forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1392 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1392 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines analysis_warnings::[Policy,Executor].
 | 
						|
// Together they are used by Sema to issue warnings based on inexpensive
 | 
						|
// static analysis algorithms in libAnalysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/AnalysisBasedWarnings.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/SourceLocation.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Lex/Lexer.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/StmtObjC.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "clang/AST/EvaluatedExprVisitor.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/AST/RecursiveASTVisitor.h"
 | 
						|
#include "clang/Analysis/AnalysisContext.h"
 | 
						|
#include "clang/Analysis/CFG.h"
 | 
						|
#include "clang/Analysis/Analyses/ReachableCode.h"
 | 
						|
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
 | 
						|
#include "clang/Analysis/Analyses/ThreadSafety.h"
 | 
						|
#include "clang/Analysis/CFGStmtMap.h"
 | 
						|
#include "clang/Analysis/Analyses/UninitializedValues.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/ImmutableMap.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iterator>
 | 
						|
#include <vector>
 | 
						|
#include <deque>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Unreachable code analysis.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class UnreachableCodeHandler : public reachable_code::Callback {
 | 
						|
    Sema &S;
 | 
						|
  public:
 | 
						|
    UnreachableCodeHandler(Sema &s) : S(s) {}
 | 
						|
 | 
						|
    void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
 | 
						|
      S.Diag(L, diag::warn_unreachable) << R1 << R2;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// CheckUnreachable - Check for unreachable code.
 | 
						|
static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
 | 
						|
  UnreachableCodeHandler UC(S);
 | 
						|
  reachable_code::FindUnreachableCode(AC, UC);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Check for missing return value.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
enum ControlFlowKind {
 | 
						|
  UnknownFallThrough,
 | 
						|
  NeverFallThrough,
 | 
						|
  MaybeFallThrough,
 | 
						|
  AlwaysFallThrough,
 | 
						|
  NeverFallThroughOrReturn
 | 
						|
};
 | 
						|
 | 
						|
/// CheckFallThrough - Check that we don't fall off the end of a
 | 
						|
/// Statement that should return a value.
 | 
						|
///
 | 
						|
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
 | 
						|
/// MaybeFallThrough iff we might or might not fall off the end,
 | 
						|
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
 | 
						|
/// return.  We assume NeverFallThrough iff we never fall off the end of the
 | 
						|
/// statement but we may return.  We assume that functions not marked noreturn
 | 
						|
/// will return.
 | 
						|
static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
 | 
						|
  CFG *cfg = AC.getCFG();
 | 
						|
  if (cfg == 0) return UnknownFallThrough;
 | 
						|
 | 
						|
  // The CFG leaves in dead things, and we don't want the dead code paths to
 | 
						|
  // confuse us, so we mark all live things first.
 | 
						|
  llvm::BitVector live(cfg->getNumBlockIDs());
 | 
						|
  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
 | 
						|
                                                          live);
 | 
						|
 | 
						|
  bool AddEHEdges = AC.getAddEHEdges();
 | 
						|
  if (!AddEHEdges && count != cfg->getNumBlockIDs())
 | 
						|
    // When there are things remaining dead, and we didn't add EH edges
 | 
						|
    // from CallExprs to the catch clauses, we have to go back and
 | 
						|
    // mark them as live.
 | 
						|
    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
 | 
						|
      CFGBlock &b = **I;
 | 
						|
      if (!live[b.getBlockID()]) {
 | 
						|
        if (b.pred_begin() == b.pred_end()) {
 | 
						|
          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
 | 
						|
            // When not adding EH edges from calls, catch clauses
 | 
						|
            // can otherwise seem dead.  Avoid noting them as dead.
 | 
						|
            count += reachable_code::ScanReachableFromBlock(&b, live);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Now we know what is live, we check the live precessors of the exit block
 | 
						|
  // and look for fall through paths, being careful to ignore normal returns,
 | 
						|
  // and exceptional paths.
 | 
						|
  bool HasLiveReturn = false;
 | 
						|
  bool HasFakeEdge = false;
 | 
						|
  bool HasPlainEdge = false;
 | 
						|
  bool HasAbnormalEdge = false;
 | 
						|
 | 
						|
  // Ignore default cases that aren't likely to be reachable because all
 | 
						|
  // enums in a switch(X) have explicit case statements.
 | 
						|
  CFGBlock::FilterOptions FO;
 | 
						|
  FO.IgnoreDefaultsWithCoveredEnums = 1;
 | 
						|
 | 
						|
  for (CFGBlock::filtered_pred_iterator
 | 
						|
	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
 | 
						|
    const CFGBlock& B = **I;
 | 
						|
    if (!live[B.getBlockID()])
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip blocks which contain an element marked as no-return. They don't
 | 
						|
    // represent actually viable edges into the exit block, so mark them as
 | 
						|
    // abnormal.
 | 
						|
    if (B.hasNoReturnElement()) {
 | 
						|
      HasAbnormalEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Destructors can appear after the 'return' in the CFG.  This is
 | 
						|
    // normal.  We need to look pass the destructors for the return
 | 
						|
    // statement (if it exists).
 | 
						|
    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
 | 
						|
 | 
						|
    for ( ; ri != re ; ++ri)
 | 
						|
      if (isa<CFGStmt>(*ri))
 | 
						|
        break;
 | 
						|
 | 
						|
    // No more CFGElements in the block?
 | 
						|
    if (ri == re) {
 | 
						|
      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
 | 
						|
        HasAbnormalEdge = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // A labeled empty statement, or the entry block...
 | 
						|
      HasPlainEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    CFGStmt CS = cast<CFGStmt>(*ri);
 | 
						|
    const Stmt *S = CS.getStmt();
 | 
						|
    if (isa<ReturnStmt>(S)) {
 | 
						|
      HasLiveReturn = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<ObjCAtThrowStmt>(S)) {
 | 
						|
      HasFakeEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<CXXThrowExpr>(S)) {
 | 
						|
      HasFakeEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<MSAsmStmt>(S)) {
 | 
						|
      // TODO: Verify this is correct.
 | 
						|
      HasFakeEdge = true;
 | 
						|
      HasLiveReturn = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<CXXTryStmt>(S)) {
 | 
						|
      HasAbnormalEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
 | 
						|
        == B.succ_end()) {
 | 
						|
      HasAbnormalEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    HasPlainEdge = true;
 | 
						|
  }
 | 
						|
  if (!HasPlainEdge) {
 | 
						|
    if (HasLiveReturn)
 | 
						|
      return NeverFallThrough;
 | 
						|
    return NeverFallThroughOrReturn;
 | 
						|
  }
 | 
						|
  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
 | 
						|
    return MaybeFallThrough;
 | 
						|
  // This says AlwaysFallThrough for calls to functions that are not marked
 | 
						|
  // noreturn, that don't return.  If people would like this warning to be more
 | 
						|
  // accurate, such functions should be marked as noreturn.
 | 
						|
  return AlwaysFallThrough;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct CheckFallThroughDiagnostics {
 | 
						|
  unsigned diag_MaybeFallThrough_HasNoReturn;
 | 
						|
  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
 | 
						|
  unsigned diag_AlwaysFallThrough_HasNoReturn;
 | 
						|
  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
 | 
						|
  unsigned diag_NeverFallThroughOrReturn;
 | 
						|
  enum { Function, Block, Lambda } funMode;
 | 
						|
  SourceLocation FuncLoc;
 | 
						|
 | 
						|
  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
 | 
						|
    CheckFallThroughDiagnostics D;
 | 
						|
    D.FuncLoc = Func->getLocation();
 | 
						|
    D.diag_MaybeFallThrough_HasNoReturn =
 | 
						|
      diag::warn_falloff_noreturn_function;
 | 
						|
    D.diag_MaybeFallThrough_ReturnsNonVoid =
 | 
						|
      diag::warn_maybe_falloff_nonvoid_function;
 | 
						|
    D.diag_AlwaysFallThrough_HasNoReturn =
 | 
						|
      diag::warn_falloff_noreturn_function;
 | 
						|
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | 
						|
      diag::warn_falloff_nonvoid_function;
 | 
						|
 | 
						|
    // Don't suggest that virtual functions be marked "noreturn", since they
 | 
						|
    // might be overridden by non-noreturn functions.
 | 
						|
    bool isVirtualMethod = false;
 | 
						|
    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
 | 
						|
      isVirtualMethod = Method->isVirtual();
 | 
						|
    
 | 
						|
    // Don't suggest that template instantiations be marked "noreturn"
 | 
						|
    bool isTemplateInstantiation = false;
 | 
						|
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
 | 
						|
      isTemplateInstantiation = Function->isTemplateInstantiation();
 | 
						|
        
 | 
						|
    if (!isVirtualMethod && !isTemplateInstantiation)
 | 
						|
      D.diag_NeverFallThroughOrReturn =
 | 
						|
        diag::warn_suggest_noreturn_function;
 | 
						|
    else
 | 
						|
      D.diag_NeverFallThroughOrReturn = 0;
 | 
						|
    
 | 
						|
    D.funMode = Function;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  static CheckFallThroughDiagnostics MakeForBlock() {
 | 
						|
    CheckFallThroughDiagnostics D;
 | 
						|
    D.diag_MaybeFallThrough_HasNoReturn =
 | 
						|
      diag::err_noreturn_block_has_return_expr;
 | 
						|
    D.diag_MaybeFallThrough_ReturnsNonVoid =
 | 
						|
      diag::err_maybe_falloff_nonvoid_block;
 | 
						|
    D.diag_AlwaysFallThrough_HasNoReturn =
 | 
						|
      diag::err_noreturn_block_has_return_expr;
 | 
						|
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | 
						|
      diag::err_falloff_nonvoid_block;
 | 
						|
    D.diag_NeverFallThroughOrReturn =
 | 
						|
      diag::warn_suggest_noreturn_block;
 | 
						|
    D.funMode = Block;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  static CheckFallThroughDiagnostics MakeForLambda() {
 | 
						|
    CheckFallThroughDiagnostics D;
 | 
						|
    D.diag_MaybeFallThrough_HasNoReturn =
 | 
						|
      diag::err_noreturn_lambda_has_return_expr;
 | 
						|
    D.diag_MaybeFallThrough_ReturnsNonVoid =
 | 
						|
      diag::warn_maybe_falloff_nonvoid_lambda;
 | 
						|
    D.diag_AlwaysFallThrough_HasNoReturn =
 | 
						|
      diag::err_noreturn_lambda_has_return_expr;
 | 
						|
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | 
						|
      diag::warn_falloff_nonvoid_lambda;
 | 
						|
    D.diag_NeverFallThroughOrReturn = 0;
 | 
						|
    D.funMode = Lambda;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
 | 
						|
                        bool HasNoReturn) const {
 | 
						|
    if (funMode == Function) {
 | 
						|
      return (ReturnsVoid ||
 | 
						|
              D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
 | 
						|
                                   FuncLoc) == DiagnosticsEngine::Ignored)
 | 
						|
        && (!HasNoReturn ||
 | 
						|
            D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
 | 
						|
                                 FuncLoc) == DiagnosticsEngine::Ignored)
 | 
						|
        && (!ReturnsVoid ||
 | 
						|
            D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
 | 
						|
              == DiagnosticsEngine::Ignored);
 | 
						|
    }
 | 
						|
 | 
						|
    // For blocks / lambdas.
 | 
						|
    return ReturnsVoid && !HasNoReturn
 | 
						|
            && ((funMode == Lambda) ||
 | 
						|
                D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
 | 
						|
                  == DiagnosticsEngine::Ignored);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
 | 
						|
/// function that should return a value.  Check that we don't fall off the end
 | 
						|
/// of a noreturn function.  We assume that functions and blocks not marked
 | 
						|
/// noreturn will return.
 | 
						|
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
 | 
						|
                                    const BlockExpr *blkExpr,
 | 
						|
                                    const CheckFallThroughDiagnostics& CD,
 | 
						|
                                    AnalysisDeclContext &AC) {
 | 
						|
 | 
						|
  bool ReturnsVoid = false;
 | 
						|
  bool HasNoReturn = false;
 | 
						|
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    ReturnsVoid = FD->getResultType()->isVoidType();
 | 
						|
    HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
 | 
						|
       FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
 | 
						|
  }
 | 
						|
  else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | 
						|
    ReturnsVoid = MD->getResultType()->isVoidType();
 | 
						|
    HasNoReturn = MD->hasAttr<NoReturnAttr>();
 | 
						|
  }
 | 
						|
  else if (isa<BlockDecl>(D)) {
 | 
						|
    QualType BlockTy = blkExpr->getType();
 | 
						|
    if (const FunctionType *FT =
 | 
						|
          BlockTy->getPointeeType()->getAs<FunctionType>()) {
 | 
						|
      if (FT->getResultType()->isVoidType())
 | 
						|
        ReturnsVoid = true;
 | 
						|
      if (FT->getNoReturnAttr())
 | 
						|
        HasNoReturn = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnosticsEngine &Diags = S.getDiagnostics();
 | 
						|
 | 
						|
  // Short circuit for compilation speed.
 | 
						|
  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
 | 
						|
      return;
 | 
						|
 | 
						|
  // FIXME: Function try block
 | 
						|
  if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
 | 
						|
    switch (CheckFallThrough(AC)) {
 | 
						|
      case UnknownFallThrough:
 | 
						|
        break;
 | 
						|
 | 
						|
      case MaybeFallThrough:
 | 
						|
        if (HasNoReturn)
 | 
						|
          S.Diag(Compound->getRBracLoc(),
 | 
						|
                 CD.diag_MaybeFallThrough_HasNoReturn);
 | 
						|
        else if (!ReturnsVoid)
 | 
						|
          S.Diag(Compound->getRBracLoc(),
 | 
						|
                 CD.diag_MaybeFallThrough_ReturnsNonVoid);
 | 
						|
        break;
 | 
						|
      case AlwaysFallThrough:
 | 
						|
        if (HasNoReturn)
 | 
						|
          S.Diag(Compound->getRBracLoc(),
 | 
						|
                 CD.diag_AlwaysFallThrough_HasNoReturn);
 | 
						|
        else if (!ReturnsVoid)
 | 
						|
          S.Diag(Compound->getRBracLoc(),
 | 
						|
                 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
 | 
						|
        break;
 | 
						|
      case NeverFallThroughOrReturn:
 | 
						|
        if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
 | 
						|
          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
 | 
						|
              << 0 << FD;
 | 
						|
          } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | 
						|
            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
 | 
						|
              << 1 << MD;
 | 
						|
          } else {
 | 
						|
            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case NeverFallThrough:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// -Wuninitialized
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// ContainsReference - A visitor class to search for references to
 | 
						|
/// a particular declaration (the needle) within any evaluated component of an
 | 
						|
/// expression (recursively).
 | 
						|
class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
 | 
						|
  bool FoundReference;
 | 
						|
  const DeclRefExpr *Needle;
 | 
						|
 | 
						|
public:
 | 
						|
  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
 | 
						|
    : EvaluatedExprVisitor<ContainsReference>(Context),
 | 
						|
      FoundReference(false), Needle(Needle) {}
 | 
						|
 | 
						|
  void VisitExpr(Expr *E) {
 | 
						|
    // Stop evaluating if we already have a reference.
 | 
						|
    if (FoundReference)
 | 
						|
      return;
 | 
						|
 | 
						|
    EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitDeclRefExpr(DeclRefExpr *E) {
 | 
						|
    if (E == Needle)
 | 
						|
      FoundReference = true;
 | 
						|
    else
 | 
						|
      EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool doesContainReference() const { return FoundReference; }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
 | 
						|
  QualType VariableTy = VD->getType().getCanonicalType();
 | 
						|
  if (VariableTy->isBlockPointerType() &&
 | 
						|
      !VD->hasAttr<BlocksAttr>()) {
 | 
						|
    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName()
 | 
						|
    << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Don't issue a fixit if there is already an initializer.
 | 
						|
  if (VD->getInit())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Suggest possible initialization (if any).
 | 
						|
  std::string Init = S.getFixItZeroInitializerForType(VariableTy);
 | 
						|
  if (Init.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't suggest a fixit inside macros.
 | 
						|
  if (VD->getLocEnd().isMacroID())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
 | 
						|
  
 | 
						|
  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
 | 
						|
    << FixItHint::CreateInsertion(Loc, Init);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Create a fixit to remove an if-like statement, on the assumption that its
 | 
						|
/// condition is CondVal.
 | 
						|
static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
 | 
						|
                          const Stmt *Else, bool CondVal,
 | 
						|
                          FixItHint &Fixit1, FixItHint &Fixit2) {
 | 
						|
  if (CondVal) {
 | 
						|
    // If condition is always true, remove all but the 'then'.
 | 
						|
    Fixit1 = FixItHint::CreateRemoval(
 | 
						|
        CharSourceRange::getCharRange(If->getLocStart(),
 | 
						|
                                      Then->getLocStart()));
 | 
						|
    if (Else) {
 | 
						|
      SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
 | 
						|
          Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
 | 
						|
      Fixit2 = FixItHint::CreateRemoval(
 | 
						|
          SourceRange(ElseKwLoc, Else->getLocEnd()));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // If condition is always false, remove all but the 'else'.
 | 
						|
    if (Else)
 | 
						|
      Fixit1 = FixItHint::CreateRemoval(
 | 
						|
          CharSourceRange::getCharRange(If->getLocStart(),
 | 
						|
                                        Else->getLocStart()));
 | 
						|
    else
 | 
						|
      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DiagUninitUse -- Helper function to produce a diagnostic for an
 | 
						|
/// uninitialized use of a variable.
 | 
						|
static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
 | 
						|
                          bool IsCapturedByBlock) {
 | 
						|
  bool Diagnosed = false;
 | 
						|
 | 
						|
  // Diagnose each branch which leads to a sometimes-uninitialized use.
 | 
						|
  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    assert(Use.getKind() == UninitUse::Sometimes);
 | 
						|
 | 
						|
    const Expr *User = Use.getUser();
 | 
						|
    const Stmt *Term = I->Terminator;
 | 
						|
 | 
						|
    // Information used when building the diagnostic.
 | 
						|
    unsigned DiagKind;
 | 
						|
    const char *Str;
 | 
						|
    SourceRange Range;
 | 
						|
 | 
						|
    // FixIts to suppress the diagnosic by removing the dead condition.
 | 
						|
    // For all binary terminators, branch 0 is taken if the condition is true,
 | 
						|
    // and branch 1 is taken if the condition is false.
 | 
						|
    int RemoveDiagKind = -1;
 | 
						|
    const char *FixitStr =
 | 
						|
        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
 | 
						|
                                  : (I->Output ? "1" : "0");
 | 
						|
    FixItHint Fixit1, Fixit2;
 | 
						|
 | 
						|
    switch (Term->getStmtClass()) {
 | 
						|
    default:
 | 
						|
      // Don't know how to report this. Just fall back to 'may be used
 | 
						|
      // uninitialized'. This happens for range-based for, which the user
 | 
						|
      // can't explicitly fix.
 | 
						|
      // FIXME: This also happens if the first use of a variable is always
 | 
						|
      // uninitialized, eg "for (int n; n < 10; ++n)". We should report that
 | 
						|
      // with the 'is uninitialized' diagnostic.
 | 
						|
      continue;
 | 
						|
 | 
						|
    // "condition is true / condition is false".
 | 
						|
    case Stmt::IfStmtClass: {
 | 
						|
      const IfStmt *IS = cast<IfStmt>(Term);
 | 
						|
      DiagKind = 0;
 | 
						|
      Str = "if";
 | 
						|
      Range = IS->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 0;
 | 
						|
      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
 | 
						|
                    I->Output, Fixit1, Fixit2);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Stmt::ConditionalOperatorClass: {
 | 
						|
      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
 | 
						|
      DiagKind = 0;
 | 
						|
      Str = "?:";
 | 
						|
      Range = CO->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 0;
 | 
						|
      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
 | 
						|
                    I->Output, Fixit1, Fixit2);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Stmt::BinaryOperatorClass: {
 | 
						|
      const BinaryOperator *BO = cast<BinaryOperator>(Term);
 | 
						|
      if (!BO->isLogicalOp())
 | 
						|
        continue;
 | 
						|
      DiagKind = 0;
 | 
						|
      Str = BO->getOpcodeStr();
 | 
						|
      Range = BO->getLHS()->getSourceRange();
 | 
						|
      RemoveDiagKind = 0;
 | 
						|
      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
 | 
						|
          (BO->getOpcode() == BO_LOr && !I->Output))
 | 
						|
        // true && y -> y, false || y -> y.
 | 
						|
        Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
 | 
						|
                                                      BO->getOperatorLoc()));
 | 
						|
      else
 | 
						|
        // false && y -> false, true || y -> true.
 | 
						|
        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // "loop is entered / loop is exited".
 | 
						|
    case Stmt::WhileStmtClass:
 | 
						|
      DiagKind = 1;
 | 
						|
      Str = "while";
 | 
						|
      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 1;
 | 
						|
      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
 | 
						|
      break;
 | 
						|
    case Stmt::ForStmtClass:
 | 
						|
      DiagKind = 1;
 | 
						|
      Str = "for";
 | 
						|
      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 1;
 | 
						|
      if (I->Output)
 | 
						|
        Fixit1 = FixItHint::CreateRemoval(Range);
 | 
						|
      else
 | 
						|
        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
 | 
						|
      break;
 | 
						|
 | 
						|
    // "condition is true / loop is exited".
 | 
						|
    case Stmt::DoStmtClass:
 | 
						|
      DiagKind = 2;
 | 
						|
      Str = "do";
 | 
						|
      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 1;
 | 
						|
      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
 | 
						|
      break;
 | 
						|
 | 
						|
    // "switch case is taken".
 | 
						|
    case Stmt::CaseStmtClass:
 | 
						|
      DiagKind = 3;
 | 
						|
      Str = "case";
 | 
						|
      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
 | 
						|
      break;
 | 
						|
    case Stmt::DefaultStmtClass:
 | 
						|
      DiagKind = 3;
 | 
						|
      Str = "default";
 | 
						|
      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
 | 
						|
      << VD->getDeclName() << IsCapturedByBlock << DiagKind
 | 
						|
      << Str << I->Output << Range;
 | 
						|
    S.Diag(User->getLocStart(), diag::note_uninit_var_use)
 | 
						|
      << IsCapturedByBlock << User->getSourceRange();
 | 
						|
    if (RemoveDiagKind != -1)
 | 
						|
      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
 | 
						|
        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
 | 
						|
 | 
						|
    Diagnosed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Diagnosed)
 | 
						|
    S.Diag(Use.getUser()->getLocStart(),
 | 
						|
           Use.getKind() == UninitUse::Always ? diag::warn_uninit_var
 | 
						|
                                              : diag::warn_maybe_uninit_var)
 | 
						|
        << VD->getDeclName() << IsCapturedByBlock
 | 
						|
        << Use.getUser()->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
 | 
						|
/// uninitialized variable. This manages the different forms of diagnostic
 | 
						|
/// emitted for particular types of uses. Returns true if the use was diagnosed
 | 
						|
/// as a warning. If a particular use is one we omit warnings for, returns
 | 
						|
/// false.
 | 
						|
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
 | 
						|
                                     const UninitUse &Use,
 | 
						|
                                     bool alwaysReportSelfInit = false) {
 | 
						|
 | 
						|
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
 | 
						|
    // Inspect the initializer of the variable declaration which is
 | 
						|
    // being referenced prior to its initialization. We emit
 | 
						|
    // specialized diagnostics for self-initialization, and we
 | 
						|
    // specifically avoid warning about self references which take the
 | 
						|
    // form of:
 | 
						|
    //
 | 
						|
    //   int x = x;
 | 
						|
    //
 | 
						|
    // This is used to indicate to GCC that 'x' is intentionally left
 | 
						|
    // uninitialized. Proven code paths which access 'x' in
 | 
						|
    // an uninitialized state after this will still warn.
 | 
						|
    if (const Expr *Initializer = VD->getInit()) {
 | 
						|
      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
 | 
						|
        return false;
 | 
						|
 | 
						|
      ContainsReference CR(S.Context, DRE);
 | 
						|
      CR.Visit(const_cast<Expr*>(Initializer));
 | 
						|
      if (CR.doesContainReference()) {
 | 
						|
        S.Diag(DRE->getLocStart(),
 | 
						|
               diag::warn_uninit_self_reference_in_init)
 | 
						|
          << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DiagUninitUse(S, VD, Use, false);
 | 
						|
  } else {
 | 
						|
    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
 | 
						|
    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
 | 
						|
      S.Diag(BE->getLocStart(),
 | 
						|
             diag::warn_uninit_byref_blockvar_captured_by_block)
 | 
						|
        << VD->getDeclName();
 | 
						|
    else
 | 
						|
      DiagUninitUse(S, VD, Use, true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Report where the variable was declared when the use wasn't within
 | 
						|
  // the initializer of that declaration & we didn't already suggest
 | 
						|
  // an initialization fixit.
 | 
						|
  if (!SuggestInitializationFixit(S, VD))
 | 
						|
    S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
 | 
						|
      << VD->getDeclName();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
 | 
						|
  public:
 | 
						|
    FallthroughMapper(Sema &S)
 | 
						|
      : FoundSwitchStatements(false),
 | 
						|
        S(S) {
 | 
						|
    }
 | 
						|
 | 
						|
    bool foundSwitchStatements() const { return FoundSwitchStatements; }
 | 
						|
 | 
						|
    void markFallthroughVisited(const AttributedStmt *Stmt) {
 | 
						|
      bool Found = FallthroughStmts.erase(Stmt);
 | 
						|
      assert(Found);
 | 
						|
      (void)Found;
 | 
						|
    }
 | 
						|
 | 
						|
    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
 | 
						|
 | 
						|
    const AttrStmts &getFallthroughStmts() const {
 | 
						|
      return FallthroughStmts;
 | 
						|
    }
 | 
						|
 | 
						|
    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
 | 
						|
      int UnannotatedCnt = 0;
 | 
						|
      AnnotatedCnt = 0;
 | 
						|
 | 
						|
      std::deque<const CFGBlock*> BlockQueue;
 | 
						|
 | 
						|
      std::copy(B.pred_begin(), B.pred_end(), std::back_inserter(BlockQueue));
 | 
						|
 | 
						|
      while (!BlockQueue.empty()) {
 | 
						|
        const CFGBlock *P = BlockQueue.front();
 | 
						|
        BlockQueue.pop_front();
 | 
						|
 | 
						|
        const Stmt *Term = P->getTerminator();
 | 
						|
        if (Term && isa<SwitchStmt>(Term))
 | 
						|
          continue; // Switch statement, good.
 | 
						|
 | 
						|
        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
 | 
						|
        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
 | 
						|
          continue; // Previous case label has no statements, good.
 | 
						|
 | 
						|
        if (P->pred_begin() == P->pred_end()) {  // The block is unreachable.
 | 
						|
          // This only catches trivially unreachable blocks.
 | 
						|
          for (CFGBlock::const_iterator ElIt = P->begin(), ElEnd = P->end();
 | 
						|
               ElIt != ElEnd; ++ElIt) {
 | 
						|
            if (const CFGStmt *CS = ElIt->getAs<CFGStmt>()){
 | 
						|
              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
 | 
						|
                S.Diag(AS->getLocStart(),
 | 
						|
                       diag::warn_fallthrough_attr_unreachable);
 | 
						|
                markFallthroughVisited(AS);
 | 
						|
                ++AnnotatedCnt;
 | 
						|
              }
 | 
						|
              // Don't care about other unreachable statements.
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // If there are no unreachable statements, this may be a special
 | 
						|
          // case in CFG:
 | 
						|
          // case X: {
 | 
						|
          //    A a;  // A has a destructor.
 | 
						|
          //    break;
 | 
						|
          // }
 | 
						|
          // // <<<< This place is represented by a 'hanging' CFG block.
 | 
						|
          // case Y:
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        const Stmt *LastStmt = getLastStmt(*P);
 | 
						|
        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
 | 
						|
          markFallthroughVisited(AS);
 | 
						|
          ++AnnotatedCnt;
 | 
						|
          continue; // Fallthrough annotation, good.
 | 
						|
        }
 | 
						|
 | 
						|
        if (!LastStmt) { // This block contains no executable statements.
 | 
						|
          // Traverse its predecessors.
 | 
						|
          std::copy(P->pred_begin(), P->pred_end(),
 | 
						|
                    std::back_inserter(BlockQueue));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        ++UnannotatedCnt;
 | 
						|
      }
 | 
						|
      return !!UnannotatedCnt;
 | 
						|
    }
 | 
						|
 | 
						|
    // RecursiveASTVisitor setup.
 | 
						|
    bool shouldWalkTypesOfTypeLocs() const { return false; }
 | 
						|
 | 
						|
    bool VisitAttributedStmt(AttributedStmt *S) {
 | 
						|
      if (asFallThroughAttr(S))
 | 
						|
        FallthroughStmts.insert(S);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitSwitchStmt(SwitchStmt *S) {
 | 
						|
      FoundSwitchStatements = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
 | 
						|
    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
 | 
						|
      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
 | 
						|
        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
 | 
						|
          return AS;
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    static const Stmt *getLastStmt(const CFGBlock &B) {
 | 
						|
      if (const Stmt *Term = B.getTerminator())
 | 
						|
        return Term;
 | 
						|
      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
 | 
						|
                                            ElemEnd = B.rend();
 | 
						|
                                            ElemIt != ElemEnd; ++ElemIt) {
 | 
						|
        if (const CFGStmt *CS = ElemIt->getAs<CFGStmt>())
 | 
						|
          return CS->getStmt();
 | 
						|
      }
 | 
						|
      // Workaround to detect a statement thrown out by CFGBuilder:
 | 
						|
      //   case X: {} case Y:
 | 
						|
      //   case X: ; case Y:
 | 
						|
      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
 | 
						|
        if (!isa<SwitchCase>(SW->getSubStmt()))
 | 
						|
          return SW->getSubStmt();
 | 
						|
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    bool FoundSwitchStatements;
 | 
						|
    AttrStmts FallthroughStmts;
 | 
						|
    Sema &S;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
 | 
						|
                                            bool PerFunction) {
 | 
						|
  FallthroughMapper FM(S);
 | 
						|
  FM.TraverseStmt(AC.getBody());
 | 
						|
 | 
						|
  if (!FM.foundSwitchStatements())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (PerFunction && FM.getFallthroughStmts().empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  CFG *Cfg = AC.getCFG();
 | 
						|
 | 
						|
  if (!Cfg)
 | 
						|
    return;
 | 
						|
 | 
						|
  int AnnotatedCnt;
 | 
						|
 | 
						|
  for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
 | 
						|
    const CFGBlock &B = **I;
 | 
						|
    const Stmt *Label = B.getLabel();
 | 
						|
 | 
						|
    if (!Label || !isa<SwitchCase>(Label))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!FM.checkFallThroughIntoBlock(B, AnnotatedCnt))
 | 
						|
      continue;
 | 
						|
 | 
						|
    S.Diag(Label->getLocStart(),
 | 
						|
        PerFunction ? diag::warn_unannotated_fallthrough_per_function
 | 
						|
                    : diag::warn_unannotated_fallthrough);
 | 
						|
 | 
						|
    if (!AnnotatedCnt) {
 | 
						|
      SourceLocation L = Label->getLocStart();
 | 
						|
      if (L.isMacroID())
 | 
						|
        continue;
 | 
						|
      if (S.getLangOpts().CPlusPlus0x) {
 | 
						|
        const Stmt *Term = B.getTerminator();
 | 
						|
        if (!(B.empty() && Term && isa<BreakStmt>(Term))) {
 | 
						|
          S.Diag(L, diag::note_insert_fallthrough_fixit) <<
 | 
						|
            FixItHint::CreateInsertion(L, "[[clang::fallthrough]]; ");
 | 
						|
        }
 | 
						|
      }
 | 
						|
      S.Diag(L, diag::note_insert_break_fixit) <<
 | 
						|
        FixItHint::CreateInsertion(L, "break; ");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const FallthroughMapper::AttrStmts &Fallthroughs = FM.getFallthroughStmts();
 | 
						|
  for (FallthroughMapper::AttrStmts::const_iterator I = Fallthroughs.begin(),
 | 
						|
                                                    E = Fallthroughs.end();
 | 
						|
                                                    I != E; ++I) {
 | 
						|
    S.Diag((*I)->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct SLocSort {
 | 
						|
  bool operator()(const UninitUse &a, const UninitUse &b) {
 | 
						|
    // Prefer a more confident report over a less confident one.
 | 
						|
    if (a.getKind() != b.getKind())
 | 
						|
      return a.getKind() > b.getKind();
 | 
						|
    SourceLocation aLoc = a.getUser()->getLocStart();
 | 
						|
    SourceLocation bLoc = b.getUser()->getLocStart();
 | 
						|
    return aLoc.getRawEncoding() < bLoc.getRawEncoding();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class UninitValsDiagReporter : public UninitVariablesHandler {
 | 
						|
  Sema &S;
 | 
						|
  typedef SmallVector<UninitUse, 2> UsesVec;
 | 
						|
  typedef llvm::DenseMap<const VarDecl *, std::pair<UsesVec*, bool> > UsesMap;
 | 
						|
  UsesMap *uses;
 | 
						|
  
 | 
						|
public:
 | 
						|
  UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
 | 
						|
  ~UninitValsDiagReporter() { 
 | 
						|
    flushDiagnostics();
 | 
						|
  }
 | 
						|
 | 
						|
  std::pair<UsesVec*, bool> &getUses(const VarDecl *vd) {
 | 
						|
    if (!uses)
 | 
						|
      uses = new UsesMap();
 | 
						|
 | 
						|
    UsesMap::mapped_type &V = (*uses)[vd];
 | 
						|
    UsesVec *&vec = V.first;
 | 
						|
    if (!vec)
 | 
						|
      vec = new UsesVec();
 | 
						|
    
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  
 | 
						|
  void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) {
 | 
						|
    getUses(vd).first->push_back(use);
 | 
						|
  }
 | 
						|
  
 | 
						|
  void handleSelfInit(const VarDecl *vd) {
 | 
						|
    getUses(vd).second = true;    
 | 
						|
  }
 | 
						|
  
 | 
						|
  void flushDiagnostics() {
 | 
						|
    if (!uses)
 | 
						|
      return;
 | 
						|
    
 | 
						|
    // FIXME: This iteration order, and thus the resulting diagnostic order,
 | 
						|
    //        is nondeterministic.
 | 
						|
    for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
 | 
						|
      const VarDecl *vd = i->first;
 | 
						|
      const UsesMap::mapped_type &V = i->second;
 | 
						|
 | 
						|
      UsesVec *vec = V.first;
 | 
						|
      bool hasSelfInit = V.second;
 | 
						|
 | 
						|
      // Specially handle the case where we have uses of an uninitialized 
 | 
						|
      // variable, but the root cause is an idiomatic self-init.  We want
 | 
						|
      // to report the diagnostic at the self-init since that is the root cause.
 | 
						|
      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
 | 
						|
        DiagnoseUninitializedUse(S, vd,
 | 
						|
                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
 | 
						|
                                           /* isAlwaysUninit */ true),
 | 
						|
                                 /* alwaysReportSelfInit */ true);
 | 
						|
      else {
 | 
						|
        // Sort the uses by their SourceLocations.  While not strictly
 | 
						|
        // guaranteed to produce them in line/column order, this will provide
 | 
						|
        // a stable ordering.
 | 
						|
        std::sort(vec->begin(), vec->end(), SLocSort());
 | 
						|
        
 | 
						|
        for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
 | 
						|
             ++vi) {
 | 
						|
          // If we have self-init, downgrade all uses to 'may be uninitialized'.
 | 
						|
          UninitUse Use = hasSelfInit ? UninitUse(vi->getUser(), false) : *vi;
 | 
						|
 | 
						|
          if (DiagnoseUninitializedUse(S, vd, Use))
 | 
						|
            // Skip further diagnostics for this variable. We try to warn only
 | 
						|
            // on the first point at which a variable is used uninitialized.
 | 
						|
            break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Release the uses vector.
 | 
						|
      delete vec;
 | 
						|
    }
 | 
						|
    delete uses;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
 | 
						|
  for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) {
 | 
						|
    if (i->getKind() == UninitUse::Always) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// -Wthread-safety
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
namespace clang {
 | 
						|
namespace thread_safety {
 | 
						|
typedef llvm::SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
 | 
						|
typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
 | 
						|
typedef std::list<DelayedDiag> DiagList;
 | 
						|
 | 
						|
struct SortDiagBySourceLocation {
 | 
						|
  SourceManager &SM;
 | 
						|
  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
 | 
						|
 | 
						|
  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
 | 
						|
    // Although this call will be slow, this is only called when outputting
 | 
						|
    // multiple warnings.
 | 
						|
    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
namespace {
 | 
						|
class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
 | 
						|
  Sema &S;
 | 
						|
  DiagList Warnings;
 | 
						|
  SourceLocation FunLocation, FunEndLocation;
 | 
						|
 | 
						|
  // Helper functions
 | 
						|
  void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
 | 
						|
    // Gracefully handle rare cases when the analysis can't get a more
 | 
						|
    // precise source location.
 | 
						|
    if (!Loc.isValid())
 | 
						|
      Loc = FunLocation;
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << LockName);
 | 
						|
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
 | 
						|
  }
 | 
						|
 | 
						|
 public:
 | 
						|
  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
 | 
						|
    : S(S), FunLocation(FL), FunEndLocation(FEL) {}
 | 
						|
 | 
						|
  /// \brief Emit all buffered diagnostics in order of sourcelocation.
 | 
						|
  /// We need to output diagnostics produced while iterating through
 | 
						|
  /// the lockset in deterministic order, so this function orders diagnostics
 | 
						|
  /// and outputs them.
 | 
						|
  void emitDiagnostics() {
 | 
						|
    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
 | 
						|
    for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      S.Diag(I->first.first, I->first.second);
 | 
						|
      const OptionalNotes &Notes = I->second;
 | 
						|
      for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI)
 | 
						|
        S.Diag(Notes[NoteI].first, Notes[NoteI].second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void handleInvalidLockExp(SourceLocation Loc) {
 | 
						|
    PartialDiagnosticAt Warning(Loc,
 | 
						|
                                S.PDiag(diag::warn_cannot_resolve_lock) << Loc);
 | 
						|
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
 | 
						|
  }
 | 
						|
  void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
 | 
						|
    warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
 | 
						|
  }
 | 
						|
 | 
						|
  void handleDoubleLock(Name LockName, SourceLocation Loc) {
 | 
						|
    warnLockMismatch(diag::warn_double_lock, LockName, Loc);
 | 
						|
  }
 | 
						|
 | 
						|
  void handleMutexHeldEndOfScope(Name LockName, SourceLocation LocLocked,
 | 
						|
                                 SourceLocation LocEndOfScope,
 | 
						|
                                 LockErrorKind LEK){
 | 
						|
    unsigned DiagID = 0;
 | 
						|
    switch (LEK) {
 | 
						|
      case LEK_LockedSomePredecessors:
 | 
						|
        DiagID = diag::warn_lock_some_predecessors;
 | 
						|
        break;
 | 
						|
      case LEK_LockedSomeLoopIterations:
 | 
						|
        DiagID = diag::warn_expecting_lock_held_on_loop;
 | 
						|
        break;
 | 
						|
      case LEK_LockedAtEndOfFunction:
 | 
						|
        DiagID = diag::warn_no_unlock;
 | 
						|
        break;
 | 
						|
      case LEK_NotLockedAtEndOfFunction:
 | 
						|
        DiagID = diag::warn_expecting_locked;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (LocEndOfScope.isInvalid())
 | 
						|
      LocEndOfScope = FunEndLocation;
 | 
						|
 | 
						|
    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << LockName);
 | 
						|
    PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here));
 | 
						|
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
 | 
						|
                                SourceLocation Loc2) {
 | 
						|
    PartialDiagnosticAt Warning(
 | 
						|
      Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName);
 | 
						|
    PartialDiagnosticAt Note(
 | 
						|
      Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << LockName);
 | 
						|
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
 | 
						|
                         AccessKind AK, SourceLocation Loc) {
 | 
						|
    assert((POK == POK_VarAccess || POK == POK_VarDereference)
 | 
						|
             && "Only works for variables");
 | 
						|
    unsigned DiagID = POK == POK_VarAccess?
 | 
						|
                        diag::warn_variable_requires_any_lock:
 | 
						|
                        diag::warn_var_deref_requires_any_lock;
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
 | 
						|
      << D->getName() << getLockKindFromAccessKind(AK));
 | 
						|
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
 | 
						|
                          Name LockName, LockKind LK, SourceLocation Loc) {
 | 
						|
    unsigned DiagID = 0;
 | 
						|
    switch (POK) {
 | 
						|
      case POK_VarAccess:
 | 
						|
        DiagID = diag::warn_variable_requires_lock;
 | 
						|
        break;
 | 
						|
      case POK_VarDereference:
 | 
						|
        DiagID = diag::warn_var_deref_requires_lock;
 | 
						|
        break;
 | 
						|
      case POK_FunctionCall:
 | 
						|
        DiagID = diag::warn_fun_requires_lock;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
 | 
						|
      << D->getName() << LockName << LK);
 | 
						|
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
 | 
						|
    PartialDiagnosticAt Warning(Loc,
 | 
						|
      S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName);
 | 
						|
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
 | 
						|
//  warnings on a function, method, or block.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
clang::sema::AnalysisBasedWarnings::Policy::Policy() {
 | 
						|
  enableCheckFallThrough = 1;
 | 
						|
  enableCheckUnreachable = 0;
 | 
						|
  enableThreadSafetyAnalysis = 0;
 | 
						|
}
 | 
						|
 | 
						|
clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
 | 
						|
  : S(s),
 | 
						|
    NumFunctionsAnalyzed(0),
 | 
						|
    NumFunctionsWithBadCFGs(0),
 | 
						|
    NumCFGBlocks(0),
 | 
						|
    MaxCFGBlocksPerFunction(0),
 | 
						|
    NumUninitAnalysisFunctions(0),
 | 
						|
    NumUninitAnalysisVariables(0),
 | 
						|
    MaxUninitAnalysisVariablesPerFunction(0),
 | 
						|
    NumUninitAnalysisBlockVisits(0),
 | 
						|
    MaxUninitAnalysisBlockVisitsPerFunction(0) {
 | 
						|
  DiagnosticsEngine &D = S.getDiagnostics();
 | 
						|
  DefaultPolicy.enableCheckUnreachable = (unsigned)
 | 
						|
    (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
 | 
						|
        DiagnosticsEngine::Ignored);
 | 
						|
  DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
 | 
						|
    (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
 | 
						|
     DiagnosticsEngine::Ignored);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
 | 
						|
  for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
 | 
						|
       i = fscope->PossiblyUnreachableDiags.begin(),
 | 
						|
       e = fscope->PossiblyUnreachableDiags.end();
 | 
						|
       i != e; ++i) {
 | 
						|
    const sema::PossiblyUnreachableDiag &D = *i;
 | 
						|
    S.Diag(D.Loc, D.PD);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void clang::sema::
 | 
						|
AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
 | 
						|
                                     sema::FunctionScopeInfo *fscope,
 | 
						|
                                     const Decl *D, const BlockExpr *blkExpr) {
 | 
						|
 | 
						|
  // We avoid doing analysis-based warnings when there are errors for
 | 
						|
  // two reasons:
 | 
						|
  // (1) The CFGs often can't be constructed (if the body is invalid), so
 | 
						|
  //     don't bother trying.
 | 
						|
  // (2) The code already has problems; running the analysis just takes more
 | 
						|
  //     time.
 | 
						|
  DiagnosticsEngine &Diags = S.getDiagnostics();
 | 
						|
 | 
						|
  // Do not do any analysis for declarations in system headers if we are
 | 
						|
  // going to just ignore them.
 | 
						|
  if (Diags.getSuppressSystemWarnings() &&
 | 
						|
      S.SourceMgr.isInSystemHeader(D->getLocation()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // For code in dependent contexts, we'll do this at instantiation time.
 | 
						|
  if (cast<DeclContext>(D)->isDependentContext())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
 | 
						|
    // Flush out any possibly unreachable diagnostics.
 | 
						|
    flushDiagnostics(S, fscope);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  const Stmt *Body = D->getBody();
 | 
						|
  assert(Body);
 | 
						|
 | 
						|
  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0, D);
 | 
						|
 | 
						|
  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
 | 
						|
  // explosion for destrutors that can result and the compile time hit.
 | 
						|
  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
 | 
						|
  AC.getCFGBuildOptions().AddEHEdges = false;
 | 
						|
  AC.getCFGBuildOptions().AddInitializers = true;
 | 
						|
  AC.getCFGBuildOptions().AddImplicitDtors = true;
 | 
						|
  
 | 
						|
  // Force that certain expressions appear as CFGElements in the CFG.  This
 | 
						|
  // is used to speed up various analyses.
 | 
						|
  // FIXME: This isn't the right factoring.  This is here for initial
 | 
						|
  // prototyping, but we need a way for analyses to say what expressions they
 | 
						|
  // expect to always be CFGElements and then fill in the BuildOptions
 | 
						|
  // appropriately.  This is essentially a layering violation.
 | 
						|
  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis) {
 | 
						|
    // Unreachable code analysis and thread safety require a linearized CFG.
 | 
						|
    AC.getCFGBuildOptions().setAllAlwaysAdd();
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    AC.getCFGBuildOptions()
 | 
						|
      .setAlwaysAdd(Stmt::BinaryOperatorClass)
 | 
						|
      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
 | 
						|
      .setAlwaysAdd(Stmt::BlockExprClass)
 | 
						|
      .setAlwaysAdd(Stmt::CStyleCastExprClass)
 | 
						|
      .setAlwaysAdd(Stmt::DeclRefExprClass)
 | 
						|
      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
 | 
						|
      .setAlwaysAdd(Stmt::UnaryOperatorClass)
 | 
						|
      .setAlwaysAdd(Stmt::AttributedStmtClass);
 | 
						|
  }
 | 
						|
 | 
						|
  // Construct the analysis context with the specified CFG build options.
 | 
						|
  
 | 
						|
  // Emit delayed diagnostics.
 | 
						|
  if (!fscope->PossiblyUnreachableDiags.empty()) {
 | 
						|
    bool analyzed = false;
 | 
						|
 | 
						|
    // Register the expressions with the CFGBuilder.
 | 
						|
    for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
 | 
						|
         i = fscope->PossiblyUnreachableDiags.begin(),
 | 
						|
         e = fscope->PossiblyUnreachableDiags.end();
 | 
						|
         i != e; ++i) {
 | 
						|
      if (const Stmt *stmt = i->stmt)
 | 
						|
        AC.registerForcedBlockExpression(stmt);
 | 
						|
    }
 | 
						|
 | 
						|
    if (AC.getCFG()) {
 | 
						|
      analyzed = true;
 | 
						|
      for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
 | 
						|
            i = fscope->PossiblyUnreachableDiags.begin(),
 | 
						|
            e = fscope->PossiblyUnreachableDiags.end();
 | 
						|
            i != e; ++i)
 | 
						|
      {
 | 
						|
        const sema::PossiblyUnreachableDiag &D = *i;
 | 
						|
        bool processed = false;
 | 
						|
        if (const Stmt *stmt = i->stmt) {
 | 
						|
          const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
 | 
						|
          CFGReverseBlockReachabilityAnalysis *cra =
 | 
						|
              AC.getCFGReachablityAnalysis();
 | 
						|
          // FIXME: We should be able to assert that block is non-null, but
 | 
						|
          // the CFG analysis can skip potentially-evaluated expressions in
 | 
						|
          // edge cases; see test/Sema/vla-2.c.
 | 
						|
          if (block && cra) {
 | 
						|
            // Can this block be reached from the entrance?
 | 
						|
            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
 | 
						|
              S.Diag(D.Loc, D.PD);
 | 
						|
            processed = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (!processed) {
 | 
						|
          // Emit the warning anyway if we cannot map to a basic block.
 | 
						|
          S.Diag(D.Loc, D.PD);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!analyzed)
 | 
						|
      flushDiagnostics(S, fscope);
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // Warning: check missing 'return'
 | 
						|
  if (P.enableCheckFallThrough) {
 | 
						|
    const CheckFallThroughDiagnostics &CD =
 | 
						|
      (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
 | 
						|
       : (isa<CXXMethodDecl>(D) &&
 | 
						|
          cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
 | 
						|
          cast<CXXMethodDecl>(D)->getParent()->isLambda())
 | 
						|
            ? CheckFallThroughDiagnostics::MakeForLambda()
 | 
						|
            : CheckFallThroughDiagnostics::MakeForFunction(D));
 | 
						|
    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Warning: check for unreachable code
 | 
						|
  if (P.enableCheckUnreachable) {
 | 
						|
    // Only check for unreachable code on non-template instantiations.
 | 
						|
    // Different template instantiations can effectively change the control-flow
 | 
						|
    // and it is very difficult to prove that a snippet of code in a template
 | 
						|
    // is unreachable for all instantiations.
 | 
						|
    bool isTemplateInstantiation = false;
 | 
						|
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
 | 
						|
      isTemplateInstantiation = Function->isTemplateInstantiation();
 | 
						|
    if (!isTemplateInstantiation)
 | 
						|
      CheckUnreachable(S, AC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for thread safety violations
 | 
						|
  if (P.enableThreadSafetyAnalysis) {
 | 
						|
    SourceLocation FL = AC.getDecl()->getLocation();
 | 
						|
    SourceLocation FEL = AC.getDecl()->getLocEnd();
 | 
						|
    thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
 | 
						|
    thread_safety::runThreadSafetyAnalysis(AC, Reporter);
 | 
						|
    Reporter.emitDiagnostics();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
 | 
						|
      != DiagnosticsEngine::Ignored ||
 | 
						|
      Diags.getDiagnosticLevel(diag::warn_sometimes_uninit_var,D->getLocStart())
 | 
						|
      != DiagnosticsEngine::Ignored ||
 | 
						|
      Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
 | 
						|
      != DiagnosticsEngine::Ignored) {
 | 
						|
    if (CFG *cfg = AC.getCFG()) {
 | 
						|
      UninitValsDiagReporter reporter(S);
 | 
						|
      UninitVariablesAnalysisStats stats;
 | 
						|
      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
 | 
						|
      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
 | 
						|
                                        reporter, stats);
 | 
						|
 | 
						|
      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
 | 
						|
        ++NumUninitAnalysisFunctions;
 | 
						|
        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
 | 
						|
        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
 | 
						|
        MaxUninitAnalysisVariablesPerFunction =
 | 
						|
            std::max(MaxUninitAnalysisVariablesPerFunction,
 | 
						|
                     stats.NumVariablesAnalyzed);
 | 
						|
        MaxUninitAnalysisBlockVisitsPerFunction =
 | 
						|
            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
 | 
						|
                     stats.NumBlockVisits);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool FallThroughDiagFull =
 | 
						|
      Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough,
 | 
						|
                               D->getLocStart()) != DiagnosticsEngine::Ignored;
 | 
						|
  bool FallThroughDiagPerFunction =
 | 
						|
      Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough_per_function,
 | 
						|
                               D->getLocStart()) != DiagnosticsEngine::Ignored;
 | 
						|
  if (FallThroughDiagFull || FallThroughDiagPerFunction) {
 | 
						|
    DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect statistics about the CFG if it was built.
 | 
						|
  if (S.CollectStats && AC.isCFGBuilt()) {
 | 
						|
    ++NumFunctionsAnalyzed;
 | 
						|
    if (CFG *cfg = AC.getCFG()) {
 | 
						|
      // If we successfully built a CFG for this context, record some more
 | 
						|
      // detail information about it.
 | 
						|
      NumCFGBlocks += cfg->getNumBlockIDs();
 | 
						|
      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
 | 
						|
                                         cfg->getNumBlockIDs());
 | 
						|
    } else {
 | 
						|
      ++NumFunctionsWithBadCFGs;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void clang::sema::AnalysisBasedWarnings::PrintStats() const {
 | 
						|
  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
 | 
						|
 | 
						|
  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
 | 
						|
  unsigned AvgCFGBlocksPerFunction =
 | 
						|
      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
 | 
						|
  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
 | 
						|
               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
 | 
						|
               << "  " << NumCFGBlocks << " CFG blocks built.\n"
 | 
						|
               << "  " << AvgCFGBlocksPerFunction
 | 
						|
               << " average CFG blocks per function.\n"
 | 
						|
               << "  " << MaxCFGBlocksPerFunction
 | 
						|
               << " max CFG blocks per function.\n";
 | 
						|
 | 
						|
  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
 | 
						|
      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
 | 
						|
  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
 | 
						|
      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
 | 
						|
  llvm::errs() << NumUninitAnalysisFunctions
 | 
						|
               << " functions analyzed for uninitialiazed variables\n"
 | 
						|
               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
 | 
						|
               << "  " << AvgUninitVariablesPerFunction
 | 
						|
               << " average variables per function.\n"
 | 
						|
               << "  " << MaxUninitAnalysisVariablesPerFunction
 | 
						|
               << " max variables per function.\n"
 | 
						|
               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
 | 
						|
               << "  " << AvgUninitBlockVisitsPerFunction
 | 
						|
               << " average block visits per function.\n"
 | 
						|
               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
 | 
						|
               << " max block visits per function.\n";
 | 
						|
}
 |