forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			748 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			748 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the TargetInstrInfoImpl class, it just provides default
 | 
						|
// implementations of various methods.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/MC/MCInstrItineraries.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> DisableHazardRecognizer(
 | 
						|
  "disable-sched-hazard", cl::Hidden, cl::init(false),
 | 
						|
  cl::desc("Disable hazard detection during preRA scheduling"));
 | 
						|
 | 
						|
/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
 | 
						|
/// after it, replacing it with an unconditional branch to NewDest.
 | 
						|
void
 | 
						|
TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
 | 
						|
                                             MachineBasicBlock *NewDest) const {
 | 
						|
  MachineBasicBlock *MBB = Tail->getParent();
 | 
						|
 | 
						|
  // Remove all the old successors of MBB from the CFG.
 | 
						|
  while (!MBB->succ_empty())
 | 
						|
    MBB->removeSuccessor(MBB->succ_begin());
 | 
						|
 | 
						|
  // Remove all the dead instructions from the end of MBB.
 | 
						|
  MBB->erase(Tail, MBB->end());
 | 
						|
 | 
						|
  // If MBB isn't immediately before MBB, insert a branch to it.
 | 
						|
  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
 | 
						|
    InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
 | 
						|
                 Tail->getDebugLoc());
 | 
						|
  MBB->addSuccessor(NewDest);
 | 
						|
}
 | 
						|
 | 
						|
// commuteInstruction - The default implementation of this method just exchanges
 | 
						|
// the two operands returned by findCommutedOpIndices.
 | 
						|
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
 | 
						|
                                                      bool NewMI) const {
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  bool HasDef = MCID.getNumDefs();
 | 
						|
  if (HasDef && !MI->getOperand(0).isReg())
 | 
						|
    // No idea how to commute this instruction. Target should implement its own.
 | 
						|
    return 0;
 | 
						|
  unsigned Idx1, Idx2;
 | 
						|
  if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
 | 
						|
    std::string msg;
 | 
						|
    raw_string_ostream Msg(msg);
 | 
						|
    Msg << "Don't know how to commute: " << *MI;
 | 
						|
    report_fatal_error(Msg.str());
 | 
						|
  }
 | 
						|
 | 
						|
  assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
 | 
						|
         "This only knows how to commute register operands so far");
 | 
						|
  unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
 | 
						|
  unsigned Reg1 = MI->getOperand(Idx1).getReg();
 | 
						|
  unsigned Reg2 = MI->getOperand(Idx2).getReg();
 | 
						|
  unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
 | 
						|
  unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
 | 
						|
  unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
 | 
						|
  bool Reg1IsKill = MI->getOperand(Idx1).isKill();
 | 
						|
  bool Reg2IsKill = MI->getOperand(Idx2).isKill();
 | 
						|
  // If destination is tied to either of the commuted source register, then
 | 
						|
  // it must be updated.
 | 
						|
  if (HasDef && Reg0 == Reg1 &&
 | 
						|
      MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
 | 
						|
    Reg2IsKill = false;
 | 
						|
    Reg0 = Reg2;
 | 
						|
    SubReg0 = SubReg2;
 | 
						|
  } else if (HasDef && Reg0 == Reg2 &&
 | 
						|
             MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
 | 
						|
    Reg1IsKill = false;
 | 
						|
    Reg0 = Reg1;
 | 
						|
    SubReg0 = SubReg1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewMI) {
 | 
						|
    // Create a new instruction.
 | 
						|
    bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
 | 
						|
    MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
    if (HasDef)
 | 
						|
      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
 | 
						|
        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead), SubReg0)
 | 
						|
        .addReg(Reg2, getKillRegState(Reg2IsKill), SubReg2)
 | 
						|
        .addReg(Reg1, getKillRegState(Reg1IsKill), SubReg1);
 | 
						|
    else
 | 
						|
      return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
 | 
						|
        .addReg(Reg2, getKillRegState(Reg2IsKill), SubReg2)
 | 
						|
        .addReg(Reg1, getKillRegState(Reg1IsKill), SubReg1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (HasDef) {
 | 
						|
    MI->getOperand(0).setReg(Reg0);
 | 
						|
    MI->getOperand(0).setSubReg(SubReg0);
 | 
						|
  }
 | 
						|
  MI->getOperand(Idx2).setReg(Reg1);
 | 
						|
  MI->getOperand(Idx1).setReg(Reg2);
 | 
						|
  MI->getOperand(Idx2).setSubReg(SubReg1);
 | 
						|
  MI->getOperand(Idx1).setSubReg(SubReg2);
 | 
						|
  MI->getOperand(Idx2).setIsKill(Reg1IsKill);
 | 
						|
  MI->getOperand(Idx1).setIsKill(Reg2IsKill);
 | 
						|
  return MI;
 | 
						|
}
 | 
						|
 | 
						|
/// findCommutedOpIndices - If specified MI is commutable, return the two
 | 
						|
/// operand indices that would swap value. Return true if the instruction
 | 
						|
/// is not in a form which this routine understands.
 | 
						|
bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
 | 
						|
                                                unsigned &SrcOpIdx1,
 | 
						|
                                                unsigned &SrcOpIdx2) const {
 | 
						|
  assert(!MI->isBundle() &&
 | 
						|
         "TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles");
 | 
						|
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  if (!MCID.isCommutable())
 | 
						|
    return false;
 | 
						|
  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
 | 
						|
  // is not true, then the target must implement this.
 | 
						|
  SrcOpIdx1 = MCID.getNumDefs();
 | 
						|
  SrcOpIdx2 = SrcOpIdx1 + 1;
 | 
						|
  if (!MI->getOperand(SrcOpIdx1).isReg() ||
 | 
						|
      !MI->getOperand(SrcOpIdx2).isReg())
 | 
						|
    // No idea.
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool
 | 
						|
TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const {
 | 
						|
  if (!MI->isTerminator()) return false;
 | 
						|
 | 
						|
  // Conditional branch is a special case.
 | 
						|
  if (MI->isBranch() && !MI->isBarrier())
 | 
						|
    return true;
 | 
						|
  if (!MI->isPredicable())
 | 
						|
    return true;
 | 
						|
  return !isPredicated(MI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
 | 
						|
                            const SmallVectorImpl<MachineOperand> &Pred) const {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  assert(!MI->isBundle() &&
 | 
						|
         "TargetInstrInfoImpl::PredicateInstruction() can't handle bundles");
 | 
						|
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  if (!MI->isPredicable())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    if (MCID.OpInfo[i].isPredicate()) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg()) {
 | 
						|
        MO.setReg(Pred[j].getReg());
 | 
						|
        MadeChange = true;
 | 
						|
      } else if (MO.isImm()) {
 | 
						|
        MO.setImm(Pred[j].getImm());
 | 
						|
        MadeChange = true;
 | 
						|
      } else if (MO.isMBB()) {
 | 
						|
        MO.setMBB(Pred[j].getMBB());
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
      ++j;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
 | 
						|
                                        const MachineMemOperand *&MMO,
 | 
						|
                                        int &FrameIndex) const {
 | 
						|
  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
 | 
						|
         oe = MI->memoperands_end();
 | 
						|
       o != oe;
 | 
						|
       ++o) {
 | 
						|
    if ((*o)->isLoad() && (*o)->getValue())
 | 
						|
      if (const FixedStackPseudoSourceValue *Value =
 | 
						|
          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
 | 
						|
        FrameIndex = Value->getFrameIndex();
 | 
						|
        MMO = *o;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
 | 
						|
                                       const MachineMemOperand *&MMO,
 | 
						|
                                       int &FrameIndex) const {
 | 
						|
  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
 | 
						|
         oe = MI->memoperands_end();
 | 
						|
       o != oe;
 | 
						|
       ++o) {
 | 
						|
    if ((*o)->isStore() && (*o)->getValue())
 | 
						|
      if (const FixedStackPseudoSourceValue *Value =
 | 
						|
          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
 | 
						|
        FrameIndex = Value->getFrameIndex();
 | 
						|
        MMO = *o;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
 | 
						|
                                        MachineBasicBlock::iterator I,
 | 
						|
                                        unsigned DestReg,
 | 
						|
                                        unsigned SubIdx,
 | 
						|
                                        const MachineInstr *Orig,
 | 
						|
                                        const TargetRegisterInfo &TRI) const {
 | 
						|
  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
 | 
						|
  MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
 | 
						|
  MBB.insert(I, MI);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
 | 
						|
                                      const MachineInstr *MI1,
 | 
						|
                                      const MachineRegisterInfo *MRI) const {
 | 
						|
  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
 | 
						|
                                             MachineFunction &MF) const {
 | 
						|
  assert(!Orig->isNotDuplicable() &&
 | 
						|
         "Instruction cannot be duplicated");
 | 
						|
  return MF.CloneMachineInstr(Orig);
 | 
						|
}
 | 
						|
 | 
						|
// If the COPY instruction in MI can be folded to a stack operation, return
 | 
						|
// the register class to use.
 | 
						|
static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
 | 
						|
                                              unsigned FoldIdx) {
 | 
						|
  assert(MI->isCopy() && "MI must be a COPY instruction");
 | 
						|
  if (MI->getNumOperands() != 2)
 | 
						|
    return 0;
 | 
						|
  assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
 | 
						|
 | 
						|
  const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
 | 
						|
  const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
 | 
						|
 | 
						|
  if (FoldOp.getSubReg() || LiveOp.getSubReg())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  unsigned FoldReg = FoldOp.getReg();
 | 
						|
  unsigned LiveReg = LiveOp.getReg();
 | 
						|
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
 | 
						|
         "Cannot fold physregs");
 | 
						|
 | 
						|
  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
 | 
						|
  const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
 | 
						|
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
 | 
						|
    return RC->contains(LiveOp.getReg()) ? RC : 0;
 | 
						|
 | 
						|
  if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
 | 
						|
    return RC;
 | 
						|
 | 
						|
  // FIXME: Allow folding when register classes are memory compatible.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool TargetInstrInfoImpl::
 | 
						|
canFoldMemoryOperand(const MachineInstr *MI,
 | 
						|
                     const SmallVectorImpl<unsigned> &Ops) const {
 | 
						|
  return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
 | 
						|
}
 | 
						|
 | 
						|
/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
 | 
						|
/// slot into the specified machine instruction for the specified operand(s).
 | 
						|
/// If this is possible, a new instruction is returned with the specified
 | 
						|
/// operand folded, otherwise NULL is returned. The client is responsible for
 | 
						|
/// removing the old instruction and adding the new one in the instruction
 | 
						|
/// stream.
 | 
						|
MachineInstr*
 | 
						|
TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
 | 
						|
                                   const SmallVectorImpl<unsigned> &Ops,
 | 
						|
                                   int FI) const {
 | 
						|
  unsigned Flags = 0;
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    if (MI->getOperand(Ops[i]).isDef())
 | 
						|
      Flags |= MachineMemOperand::MOStore;
 | 
						|
    else
 | 
						|
      Flags |= MachineMemOperand::MOLoad;
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  assert(MBB && "foldMemoryOperand needs an inserted instruction");
 | 
						|
  MachineFunction &MF = *MBB->getParent();
 | 
						|
 | 
						|
  // Ask the target to do the actual folding.
 | 
						|
  if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
 | 
						|
    // Add a memory operand, foldMemoryOperandImpl doesn't do that.
 | 
						|
    assert((!(Flags & MachineMemOperand::MOStore) ||
 | 
						|
            NewMI->mayStore()) &&
 | 
						|
           "Folded a def to a non-store!");
 | 
						|
    assert((!(Flags & MachineMemOperand::MOLoad) ||
 | 
						|
            NewMI->mayLoad()) &&
 | 
						|
           "Folded a use to a non-load!");
 | 
						|
    const MachineFrameInfo &MFI = *MF.getFrameInfo();
 | 
						|
    assert(MFI.getObjectOffset(FI) != -1);
 | 
						|
    MachineMemOperand *MMO =
 | 
						|
      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
 | 
						|
                              Flags, MFI.getObjectSize(FI),
 | 
						|
                              MFI.getObjectAlignment(FI));
 | 
						|
    NewMI->addMemOperand(MF, MMO);
 | 
						|
 | 
						|
    // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
 | 
						|
    return MBB->insert(MI, NewMI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Straight COPY may fold as load/store.
 | 
						|
  if (!MI->isCopy() || Ops.size() != 1)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
 | 
						|
  if (!RC)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const MachineOperand &MO = MI->getOperand(1-Ops[0]);
 | 
						|
  MachineBasicBlock::iterator Pos = MI;
 | 
						|
  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
 | 
						|
 | 
						|
  if (Flags == MachineMemOperand::MOStore)
 | 
						|
    storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
 | 
						|
  else
 | 
						|
    loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
 | 
						|
  return --Pos;
 | 
						|
}
 | 
						|
 | 
						|
/// foldMemoryOperand - Same as the previous version except it allows folding
 | 
						|
/// of any load and store from / to any address, not just from a specific
 | 
						|
/// stack slot.
 | 
						|
MachineInstr*
 | 
						|
TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
 | 
						|
                                   const SmallVectorImpl<unsigned> &Ops,
 | 
						|
                                   MachineInstr* LoadMI) const {
 | 
						|
  assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
 | 
						|
#endif
 | 
						|
  MachineBasicBlock &MBB = *MI->getParent();
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
 | 
						|
  // Ask the target to do the actual folding.
 | 
						|
  MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
 | 
						|
  if (!NewMI) return 0;
 | 
						|
 | 
						|
  NewMI = MBB.insert(MI, NewMI);
 | 
						|
 | 
						|
  // Copy the memoperands from the load to the folded instruction.
 | 
						|
  NewMI->setMemRefs(LoadMI->memoperands_begin(),
 | 
						|
                    LoadMI->memoperands_end());
 | 
						|
 | 
						|
  return NewMI;
 | 
						|
}
 | 
						|
 | 
						|
bool TargetInstrInfo::
 | 
						|
isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
 | 
						|
                                         AliasAnalysis *AA) const {
 | 
						|
  const MachineFunction &MF = *MI->getParent()->getParent();
 | 
						|
  const MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  const TargetMachine &TM = MF.getTarget();
 | 
						|
  const TargetInstrInfo &TII = *TM.getInstrInfo();
 | 
						|
 | 
						|
  // Remat clients assume operand 0 is the defined register.
 | 
						|
  if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
 | 
						|
    return false;
 | 
						|
  unsigned DefReg = MI->getOperand(0).getReg();
 | 
						|
 | 
						|
  // A sub-register definition can only be rematerialized if the instruction
 | 
						|
  // doesn't read the other parts of the register.  Otherwise it is really a
 | 
						|
  // read-modify-write operation on the full virtual register which cannot be
 | 
						|
  // moved safely.
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
 | 
						|
      MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A load from a fixed stack slot can be rematerialized. This may be
 | 
						|
  // redundant with subsequent checks, but it's target-independent,
 | 
						|
  // simple, and a common case.
 | 
						|
  int FrameIdx = 0;
 | 
						|
  if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
 | 
						|
      MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Avoid instructions obviously unsafe for remat.
 | 
						|
  if (MI->isNotDuplicable() || MI->mayStore() ||
 | 
						|
      MI->hasUnmodeledSideEffects())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't remat inline asm. We have no idea how expensive it is
 | 
						|
  // even if it's side effect free.
 | 
						|
  if (MI->isInlineAsm())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Avoid instructions which load from potentially varying memory.
 | 
						|
  if (MI->mayLoad() && !MI->isInvariantLoad(AA))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If any of the registers accessed are non-constant, conservatively assume
 | 
						|
  // the instruction is not rematerializable.
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg()) continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Reg == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check for a well-behaved physical register.
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
      if (MO.isUse()) {
 | 
						|
        // If the physreg has no defs anywhere, it's just an ambient register
 | 
						|
        // and we can freely move its uses. Alternatively, if it's allocatable,
 | 
						|
        // it could get allocated to something with a def during allocation.
 | 
						|
        if (!MRI.isConstantPhysReg(Reg, MF))
 | 
						|
          return false;
 | 
						|
      } else {
 | 
						|
        // A physreg def. We can't remat it.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only allow one virtual-register def.  There may be multiple defs of the
 | 
						|
    // same virtual register, though.
 | 
						|
    if (MO.isDef() && Reg != DefReg)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Don't allow any virtual-register uses. Rematting an instruction with
 | 
						|
    // virtual register uses would length the live ranges of the uses, which
 | 
						|
    // is not necessarily a good idea, certainly not "trivial".
 | 
						|
    if (MO.isUse())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything checked out.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isSchedulingBoundary - Test if the given instruction should be
 | 
						|
/// considered a scheduling boundary. This primarily includes labels
 | 
						|
/// and terminators.
 | 
						|
bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
 | 
						|
                                               const MachineBasicBlock *MBB,
 | 
						|
                                               const MachineFunction &MF) const{
 | 
						|
  // Terminators and labels can't be scheduled around.
 | 
						|
  if (MI->isTerminator() || MI->isLabel())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Don't attempt to schedule around any instruction that defines
 | 
						|
  // a stack-oriented pointer, as it's unlikely to be profitable. This
 | 
						|
  // saves compile time, because it doesn't require every single
 | 
						|
  // stack slot reference to depend on the instruction that does the
 | 
						|
  // modification.
 | 
						|
  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
 | 
						|
  if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Provide a global flag for disabling the PreRA hazard recognizer that targets
 | 
						|
// may choose to honor.
 | 
						|
bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
 | 
						|
  return !DisableHazardRecognizer;
 | 
						|
}
 | 
						|
 | 
						|
// Default implementation of CreateTargetRAHazardRecognizer.
 | 
						|
ScheduleHazardRecognizer *TargetInstrInfoImpl::
 | 
						|
CreateTargetHazardRecognizer(const TargetMachine *TM,
 | 
						|
                             const ScheduleDAG *DAG) const {
 | 
						|
  // Dummy hazard recognizer allows all instructions to issue.
 | 
						|
  return new ScheduleHazardRecognizer();
 | 
						|
}
 | 
						|
 | 
						|
// Default implementation of CreateTargetMIHazardRecognizer.
 | 
						|
ScheduleHazardRecognizer *TargetInstrInfoImpl::
 | 
						|
CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
 | 
						|
                               const ScheduleDAG *DAG) const {
 | 
						|
  return (ScheduleHazardRecognizer *)
 | 
						|
    new ScoreboardHazardRecognizer(II, DAG, "misched");
 | 
						|
}
 | 
						|
 | 
						|
// Default implementation of CreateTargetPostRAHazardRecognizer.
 | 
						|
ScheduleHazardRecognizer *TargetInstrInfoImpl::
 | 
						|
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
 | 
						|
                                   const ScheduleDAG *DAG) const {
 | 
						|
  return (ScheduleHazardRecognizer *)
 | 
						|
    new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  SelectionDAG latency interface.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
int
 | 
						|
TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData,
 | 
						|
                                       SDNode *DefNode, unsigned DefIdx,
 | 
						|
                                       SDNode *UseNode, unsigned UseIdx) const {
 | 
						|
  if (!ItinData || ItinData->isEmpty())
 | 
						|
    return -1;
 | 
						|
 | 
						|
  if (!DefNode->isMachineOpcode())
 | 
						|
    return -1;
 | 
						|
 | 
						|
  unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
 | 
						|
  if (!UseNode->isMachineOpcode())
 | 
						|
    return ItinData->getOperandCycle(DefClass, DefIdx);
 | 
						|
  unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
 | 
						|
  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
 | 
						|
}
 | 
						|
 | 
						|
int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData,
 | 
						|
                                         SDNode *N) const {
 | 
						|
  if (!ItinData || ItinData->isEmpty())
 | 
						|
    return 1;
 | 
						|
 | 
						|
  if (!N->isMachineOpcode())
 | 
						|
    return 1;
 | 
						|
 | 
						|
  return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  MachineInstr latency interface.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
unsigned
 | 
						|
TargetInstrInfoImpl::getNumMicroOps(const InstrItineraryData *ItinData,
 | 
						|
                                    const MachineInstr *MI) const {
 | 
						|
  if (!ItinData || ItinData->isEmpty())
 | 
						|
    return 1;
 | 
						|
 | 
						|
  unsigned Class = MI->getDesc().getSchedClass();
 | 
						|
  int UOps = ItinData->Itineraries[Class].NumMicroOps;
 | 
						|
  if (UOps >= 0)
 | 
						|
    return UOps;
 | 
						|
 | 
						|
  // The # of u-ops is dynamically determined. The specific target should
 | 
						|
  // override this function to return the right number.
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the default expected latency for a def based on it's opcode.
 | 
						|
unsigned TargetInstrInfo::defaultDefLatency(const InstrItineraryData *ItinData,
 | 
						|
                                            const MachineInstr *DefMI) const {
 | 
						|
  if (DefMI->mayLoad())
 | 
						|
    return ItinData->SchedModel->LoadLatency;
 | 
						|
  if (isHighLatencyDef(DefMI->getOpcode()))
 | 
						|
    return ItinData->SchedModel->HighLatency;
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
unsigned TargetInstrInfoImpl::
 | 
						|
getInstrLatency(const InstrItineraryData *ItinData,
 | 
						|
                const MachineInstr *MI,
 | 
						|
                unsigned *PredCost) const {
 | 
						|
  // Default to one cycle for no itinerary. However, an "empty" itinerary may
 | 
						|
  // still have a MinLatency property, which getStageLatency checks.
 | 
						|
  if (!ItinData)
 | 
						|
    return MI->mayLoad() ? 2 : 1;
 | 
						|
 | 
						|
  return ItinData->getStageLatency(MI->getDesc().getSchedClass());
 | 
						|
}
 | 
						|
 | 
						|
bool TargetInstrInfoImpl::hasLowDefLatency(const InstrItineraryData *ItinData,
 | 
						|
                                           const MachineInstr *DefMI,
 | 
						|
                                           unsigned DefIdx) const {
 | 
						|
  if (!ItinData || ItinData->isEmpty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned DefClass = DefMI->getDesc().getSchedClass();
 | 
						|
  int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
 | 
						|
  return (DefCycle != -1 && DefCycle <= 1);
 | 
						|
}
 | 
						|
 | 
						|
/// Both DefMI and UseMI must be valid.  By default, call directly to the
 | 
						|
/// itinerary. This may be overriden by the target.
 | 
						|
int TargetInstrInfoImpl::
 | 
						|
getOperandLatency(const InstrItineraryData *ItinData,
 | 
						|
                  const MachineInstr *DefMI, unsigned DefIdx,
 | 
						|
                  const MachineInstr *UseMI, unsigned UseIdx) const {
 | 
						|
  unsigned DefClass = DefMI->getDesc().getSchedClass();
 | 
						|
  unsigned UseClass = UseMI->getDesc().getSchedClass();
 | 
						|
  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
 | 
						|
}
 | 
						|
 | 
						|
/// If we can determine the operand latency from the def only, without itinerary
 | 
						|
/// lookup, do so. Otherwise return -1.
 | 
						|
static int computeDefOperandLatency(
 | 
						|
  const TargetInstrInfo *TII, const InstrItineraryData *ItinData,
 | 
						|
  const MachineInstr *DefMI, bool FindMin) {
 | 
						|
 | 
						|
  // Let the target hook getInstrLatency handle missing itineraries.
 | 
						|
  if (!ItinData)
 | 
						|
    return TII->getInstrLatency(ItinData, DefMI);
 | 
						|
 | 
						|
  // Return a latency based on the itinerary properties and defining instruction
 | 
						|
  // if possible. Some common subtargets don't require per-operand latency,
 | 
						|
  // especially for minimum latencies.
 | 
						|
  if (FindMin) {
 | 
						|
    // If MinLatency is valid, call getInstrLatency. This uses Stage latency if
 | 
						|
    // it exists before defaulting to MinLatency.
 | 
						|
    if (ItinData->SchedModel->MinLatency >= 0)
 | 
						|
      return TII->getInstrLatency(ItinData, DefMI);
 | 
						|
 | 
						|
    // If MinLatency is invalid, OperandLatency is interpreted as MinLatency.
 | 
						|
    // For empty itineraries, short-cirtuit the check and default to one cycle.
 | 
						|
    if (ItinData->isEmpty())
 | 
						|
      return 1;
 | 
						|
  }
 | 
						|
  else if(ItinData->isEmpty())
 | 
						|
    return TII->defaultDefLatency(ItinData, DefMI);
 | 
						|
 | 
						|
  // ...operand lookup required
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
/// computeOperandLatency - Compute and return the latency of the given data
 | 
						|
/// dependent def and use when the operand indices are already known.
 | 
						|
///
 | 
						|
/// FindMin may be set to get the minimum vs. expected latency.
 | 
						|
unsigned TargetInstrInfo::
 | 
						|
computeOperandLatency(const InstrItineraryData *ItinData,
 | 
						|
                      const MachineInstr *DefMI, unsigned DefIdx,
 | 
						|
                      const MachineInstr *UseMI, unsigned UseIdx,
 | 
						|
                      bool FindMin) const {
 | 
						|
 | 
						|
  int DefLatency = computeDefOperandLatency(this, ItinData, DefMI, FindMin);
 | 
						|
  if (DefLatency >= 0)
 | 
						|
    return DefLatency;
 | 
						|
 | 
						|
  assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
 | 
						|
 | 
						|
  int OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
 | 
						|
  if (OperLatency >= 0)
 | 
						|
    return OperLatency;
 | 
						|
 | 
						|
  // No operand latency was found.
 | 
						|
  unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
 | 
						|
 | 
						|
  // Expected latency is the max of the stage latency and itinerary props.
 | 
						|
  if (!FindMin)
 | 
						|
    InstrLatency = std::max(InstrLatency, defaultDefLatency(ItinData, DefMI));
 | 
						|
  return InstrLatency;
 | 
						|
}
 | 
						|
 | 
						|
/// computeOperandLatency - Compute and return the latency of the given data
 | 
						|
/// dependent def and use. DefMI must be a valid def. UseMI may be NULL for an
 | 
						|
/// unknown use. Depending on the subtarget's itinerary properties, this may or
 | 
						|
/// may not need to call getOperandLatency().
 | 
						|
///
 | 
						|
/// FindMin may be set to get the minimum vs. expected latency. Minimum
 | 
						|
/// latency is used for scheduling groups, while expected latency is for
 | 
						|
/// instruction cost and critical path.
 | 
						|
///
 | 
						|
/// For most subtargets, we don't need DefIdx or UseIdx to compute min latency.
 | 
						|
/// DefMI must be a valid definition, but UseMI may be NULL for an unknown use.
 | 
						|
unsigned TargetInstrInfo::
 | 
						|
computeOperandLatency(const InstrItineraryData *ItinData,
 | 
						|
                      const TargetRegisterInfo *TRI,
 | 
						|
                      const MachineInstr *DefMI, const MachineInstr *UseMI,
 | 
						|
                      unsigned Reg, bool FindMin) const {
 | 
						|
 | 
						|
  int DefLatency = computeDefOperandLatency(this, ItinData, DefMI, FindMin);
 | 
						|
  if (DefLatency >= 0)
 | 
						|
    return DefLatency;
 | 
						|
 | 
						|
  assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
 | 
						|
 | 
						|
  // Find the definition of the register in the defining instruction.
 | 
						|
  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
 | 
						|
  if (DefIdx != -1) {
 | 
						|
    const MachineOperand &MO = DefMI->getOperand(DefIdx);
 | 
						|
    if (MO.isReg() && MO.isImplicit() &&
 | 
						|
        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
 | 
						|
      // This is an implicit def, getOperandLatency() won't return the correct
 | 
						|
      // latency. e.g.
 | 
						|
      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
 | 
						|
      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
 | 
						|
      // What we want is to compute latency between def of %D6/%D7 and use of
 | 
						|
      // %Q3 instead.
 | 
						|
      unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
 | 
						|
      if (DefMI->getOperand(Op2).isReg())
 | 
						|
        DefIdx = Op2;
 | 
						|
    }
 | 
						|
    // For all uses of the register, calculate the maxmimum latency
 | 
						|
    int OperLatency = -1;
 | 
						|
 | 
						|
    // UseMI is null, then it must be a scheduling barrier.
 | 
						|
    if (!UseMI) {
 | 
						|
      unsigned DefClass = DefMI->getDesc().getSchedClass();
 | 
						|
      OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
 | 
						|
        const MachineOperand &MO = UseMI->getOperand(i);
 | 
						|
        if (!MO.isReg() || !MO.isUse())
 | 
						|
          continue;
 | 
						|
        unsigned MOReg = MO.getReg();
 | 
						|
        if (MOReg != Reg)
 | 
						|
          continue;
 | 
						|
 | 
						|
        int UseCycle = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, i);
 | 
						|
        OperLatency = std::max(OperLatency, UseCycle);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If we found an operand latency, we're done.
 | 
						|
    if (OperLatency >= 0)
 | 
						|
      return OperLatency;
 | 
						|
  }
 | 
						|
  // No operand latency was found.
 | 
						|
  unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
 | 
						|
 | 
						|
  // Expected latency is the max of the stage latency and itinerary props.
 | 
						|
  if (!FindMin)
 | 
						|
    InstrLatency = std::max(InstrLatency, defaultDefLatency(ItinData, DefMI));
 | 
						|
  return InstrLatency;
 | 
						|
}
 |