forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1445 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1445 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs various transformations related to eliminating memcpy
 | |
| // calls, or transforming sets of stores into memset's.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "memcpyopt"
 | |
| 
 | |
| STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
 | |
| STATISTIC(NumMemSetInfer, "Number of memsets inferred");
 | |
| STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
 | |
| STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
 | |
| 
 | |
| static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
 | |
|                                   bool &VariableIdxFound,
 | |
|                                   const DataLayout &DL) {
 | |
|   // Skip over the first indices.
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (unsigned i = 1; i != Idx; ++i, ++GTI)
 | |
|     /*skip along*/;
 | |
| 
 | |
|   // Compute the offset implied by the rest of the indices.
 | |
|   int64_t Offset = 0;
 | |
|   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | |
|     if (!OpC)
 | |
|       return VariableIdxFound = true;
 | |
|     if (OpC->isZero()) continue;  // No offset.
 | |
| 
 | |
|     // Handle struct indices, which add their field offset to the pointer.
 | |
|     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we have a sequential type like an array or vector.  Multiply
 | |
|     // the index by the ElementSize.
 | |
|     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
 | |
|     Offset += Size*OpC->getSExtValue();
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
 | |
| /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
 | |
| /// might be &A[40]. In this case offset would be -8.
 | |
| static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
 | |
|                             const DataLayout &DL) {
 | |
|   Ptr1 = Ptr1->stripPointerCasts();
 | |
|   Ptr2 = Ptr2->stripPointerCasts();
 | |
| 
 | |
|   // Handle the trivial case first.
 | |
|   if (Ptr1 == Ptr2) {
 | |
|     Offset = 0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
 | |
|   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
 | |
| 
 | |
|   bool VariableIdxFound = false;
 | |
| 
 | |
|   // If one pointer is a GEP and the other isn't, then see if the GEP is a
 | |
|   // constant offset from the base, as in "P" and "gep P, 1".
 | |
|   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
 | |
|     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
 | |
|     return !VariableIdxFound;
 | |
|   }
 | |
| 
 | |
|   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
 | |
|     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
 | |
|     return !VariableIdxFound;
 | |
|   }
 | |
| 
 | |
|   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
 | |
|   // base.  After that base, they may have some number of common (and
 | |
|   // potentially variable) indices.  After that they handle some constant
 | |
|   // offset, which determines their offset from each other.  At this point, we
 | |
|   // handle no other case.
 | |
|   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
 | |
|     return false;
 | |
| 
 | |
|   // Skip any common indices and track the GEP types.
 | |
|   unsigned Idx = 1;
 | |
|   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
 | |
|     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
 | |
|       break;
 | |
| 
 | |
|   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
 | |
|   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
 | |
|   if (VariableIdxFound) return false;
 | |
| 
 | |
|   Offset = Offset2-Offset1;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Represents a range of memset'd bytes with the ByteVal value.
 | |
| /// This allows us to analyze stores like:
 | |
| ///   store 0 -> P+1
 | |
| ///   store 0 -> P+0
 | |
| ///   store 0 -> P+3
 | |
| ///   store 0 -> P+2
 | |
| /// which sometimes happens with stores to arrays of structs etc.  When we see
 | |
| /// the first store, we make a range [1, 2).  The second store extends the range
 | |
| /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
 | |
| /// two ranges into [0, 3) which is memset'able.
 | |
| namespace {
 | |
| struct MemsetRange {
 | |
|   // Start/End - A semi range that describes the span that this range covers.
 | |
|   // The range is closed at the start and open at the end: [Start, End).
 | |
|   int64_t Start, End;
 | |
| 
 | |
|   /// StartPtr - The getelementptr instruction that points to the start of the
 | |
|   /// range.
 | |
|   Value *StartPtr;
 | |
| 
 | |
|   /// Alignment - The known alignment of the first store.
 | |
|   unsigned Alignment;
 | |
| 
 | |
|   /// TheStores - The actual stores that make up this range.
 | |
|   SmallVector<Instruction*, 16> TheStores;
 | |
| 
 | |
|   bool isProfitableToUseMemset(const DataLayout &DL) const;
 | |
| };
 | |
| } // end anon namespace
 | |
| 
 | |
| bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
 | |
|   // If we found more than 4 stores to merge or 16 bytes, use memset.
 | |
|   if (TheStores.size() >= 4 || End-Start >= 16) return true;
 | |
| 
 | |
|   // If there is nothing to merge, don't do anything.
 | |
|   if (TheStores.size() < 2) return false;
 | |
| 
 | |
|   // If any of the stores are a memset, then it is always good to extend the
 | |
|   // memset.
 | |
|   for (Instruction *SI : TheStores)
 | |
|     if (!isa<StoreInst>(SI))
 | |
|       return true;
 | |
| 
 | |
|   // Assume that the code generator is capable of merging pairs of stores
 | |
|   // together if it wants to.
 | |
|   if (TheStores.size() == 2) return false;
 | |
| 
 | |
|   // If we have fewer than 8 stores, it can still be worthwhile to do this.
 | |
|   // For example, merging 4 i8 stores into an i32 store is useful almost always.
 | |
|   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
 | |
|   // memset will be split into 2 32-bit stores anyway) and doing so can
 | |
|   // pessimize the llvm optimizer.
 | |
|   //
 | |
|   // Since we don't have perfect knowledge here, make some assumptions: assume
 | |
|   // the maximum GPR width is the same size as the largest legal integer
 | |
|   // size. If so, check to see whether we will end up actually reducing the
 | |
|   // number of stores used.
 | |
|   unsigned Bytes = unsigned(End-Start);
 | |
|   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
 | |
|   if (MaxIntSize == 0)
 | |
|     MaxIntSize = 1;
 | |
|   unsigned NumPointerStores = Bytes / MaxIntSize;
 | |
| 
 | |
|   // Assume the remaining bytes if any are done a byte at a time.
 | |
|   unsigned NumByteStores = Bytes % MaxIntSize;
 | |
| 
 | |
|   // If we will reduce the # stores (according to this heuristic), do the
 | |
|   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
 | |
|   // etc.
 | |
|   return TheStores.size() > NumPointerStores+NumByteStores;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| class MemsetRanges {
 | |
|   /// A sorted list of the memset ranges.
 | |
|   SmallVector<MemsetRange, 8> Ranges;
 | |
|   typedef SmallVectorImpl<MemsetRange>::iterator range_iterator;
 | |
|   const DataLayout &DL;
 | |
| public:
 | |
|   MemsetRanges(const DataLayout &DL) : DL(DL) {}
 | |
| 
 | |
|   typedef SmallVectorImpl<MemsetRange>::const_iterator const_iterator;
 | |
|   const_iterator begin() const { return Ranges.begin(); }
 | |
|   const_iterator end() const { return Ranges.end(); }
 | |
|   bool empty() const { return Ranges.empty(); }
 | |
| 
 | |
|   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|       addStore(OffsetFromFirst, SI);
 | |
|     else
 | |
|       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
 | |
|   }
 | |
| 
 | |
|   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
 | |
|     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
 | |
| 
 | |
|     addRange(OffsetFromFirst, StoreSize,
 | |
|              SI->getPointerOperand(), SI->getAlignment(), SI);
 | |
|   }
 | |
| 
 | |
|   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
 | |
|     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | |
|     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
 | |
|   }
 | |
| 
 | |
|   void addRange(int64_t Start, int64_t Size, Value *Ptr,
 | |
|                 unsigned Alignment, Instruction *Inst);
 | |
| 
 | |
| };
 | |
| 
 | |
| } // end anon namespace
 | |
| 
 | |
| 
 | |
| /// Add a new store to the MemsetRanges data structure.  This adds a
 | |
| /// new range for the specified store at the specified offset, merging into
 | |
| /// existing ranges as appropriate.
 | |
| void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
 | |
|                             unsigned Alignment, Instruction *Inst) {
 | |
|   int64_t End = Start+Size;
 | |
| 
 | |
|   range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
 | |
|     [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
 | |
| 
 | |
|   // We now know that I == E, in which case we didn't find anything to merge
 | |
|   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
 | |
|   // to insert a new range.  Handle this now.
 | |
|   if (I == Ranges.end() || End < I->Start) {
 | |
|     MemsetRange &R = *Ranges.insert(I, MemsetRange());
 | |
|     R.Start        = Start;
 | |
|     R.End          = End;
 | |
|     R.StartPtr     = Ptr;
 | |
|     R.Alignment    = Alignment;
 | |
|     R.TheStores.push_back(Inst);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // This store overlaps with I, add it.
 | |
|   I->TheStores.push_back(Inst);
 | |
| 
 | |
|   // At this point, we may have an interval that completely contains our store.
 | |
|   // If so, just add it to the interval and return.
 | |
|   if (I->Start <= Start && I->End >= End)
 | |
|     return;
 | |
| 
 | |
|   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
 | |
|   // but is not entirely contained within the range.
 | |
| 
 | |
|   // See if the range extends the start of the range.  In this case, it couldn't
 | |
|   // possibly cause it to join the prior range, because otherwise we would have
 | |
|   // stopped on *it*.
 | |
|   if (Start < I->Start) {
 | |
|     I->Start = Start;
 | |
|     I->StartPtr = Ptr;
 | |
|     I->Alignment = Alignment;
 | |
|   }
 | |
| 
 | |
|   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
 | |
|   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
 | |
|   // End.
 | |
|   if (End > I->End) {
 | |
|     I->End = End;
 | |
|     range_iterator NextI = I;
 | |
|     while (++NextI != Ranges.end() && End >= NextI->Start) {
 | |
|       // Merge the range in.
 | |
|       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
 | |
|       if (NextI->End > I->End)
 | |
|         I->End = NextI->End;
 | |
|       Ranges.erase(NextI);
 | |
|       NextI = I;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         MemCpyOptLegacyPass Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   class MemCpyOptLegacyPass : public FunctionPass {
 | |
|     MemCpyOptPass Impl;
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     MemCpyOptLegacyPass() : FunctionPass(ID) {
 | |
|       initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   private:
 | |
|     // This transformation requires dominator postdominator info
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<AssumptionCacheTracker>();
 | |
|       AU.addRequired<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<MemoryDependenceWrapperPass>();
 | |
|       AU.addRequired<AAResultsWrapperPass>();
 | |
|       AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|       AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|       AU.addPreserved<MemoryDependenceWrapperPass>();
 | |
|     }
 | |
| 
 | |
|     // Helper functions
 | |
|     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
 | |
|     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
 | |
|     bool processMemCpy(MemCpyInst *M);
 | |
|     bool processMemMove(MemMoveInst *M);
 | |
|     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
 | |
|                               uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
 | |
|     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep);
 | |
|     bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep);
 | |
|     bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep);
 | |
|     bool processByValArgument(CallSite CS, unsigned ArgNo);
 | |
|     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
 | |
|                                       Value *ByteVal);
 | |
| 
 | |
|     bool iterateOnFunction(Function &F);
 | |
|   };
 | |
| 
 | |
|   char MemCpyOptLegacyPass::ID = 0;
 | |
| }
 | |
| 
 | |
| /// The public interface to this file...
 | |
| FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
| INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
 | |
|                     false, false)
 | |
| 
 | |
| /// When scanning forward over instructions, we look for some other patterns to
 | |
| /// fold away. In particular, this looks for stores to neighboring locations of
 | |
| /// memory. If it sees enough consecutive ones, it attempts to merge them
 | |
| /// together into a memcpy/memset.
 | |
| Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
 | |
|                                                  Value *StartPtr,
 | |
|                                                  Value *ByteVal) {
 | |
|   const DataLayout &DL = StartInst->getModule()->getDataLayout();
 | |
| 
 | |
|   // Okay, so we now have a single store that can be splatable.  Scan to find
 | |
|   // all subsequent stores of the same value to offset from the same pointer.
 | |
|   // Join these together into ranges, so we can decide whether contiguous blocks
 | |
|   // are stored.
 | |
|   MemsetRanges Ranges(DL);
 | |
| 
 | |
|   BasicBlock::iterator BI(StartInst);
 | |
|   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
 | |
|     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
 | |
|       // If the instruction is readnone, ignore it, otherwise bail out.  We
 | |
|       // don't even allow readonly here because we don't want something like:
 | |
|       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
 | |
|       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
 | |
|         break;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
 | |
|       // If this is a store, see if we can merge it in.
 | |
|       if (!NextStore->isSimple()) break;
 | |
| 
 | |
|       // Check to see if this stored value is of the same byte-splattable value.
 | |
|       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
 | |
|         break;
 | |
| 
 | |
|       // Check to see if this store is to a constant offset from the start ptr.
 | |
|       int64_t Offset;
 | |
|       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
 | |
|                            DL))
 | |
|         break;
 | |
| 
 | |
|       Ranges.addStore(Offset, NextStore);
 | |
|     } else {
 | |
|       MemSetInst *MSI = cast<MemSetInst>(BI);
 | |
| 
 | |
|       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
 | |
|           !isa<ConstantInt>(MSI->getLength()))
 | |
|         break;
 | |
| 
 | |
|       // Check to see if this store is to a constant offset from the start ptr.
 | |
|       int64_t Offset;
 | |
|       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
 | |
|         break;
 | |
| 
 | |
|       Ranges.addMemSet(Offset, MSI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have no ranges, then we just had a single store with nothing that
 | |
|   // could be merged in.  This is a very common case of course.
 | |
|   if (Ranges.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we had at least one store that could be merged in, add the starting
 | |
|   // store as well.  We try to avoid this unless there is at least something
 | |
|   // interesting as a small compile-time optimization.
 | |
|   Ranges.addInst(0, StartInst);
 | |
| 
 | |
|   // If we create any memsets, we put it right before the first instruction that
 | |
|   // isn't part of the memset block.  This ensure that the memset is dominated
 | |
|   // by any addressing instruction needed by the start of the block.
 | |
|   IRBuilder<> Builder(&*BI);
 | |
| 
 | |
|   // Now that we have full information about ranges, loop over the ranges and
 | |
|   // emit memset's for anything big enough to be worthwhile.
 | |
|   Instruction *AMemSet = nullptr;
 | |
|   for (const MemsetRange &Range : Ranges) {
 | |
| 
 | |
|     if (Range.TheStores.size() == 1) continue;
 | |
| 
 | |
|     // If it is profitable to lower this range to memset, do so now.
 | |
|     if (!Range.isProfitableToUseMemset(DL))
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, we do want to transform this!  Create a new memset.
 | |
|     // Get the starting pointer of the block.
 | |
|     StartPtr = Range.StartPtr;
 | |
| 
 | |
|     // Determine alignment
 | |
|     unsigned Alignment = Range.Alignment;
 | |
|     if (Alignment == 0) {
 | |
|       Type *EltType =
 | |
|         cast<PointerType>(StartPtr->getType())->getElementType();
 | |
|       Alignment = DL.getABITypeAlignment(EltType);
 | |
|     }
 | |
| 
 | |
|     AMemSet =
 | |
|       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
 | |
| 
 | |
|     DEBUG(dbgs() << "Replace stores:\n";
 | |
|           for (Instruction *SI : Range.TheStores)
 | |
|             dbgs() << *SI << '\n';
 | |
|           dbgs() << "With: " << *AMemSet << '\n');
 | |
| 
 | |
|     if (!Range.TheStores.empty())
 | |
|       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
 | |
| 
 | |
|     // Zap all the stores.
 | |
|     for (Instruction *SI : Range.TheStores) {
 | |
|       MD->removeInstruction(SI);
 | |
|       SI->eraseFromParent();
 | |
|     }
 | |
|     ++NumMemSetInfer;
 | |
|   }
 | |
| 
 | |
|   return AMemSet;
 | |
| }
 | |
| 
 | |
| static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
 | |
|                                      const LoadInst *LI) {
 | |
|   unsigned StoreAlign = SI->getAlignment();
 | |
|   if (!StoreAlign)
 | |
|     StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
 | |
|   unsigned LoadAlign = LI->getAlignment();
 | |
|   if (!LoadAlign)
 | |
|     LoadAlign = DL.getABITypeAlignment(LI->getType());
 | |
| 
 | |
|   return std::min(StoreAlign, LoadAlign);
 | |
| }
 | |
| 
 | |
| // This method try to lift a store instruction before position P.
 | |
| // It will lift the store and its argument + that anything that
 | |
| // may alias with these.
 | |
| // The method returns true if it was successful.
 | |
| static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P) {
 | |
|   // If the store alias this position, early bail out.
 | |
|   MemoryLocation StoreLoc = MemoryLocation::get(SI);
 | |
|   if (AA.getModRefInfo(P, StoreLoc) != MRI_NoModRef)
 | |
|     return false;
 | |
| 
 | |
|   // Keep track of the arguments of all instruction we plan to lift
 | |
|   // so we can make sure to lift them as well if apropriate.
 | |
|   DenseSet<Instruction*> Args;
 | |
|   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
 | |
|     if (Ptr->getParent() == SI->getParent())
 | |
|       Args.insert(Ptr);
 | |
| 
 | |
|   // Instruction to lift before P.
 | |
|   SmallVector<Instruction*, 8> ToLift;
 | |
| 
 | |
|   // Memory locations of lifted instructions.
 | |
|   SmallVector<MemoryLocation, 8> MemLocs;
 | |
|   MemLocs.push_back(StoreLoc);
 | |
| 
 | |
|   // Lifted callsites.
 | |
|   SmallVector<ImmutableCallSite, 8> CallSites;
 | |
| 
 | |
|   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
 | |
|     auto *C = &*I;
 | |
| 
 | |
|     bool MayAlias = AA.getModRefInfo(C) != MRI_NoModRef;
 | |
| 
 | |
|     bool NeedLift = false;
 | |
|     if (Args.erase(C))
 | |
|       NeedLift = true;
 | |
|     else if (MayAlias) {
 | |
|       NeedLift = any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
 | |
|         return AA.getModRefInfo(C, ML);
 | |
|       });
 | |
| 
 | |
|       if (!NeedLift)
 | |
|         NeedLift = any_of(CallSites, [C, &AA](const ImmutableCallSite &CS) {
 | |
|           return AA.getModRefInfo(C, CS);
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     if (!NeedLift)
 | |
|       continue;
 | |
| 
 | |
|     if (MayAlias) {
 | |
|       if (auto CS = ImmutableCallSite(C)) {
 | |
|         // If we can't lift this before P, it's game over.
 | |
|         if (AA.getModRefInfo(P, CS) != MRI_NoModRef)
 | |
|           return false;
 | |
| 
 | |
|         CallSites.push_back(CS);
 | |
|       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
 | |
|         // If we can't lift this before P, it's game over.
 | |
|         auto ML = MemoryLocation::get(C);
 | |
|         if (AA.getModRefInfo(P, ML) != MRI_NoModRef)
 | |
|           return false;
 | |
| 
 | |
|         MemLocs.push_back(ML);
 | |
|       } else
 | |
|         // We don't know how to lift this instruction.
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     ToLift.push_back(C);
 | |
|     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
 | |
|       if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
 | |
|         if (A->getParent() == SI->getParent())
 | |
|           Args.insert(A);
 | |
|   }
 | |
| 
 | |
|   // We made it, we need to lift
 | |
|   for (auto *I : reverse(ToLift)) {
 | |
|     DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
 | |
|     I->moveBefore(P);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
 | |
|   if (!SI->isSimple()) return false;
 | |
| 
 | |
|   // Avoid merging nontemporal stores since the resulting
 | |
|   // memcpy/memset would not be able to preserve the nontemporal hint.
 | |
|   // In theory we could teach how to propagate the !nontemporal metadata to
 | |
|   // memset calls. However, that change would force the backend to
 | |
|   // conservatively expand !nontemporal memset calls back to sequences of
 | |
|   // store instructions (effectively undoing the merging).
 | |
|   if (SI->getMetadata(LLVMContext::MD_nontemporal))
 | |
|     return false;
 | |
| 
 | |
|   const DataLayout &DL = SI->getModule()->getDataLayout();
 | |
| 
 | |
|   // Load to store forwarding can be interpreted as memcpy.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
 | |
|     if (LI->isSimple() && LI->hasOneUse() &&
 | |
|         LI->getParent() == SI->getParent()) {
 | |
| 
 | |
|       auto *T = LI->getType();
 | |
|       if (T->isAggregateType()) {
 | |
|         AliasAnalysis &AA = LookupAliasAnalysis();
 | |
|         MemoryLocation LoadLoc = MemoryLocation::get(LI);
 | |
| 
 | |
|         // We use alias analysis to check if an instruction may store to
 | |
|         // the memory we load from in between the load and the store. If
 | |
|         // such an instruction is found, we try to promote there instead
 | |
|         // of at the store position.
 | |
|         Instruction *P = SI;
 | |
|         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
 | |
|           if (AA.getModRefInfo(&I, LoadLoc) & MRI_Mod) {
 | |
|             P = &I;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // We found an instruction that may write to the loaded memory.
 | |
|         // We can try to promote at this position instead of the store
 | |
|         // position if nothing alias the store memory after this and the store
 | |
|         // destination is not in the range.
 | |
|         if (P && P != SI) {
 | |
|           if (!moveUp(AA, SI, P))
 | |
|             P = nullptr;
 | |
|         }
 | |
| 
 | |
|         // If a valid insertion position is found, then we can promote
 | |
|         // the load/store pair to a memcpy.
 | |
|         if (P) {
 | |
|           // If we load from memory that may alias the memory we store to,
 | |
|           // memmove must be used to preserve semantic. If not, memcpy can
 | |
|           // be used.
 | |
|           bool UseMemMove = false;
 | |
|           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
 | |
|             UseMemMove = true;
 | |
| 
 | |
|           unsigned Align = findCommonAlignment(DL, SI, LI);
 | |
|           uint64_t Size = DL.getTypeStoreSize(T);
 | |
| 
 | |
|           IRBuilder<> Builder(P);
 | |
|           Instruction *M;
 | |
|           if (UseMemMove)
 | |
|             M = Builder.CreateMemMove(SI->getPointerOperand(),
 | |
|                                       LI->getPointerOperand(), Size,
 | |
|                                       Align, SI->isVolatile());
 | |
|           else
 | |
|             M = Builder.CreateMemCpy(SI->getPointerOperand(),
 | |
|                                      LI->getPointerOperand(), Size,
 | |
|                                      Align, SI->isVolatile());
 | |
| 
 | |
|           DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI
 | |
|                        << " => " << *M << "\n");
 | |
| 
 | |
|           MD->removeInstruction(SI);
 | |
|           SI->eraseFromParent();
 | |
|           MD->removeInstruction(LI);
 | |
|           LI->eraseFromParent();
 | |
|           ++NumMemCpyInstr;
 | |
| 
 | |
|           // Make sure we do not invalidate the iterator.
 | |
|           BBI = M->getIterator();
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Detect cases where we're performing call slot forwarding, but
 | |
|       // happen to be using a load-store pair to implement it, rather than
 | |
|       // a memcpy.
 | |
|       MemDepResult ldep = MD->getDependency(LI);
 | |
|       CallInst *C = nullptr;
 | |
|       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
 | |
|         C = dyn_cast<CallInst>(ldep.getInst());
 | |
| 
 | |
|       if (C) {
 | |
|         // Check that nothing touches the dest of the "copy" between
 | |
|         // the call and the store.
 | |
|         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
 | |
|         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
 | |
|         AliasAnalysis &AA = LookupAliasAnalysis();
 | |
|         MemoryLocation StoreLoc = MemoryLocation::get(SI);
 | |
|         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
 | |
|              I != E; --I) {
 | |
|           if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) {
 | |
|             C = nullptr;
 | |
|             break;
 | |
|           }
 | |
|           // The store to dest may never happen if an exception can be thrown
 | |
|           // between the load and the store.
 | |
|           if (I->mayThrow() && !CpyDestIsLocal) {
 | |
|             C = nullptr;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (C) {
 | |
|         bool changed = performCallSlotOptzn(
 | |
|             LI, SI->getPointerOperand()->stripPointerCasts(),
 | |
|             LI->getPointerOperand()->stripPointerCasts(),
 | |
|             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
 | |
|             findCommonAlignment(DL, SI, LI), C);
 | |
|         if (changed) {
 | |
|           MD->removeInstruction(SI);
 | |
|           SI->eraseFromParent();
 | |
|           MD->removeInstruction(LI);
 | |
|           LI->eraseFromParent();
 | |
|           ++NumMemCpyInstr;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // There are two cases that are interesting for this code to handle: memcpy
 | |
|   // and memset.  Right now we only handle memset.
 | |
| 
 | |
|   // Ensure that the value being stored is something that can be memset'able a
 | |
|   // byte at a time like "0" or "-1" or any width, as well as things like
 | |
|   // 0xA0A0A0A0 and 0.0.
 | |
|   auto *V = SI->getOperand(0);
 | |
|   if (Value *ByteVal = isBytewiseValue(V)) {
 | |
|     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
 | |
|                                               ByteVal)) {
 | |
|       BBI = I->getIterator(); // Don't invalidate iterator.
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If we have an aggregate, we try to promote it to memset regardless
 | |
|     // of opportunity for merging as it can expose optimization opportunities
 | |
|     // in subsequent passes.
 | |
|     auto *T = V->getType();
 | |
|     if (T->isAggregateType()) {
 | |
|       uint64_t Size = DL.getTypeStoreSize(T);
 | |
|       unsigned Align = SI->getAlignment();
 | |
|       if (!Align)
 | |
|         Align = DL.getABITypeAlignment(T);
 | |
|       IRBuilder<> Builder(SI);
 | |
|       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal,
 | |
|                                      Size, Align, SI->isVolatile());
 | |
| 
 | |
|       DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
 | |
| 
 | |
|       MD->removeInstruction(SI);
 | |
|       SI->eraseFromParent();
 | |
|       NumMemSetInfer++;
 | |
| 
 | |
|       // Make sure we do not invalidate the iterator.
 | |
|       BBI = M->getIterator();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
 | |
|   // See if there is another memset or store neighboring this memset which
 | |
|   // allows us to widen out the memset to do a single larger store.
 | |
|   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
 | |
|     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
 | |
|                                               MSI->getValue())) {
 | |
|       BBI = I->getIterator(); // Don't invalidate iterator.
 | |
|       return true;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Takes a memcpy and a call that it depends on,
 | |
| /// and checks for the possibility of a call slot optimization by having
 | |
| /// the call write its result directly into the destination of the memcpy.
 | |
| bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
 | |
|                                          Value *cpySrc, uint64_t cpyLen,
 | |
|                                          unsigned cpyAlign, CallInst *C) {
 | |
|   // The general transformation to keep in mind is
 | |
|   //
 | |
|   //   call @func(..., src, ...)
 | |
|   //   memcpy(dest, src, ...)
 | |
|   //
 | |
|   // ->
 | |
|   //
 | |
|   //   memcpy(dest, src, ...)
 | |
|   //   call @func(..., dest, ...)
 | |
|   //
 | |
|   // Since moving the memcpy is technically awkward, we additionally check that
 | |
|   // src only holds uninitialized values at the moment of the call, meaning that
 | |
|   // the memcpy can be discarded rather than moved.
 | |
| 
 | |
|   // Lifetime marks shouldn't be operated on.
 | |
|   if (Function *F = C->getCalledFunction())
 | |
|     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
 | |
|       return false;
 | |
| 
 | |
|   // Deliberately get the source and destination with bitcasts stripped away,
 | |
|   // because we'll need to do type comparisons based on the underlying type.
 | |
|   CallSite CS(C);
 | |
| 
 | |
|   // Require that src be an alloca.  This simplifies the reasoning considerably.
 | |
|   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
 | |
|   if (!srcAlloca)
 | |
|     return false;
 | |
| 
 | |
|   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
 | |
|   if (!srcArraySize)
 | |
|     return false;
 | |
| 
 | |
|   const DataLayout &DL = cpy->getModule()->getDataLayout();
 | |
|   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
 | |
|                      srcArraySize->getZExtValue();
 | |
| 
 | |
|   if (cpyLen < srcSize)
 | |
|     return false;
 | |
| 
 | |
|   // Check that accessing the first srcSize bytes of dest will not cause a
 | |
|   // trap.  Otherwise the transform is invalid since it might cause a trap
 | |
|   // to occur earlier than it otherwise would.
 | |
|   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
 | |
|     // The destination is an alloca.  Check it is larger than srcSize.
 | |
|     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
 | |
|     if (!destArraySize)
 | |
|       return false;
 | |
| 
 | |
|     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
 | |
|                         destArraySize->getZExtValue();
 | |
| 
 | |
|     if (destSize < srcSize)
 | |
|       return false;
 | |
|   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
 | |
|     // The store to dest may never happen if the call can throw.
 | |
|     if (C->mayThrow())
 | |
|       return false;
 | |
| 
 | |
|     if (A->getDereferenceableBytes() < srcSize) {
 | |
|       // If the destination is an sret parameter then only accesses that are
 | |
|       // outside of the returned struct type can trap.
 | |
|       if (!A->hasStructRetAttr())
 | |
|         return false;
 | |
| 
 | |
|       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
 | |
|       if (!StructTy->isSized()) {
 | |
|         // The call may never return and hence the copy-instruction may never
 | |
|         // be executed, and therefore it's not safe to say "the destination
 | |
|         // has at least <cpyLen> bytes, as implied by the copy-instruction",
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       uint64_t destSize = DL.getTypeAllocSize(StructTy);
 | |
|       if (destSize < srcSize)
 | |
|         return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check that dest points to memory that is at least as aligned as src.
 | |
|   unsigned srcAlign = srcAlloca->getAlignment();
 | |
|   if (!srcAlign)
 | |
|     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
 | |
|   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
 | |
|   // If dest is not aligned enough and we can't increase its alignment then
 | |
|   // bail out.
 | |
|   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
 | |
|     return false;
 | |
| 
 | |
|   // Check that src is not accessed except via the call and the memcpy.  This
 | |
|   // guarantees that it holds only undefined values when passed in (so the final
 | |
|   // memcpy can be dropped), that it is not read or written between the call and
 | |
|   // the memcpy, and that writing beyond the end of it is undefined.
 | |
|   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
 | |
|                                    srcAlloca->user_end());
 | |
|   while (!srcUseList.empty()) {
 | |
|     User *U = srcUseList.pop_back_val();
 | |
| 
 | |
|     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
 | |
|       for (User *UU : U->users())
 | |
|         srcUseList.push_back(UU);
 | |
|       continue;
 | |
|     }
 | |
|     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       if (!G->hasAllZeroIndices())
 | |
|         return false;
 | |
| 
 | |
|       for (User *UU : U->users())
 | |
|         srcUseList.push_back(UU);
 | |
|       continue;
 | |
|     }
 | |
|     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
 | |
|       if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|           IT->getIntrinsicID() == Intrinsic::lifetime_end)
 | |
|         continue;
 | |
| 
 | |
|     if (U != C && U != cpy)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check that src isn't captured by the called function since the
 | |
|   // transformation can cause aliasing issues in that case.
 | |
|   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
 | |
|     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
 | |
|       return false;
 | |
| 
 | |
|   // Since we're changing the parameter to the callsite, we need to make sure
 | |
|   // that what would be the new parameter dominates the callsite.
 | |
|   DominatorTree &DT = LookupDomTree();
 | |
|   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
 | |
|     if (!DT.dominates(cpyDestInst, C))
 | |
|       return false;
 | |
| 
 | |
|   // In addition to knowing that the call does not access src in some
 | |
|   // unexpected manner, for example via a global, which we deduce from
 | |
|   // the use analysis, we also need to know that it does not sneakily
 | |
|   // access dest.  We rely on AA to figure this out for us.
 | |
|   AliasAnalysis &AA = LookupAliasAnalysis();
 | |
|   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
 | |
|   // If necessary, perform additional analysis.
 | |
|   if (MR != MRI_NoModRef)
 | |
|     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
 | |
|   if (MR != MRI_NoModRef)
 | |
|     return false;
 | |
| 
 | |
|   // All the checks have passed, so do the transformation.
 | |
|   bool changedArgument = false;
 | |
|   for (unsigned i = 0; i < CS.arg_size(); ++i)
 | |
|     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
 | |
|       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
 | |
|         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
 | |
|                                       cpyDest->getName(), C);
 | |
|       changedArgument = true;
 | |
|       if (CS.getArgument(i)->getType() == Dest->getType())
 | |
|         CS.setArgument(i, Dest);
 | |
|       else
 | |
|         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
 | |
|                           CS.getArgument(i)->getType(), Dest->getName(), C));
 | |
|     }
 | |
| 
 | |
|   if (!changedArgument)
 | |
|     return false;
 | |
| 
 | |
|   // If the destination wasn't sufficiently aligned then increase its alignment.
 | |
|   if (!isDestSufficientlyAligned) {
 | |
|     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
 | |
|     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
 | |
|   }
 | |
| 
 | |
|   // Drop any cached information about the call, because we may have changed
 | |
|   // its dependence information by changing its parameter.
 | |
|   MD->removeInstruction(C);
 | |
| 
 | |
|   // Update AA metadata
 | |
|   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
 | |
|   // handled here, but combineMetadata doesn't support them yet
 | |
|   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
 | |
|                          LLVMContext::MD_noalias,
 | |
|                          LLVMContext::MD_invariant_group};
 | |
|   combineMetadata(C, cpy, KnownIDs);
 | |
| 
 | |
|   // Remove the memcpy.
 | |
|   MD->removeInstruction(cpy);
 | |
|   ++NumMemCpyInstr;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
 | |
| /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
 | |
| bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
 | |
|                                                   MemCpyInst *MDep) {
 | |
|   // We can only transforms memcpy's where the dest of one is the source of the
 | |
|   // other.
 | |
|   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
 | |
|     return false;
 | |
| 
 | |
|   // If dep instruction is reading from our current input, then it is a noop
 | |
|   // transfer and substituting the input won't change this instruction.  Just
 | |
|   // ignore the input and let someone else zap MDep.  This handles cases like:
 | |
|   //    memcpy(a <- a)
 | |
|   //    memcpy(b <- a)
 | |
|   if (M->getSource() == MDep->getSource())
 | |
|     return false;
 | |
| 
 | |
|   // Second, the length of the memcpy's must be the same, or the preceding one
 | |
|   // must be larger than the following one.
 | |
|   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
 | |
|   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
 | |
|   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
 | |
|     return false;
 | |
| 
 | |
|   AliasAnalysis &AA = LookupAliasAnalysis();
 | |
| 
 | |
|   // Verify that the copied-from memory doesn't change in between the two
 | |
|   // transfers.  For example, in:
 | |
|   //    memcpy(a <- b)
 | |
|   //    *b = 42;
 | |
|   //    memcpy(c <- a)
 | |
|   // It would be invalid to transform the second memcpy into memcpy(c <- b).
 | |
|   //
 | |
|   // TODO: If the code between M and MDep is transparent to the destination "c",
 | |
|   // then we could still perform the xform by moving M up to the first memcpy.
 | |
|   //
 | |
|   // NOTE: This is conservative, it will stop on any read from the source loc,
 | |
|   // not just the defining memcpy.
 | |
|   MemDepResult SourceDep =
 | |
|       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
 | |
|                                    M->getIterator(), M->getParent());
 | |
|   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | |
|     return false;
 | |
| 
 | |
|   // If the dest of the second might alias the source of the first, then the
 | |
|   // source and dest might overlap.  We still want to eliminate the intermediate
 | |
|   // value, but we have to generate a memmove instead of memcpy.
 | |
|   bool UseMemMove = false;
 | |
|   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
 | |
|                     MemoryLocation::getForSource(MDep)))
 | |
|     UseMemMove = true;
 | |
| 
 | |
|   // If all checks passed, then we can transform M.
 | |
| 
 | |
|   // Make sure to use the lesser of the alignment of the source and the dest
 | |
|   // since we're changing where we're reading from, but don't want to increase
 | |
|   // the alignment past what can be read from or written to.
 | |
|   // TODO: Is this worth it if we're creating a less aligned memcpy? For
 | |
|   // example we could be moving from movaps -> movq on x86.
 | |
|   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
 | |
| 
 | |
|   IRBuilder<> Builder(M);
 | |
|   if (UseMemMove)
 | |
|     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
 | |
|                           Align, M->isVolatile());
 | |
|   else
 | |
|     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
 | |
|                          Align, M->isVolatile());
 | |
| 
 | |
|   // Remove the instruction we're replacing.
 | |
|   MD->removeInstruction(M);
 | |
|   M->eraseFromParent();
 | |
|   ++NumMemCpyInstr;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// We've found that the (upward scanning) memory dependence of \p MemCpy is
 | |
| /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
 | |
| /// weren't copied over by \p MemCpy.
 | |
| ///
 | |
| /// In other words, transform:
 | |
| /// \code
 | |
| ///   memset(dst, c, dst_size);
 | |
| ///   memcpy(dst, src, src_size);
 | |
| /// \endcode
 | |
| /// into:
 | |
| /// \code
 | |
| ///   memcpy(dst, src, src_size);
 | |
| ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
 | |
| /// \endcode
 | |
| bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
 | |
|                                                   MemSetInst *MemSet) {
 | |
|   // We can only transform memset/memcpy with the same destination.
 | |
|   if (MemSet->getDest() != MemCpy->getDest())
 | |
|     return false;
 | |
| 
 | |
|   // Check that there are no other dependencies on the memset destination.
 | |
|   MemDepResult DstDepInfo =
 | |
|       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
 | |
|                                    MemCpy->getIterator(), MemCpy->getParent());
 | |
|   if (DstDepInfo.getInst() != MemSet)
 | |
|     return false;
 | |
| 
 | |
|   // Use the same i8* dest as the memcpy, killing the memset dest if different.
 | |
|   Value *Dest = MemCpy->getRawDest();
 | |
|   Value *DestSize = MemSet->getLength();
 | |
|   Value *SrcSize = MemCpy->getLength();
 | |
| 
 | |
|   // By default, create an unaligned memset.
 | |
|   unsigned Align = 1;
 | |
|   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
 | |
|   // of the sum.
 | |
|   const unsigned DestAlign =
 | |
|       std::max(MemSet->getAlignment(), MemCpy->getAlignment());
 | |
|   if (DestAlign > 1)
 | |
|     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
 | |
|       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
 | |
| 
 | |
|   IRBuilder<> Builder(MemCpy);
 | |
| 
 | |
|   // If the sizes have different types, zext the smaller one.
 | |
|   if (DestSize->getType() != SrcSize->getType()) {
 | |
|     if (DestSize->getType()->getIntegerBitWidth() >
 | |
|         SrcSize->getType()->getIntegerBitWidth())
 | |
|       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
 | |
|     else
 | |
|       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
 | |
|   }
 | |
| 
 | |
|   Value *MemsetLen =
 | |
|       Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize),
 | |
|                            ConstantInt::getNullValue(DestSize->getType()),
 | |
|                            Builder.CreateSub(DestSize, SrcSize));
 | |
|   Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
 | |
|                        MemsetLen, Align);
 | |
| 
 | |
|   MD->removeInstruction(MemSet);
 | |
|   MemSet->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Transform memcpy to memset when its source was just memset.
 | |
| /// In other words, turn:
 | |
| /// \code
 | |
| ///   memset(dst1, c, dst1_size);
 | |
| ///   memcpy(dst2, dst1, dst2_size);
 | |
| /// \endcode
 | |
| /// into:
 | |
| /// \code
 | |
| ///   memset(dst1, c, dst1_size);
 | |
| ///   memset(dst2, c, dst2_size);
 | |
| /// \endcode
 | |
| /// When dst2_size <= dst1_size.
 | |
| ///
 | |
| /// The \p MemCpy must have a Constant length.
 | |
| bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
 | |
|                                                MemSetInst *MemSet) {
 | |
|   AliasAnalysis &AA = LookupAliasAnalysis();
 | |
| 
 | |
|   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
 | |
|   // memcpying from the same address. Otherwise it is hard to reason about.
 | |
|   if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
 | |
|     return false;
 | |
| 
 | |
|   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
 | |
|   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
 | |
|   // Make sure the memcpy doesn't read any more than what the memset wrote.
 | |
|   // Don't worry about sizes larger than i64.
 | |
|   if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
 | |
|     return false;
 | |
| 
 | |
|   IRBuilder<> Builder(MemCpy);
 | |
|   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
 | |
|                        CopySize, MemCpy->getAlignment());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Perform simplification of memcpy's.  If we have memcpy A
 | |
| /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
 | |
| /// B to be a memcpy from X to Z (or potentially a memmove, depending on
 | |
| /// circumstances). This allows later passes to remove the first memcpy
 | |
| /// altogether.
 | |
| bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
 | |
|   // We can only optimize non-volatile memcpy's.
 | |
|   if (M->isVolatile()) return false;
 | |
| 
 | |
|   // If the source and destination of the memcpy are the same, then zap it.
 | |
|   if (M->getSource() == M->getDest()) {
 | |
|     MD->removeInstruction(M);
 | |
|     M->eraseFromParent();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If copying from a constant, try to turn the memcpy into a memset.
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
 | |
|     if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | |
|       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
 | |
|         IRBuilder<> Builder(M);
 | |
|         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
 | |
|                              M->getAlignment(), false);
 | |
|         MD->removeInstruction(M);
 | |
|         M->eraseFromParent();
 | |
|         ++NumCpyToSet;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|   MemDepResult DepInfo = MD->getDependency(M);
 | |
| 
 | |
|   // Try to turn a partially redundant memset + memcpy into
 | |
|   // memcpy + smaller memset.  We don't need the memcpy size for this.
 | |
|   if (DepInfo.isClobber())
 | |
|     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
 | |
|       if (processMemSetMemCpyDependence(M, MDep))
 | |
|         return true;
 | |
| 
 | |
|   // The optimizations after this point require the memcpy size.
 | |
|   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
 | |
|   if (!CopySize) return false;
 | |
| 
 | |
|   // There are four possible optimizations we can do for memcpy:
 | |
|   //   a) memcpy-memcpy xform which exposes redundance for DSE.
 | |
|   //   b) call-memcpy xform for return slot optimization.
 | |
|   //   c) memcpy from freshly alloca'd space or space that has just started its
 | |
|   //      lifetime copies undefined data, and we can therefore eliminate the
 | |
|   //      memcpy in favor of the data that was already at the destination.
 | |
|   //   d) memcpy from a just-memset'd source can be turned into memset.
 | |
|   if (DepInfo.isClobber()) {
 | |
|     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
 | |
|       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
 | |
|                                CopySize->getZExtValue(), M->getAlignment(),
 | |
|                                C)) {
 | |
|         MD->removeInstruction(M);
 | |
|         M->eraseFromParent();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
 | |
|   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
 | |
|       SrcLoc, true, M->getIterator(), M->getParent());
 | |
| 
 | |
|   if (SrcDepInfo.isClobber()) {
 | |
|     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
 | |
|       return processMemCpyMemCpyDependence(M, MDep);
 | |
|   } else if (SrcDepInfo.isDef()) {
 | |
|     Instruction *I = SrcDepInfo.getInst();
 | |
|     bool hasUndefContents = false;
 | |
| 
 | |
|     if (isa<AllocaInst>(I)) {
 | |
|       hasUndefContents = true;
 | |
|     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
 | |
|         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
 | |
|           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
 | |
|             hasUndefContents = true;
 | |
|     }
 | |
| 
 | |
|     if (hasUndefContents) {
 | |
|       MD->removeInstruction(M);
 | |
|       M->eraseFromParent();
 | |
|       ++NumMemCpyInstr;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (SrcDepInfo.isClobber())
 | |
|     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
 | |
|       if (performMemCpyToMemSetOptzn(M, MDep)) {
 | |
|         MD->removeInstruction(M);
 | |
|         M->eraseFromParent();
 | |
|         ++NumCpyToSet;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
 | |
| /// not to alias.
 | |
| bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
 | |
|   AliasAnalysis &AA = LookupAliasAnalysis();
 | |
| 
 | |
|   if (!TLI->has(LibFunc::memmove))
 | |
|     return false;
 | |
| 
 | |
|   // See if the pointers alias.
 | |
|   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
 | |
|                     MemoryLocation::getForSource(M)))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
 | |
|                << "\n");
 | |
| 
 | |
|   // If not, then we know we can transform this.
 | |
|   Type *ArgTys[3] = { M->getRawDest()->getType(),
 | |
|                       M->getRawSource()->getType(),
 | |
|                       M->getLength()->getType() };
 | |
|   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
 | |
|                                                  Intrinsic::memcpy, ArgTys));
 | |
| 
 | |
|   // MemDep may have over conservative information about this instruction, just
 | |
|   // conservatively flush it from the cache.
 | |
|   MD->removeInstruction(M);
 | |
| 
 | |
|   ++NumMoveToCpy;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This is called on every byval argument in call sites.
 | |
| bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
 | |
|   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
 | |
|   // Find out what feeds this byval argument.
 | |
|   Value *ByValArg = CS.getArgument(ArgNo);
 | |
|   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
 | |
|   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
 | |
|   MemDepResult DepInfo = MD->getPointerDependencyFrom(
 | |
|       MemoryLocation(ByValArg, ByValSize), true,
 | |
|       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
 | |
|   if (!DepInfo.isClobber())
 | |
|     return false;
 | |
| 
 | |
|   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
 | |
|   // a memcpy, see if we can byval from the source of the memcpy instead of the
 | |
|   // result.
 | |
|   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
 | |
|   if (!MDep || MDep->isVolatile() ||
 | |
|       ByValArg->stripPointerCasts() != MDep->getDest())
 | |
|     return false;
 | |
| 
 | |
|   // The length of the memcpy must be larger or equal to the size of the byval.
 | |
|   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
 | |
|   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
 | |
|     return false;
 | |
| 
 | |
|   // Get the alignment of the byval.  If the call doesn't specify the alignment,
 | |
|   // then it is some target specific value that we can't know.
 | |
|   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
 | |
|   if (ByValAlign == 0) return false;
 | |
| 
 | |
|   // If it is greater than the memcpy, then we check to see if we can force the
 | |
|   // source of the memcpy to the alignment we need.  If we fail, we bail out.
 | |
|   AssumptionCache &AC = LookupAssumptionCache();
 | |
|   DominatorTree &DT = LookupDomTree();
 | |
|   if (MDep->getAlignment() < ByValAlign &&
 | |
|       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
 | |
|                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
 | |
|     return false;
 | |
| 
 | |
|   // Verify that the copied-from memory doesn't change in between the memcpy and
 | |
|   // the byval call.
 | |
|   //    memcpy(a <- b)
 | |
|   //    *b = 42;
 | |
|   //    foo(*a)
 | |
|   // It would be invalid to transform the second memcpy into foo(*b).
 | |
|   //
 | |
|   // NOTE: This is conservative, it will stop on any read from the source loc,
 | |
|   // not just the defining memcpy.
 | |
|   MemDepResult SourceDep = MD->getPointerDependencyFrom(
 | |
|       MemoryLocation::getForSource(MDep), false,
 | |
|       CS.getInstruction()->getIterator(), MDep->getParent());
 | |
|   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | |
|     return false;
 | |
| 
 | |
|   Value *TmpCast = MDep->getSource();
 | |
|   if (MDep->getSource()->getType() != ByValArg->getType())
 | |
|     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
 | |
|                               "tmpcast", CS.getInstruction());
 | |
| 
 | |
|   DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
 | |
|                << "  " << *MDep << "\n"
 | |
|                << "  " << *CS.getInstruction() << "\n");
 | |
| 
 | |
|   // Otherwise we're good!  Update the byval argument.
 | |
|   CS.setArgument(ArgNo, TmpCast);
 | |
|   ++NumMemCpyInstr;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Executes one iteration of MemCpyOptPass.
 | |
| bool MemCpyOptPass::iterateOnFunction(Function &F) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Walk all instruction in the function.
 | |
|   for (BasicBlock &BB : F) {
 | |
|     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
 | |
|       // Avoid invalidating the iterator.
 | |
|       Instruction *I = &*BI++;
 | |
| 
 | |
|       bool RepeatInstruction = false;
 | |
| 
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|         MadeChange |= processStore(SI, BI);
 | |
|       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
 | |
|         RepeatInstruction = processMemSet(M, BI);
 | |
|       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
 | |
|         RepeatInstruction = processMemCpy(M);
 | |
|       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
 | |
|         RepeatInstruction = processMemMove(M);
 | |
|       else if (auto CS = CallSite(I)) {
 | |
|         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
 | |
|           if (CS.isByValArgument(i))
 | |
|             MadeChange |= processByValArgument(CS, i);
 | |
|       }
 | |
| 
 | |
|       // Reprocess the instruction if desired.
 | |
|       if (RepeatInstruction) {
 | |
|         if (BI != BB.begin())
 | |
|           --BI;
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
| 
 | |
|   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
 | |
|   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | |
| 
 | |
|   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
 | |
|     return AM.getResult<AAManager>(F);
 | |
|   };
 | |
|   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
 | |
|     return AM.getResult<AssumptionAnalysis>(F);
 | |
|   };
 | |
|   auto LookupDomTree = [&]() -> DominatorTree & {
 | |
|     return AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   };
 | |
| 
 | |
|   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
 | |
|                             LookupAssumptionCache, LookupDomTree);
 | |
|   if (!MadeChange)
 | |
|     return PreservedAnalyses::all();
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserve<GlobalsAA>();
 | |
|   PA.preserve<MemoryDependenceAnalysis>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| bool MemCpyOptPass::runImpl(
 | |
|     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
 | |
|     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
 | |
|     std::function<AssumptionCache &()> LookupAssumptionCache_,
 | |
|     std::function<DominatorTree &()> LookupDomTree_) {
 | |
|   bool MadeChange = false;
 | |
|   MD = MD_;
 | |
|   TLI = TLI_;
 | |
|   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
 | |
|   LookupAssumptionCache = std::move(LookupAssumptionCache_);
 | |
|   LookupDomTree = std::move(LookupDomTree_);
 | |
| 
 | |
|   // If we don't have at least memset and memcpy, there is little point of doing
 | |
|   // anything here.  These are required by a freestanding implementation, so if
 | |
|   // even they are disabled, there is no point in trying hard.
 | |
|   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
 | |
|     return false;
 | |
| 
 | |
|   while (1) {
 | |
|     if (!iterateOnFunction(F))
 | |
|       break;
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   MD = nullptr;
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// This is the main transformation entry point for a function.
 | |
| bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
 | |
|   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
| 
 | |
|   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
 | |
|     return getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   };
 | |
|   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
 | |
|     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   };
 | |
|   auto LookupDomTree = [this]() -> DominatorTree & {
 | |
|     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   };
 | |
| 
 | |
|   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
 | |
|                       LookupDomTree);
 | |
| }
 |