forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			499 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			499 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The machine combiner pass uses machine trace metrics to ensure the combined
 | 
						|
// instructions do not lengthen the critical path or the resource depth.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "machine-combiner"
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineTraceMetrics.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/TargetSchedule.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumInstCombined, "Number of machineinst combined");
 | 
						|
 | 
						|
namespace {
 | 
						|
class MachineCombiner : public MachineFunctionPass {
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
  MCSchedModel SchedModel;
 | 
						|
  MachineRegisterInfo *MRI;
 | 
						|
  MachineLoopInfo *MLI; // Current MachineLoopInfo
 | 
						|
  MachineTraceMetrics *Traces;
 | 
						|
  MachineTraceMetrics::Ensemble *MinInstr;
 | 
						|
 | 
						|
  TargetSchedModel TSchedModel;
 | 
						|
 | 
						|
  /// True if optimizing for code size.
 | 
						|
  bool OptSize;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
  MachineCombiner() : MachineFunctionPass(ID) {
 | 
						|
    initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
  StringRef getPassName() const override { return "Machine InstCombiner"; }
 | 
						|
 | 
						|
private:
 | 
						|
  bool doSubstitute(unsigned NewSize, unsigned OldSize);
 | 
						|
  bool combineInstructions(MachineBasicBlock *);
 | 
						|
  MachineInstr *getOperandDef(const MachineOperand &MO);
 | 
						|
  unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
 | 
						|
                    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
 | 
						|
                    MachineTraceMetrics::Trace BlockTrace);
 | 
						|
  unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
 | 
						|
                      MachineTraceMetrics::Trace BlockTrace);
 | 
						|
  bool
 | 
						|
  improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
 | 
						|
                          MachineTraceMetrics::Trace BlockTrace,
 | 
						|
                          SmallVectorImpl<MachineInstr *> &InsInstrs,
 | 
						|
                          SmallVectorImpl<MachineInstr *> &DelInstrs,
 | 
						|
                          DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
 | 
						|
                          MachineCombinerPattern Pattern);
 | 
						|
  bool preservesResourceLen(MachineBasicBlock *MBB,
 | 
						|
                            MachineTraceMetrics::Trace BlockTrace,
 | 
						|
                            SmallVectorImpl<MachineInstr *> &InsInstrs,
 | 
						|
                            SmallVectorImpl<MachineInstr *> &DelInstrs);
 | 
						|
  void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
 | 
						|
                     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char MachineCombiner::ID = 0;
 | 
						|
char &llvm::MachineCombinerID = MachineCombiner::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MachineCombiner, "machine-combiner",
 | 
						|
                      "Machine InstCombiner", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
 | 
						|
INITIALIZE_PASS_END(MachineCombiner, "machine-combiner", "Machine InstCombiner",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addPreserved<MachineDominatorTree>();
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  AU.addPreserved<MachineLoopInfo>();
 | 
						|
  AU.addRequired<MachineTraceMetrics>();
 | 
						|
  AU.addPreserved<MachineTraceMetrics>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
 | 
						|
  MachineInstr *DefInstr = nullptr;
 | 
						|
  // We need a virtual register definition.
 | 
						|
  if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | 
						|
    DefInstr = MRI->getUniqueVRegDef(MO.getReg());
 | 
						|
  // PHI's have no depth etc.
 | 
						|
  if (DefInstr && DefInstr->isPHI())
 | 
						|
    DefInstr = nullptr;
 | 
						|
  return DefInstr;
 | 
						|
}
 | 
						|
 | 
						|
/// Computes depth of instructions in vector \InsInstr.
 | 
						|
///
 | 
						|
/// \param InsInstrs is a vector of machine instructions
 | 
						|
/// \param InstrIdxForVirtReg is a dense map of virtual register to index
 | 
						|
/// of defining machine instruction in \p InsInstrs
 | 
						|
/// \param BlockTrace is a trace of machine instructions
 | 
						|
///
 | 
						|
/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
 | 
						|
unsigned
 | 
						|
MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
 | 
						|
                          DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
 | 
						|
                          MachineTraceMetrics::Trace BlockTrace) {
 | 
						|
  SmallVector<unsigned, 16> InstrDepth;
 | 
						|
  assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
 | 
						|
         "Missing machine model\n");
 | 
						|
 | 
						|
  // For each instruction in the new sequence compute the depth based on the
 | 
						|
  // operands. Use the trace information when possible. For new operands which
 | 
						|
  // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
 | 
						|
  for (auto *InstrPtr : InsInstrs) { // for each Use
 | 
						|
    unsigned IDepth = 0;
 | 
						|
    DEBUG(dbgs() << "NEW INSTR ";
 | 
						|
          InstrPtr->print(dbgs(), TII);
 | 
						|
          dbgs() << "\n";);
 | 
						|
    for (const MachineOperand &MO : InstrPtr->operands()) {
 | 
						|
      // Check for virtual register operand.
 | 
						|
      if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
 | 
						|
        continue;
 | 
						|
      if (!MO.isUse())
 | 
						|
        continue;
 | 
						|
      unsigned DepthOp = 0;
 | 
						|
      unsigned LatencyOp = 0;
 | 
						|
      DenseMap<unsigned, unsigned>::iterator II =
 | 
						|
          InstrIdxForVirtReg.find(MO.getReg());
 | 
						|
      if (II != InstrIdxForVirtReg.end()) {
 | 
						|
        // Operand is new virtual register not in trace
 | 
						|
        assert(II->second < InstrDepth.size() && "Bad Index");
 | 
						|
        MachineInstr *DefInstr = InsInstrs[II->second];
 | 
						|
        assert(DefInstr &&
 | 
						|
               "There must be a definition for a new virtual register");
 | 
						|
        DepthOp = InstrDepth[II->second];
 | 
						|
        LatencyOp = TSchedModel.computeOperandLatency(
 | 
						|
            DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
 | 
						|
            InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
 | 
						|
      } else {
 | 
						|
        MachineInstr *DefInstr = getOperandDef(MO);
 | 
						|
        if (DefInstr) {
 | 
						|
          DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
 | 
						|
          LatencyOp = TSchedModel.computeOperandLatency(
 | 
						|
              DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
 | 
						|
              InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      IDepth = std::max(IDepth, DepthOp + LatencyOp);
 | 
						|
    }
 | 
						|
    InstrDepth.push_back(IDepth);
 | 
						|
  }
 | 
						|
  unsigned NewRootIdx = InsInstrs.size() - 1;
 | 
						|
  return InstrDepth[NewRootIdx];
 | 
						|
}
 | 
						|
 | 
						|
/// Computes instruction latency as max of latency of defined operands.
 | 
						|
///
 | 
						|
/// \param Root is a machine instruction that could be replaced by NewRoot.
 | 
						|
/// It is used to compute a more accurate latency information for NewRoot in
 | 
						|
/// case there is a dependent instruction in the same trace (\p BlockTrace)
 | 
						|
/// \param NewRoot is the instruction for which the latency is computed
 | 
						|
/// \param BlockTrace is a trace of machine instructions
 | 
						|
///
 | 
						|
/// \returns Latency of \p NewRoot
 | 
						|
unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
 | 
						|
                                     MachineTraceMetrics::Trace BlockTrace) {
 | 
						|
  assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
 | 
						|
         "Missing machine model\n");
 | 
						|
 | 
						|
  // Check each definition in NewRoot and compute the latency
 | 
						|
  unsigned NewRootLatency = 0;
 | 
						|
 | 
						|
  for (const MachineOperand &MO : NewRoot->operands()) {
 | 
						|
    // Check for virtual register operand.
 | 
						|
    if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
 | 
						|
      continue;
 | 
						|
    if (!MO.isDef())
 | 
						|
      continue;
 | 
						|
    // Get the first instruction that uses MO
 | 
						|
    MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
 | 
						|
    RI++;
 | 
						|
    MachineInstr *UseMO = RI->getParent();
 | 
						|
    unsigned LatencyOp = 0;
 | 
						|
    if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
 | 
						|
      LatencyOp = TSchedModel.computeOperandLatency(
 | 
						|
          NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
 | 
						|
          UseMO->findRegisterUseOperandIdx(MO.getReg()));
 | 
						|
    } else {
 | 
						|
      LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
 | 
						|
    }
 | 
						|
    NewRootLatency = std::max(NewRootLatency, LatencyOp);
 | 
						|
  }
 | 
						|
  return NewRootLatency;
 | 
						|
}
 | 
						|
 | 
						|
/// The combiner's goal may differ based on which pattern it is attempting
 | 
						|
/// to optimize.
 | 
						|
enum class CombinerObjective {
 | 
						|
  MustReduceDepth, // The data dependency chain must be improved.
 | 
						|
  Default          // The critical path must not be lengthened.
 | 
						|
};
 | 
						|
 | 
						|
static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
 | 
						|
  // TODO: If C++ ever gets a real enum class, make this part of the
 | 
						|
  // MachineCombinerPattern class.
 | 
						|
  switch (P) {
 | 
						|
  case MachineCombinerPattern::REASSOC_AX_BY:
 | 
						|
  case MachineCombinerPattern::REASSOC_AX_YB:
 | 
						|
  case MachineCombinerPattern::REASSOC_XA_BY:
 | 
						|
  case MachineCombinerPattern::REASSOC_XA_YB:
 | 
						|
    return CombinerObjective::MustReduceDepth;
 | 
						|
  default:
 | 
						|
    return CombinerObjective::Default;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
 | 
						|
/// The new code sequence ends in MI NewRoot. A necessary condition for the new
 | 
						|
/// sequence to replace the old sequence is that it cannot lengthen the critical
 | 
						|
/// path. The definition of "improve" may be restricted by specifying that the
 | 
						|
/// new path improves the data dependency chain (MustReduceDepth).
 | 
						|
bool MachineCombiner::improvesCriticalPathLen(
 | 
						|
    MachineBasicBlock *MBB, MachineInstr *Root,
 | 
						|
    MachineTraceMetrics::Trace BlockTrace,
 | 
						|
    SmallVectorImpl<MachineInstr *> &InsInstrs,
 | 
						|
    SmallVectorImpl<MachineInstr *> &DelInstrs,
 | 
						|
    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
 | 
						|
    MachineCombinerPattern Pattern) {
 | 
						|
  assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
 | 
						|
         "Missing machine model\n");
 | 
						|
  // NewRoot is the last instruction in the \p InsInstrs vector.
 | 
						|
  unsigned NewRootIdx = InsInstrs.size() - 1;
 | 
						|
  MachineInstr *NewRoot = InsInstrs[NewRootIdx];
 | 
						|
 | 
						|
  // Get depth and latency of NewRoot and Root.
 | 
						|
  unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
 | 
						|
  unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "DEPENDENCE DATA FOR " << Root << "\n";
 | 
						|
        dbgs() << " NewRootDepth: " << NewRootDepth << "\n";
 | 
						|
        dbgs() << " RootDepth: " << RootDepth << "\n");
 | 
						|
 | 
						|
  // For a transform such as reassociation, the cost equation is
 | 
						|
  // conservatively calculated so that we must improve the depth (data
 | 
						|
  // dependency cycles) in the critical path to proceed with the transform.
 | 
						|
  // Being conservative also protects against inaccuracies in the underlying
 | 
						|
  // machine trace metrics and CPU models.
 | 
						|
  if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth)
 | 
						|
    return NewRootDepth < RootDepth;
 | 
						|
 | 
						|
  // A more flexible cost calculation for the critical path includes the slack
 | 
						|
  // of the original code sequence. This may allow the transform to proceed
 | 
						|
  // even if the instruction depths (data dependency cycles) become worse.
 | 
						|
 | 
						|
  unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace);
 | 
						|
  unsigned RootLatency = 0;
 | 
						|
 | 
						|
  for (auto I : DelInstrs)
 | 
						|
    RootLatency += TSchedModel.computeInstrLatency(I);
 | 
						|
 | 
						|
  unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
 | 
						|
 | 
						|
  DEBUG(dbgs() << " NewRootLatency: " << NewRootLatency << "\n";
 | 
						|
        dbgs() << " RootLatency: " << RootLatency << "\n";
 | 
						|
        dbgs() << " RootSlack: " << RootSlack << "\n";
 | 
						|
        dbgs() << " NewRootDepth + NewRootLatency = "
 | 
						|
               << NewRootDepth + NewRootLatency << "\n";
 | 
						|
        dbgs() << " RootDepth + RootLatency + RootSlack = "
 | 
						|
               << RootDepth + RootLatency + RootSlack << "\n";);
 | 
						|
 | 
						|
  unsigned NewCycleCount = NewRootDepth + NewRootLatency;
 | 
						|
  unsigned OldCycleCount = RootDepth + RootLatency + RootSlack;
 | 
						|
 | 
						|
  return NewCycleCount <= OldCycleCount;
 | 
						|
}
 | 
						|
 | 
						|
/// helper routine to convert instructions into SC
 | 
						|
void MachineCombiner::instr2instrSC(
 | 
						|
    SmallVectorImpl<MachineInstr *> &Instrs,
 | 
						|
    SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
 | 
						|
  for (auto *InstrPtr : Instrs) {
 | 
						|
    unsigned Opc = InstrPtr->getOpcode();
 | 
						|
    unsigned Idx = TII->get(Opc).getSchedClass();
 | 
						|
    const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
 | 
						|
    InstrsSC.push_back(SC);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// True when the new instructions do not increase resource length
 | 
						|
bool MachineCombiner::preservesResourceLen(
 | 
						|
    MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
 | 
						|
    SmallVectorImpl<MachineInstr *> &InsInstrs,
 | 
						|
    SmallVectorImpl<MachineInstr *> &DelInstrs) {
 | 
						|
  if (!TSchedModel.hasInstrSchedModel())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Compute current resource length
 | 
						|
 | 
						|
  //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
 | 
						|
  SmallVector <const MachineBasicBlock *, 1> MBBarr;
 | 
						|
  MBBarr.push_back(MBB);
 | 
						|
  unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
 | 
						|
 | 
						|
  // Deal with SC rather than Instructions.
 | 
						|
  SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
 | 
						|
  SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
 | 
						|
 | 
						|
  instr2instrSC(InsInstrs, InsInstrsSC);
 | 
						|
  instr2instrSC(DelInstrs, DelInstrsSC);
 | 
						|
 | 
						|
  ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
 | 
						|
  ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
 | 
						|
 | 
						|
  // Compute new resource length.
 | 
						|
  unsigned ResLenAfterCombine =
 | 
						|
      BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "RESOURCE DATA: \n";
 | 
						|
        dbgs() << " resource len before: " << ResLenBeforeCombine
 | 
						|
               << " after: " << ResLenAfterCombine << "\n";);
 | 
						|
 | 
						|
  return ResLenAfterCombine <= ResLenBeforeCombine;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns true when new instruction sequence should be generated
 | 
						|
/// independent if it lengthens critical path or not
 | 
						|
bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
 | 
						|
  if (OptSize && (NewSize < OldSize))
 | 
						|
    return true;
 | 
						|
  if (!TSchedModel.hasInstrSchedModelOrItineraries())
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
 | 
						|
                                     SmallVector<MachineInstr *, 16> InsInstrs,
 | 
						|
                                     SmallVector<MachineInstr *, 16> DelInstrs,
 | 
						|
                                     MachineTraceMetrics *Traces) {
 | 
						|
  for (auto *InstrPtr : InsInstrs)
 | 
						|
    MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
 | 
						|
  for (auto *InstrPtr : DelInstrs)
 | 
						|
    InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
 | 
						|
  ++NumInstCombined;
 | 
						|
  Traces->invalidate(MBB);
 | 
						|
  Traces->verifyAnalysis();
 | 
						|
}
 | 
						|
 | 
						|
/// Substitute a slow code sequence with a faster one by
 | 
						|
/// evaluating instruction combining pattern.
 | 
						|
/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
 | 
						|
/// combining based on machine trace metrics. Only combine a sequence of
 | 
						|
/// instructions  when this neither lengthens the critical path nor increases
 | 
						|
/// resource pressure. When optimizing for codesize always combine when the new
 | 
						|
/// sequence is shorter.
 | 
						|
bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
 | 
						|
  bool Changed = false;
 | 
						|
  DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
 | 
						|
 | 
						|
  auto BlockIter = MBB->begin();
 | 
						|
  // Check if the block is in a loop.
 | 
						|
  const MachineLoop *ML = MLI->getLoopFor(MBB);
 | 
						|
 | 
						|
  while (BlockIter != MBB->end()) {
 | 
						|
    auto &MI = *BlockIter++;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";);
 | 
						|
    SmallVector<MachineCombinerPattern, 16> Patterns;
 | 
						|
    // The motivating example is:
 | 
						|
    //
 | 
						|
    //     MUL  Other        MUL_op1 MUL_op2  Other
 | 
						|
    //      \    /               \      |    /
 | 
						|
    //      ADD/SUB      =>        MADD/MSUB
 | 
						|
    //      (=Root)                (=NewRoot)
 | 
						|
 | 
						|
    // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
 | 
						|
    // usually beneficial for code size it unfortunately can hurt performance
 | 
						|
    // when the ADD is on the critical path, but the MUL is not. With the
 | 
						|
    // substitution the MUL becomes part of the critical path (in form of the
 | 
						|
    // MADD) and can lengthen it on architectures where the MADD latency is
 | 
						|
    // longer than the ADD latency.
 | 
						|
    //
 | 
						|
    // For each instruction we check if it can be the root of a combiner
 | 
						|
    // pattern. Then for each pattern the new code sequence in form of MI is
 | 
						|
    // generated and evaluated. When the efficiency criteria (don't lengthen
 | 
						|
    // critical path, don't use more resources) is met the new sequence gets
 | 
						|
    // hooked up into the basic block before the old sequence is removed.
 | 
						|
    //
 | 
						|
    // The algorithm does not try to evaluate all patterns and pick the best.
 | 
						|
    // This is only an artificial restriction though. In practice there is
 | 
						|
    // mostly one pattern, and getMachineCombinerPatterns() can order patterns
 | 
						|
    // based on an internal cost heuristic.
 | 
						|
 | 
						|
    if (!TII->getMachineCombinerPatterns(MI, Patterns))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (auto P : Patterns) {
 | 
						|
      SmallVector<MachineInstr *, 16> InsInstrs;
 | 
						|
      SmallVector<MachineInstr *, 16> DelInstrs;
 | 
						|
      DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
 | 
						|
      if (!MinInstr)
 | 
						|
        MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
 | 
						|
      Traces->verifyAnalysis();
 | 
						|
      TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
 | 
						|
                                      InstrIdxForVirtReg);
 | 
						|
      unsigned NewInstCount = InsInstrs.size();
 | 
						|
      unsigned OldInstCount = DelInstrs.size();
 | 
						|
      // Found pattern, but did not generate alternative sequence.
 | 
						|
      // This can happen e.g. when an immediate could not be materialized
 | 
						|
      // in a single instruction.
 | 
						|
      if (!NewInstCount)
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool SubstituteAlways = false;
 | 
						|
      if (ML && TII->isThroughputPattern(P))
 | 
						|
        SubstituteAlways = true;
 | 
						|
 | 
						|
      // Substitute when we optimize for codesize and the new sequence has
 | 
						|
      // fewer instructions OR
 | 
						|
      // the new sequence neither lengthens the critical path nor increases
 | 
						|
      // resource pressure.
 | 
						|
      if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
 | 
						|
        insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, Traces);
 | 
						|
        // Eagerly stop after the first pattern fires.
 | 
						|
        Changed = true;
 | 
						|
        break;
 | 
						|
      } else {
 | 
						|
        // Calculating the trace metrics may be expensive,
 | 
						|
        // so only do this when necessary.
 | 
						|
        MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
 | 
						|
        if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
 | 
						|
                                    InstrIdxForVirtReg, P) &&
 | 
						|
            preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
 | 
						|
          insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, Traces);
 | 
						|
          // Eagerly stop after the first pattern fires.
 | 
						|
          Changed = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        // Cleanup instructions of the alternative code sequence. There is no
 | 
						|
        // use for them.
 | 
						|
        MachineFunction *MF = MBB->getParent();
 | 
						|
        for (auto *InstrPtr : InsInstrs)
 | 
						|
          MF->DeleteMachineInstr(InstrPtr);
 | 
						|
      }
 | 
						|
      InstrIdxForVirtReg.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  const TargetSubtargetInfo &STI = MF.getSubtarget();
 | 
						|
  TII = STI.getInstrInfo();
 | 
						|
  TRI = STI.getRegisterInfo();
 | 
						|
  SchedModel = STI.getSchedModel();
 | 
						|
  TSchedModel.init(SchedModel, &STI, TII);
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  MLI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  Traces = &getAnalysis<MachineTraceMetrics>();
 | 
						|
  MinInstr = nullptr;
 | 
						|
  OptSize = MF.getFunction()->optForSize();
 | 
						|
 | 
						|
  DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
 | 
						|
  if (!TII->useMachineCombiner()) {
 | 
						|
    DEBUG(dbgs() << "  Skipping pass: Target does not support machine combiner\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Try to combine instructions.
 | 
						|
  for (auto &MBB : MF)
 | 
						|
    Changed |= combineInstructions(&MBB);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |