = ... %x.storeforward
 | |
|     //      store %y, %gep_i_plus_1
 | |
| 
 | |
|     Value *Ptr = Cand.Load->getPointerOperand();
 | |
|     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
 | |
|     auto *PH = L->getLoopPreheader();
 | |
|     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
 | |
|                                           PH->getTerminator());
 | |
|     Value *Initial =
 | |
|         new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
 | |
|     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
 | |
|                                    &L->getHeader()->front());
 | |
|     PHI->addIncoming(Initial, PH);
 | |
|     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
 | |
| 
 | |
|     Cand.Load->replaceAllUsesWith(PHI);
 | |
|   }
 | |
| 
 | |
|   /// \brief Top-level driver for each loop: find store->load forwarding
 | |
|   /// candidates, add run-time checks and perform transformation.
 | |
|   bool processLoop() {
 | |
|     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
 | |
|                  << "\" checking " << *L << "\n");
 | |
|     // Look for store-to-load forwarding cases across the
 | |
|     // backedge. E.g.:
 | |
|     //
 | |
|     // loop:
 | |
|     //      %x = load %gep_i
 | |
|     //         = ... %x
 | |
|     //      store %y, %gep_i_plus_1
 | |
|     //
 | |
|     // =>
 | |
|     //
 | |
|     // ph:
 | |
|     //      %x.initial = load %gep_0
 | |
|     // loop:
 | |
|     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
 | |
|     //      %x = load %gep_i            <---- now dead
 | |
|     //         = ... %x.storeforward
 | |
|     //      store %y, %gep_i_plus_1
 | |
| 
 | |
|     // First start with store->load dependences.
 | |
|     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
 | |
|     if (StoreToLoadDependences.empty())
 | |
|       return false;
 | |
| 
 | |
|     // Generate an index for each load and store according to the original
 | |
|     // program order.  This will be used later.
 | |
|     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
 | |
| 
 | |
|     // To keep things simple for now, remove those where the load is potentially
 | |
|     // fed by multiple stores.
 | |
|     removeDependencesFromMultipleStores(StoreToLoadDependences);
 | |
|     if (StoreToLoadDependences.empty())
 | |
|       return false;
 | |
| 
 | |
|     // Filter the candidates further.
 | |
|     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
 | |
|     unsigned NumForwarding = 0;
 | |
|     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
 | |
|       DEBUG(dbgs() << "Candidate " << Cand);
 | |
| 
 | |
|       // Make sure that the stored values is available everywhere in the loop in
 | |
|       // the next iteration.
 | |
|       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
 | |
|         continue;
 | |
| 
 | |
|       // If the load is conditional we can't hoist its 0-iteration instance to
 | |
|       // the preheader because that would make it unconditional.  Thus we would
 | |
|       // access a memory location that the original loop did not access.
 | |
|       if (isLoadConditional(Cand.Load, L))
 | |
|         continue;
 | |
| 
 | |
|       // Check whether the SCEV difference is the same as the induction step,
 | |
|       // thus we load the value in the next iteration.
 | |
|       if (!Cand.isDependenceDistanceOfOne(PSE, L))
 | |
|         continue;
 | |
| 
 | |
|       ++NumForwarding;
 | |
|       DEBUG(dbgs()
 | |
|             << NumForwarding
 | |
|             << ". Valid store-to-load forwarding across the loop backedge\n");
 | |
|       Candidates.push_back(Cand);
 | |
|     }
 | |
|     if (Candidates.empty())
 | |
|       return false;
 | |
| 
 | |
|     // Check intervening may-alias stores.  These need runtime checks for alias
 | |
|     // disambiguation.
 | |
|     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
 | |
|         collectMemchecks(Candidates);
 | |
| 
 | |
|     // Too many checks are likely to outweigh the benefits of forwarding.
 | |
|     if (Checks.size() > Candidates.size() * CheckPerElim) {
 | |
|       DEBUG(dbgs() << "Too many run-time checks needed.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (LAI.getPSE().getUnionPredicate().getComplexity() >
 | |
|         LoadElimSCEVCheckThreshold) {
 | |
|       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
 | |
|       if (L->getHeader()->getParent()->optForSize()) {
 | |
|         DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing "
 | |
|                         "for size.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Point of no-return, start the transformation.  First, version the loop
 | |
|       // if necessary.
 | |
| 
 | |
|       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
 | |
|       LV.setAliasChecks(std::move(Checks));
 | |
|       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
 | |
|       LV.versionLoop();
 | |
|     }
 | |
| 
 | |
|     // Next, propagate the value stored by the store to the users of the load.
 | |
|     // Also for the first iteration, generate the initial value of the load.
 | |
|     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
 | |
|                      "storeforward");
 | |
|     for (const auto &Cand : Candidates)
 | |
|       propagateStoredValueToLoadUsers(Cand, SEE);
 | |
|     NumLoopLoadEliminted += NumForwarding;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   Loop *L;
 | |
| 
 | |
|   /// \brief Maps the load/store instructions to their index according to
 | |
|   /// program order.
 | |
|   DenseMap<Instruction *, unsigned> InstOrder;
 | |
| 
 | |
|   // Analyses used.
 | |
|   LoopInfo *LI;
 | |
|   const LoopAccessInfo &LAI;
 | |
|   DominatorTree *DT;
 | |
|   PredicatedScalarEvolution PSE;
 | |
| };
 | |
| 
 | |
| /// \brief The pass.  Most of the work is delegated to the per-loop
 | |
| /// LoadEliminationForLoop class.
 | |
| class LoopLoadElimination : public FunctionPass {
 | |
| public:
 | |
|   LoopLoadElimination() : FunctionPass(ID) {
 | |
|     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipFunction(F))
 | |
|       return false;
 | |
| 
 | |
|     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
 | |
|     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|     // Build up a worklist of inner-loops to vectorize. This is necessary as the
 | |
|     // act of distributing a loop creates new loops and can invalidate iterators
 | |
|     // across the loops.
 | |
|     SmallVector<Loop *, 8> Worklist;
 | |
| 
 | |
|     for (Loop *TopLevelLoop : *LI)
 | |
|       for (Loop *L : depth_first(TopLevelLoop))
 | |
|         // We only handle inner-most loops.
 | |
|         if (L->empty())
 | |
|           Worklist.push_back(L);
 | |
| 
 | |
|     // Now walk the identified inner loops.
 | |
|     bool Changed = false;
 | |
|     for (Loop *L : Worklist) {
 | |
|       const LoopAccessInfo &LAI = LAA->getInfo(L);
 | |
|       // The actual work is performed by LoadEliminationForLoop.
 | |
|       LoadEliminationForLoop LEL(L, LI, LAI, DT);
 | |
|       Changed |= LEL.processLoop();
 | |
|     }
 | |
| 
 | |
|     // Process each loop nest in the function.
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequiredID(LoopSimplifyID);
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addPreserved<LoopInfoWrapperPass>();
 | |
|     AU.addRequired<LoopAccessLegacyAnalysis>();
 | |
|     AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|   }
 | |
| 
 | |
|   static char ID;
 | |
| };
 | |
| }
 | |
| 
 | |
| char LoopLoadElimination::ID;
 | |
| static const char LLE_name[] = "Loop Load Elimination";
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
 | |
| 
 | |
| namespace llvm {
 | |
| FunctionPass *createLoopLoadEliminationPass() {
 | |
|   return new LoopLoadElimination();
 | |
| }
 | |
| }
 |