forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			381 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the spill code placement analysis.
 | 
						|
//
 | 
						|
// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
 | 
						|
// basic blocks are weighted by the block frequency and added to become the node
 | 
						|
// bias.
 | 
						|
//
 | 
						|
// Transparent basic blocks have the variable live through, but don't care if it
 | 
						|
// is spilled or in a register. These blocks become connections in the Hopfield
 | 
						|
// network, again weighted by block frequency.
 | 
						|
//
 | 
						|
// The Hopfield network minimizes (possibly locally) its energy function:
 | 
						|
//
 | 
						|
//   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
 | 
						|
//
 | 
						|
// The energy function represents the expected spill code execution frequency,
 | 
						|
// or the cost of spilling. This is a Lyapunov function which never increases
 | 
						|
// when a node is updated. It is guaranteed to converge to a local minimum.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "spillplacement"
 | 
						|
#include "SpillPlacement.h"
 | 
						|
#include "llvm/CodeGen/EdgeBundles.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
char SpillPlacement::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
 | 
						|
                      "Spill Code Placement Analysis", true, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
 | 
						|
                    "Spill Code Placement Analysis", true, true)
 | 
						|
 | 
						|
char &llvm::SpillPlacementID = SpillPlacement::ID;
 | 
						|
 | 
						|
void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequiredTransitive<EdgeBundles>();
 | 
						|
  AU.addRequiredTransitive<MachineLoopInfo>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
/// Node - Each edge bundle corresponds to a Hopfield node.
 | 
						|
///
 | 
						|
/// The node contains precomputed frequency data that only depends on the CFG,
 | 
						|
/// but Bias and Links are computed each time placeSpills is called.
 | 
						|
///
 | 
						|
/// The node Value is positive when the variable should be in a register. The
 | 
						|
/// value can change when linked nodes change, but convergence is very fast
 | 
						|
/// because all weights are positive.
 | 
						|
///
 | 
						|
struct SpillPlacement::Node {
 | 
						|
  /// Scale - Inverse block frequency feeding into[0] or out of[1] the bundle.
 | 
						|
  /// Ideally, these two numbers should be identical, but inaccuracies in the
 | 
						|
  /// block frequency estimates means that we need to normalize ingoing and
 | 
						|
  /// outgoing frequencies separately so they are commensurate.
 | 
						|
  float Scale[2];
 | 
						|
 | 
						|
  /// Bias - Normalized contributions from non-transparent blocks.
 | 
						|
  /// A bundle connected to a MustSpill block has a huge negative bias,
 | 
						|
  /// otherwise it is a number in the range [-2;2].
 | 
						|
  float Bias;
 | 
						|
 | 
						|
  /// Value - Output value of this node computed from the Bias and links.
 | 
						|
  /// This is always in the range [-1;1]. A positive number means the variable
 | 
						|
  /// should go in a register through this bundle.
 | 
						|
  float Value;
 | 
						|
 | 
						|
  typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
 | 
						|
 | 
						|
  /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
 | 
						|
  /// bundles. The weights are all positive and add up to at most 2, weights
 | 
						|
  /// from ingoing and outgoing nodes separately add up to a most 1. The weight
 | 
						|
  /// sum can be less than 2 when the variable is not live into / out of some
 | 
						|
  /// connected basic blocks.
 | 
						|
  LinkVector Links;
 | 
						|
 | 
						|
  /// preferReg - Return true when this node prefers to be in a register.
 | 
						|
  bool preferReg() const {
 | 
						|
    // Undecided nodes (Value==0) go on the stack.
 | 
						|
    return Value > 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// mustSpill - Return True if this node is so biased that it must spill.
 | 
						|
  bool mustSpill() const {
 | 
						|
    // Actually, we must spill if Bias < sum(weights).
 | 
						|
    // It may be worth it to compute the weight sum here?
 | 
						|
    return Bias < -2.0f;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Node - Create a blank Node.
 | 
						|
  Node() {
 | 
						|
    Scale[0] = Scale[1] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// clear - Reset per-query data, but preserve frequencies that only depend on
 | 
						|
  // the CFG.
 | 
						|
  void clear() {
 | 
						|
    Bias = Value = 0;
 | 
						|
    Links.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  /// addLink - Add a link to bundle b with weight w.
 | 
						|
  /// out=0 for an ingoing link, and 1 for an outgoing link.
 | 
						|
  void addLink(unsigned b, float w, bool out) {
 | 
						|
    // Normalize w relative to all connected blocks from that direction.
 | 
						|
    w *= Scale[out];
 | 
						|
 | 
						|
    // There can be multiple links to the same bundle, add them up.
 | 
						|
    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
 | 
						|
      if (I->second == b) {
 | 
						|
        I->first += w;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    // This must be the first link to b.
 | 
						|
    Links.push_back(std::make_pair(w, b));
 | 
						|
  }
 | 
						|
 | 
						|
  /// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
 | 
						|
  /// Return the change to the total number of positive biases.
 | 
						|
  void addBias(float w, bool out) {
 | 
						|
    // Normalize w relative to all connected blocks from that direction.
 | 
						|
    w *= Scale[out];
 | 
						|
    Bias += w;
 | 
						|
  }
 | 
						|
 | 
						|
  /// update - Recompute Value from Bias and Links. Return true when node
 | 
						|
  /// preference changes.
 | 
						|
  bool update(const Node nodes[]) {
 | 
						|
    // Compute the weighted sum of inputs.
 | 
						|
    float Sum = Bias;
 | 
						|
    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
 | 
						|
      Sum += I->first * nodes[I->second].Value;
 | 
						|
 | 
						|
    // The weighted sum is going to be in the range [-2;2]. Ideally, we should
 | 
						|
    // simply set Value = sign(Sum), but we will add a dead zone around 0 for
 | 
						|
    // two reasons:
 | 
						|
    //  1. It avoids arbitrary bias when all links are 0 as is possible during
 | 
						|
    //     initial iterations.
 | 
						|
    //  2. It helps tame rounding errors when the links nominally sum to 0.
 | 
						|
    const float Thres = 1e-4f;
 | 
						|
    bool Before = preferReg();
 | 
						|
    if (Sum < -Thres)
 | 
						|
      Value = -1;
 | 
						|
    else if (Sum > Thres)
 | 
						|
      Value = 1;
 | 
						|
    else
 | 
						|
      Value = 0;
 | 
						|
    return Before != preferReg();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  MF = &mf;
 | 
						|
  bundles = &getAnalysis<EdgeBundles>();
 | 
						|
  loops = &getAnalysis<MachineLoopInfo>();
 | 
						|
 | 
						|
  assert(!nodes && "Leaking node array");
 | 
						|
  nodes = new Node[bundles->getNumBundles()];
 | 
						|
 | 
						|
  // Compute total ingoing and outgoing block frequencies for all bundles.
 | 
						|
  BlockFrequency.resize(mf.getNumBlockIDs());
 | 
						|
  for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
 | 
						|
    float Freq = LiveIntervals::getSpillWeight(true, false,
 | 
						|
                                               loops->getLoopDepth(I));
 | 
						|
    unsigned Num = I->getNumber();
 | 
						|
    BlockFrequency[Num] = Freq;
 | 
						|
    nodes[bundles->getBundle(Num, 1)].Scale[0] += Freq;
 | 
						|
    nodes[bundles->getBundle(Num, 0)].Scale[1] += Freq;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scales are reciprocal frequencies.
 | 
						|
  for (unsigned i = 0, e = bundles->getNumBundles(); i != e; ++i)
 | 
						|
    for (unsigned d = 0; d != 2; ++d)
 | 
						|
      if (nodes[i].Scale[d] > 0)
 | 
						|
        nodes[i].Scale[d] = 1 / nodes[i].Scale[d];
 | 
						|
 | 
						|
  // We never change the function.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void SpillPlacement::releaseMemory() {
 | 
						|
  delete[] nodes;
 | 
						|
  nodes = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// activate - mark node n as active if it wasn't already.
 | 
						|
void SpillPlacement::activate(unsigned n) {
 | 
						|
  if (ActiveNodes->test(n))
 | 
						|
    return;
 | 
						|
  ActiveNodes->set(n);
 | 
						|
  nodes[n].clear();
 | 
						|
 | 
						|
  // Very large bundles usually come from big switches, indirect branches,
 | 
						|
  // landing pads, or loops with many 'continue' statements. It is difficult to
 | 
						|
  // allocate registers when so many different blocks are involved.
 | 
						|
  //
 | 
						|
  // Give a small negative bias to large bundles such that 1/32 of the
 | 
						|
  // connected blocks need to be interested before we consider expanding the
 | 
						|
  // region through the bundle. This helps compile time by limiting the number
 | 
						|
  // of blocks visited and the number of links in the Hopfield network.
 | 
						|
  if (bundles->getBlocks(n).size() > 100)
 | 
						|
    nodes[n].Bias = -0.0625f;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// addConstraints - Compute node biases and weights from a set of constraints.
 | 
						|
/// Set a bit in NodeMask for each active node.
 | 
						|
void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
 | 
						|
  for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
 | 
						|
       E = LiveBlocks.end(); I != E; ++I) {
 | 
						|
    float Freq = getBlockFrequency(I->Number);
 | 
						|
    const float Bias[] = {
 | 
						|
      0,           // DontCare,
 | 
						|
      1,           // PrefReg,
 | 
						|
      -1,          // PrefSpill
 | 
						|
      0,           // PrefBoth
 | 
						|
      -HUGE_VALF   // MustSpill
 | 
						|
    };
 | 
						|
 | 
						|
    // Live-in to block?
 | 
						|
    if (I->Entry != DontCare) {
 | 
						|
      unsigned ib = bundles->getBundle(I->Number, 0);
 | 
						|
      activate(ib);
 | 
						|
      nodes[ib].addBias(Freq * Bias[I->Entry], 1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Live-out from block?
 | 
						|
    if (I->Exit != DontCare) {
 | 
						|
      unsigned ob = bundles->getBundle(I->Number, 1);
 | 
						|
      activate(ob);
 | 
						|
      nodes[ob].addBias(Freq * Bias[I->Exit], 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addPrefSpill - Same as addConstraints(PrefSpill)
 | 
						|
void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
 | 
						|
  for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    float Freq = getBlockFrequency(*I);
 | 
						|
    if (Strong)
 | 
						|
      Freq += Freq;
 | 
						|
    unsigned ib = bundles->getBundle(*I, 0);
 | 
						|
    unsigned ob = bundles->getBundle(*I, 1);
 | 
						|
    activate(ib);
 | 
						|
    activate(ob);
 | 
						|
    nodes[ib].addBias(-Freq, 1);
 | 
						|
    nodes[ob].addBias(-Freq, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
 | 
						|
  for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    unsigned Number = *I;
 | 
						|
    unsigned ib = bundles->getBundle(Number, 0);
 | 
						|
    unsigned ob = bundles->getBundle(Number, 1);
 | 
						|
 | 
						|
    // Ignore self-loops.
 | 
						|
    if (ib == ob)
 | 
						|
      continue;
 | 
						|
    activate(ib);
 | 
						|
    activate(ob);
 | 
						|
    if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
 | 
						|
      Linked.push_back(ib);
 | 
						|
    if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
 | 
						|
      Linked.push_back(ob);
 | 
						|
    float Freq = getBlockFrequency(Number);
 | 
						|
    nodes[ib].addLink(ob, Freq, 1);
 | 
						|
    nodes[ob].addLink(ib, Freq, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SpillPlacement::scanActiveBundles() {
 | 
						|
  Linked.clear();
 | 
						|
  RecentPositive.clear();
 | 
						|
  for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
 | 
						|
    nodes[n].update(nodes);
 | 
						|
    // A node that must spill, or a node without any links is not going to
 | 
						|
    // change its value ever again, so exclude it from iterations.
 | 
						|
    if (nodes[n].mustSpill())
 | 
						|
      continue;
 | 
						|
    if (!nodes[n].Links.empty())
 | 
						|
      Linked.push_back(n);
 | 
						|
    if (nodes[n].preferReg())
 | 
						|
      RecentPositive.push_back(n);
 | 
						|
  }
 | 
						|
  return !RecentPositive.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// iterate - Repeatedly update the Hopfield nodes until stability or the
 | 
						|
/// maximum number of iterations is reached.
 | 
						|
/// @param Linked - Numbers of linked nodes that need updating.
 | 
						|
void SpillPlacement::iterate() {
 | 
						|
  // First update the recently positive nodes. They have likely received new
 | 
						|
  // negative bias that will turn them off.
 | 
						|
  while (!RecentPositive.empty())
 | 
						|
    nodes[RecentPositive.pop_back_val()].update(nodes);
 | 
						|
 | 
						|
  if (Linked.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Run up to 10 iterations. The edge bundle numbering is closely related to
 | 
						|
  // basic block numbering, so there is a strong tendency towards chains of
 | 
						|
  // linked nodes with sequential numbers. By scanning the linked nodes
 | 
						|
  // backwards and forwards, we make it very likely that a single node can
 | 
						|
  // affect the entire network in a single iteration. That means very fast
 | 
						|
  // convergence, usually in a single iteration.
 | 
						|
  for (unsigned iteration = 0; iteration != 10; ++iteration) {
 | 
						|
    // Scan backwards, skipping the last node which was just updated.
 | 
						|
    bool Changed = false;
 | 
						|
    for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
 | 
						|
           llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
 | 
						|
      unsigned n = *I;
 | 
						|
      if (nodes[n].update(nodes)) {
 | 
						|
        Changed = true;
 | 
						|
        if (nodes[n].preferReg())
 | 
						|
          RecentPositive.push_back(n);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!Changed || !RecentPositive.empty())
 | 
						|
      return;
 | 
						|
 | 
						|
    // Scan forwards, skipping the first node which was just updated.
 | 
						|
    Changed = false;
 | 
						|
    for (SmallVectorImpl<unsigned>::const_iterator I =
 | 
						|
           llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
 | 
						|
      unsigned n = *I;
 | 
						|
      if (nodes[n].update(nodes)) {
 | 
						|
        Changed = true;
 | 
						|
        if (nodes[n].preferReg())
 | 
						|
          RecentPositive.push_back(n);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!Changed || !RecentPositive.empty())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SpillPlacement::prepare(BitVector &RegBundles) {
 | 
						|
  Linked.clear();
 | 
						|
  RecentPositive.clear();
 | 
						|
  // Reuse RegBundles as our ActiveNodes vector.
 | 
						|
  ActiveNodes = &RegBundles;
 | 
						|
  ActiveNodes->clear();
 | 
						|
  ActiveNodes->resize(bundles->getNumBundles());
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
SpillPlacement::finish() {
 | 
						|
  assert(ActiveNodes && "Call prepare() first");
 | 
						|
 | 
						|
  // Write preferences back to ActiveNodes.
 | 
						|
  bool Perfect = true;
 | 
						|
  for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
 | 
						|
    if (!nodes[n].preferReg()) {
 | 
						|
      ActiveNodes->reset(n);
 | 
						|
      Perfect = false;
 | 
						|
    }
 | 
						|
  ActiveNodes = 0;
 | 
						|
  return Perfect;
 | 
						|
}
 |