forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			7340 lines
		
	
	
		
			295 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			7340 lines
		
	
	
		
			295 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//===----------------------------------------------------------------------===/
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for C++ templates.
 | 
						|
//===----------------------------------------------------------------------===/
 | 
						|
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/Template.h"
 | 
						|
#include "clang/Sema/TemplateDeduction.h"
 | 
						|
#include "TreeTransform.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/DeclFriend.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/RecursiveASTVisitor.h"
 | 
						|
#include "clang/AST/TypeVisitor.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/ParsedTemplate.h"
 | 
						|
#include "clang/Basic/LangOptions.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
// Exported for use by Parser.
 | 
						|
SourceRange
 | 
						|
clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
 | 
						|
                              unsigned N) {
 | 
						|
  if (!N) return SourceRange();
 | 
						|
  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the declaration found is acceptable as the name
 | 
						|
/// of a template and, if so, return that template declaration. Otherwise,
 | 
						|
/// returns NULL.
 | 
						|
static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
 | 
						|
                                           NamedDecl *Orig,
 | 
						|
                                           bool AllowFunctionTemplates) {
 | 
						|
  NamedDecl *D = Orig->getUnderlyingDecl();
 | 
						|
 | 
						|
  if (isa<TemplateDecl>(D)) {
 | 
						|
    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    return Orig;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
 | 
						|
    // C++ [temp.local]p1:
 | 
						|
    //   Like normal (non-template) classes, class templates have an
 | 
						|
    //   injected-class-name (Clause 9). The injected-class-name
 | 
						|
    //   can be used with or without a template-argument-list. When
 | 
						|
    //   it is used without a template-argument-list, it is
 | 
						|
    //   equivalent to the injected-class-name followed by the
 | 
						|
    //   template-parameters of the class template enclosed in
 | 
						|
    //   <>. When it is used with a template-argument-list, it
 | 
						|
    //   refers to the specified class template specialization,
 | 
						|
    //   which could be the current specialization or another
 | 
						|
    //   specialization.
 | 
						|
    if (Record->isInjectedClassName()) {
 | 
						|
      Record = cast<CXXRecordDecl>(Record->getDeclContext());
 | 
						|
      if (Record->getDescribedClassTemplate())
 | 
						|
        return Record->getDescribedClassTemplate();
 | 
						|
 | 
						|
      if (ClassTemplateSpecializationDecl *Spec
 | 
						|
            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
 | 
						|
        return Spec->getSpecializedTemplate();
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::FilterAcceptableTemplateNames(LookupResult &R, 
 | 
						|
                                         bool AllowFunctionTemplates) {
 | 
						|
  // The set of class templates we've already seen.
 | 
						|
  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
 | 
						|
  LookupResult::Filter filter = R.makeFilter();
 | 
						|
  while (filter.hasNext()) {
 | 
						|
    NamedDecl *Orig = filter.next();
 | 
						|
    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 
 | 
						|
                                               AllowFunctionTemplates);
 | 
						|
    if (!Repl)
 | 
						|
      filter.erase();
 | 
						|
    else if (Repl != Orig) {
 | 
						|
 | 
						|
      // C++ [temp.local]p3:
 | 
						|
      //   A lookup that finds an injected-class-name (10.2) can result in an
 | 
						|
      //   ambiguity in certain cases (for example, if it is found in more than
 | 
						|
      //   one base class). If all of the injected-class-names that are found
 | 
						|
      //   refer to specializations of the same class template, and if the name
 | 
						|
      //   is used as a template-name, the reference refers to the class
 | 
						|
      //   template itself and not a specialization thereof, and is not
 | 
						|
      //   ambiguous.
 | 
						|
      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
 | 
						|
        if (!ClassTemplates.insert(ClassTmpl)) {
 | 
						|
          filter.erase();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
      // FIXME: we promote access to public here as a workaround to
 | 
						|
      // the fact that LookupResult doesn't let us remember that we
 | 
						|
      // found this template through a particular injected class name,
 | 
						|
      // which means we end up doing nasty things to the invariants.
 | 
						|
      // Pretending that access is public is *much* safer.
 | 
						|
      filter.replace(Repl, AS_public);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  filter.done();
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
 | 
						|
                                         bool AllowFunctionTemplates) {
 | 
						|
  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
 | 
						|
    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
 | 
						|
      return true;
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
TemplateNameKind Sema::isTemplateName(Scope *S,
 | 
						|
                                      CXXScopeSpec &SS,
 | 
						|
                                      bool hasTemplateKeyword,
 | 
						|
                                      UnqualifiedId &Name,
 | 
						|
                                      ParsedType ObjectTypePtr,
 | 
						|
                                      bool EnteringContext,
 | 
						|
                                      TemplateTy &TemplateResult,
 | 
						|
                                      bool &MemberOfUnknownSpecialization) {
 | 
						|
  assert(getLangOpts().CPlusPlus && "No template names in C!");
 | 
						|
 | 
						|
  DeclarationName TName;
 | 
						|
  MemberOfUnknownSpecialization = false;
 | 
						|
 | 
						|
  switch (Name.getKind()) {
 | 
						|
  case UnqualifiedId::IK_Identifier:
 | 
						|
    TName = DeclarationName(Name.Identifier);
 | 
						|
    break;
 | 
						|
 | 
						|
  case UnqualifiedId::IK_OperatorFunctionId:
 | 
						|
    TName = Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                              Name.OperatorFunctionId.Operator);
 | 
						|
    break;
 | 
						|
 | 
						|
  case UnqualifiedId::IK_LiteralOperatorId:
 | 
						|
    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    return TNK_Non_template;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ObjectType = ObjectTypePtr.get();
 | 
						|
 | 
						|
  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
 | 
						|
  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
 | 
						|
                     MemberOfUnknownSpecialization);
 | 
						|
  if (R.empty()) return TNK_Non_template;
 | 
						|
  if (R.isAmbiguous()) {
 | 
						|
    // Suppress diagnostics;  we'll redo this lookup later.
 | 
						|
    R.suppressDiagnostics();
 | 
						|
 | 
						|
    // FIXME: we might have ambiguous templates, in which case we
 | 
						|
    // should at least parse them properly!
 | 
						|
    return TNK_Non_template;
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateName Template;
 | 
						|
  TemplateNameKind TemplateKind;
 | 
						|
 | 
						|
  unsigned ResultCount = R.end() - R.begin();
 | 
						|
  if (ResultCount > 1) {
 | 
						|
    // We assume that we'll preserve the qualifier from a function
 | 
						|
    // template name in other ways.
 | 
						|
    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
 | 
						|
    TemplateKind = TNK_Function_template;
 | 
						|
 | 
						|
    // We'll do this lookup again later.
 | 
						|
    R.suppressDiagnostics();
 | 
						|
  } else {
 | 
						|
    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
 | 
						|
 | 
						|
    if (SS.isSet() && !SS.isInvalid()) {
 | 
						|
      NestedNameSpecifier *Qualifier
 | 
						|
        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
      Template = Context.getQualifiedTemplateName(Qualifier,
 | 
						|
                                                  hasTemplateKeyword, TD);
 | 
						|
    } else {
 | 
						|
      Template = TemplateName(TD);
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<FunctionTemplateDecl>(TD)) {
 | 
						|
      TemplateKind = TNK_Function_template;
 | 
						|
 | 
						|
      // We'll do this lookup again later.
 | 
						|
      R.suppressDiagnostics();
 | 
						|
    } else {
 | 
						|
      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
 | 
						|
             isa<TypeAliasTemplateDecl>(TD));
 | 
						|
      TemplateKind = TNK_Type_template;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateResult = TemplateTy::make(Template);
 | 
						|
  return TemplateKind;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
 | 
						|
                                       SourceLocation IILoc,
 | 
						|
                                       Scope *S,
 | 
						|
                                       const CXXScopeSpec *SS,
 | 
						|
                                       TemplateTy &SuggestedTemplate,
 | 
						|
                                       TemplateNameKind &SuggestedKind) {
 | 
						|
  // We can't recover unless there's a dependent scope specifier preceding the
 | 
						|
  // template name.
 | 
						|
  // FIXME: Typo correction?
 | 
						|
  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
 | 
						|
      computeDeclContext(*SS))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The code is missing a 'template' keyword prior to the dependent template
 | 
						|
  // name.
 | 
						|
  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
 | 
						|
  Diag(IILoc, diag::err_template_kw_missing)
 | 
						|
    << Qualifier << II.getName()
 | 
						|
    << FixItHint::CreateInsertion(IILoc, "template ");
 | 
						|
  SuggestedTemplate
 | 
						|
    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
 | 
						|
  SuggestedKind = TNK_Dependent_template_name;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::LookupTemplateName(LookupResult &Found,
 | 
						|
                              Scope *S, CXXScopeSpec &SS,
 | 
						|
                              QualType ObjectType,
 | 
						|
                              bool EnteringContext,
 | 
						|
                              bool &MemberOfUnknownSpecialization) {
 | 
						|
  // Determine where to perform name lookup
 | 
						|
  MemberOfUnknownSpecialization = false;
 | 
						|
  DeclContext *LookupCtx = 0;
 | 
						|
  bool isDependent = false;
 | 
						|
  if (!ObjectType.isNull()) {
 | 
						|
    // This nested-name-specifier occurs in a member access expression, e.g.,
 | 
						|
    // x->B::f, and we are looking into the type of the object.
 | 
						|
    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
 | 
						|
    LookupCtx = computeDeclContext(ObjectType);
 | 
						|
    isDependent = ObjectType->isDependentType();
 | 
						|
    assert((isDependent || !ObjectType->isIncompleteType()) &&
 | 
						|
           "Caller should have completed object type");
 | 
						|
    
 | 
						|
    // Template names cannot appear inside an Objective-C class or object type.
 | 
						|
    if (ObjectType->isObjCObjectOrInterfaceType()) {
 | 
						|
      Found.clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (SS.isSet()) {
 | 
						|
    // This nested-name-specifier occurs after another nested-name-specifier,
 | 
						|
    // so long into the context associated with the prior nested-name-specifier.
 | 
						|
    LookupCtx = computeDeclContext(SS, EnteringContext);
 | 
						|
    isDependent = isDependentScopeSpecifier(SS);
 | 
						|
 | 
						|
    // The declaration context must be complete.
 | 
						|
    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ObjectTypeSearchedInScope = false;
 | 
						|
  bool AllowFunctionTemplatesInLookup = true;
 | 
						|
  if (LookupCtx) {
 | 
						|
    // Perform "qualified" name lookup into the declaration context we
 | 
						|
    // computed, which is either the type of the base of a member access
 | 
						|
    // expression or the declaration context associated with a prior
 | 
						|
    // nested-name-specifier.
 | 
						|
    LookupQualifiedName(Found, LookupCtx);
 | 
						|
    if (!ObjectType.isNull() && Found.empty()) {
 | 
						|
      // C++ [basic.lookup.classref]p1:
 | 
						|
      //   In a class member access expression (5.2.5), if the . or -> token is
 | 
						|
      //   immediately followed by an identifier followed by a <, the
 | 
						|
      //   identifier must be looked up to determine whether the < is the
 | 
						|
      //   beginning of a template argument list (14.2) or a less-than operator.
 | 
						|
      //   The identifier is first looked up in the class of the object
 | 
						|
      //   expression. If the identifier is not found, it is then looked up in
 | 
						|
      //   the context of the entire postfix-expression and shall name a class
 | 
						|
      //   or function template.
 | 
						|
      if (S) LookupName(Found, S);
 | 
						|
      ObjectTypeSearchedInScope = true;
 | 
						|
      AllowFunctionTemplatesInLookup = false;
 | 
						|
    }
 | 
						|
  } else if (isDependent && (!S || ObjectType.isNull())) {
 | 
						|
    // We cannot look into a dependent object type or nested nme
 | 
						|
    // specifier.
 | 
						|
    MemberOfUnknownSpecialization = true;
 | 
						|
    return;
 | 
						|
  } else {
 | 
						|
    // Perform unqualified name lookup in the current scope.
 | 
						|
    LookupName(Found, S);
 | 
						|
    
 | 
						|
    if (!ObjectType.isNull())
 | 
						|
      AllowFunctionTemplatesInLookup = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Found.empty() && !isDependent) {
 | 
						|
    // If we did not find any names, attempt to correct any typos.
 | 
						|
    DeclarationName Name = Found.getLookupName();
 | 
						|
    Found.clear();
 | 
						|
    // Simple filter callback that, for keywords, only accepts the C++ *_cast
 | 
						|
    CorrectionCandidateCallback FilterCCC;
 | 
						|
    FilterCCC.WantTypeSpecifiers = false;
 | 
						|
    FilterCCC.WantExpressionKeywords = false;
 | 
						|
    FilterCCC.WantRemainingKeywords = false;
 | 
						|
    FilterCCC.WantCXXNamedCasts = true;
 | 
						|
    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
 | 
						|
                                               Found.getLookupKind(), S, &SS,
 | 
						|
                                               FilterCCC, LookupCtx)) {
 | 
						|
      Found.setLookupName(Corrected.getCorrection());
 | 
						|
      if (Corrected.getCorrectionDecl())
 | 
						|
        Found.addDecl(Corrected.getCorrectionDecl());
 | 
						|
      FilterAcceptableTemplateNames(Found);
 | 
						|
      if (!Found.empty()) {
 | 
						|
        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | 
						|
        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
 | 
						|
        if (LookupCtx)
 | 
						|
          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
 | 
						|
            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
 | 
						|
            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
 | 
						|
        else
 | 
						|
          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
 | 
						|
            << Name << CorrectedQuotedStr
 | 
						|
            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
 | 
						|
        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
 | 
						|
          Diag(Template->getLocation(), diag::note_previous_decl)
 | 
						|
            << CorrectedQuotedStr;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Found.setLookupName(Name);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
 | 
						|
  if (Found.empty()) {
 | 
						|
    if (isDependent)
 | 
						|
      MemberOfUnknownSpecialization = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
 | 
						|
      !(getLangOpts().CPlusPlus0x && !Found.empty())) {
 | 
						|
    // C++03 [basic.lookup.classref]p1:
 | 
						|
    //   [...] If the lookup in the class of the object expression finds a
 | 
						|
    //   template, the name is also looked up in the context of the entire
 | 
						|
    //   postfix-expression and [...]
 | 
						|
    //
 | 
						|
    // Note: C++11 does not perform this second lookup.
 | 
						|
    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
 | 
						|
                            LookupOrdinaryName);
 | 
						|
    LookupName(FoundOuter, S);
 | 
						|
    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
 | 
						|
 | 
						|
    if (FoundOuter.empty()) {
 | 
						|
      //   - if the name is not found, the name found in the class of the
 | 
						|
      //     object expression is used, otherwise
 | 
						|
    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
 | 
						|
               FoundOuter.isAmbiguous()) {
 | 
						|
      //   - if the name is found in the context of the entire
 | 
						|
      //     postfix-expression and does not name a class template, the name
 | 
						|
      //     found in the class of the object expression is used, otherwise
 | 
						|
      FoundOuter.clear();
 | 
						|
    } else if (!Found.isSuppressingDiagnostics()) {
 | 
						|
      //   - if the name found is a class template, it must refer to the same
 | 
						|
      //     entity as the one found in the class of the object expression,
 | 
						|
      //     otherwise the program is ill-formed.
 | 
						|
      if (!Found.isSingleResult() ||
 | 
						|
          Found.getFoundDecl()->getCanonicalDecl()
 | 
						|
            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
 | 
						|
        Diag(Found.getNameLoc(),
 | 
						|
             diag::ext_nested_name_member_ref_lookup_ambiguous)
 | 
						|
          << Found.getLookupName()
 | 
						|
          << ObjectType;
 | 
						|
        Diag(Found.getRepresentativeDecl()->getLocation(),
 | 
						|
             diag::note_ambig_member_ref_object_type)
 | 
						|
          << ObjectType;
 | 
						|
        Diag(FoundOuter.getFoundDecl()->getLocation(),
 | 
						|
             diag::note_ambig_member_ref_scope);
 | 
						|
 | 
						|
        // Recover by taking the template that we found in the object
 | 
						|
        // expression's type.
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnDependentIdExpression - Handle a dependent id-expression that
 | 
						|
/// was just parsed.  This is only possible with an explicit scope
 | 
						|
/// specifier naming a dependent type.
 | 
						|
ExprResult
 | 
						|
Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
 | 
						|
                                 SourceLocation TemplateKWLoc,
 | 
						|
                                 const DeclarationNameInfo &NameInfo,
 | 
						|
                                 bool isAddressOfOperand,
 | 
						|
                           const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  DeclContext *DC = getFunctionLevelDeclContext();
 | 
						|
 | 
						|
  if (!isAddressOfOperand &&
 | 
						|
      isa<CXXMethodDecl>(DC) &&
 | 
						|
      cast<CXXMethodDecl>(DC)->isInstance()) {
 | 
						|
    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
 | 
						|
 | 
						|
    // Since the 'this' expression is synthesized, we don't need to
 | 
						|
    // perform the double-lookup check.
 | 
						|
    NamedDecl *FirstQualifierInScope = 0;
 | 
						|
 | 
						|
    return Owned(CXXDependentScopeMemberExpr::Create(Context,
 | 
						|
                                                     /*This*/ 0, ThisType,
 | 
						|
                                                     /*IsArrow*/ true,
 | 
						|
                                                     /*Op*/ SourceLocation(),
 | 
						|
                                               SS.getWithLocInContext(Context),
 | 
						|
                                                     TemplateKWLoc,
 | 
						|
                                                     FirstQualifierInScope,
 | 
						|
                                                     NameInfo,
 | 
						|
                                                     TemplateArgs));
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
 | 
						|
                                SourceLocation TemplateKWLoc,
 | 
						|
                                const DeclarationNameInfo &NameInfo,
 | 
						|
                                const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  return Owned(DependentScopeDeclRefExpr::Create(Context,
 | 
						|
                                               SS.getWithLocInContext(Context),
 | 
						|
                                                 TemplateKWLoc,
 | 
						|
                                                 NameInfo,
 | 
						|
                                                 TemplateArgs));
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
 | 
						|
/// that the template parameter 'PrevDecl' is being shadowed by a new
 | 
						|
/// declaration at location Loc. Returns true to indicate that this is
 | 
						|
/// an error, and false otherwise.
 | 
						|
void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
 | 
						|
  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
 | 
						|
 | 
						|
  // Microsoft Visual C++ permits template parameters to be shadowed.
 | 
						|
  if (getLangOpts().MicrosoftExt)
 | 
						|
    return;
 | 
						|
 | 
						|
  // C++ [temp.local]p4:
 | 
						|
  //   A template-parameter shall not be redeclared within its
 | 
						|
  //   scope (including nested scopes).
 | 
						|
  Diag(Loc, diag::err_template_param_shadow)
 | 
						|
    << cast<NamedDecl>(PrevDecl)->getDeclName();
 | 
						|
  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
 | 
						|
/// the parameter D to reference the templated declaration and return a pointer
 | 
						|
/// to the template declaration. Otherwise, do nothing to D and return null.
 | 
						|
TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
 | 
						|
  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
 | 
						|
    D = Temp->getTemplatedDecl();
 | 
						|
    return Temp;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
 | 
						|
                                             SourceLocation EllipsisLoc) const {
 | 
						|
  assert(Kind == Template &&
 | 
						|
         "Only template template arguments can be pack expansions here");
 | 
						|
  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
 | 
						|
         "Template template argument pack expansion without packs");
 | 
						|
  ParsedTemplateArgument Result(*this);
 | 
						|
  Result.EllipsisLoc = EllipsisLoc;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
 | 
						|
                                            const ParsedTemplateArgument &Arg) {
 | 
						|
 | 
						|
  switch (Arg.getKind()) {
 | 
						|
  case ParsedTemplateArgument::Type: {
 | 
						|
    TypeSourceInfo *DI;
 | 
						|
    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
 | 
						|
    if (!DI)
 | 
						|
      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(T), DI);
 | 
						|
  }
 | 
						|
 | 
						|
  case ParsedTemplateArgument::NonType: {
 | 
						|
    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(E), E);
 | 
						|
  }
 | 
						|
 | 
						|
  case ParsedTemplateArgument::Template: {
 | 
						|
    TemplateName Template = Arg.getAsTemplate().get();
 | 
						|
    TemplateArgument TArg;
 | 
						|
    if (Arg.getEllipsisLoc().isValid())
 | 
						|
      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
 | 
						|
    else
 | 
						|
      TArg = Template;
 | 
						|
    return TemplateArgumentLoc(TArg,
 | 
						|
                               Arg.getScopeSpec().getWithLocInContext(
 | 
						|
                                                              SemaRef.Context),
 | 
						|
                               Arg.getLocation(),
 | 
						|
                               Arg.getEllipsisLoc());
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unhandled parsed template argument");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Translates template arguments as provided by the parser
 | 
						|
/// into template arguments used by semantic analysis.
 | 
						|
void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
 | 
						|
                                      TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
 | 
						|
   TemplateArgs.addArgument(translateTemplateArgument(*this,
 | 
						|
                                                      TemplateArgsIn[I]));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTypeParameter - Called when a C++ template type parameter
 | 
						|
/// (e.g., "typename T") has been parsed. Typename specifies whether
 | 
						|
/// the keyword "typename" was used to declare the type parameter
 | 
						|
/// (otherwise, "class" was used), and KeyLoc is the location of the
 | 
						|
/// "class" or "typename" keyword. ParamName is the name of the
 | 
						|
/// parameter (NULL indicates an unnamed template parameter) and
 | 
						|
/// ParamNameLoc is the location of the parameter name (if any).
 | 
						|
/// If the type parameter has a default argument, it will be added
 | 
						|
/// later via ActOnTypeParameterDefault.
 | 
						|
Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
 | 
						|
                               SourceLocation EllipsisLoc,
 | 
						|
                               SourceLocation KeyLoc,
 | 
						|
                               IdentifierInfo *ParamName,
 | 
						|
                               SourceLocation ParamNameLoc,
 | 
						|
                               unsigned Depth, unsigned Position,
 | 
						|
                               SourceLocation EqualLoc,
 | 
						|
                               ParsedType DefaultArg) {
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Template type parameter not in template parameter scope!");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  if (ParamName) {
 | 
						|
    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
 | 
						|
                                           LookupOrdinaryName,
 | 
						|
                                           ForRedeclaration);
 | 
						|
    if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
 | 
						|
      PrevDecl = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation Loc = ParamNameLoc;
 | 
						|
  if (!ParamName)
 | 
						|
    Loc = KeyLoc;
 | 
						|
 | 
						|
  TemplateTypeParmDecl *Param
 | 
						|
    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
 | 
						|
                                   KeyLoc, Loc, Depth, Position, ParamName,
 | 
						|
                                   Typename, Ellipsis);
 | 
						|
  Param->setAccess(AS_public);
 | 
						|
  if (Invalid)
 | 
						|
    Param->setInvalidDecl();
 | 
						|
 | 
						|
  if (ParamName) {
 | 
						|
    // Add the template parameter into the current scope.
 | 
						|
    S->AddDecl(Param);
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.param]p9:
 | 
						|
  //   A default template-argument may be specified for any kind of
 | 
						|
  //   template-parameter that is not a template parameter pack.
 | 
						|
  if (DefaultArg && Ellipsis) {
 | 
						|
    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
 | 
						|
    DefaultArg = ParsedType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the default argument, if provided.
 | 
						|
  if (DefaultArg) {
 | 
						|
    TypeSourceInfo *DefaultTInfo;
 | 
						|
    GetTypeFromParser(DefaultArg, &DefaultTInfo);
 | 
						|
 | 
						|
    assert(DefaultTInfo && "expected source information for type");
 | 
						|
 | 
						|
    // Check for unexpanded parameter packs.
 | 
						|
    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
 | 
						|
                                        UPPC_DefaultArgument))
 | 
						|
      return Param;
 | 
						|
 | 
						|
    // Check the template argument itself.
 | 
						|
    if (CheckTemplateArgument(Param, DefaultTInfo)) {
 | 
						|
      Param->setInvalidDecl();
 | 
						|
      return Param;
 | 
						|
    }
 | 
						|
 | 
						|
    Param->setDefaultArgument(DefaultTInfo, false);
 | 
						|
  }
 | 
						|
 | 
						|
  return Param;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the type of a non-type template parameter is
 | 
						|
/// well-formed.
 | 
						|
///
 | 
						|
/// \returns the (possibly-promoted) parameter type if valid;
 | 
						|
/// otherwise, produces a diagnostic and returns a NULL type.
 | 
						|
QualType
 | 
						|
Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
 | 
						|
  // We don't allow variably-modified types as the type of non-type template
 | 
						|
  // parameters.
 | 
						|
  if (T->isVariablyModifiedType()) {
 | 
						|
    Diag(Loc, diag::err_variably_modified_nontype_template_param)
 | 
						|
      << T;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.param]p4:
 | 
						|
  //
 | 
						|
  // A non-type template-parameter shall have one of the following
 | 
						|
  // (optionally cv-qualified) types:
 | 
						|
  //
 | 
						|
  //       -- integral or enumeration type,
 | 
						|
  if (T->isIntegralOrEnumerationType() ||
 | 
						|
      //   -- pointer to object or pointer to function,
 | 
						|
      T->isPointerType() ||
 | 
						|
      //   -- reference to object or reference to function,
 | 
						|
      T->isReferenceType() ||
 | 
						|
      //   -- pointer to member,
 | 
						|
      T->isMemberPointerType() ||
 | 
						|
      //   -- std::nullptr_t.
 | 
						|
      T->isNullPtrType() ||
 | 
						|
      // If T is a dependent type, we can't do the check now, so we
 | 
						|
      // assume that it is well-formed.
 | 
						|
      T->isDependentType()) {
 | 
						|
    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
 | 
						|
    // are ignored when determining its type.
 | 
						|
    return T.getUnqualifiedType();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.param]p8:
 | 
						|
  //
 | 
						|
  //   A non-type template-parameter of type "array of T" or
 | 
						|
  //   "function returning T" is adjusted to be of type "pointer to
 | 
						|
  //   T" or "pointer to function returning T", respectively.
 | 
						|
  else if (T->isArrayType())
 | 
						|
    // FIXME: Keep the type prior to promotion?
 | 
						|
    return Context.getArrayDecayedType(T);
 | 
						|
  else if (T->isFunctionType())
 | 
						|
    // FIXME: Keep the type prior to promotion?
 | 
						|
    return Context.getPointerType(T);
 | 
						|
 | 
						|
  Diag(Loc, diag::err_template_nontype_parm_bad_type)
 | 
						|
    << T;
 | 
						|
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
 | 
						|
                                          unsigned Depth,
 | 
						|
                                          unsigned Position,
 | 
						|
                                          SourceLocation EqualLoc,
 | 
						|
                                          Expr *Default) {
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType T = TInfo->getType();
 | 
						|
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Non-type template parameter not in template parameter scope!");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  IdentifierInfo *ParamName = D.getIdentifier();
 | 
						|
  if (ParamName) {
 | 
						|
    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
 | 
						|
                                           LookupOrdinaryName,
 | 
						|
                                           ForRedeclaration);
 | 
						|
    if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | 
						|
      PrevDecl = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
 | 
						|
  if (T.isNull()) {
 | 
						|
    T = Context.IntTy; // Recover with an 'int' type.
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsParameterPack = D.hasEllipsis();
 | 
						|
  NonTypeTemplateParmDecl *Param
 | 
						|
    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
 | 
						|
                                      D.getLocStart(),
 | 
						|
                                      D.getIdentifierLoc(),
 | 
						|
                                      Depth, Position, ParamName, T,
 | 
						|
                                      IsParameterPack, TInfo);
 | 
						|
  Param->setAccess(AS_public);
 | 
						|
  
 | 
						|
  if (Invalid)
 | 
						|
    Param->setInvalidDecl();
 | 
						|
 | 
						|
  if (D.getIdentifier()) {
 | 
						|
    // Add the template parameter into the current scope.
 | 
						|
    S->AddDecl(Param);
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.param]p9:
 | 
						|
  //   A default template-argument may be specified for any kind of
 | 
						|
  //   template-parameter that is not a template parameter pack.
 | 
						|
  if (Default && IsParameterPack) {
 | 
						|
    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
 | 
						|
    Default = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the well-formedness of the default template argument, if provided.
 | 
						|
  if (Default) {
 | 
						|
    // Check for unexpanded parameter packs.
 | 
						|
    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
 | 
						|
      return Param;
 | 
						|
 | 
						|
    TemplateArgument Converted;
 | 
						|
    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
 | 
						|
    if (DefaultRes.isInvalid()) {
 | 
						|
      Param->setInvalidDecl();
 | 
						|
      return Param;
 | 
						|
    }
 | 
						|
    Default = DefaultRes.take();
 | 
						|
 | 
						|
    Param->setDefaultArgument(Default, false);
 | 
						|
  }
 | 
						|
 | 
						|
  return Param;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTemplateTemplateParameter - Called when a C++ template template
 | 
						|
/// parameter (e.g. T in template <template \<typename> class T> class array)
 | 
						|
/// has been parsed. S is the current scope.
 | 
						|
Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
 | 
						|
                                           SourceLocation TmpLoc,
 | 
						|
                                           TemplateParameterList *Params,
 | 
						|
                                           SourceLocation EllipsisLoc,
 | 
						|
                                           IdentifierInfo *Name,
 | 
						|
                                           SourceLocation NameLoc,
 | 
						|
                                           unsigned Depth,
 | 
						|
                                           unsigned Position,
 | 
						|
                                           SourceLocation EqualLoc,
 | 
						|
                                           ParsedTemplateArgument Default) {
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Template template parameter not in template parameter scope!");
 | 
						|
 | 
						|
  // Construct the parameter object.
 | 
						|
  bool IsParameterPack = EllipsisLoc.isValid();
 | 
						|
  TemplateTemplateParmDecl *Param =
 | 
						|
    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
 | 
						|
                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
 | 
						|
                                     Depth, Position, IsParameterPack,
 | 
						|
                                     Name, Params);
 | 
						|
  Param->setAccess(AS_public);
 | 
						|
  
 | 
						|
  // If the template template parameter has a name, then link the identifier
 | 
						|
  // into the scope and lookup mechanisms.
 | 
						|
  if (Name) {
 | 
						|
    S->AddDecl(Param);
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Params->size() == 0) {
 | 
						|
    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
 | 
						|
    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
 | 
						|
    Param->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.param]p9:
 | 
						|
  //   A default template-argument may be specified for any kind of
 | 
						|
  //   template-parameter that is not a template parameter pack.
 | 
						|
  if (IsParameterPack && !Default.isInvalid()) {
 | 
						|
    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
 | 
						|
    Default = ParsedTemplateArgument();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Default.isInvalid()) {
 | 
						|
    // Check only that we have a template template argument. We don't want to
 | 
						|
    // try to check well-formedness now, because our template template parameter
 | 
						|
    // might have dependent types in its template parameters, which we wouldn't
 | 
						|
    // be able to match now.
 | 
						|
    //
 | 
						|
    // If none of the template template parameter's template arguments mention
 | 
						|
    // other template parameters, we could actually perform more checking here.
 | 
						|
    // However, it isn't worth doing.
 | 
						|
    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
 | 
						|
    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
 | 
						|
      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
 | 
						|
        << DefaultArg.getSourceRange();
 | 
						|
      return Param;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for unexpanded parameter packs.
 | 
						|
    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
 | 
						|
                                        DefaultArg.getArgument().getAsTemplate(),
 | 
						|
                                        UPPC_DefaultArgument))
 | 
						|
      return Param;
 | 
						|
 | 
						|
    Param->setDefaultArgument(DefaultArg, false);
 | 
						|
  }
 | 
						|
 | 
						|
  return Param;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTemplateParameterList - Builds a TemplateParameterList that
 | 
						|
/// contains the template parameters in Params/NumParams.
 | 
						|
TemplateParameterList *
 | 
						|
Sema::ActOnTemplateParameterList(unsigned Depth,
 | 
						|
                                 SourceLocation ExportLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 SourceLocation LAngleLoc,
 | 
						|
                                 Decl **Params, unsigned NumParams,
 | 
						|
                                 SourceLocation RAngleLoc) {
 | 
						|
  if (ExportLoc.isValid())
 | 
						|
    Diag(ExportLoc, diag::warn_template_export_unsupported);
 | 
						|
 | 
						|
  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
 | 
						|
                                       (NamedDecl**)Params, NumParams,
 | 
						|
                                       RAngleLoc);
 | 
						|
}
 | 
						|
 | 
						|
static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
 | 
						|
  if (SS.isSet())
 | 
						|
    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
 | 
						|
}
 | 
						|
 | 
						|
DeclResult
 | 
						|
Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | 
						|
                         SourceLocation KWLoc, CXXScopeSpec &SS,
 | 
						|
                         IdentifierInfo *Name, SourceLocation NameLoc,
 | 
						|
                         AttributeList *Attr,
 | 
						|
                         TemplateParameterList *TemplateParams,
 | 
						|
                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
 | 
						|
                         unsigned NumOuterTemplateParamLists,
 | 
						|
                         TemplateParameterList** OuterTemplateParamLists) {
 | 
						|
  assert(TemplateParams && TemplateParams->size() > 0 &&
 | 
						|
         "No template parameters");
 | 
						|
  assert(TUK != TUK_Reference && "Can only declare or define class templates");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // Check that we can declare a template here.
 | 
						|
  if (CheckTemplateDeclScope(S, TemplateParams))
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  assert(Kind != TTK_Enum && "can't build template of enumerated type");
 | 
						|
 | 
						|
  // There is no such thing as an unnamed class template.
 | 
						|
  if (!Name) {
 | 
						|
    Diag(KWLoc, diag::err_template_unnamed_class);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find any previous declaration with this name. For a friend with no
 | 
						|
  // scope explicitly specified, we only look for tag declarations (per
 | 
						|
  // C++11 [basic.lookup.elab]p2).
 | 
						|
  DeclContext *SemanticContext;
 | 
						|
  LookupResult Previous(*this, Name, NameLoc,
 | 
						|
                        (SS.isEmpty() && TUK == TUK_Friend)
 | 
						|
                          ? LookupTagName : LookupOrdinaryName,
 | 
						|
                        ForRedeclaration);
 | 
						|
  if (SS.isNotEmpty() && !SS.isInvalid()) {
 | 
						|
    SemanticContext = computeDeclContext(SS, true);
 | 
						|
    if (!SemanticContext) {
 | 
						|
      // FIXME: Horrible, horrible hack! We can't currently represent this
 | 
						|
      // in the AST, and historically we have just ignored such friend
 | 
						|
      // class templates, so don't complain here.
 | 
						|
      if (TUK != TUK_Friend)
 | 
						|
        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
 | 
						|
          << SS.getScopeRep() << SS.getRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RequireCompleteDeclContext(SS, SemanticContext))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If we're adding a template to a dependent context, we may need to 
 | 
						|
    // rebuilding some of the types used within the template parameter list, 
 | 
						|
    // now that we know what the current instantiation is.
 | 
						|
    if (SemanticContext->isDependentContext()) {
 | 
						|
      ContextRAII SavedContext(*this, SemanticContext);
 | 
						|
      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
 | 
						|
        Invalid = true;
 | 
						|
    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
 | 
						|
      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
 | 
						|
 | 
						|
    LookupQualifiedName(Previous, SemanticContext);
 | 
						|
  } else {
 | 
						|
    SemanticContext = CurContext;
 | 
						|
    LookupName(Previous, S);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Previous.isAmbiguous())
 | 
						|
    return true;
 | 
						|
 | 
						|
  NamedDecl *PrevDecl = 0;
 | 
						|
  if (Previous.begin() != Previous.end())
 | 
						|
    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | 
						|
 | 
						|
  // If there is a previous declaration with the same name, check
 | 
						|
  // whether this is a valid redeclaration.
 | 
						|
  ClassTemplateDecl *PrevClassTemplate
 | 
						|
    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
 | 
						|
 | 
						|
  // We may have found the injected-class-name of a class template,
 | 
						|
  // class template partial specialization, or class template specialization.
 | 
						|
  // In these cases, grab the template that is being defined or specialized.
 | 
						|
  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
 | 
						|
      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
 | 
						|
    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
 | 
						|
    PrevClassTemplate
 | 
						|
      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
 | 
						|
    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
 | 
						|
      PrevClassTemplate
 | 
						|
        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
 | 
						|
            ->getSpecializedTemplate();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (TUK == TUK_Friend) {
 | 
						|
    // C++ [namespace.memdef]p3:
 | 
						|
    //   [...] When looking for a prior declaration of a class or a function
 | 
						|
    //   declared as a friend, and when the name of the friend class or
 | 
						|
    //   function is neither a qualified name nor a template-id, scopes outside
 | 
						|
    //   the innermost enclosing namespace scope are not considered.
 | 
						|
    if (!SS.isSet()) {
 | 
						|
      DeclContext *OutermostContext = CurContext;
 | 
						|
      while (!OutermostContext->isFileContext())
 | 
						|
        OutermostContext = OutermostContext->getLookupParent();
 | 
						|
 | 
						|
      if (PrevDecl &&
 | 
						|
          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
 | 
						|
           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
 | 
						|
        SemanticContext = PrevDecl->getDeclContext();
 | 
						|
      } else {
 | 
						|
        // Declarations in outer scopes don't matter. However, the outermost
 | 
						|
        // context we computed is the semantic context for our new
 | 
						|
        // declaration.
 | 
						|
        PrevDecl = PrevClassTemplate = 0;
 | 
						|
        SemanticContext = OutermostContext;
 | 
						|
 | 
						|
        // Check that the chosen semantic context doesn't already contain a
 | 
						|
        // declaration of this name as a non-tag type.
 | 
						|
        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
 | 
						|
                              ForRedeclaration);
 | 
						|
        DeclContext *LookupContext = SemanticContext;
 | 
						|
        while (LookupContext->isTransparentContext())
 | 
						|
          LookupContext = LookupContext->getLookupParent();
 | 
						|
        LookupQualifiedName(Previous, LookupContext);
 | 
						|
 | 
						|
        if (Previous.isAmbiguous())
 | 
						|
          return true;
 | 
						|
 | 
						|
        if (Previous.begin() != Previous.end())
 | 
						|
          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
 | 
						|
    PrevDecl = PrevClassTemplate = 0;
 | 
						|
 | 
						|
  if (PrevClassTemplate) {
 | 
						|
    // Ensure that the template parameter lists are compatible. Skip this check
 | 
						|
    // for a friend in a dependent context: the template parameter list itself
 | 
						|
    // could be dependent.
 | 
						|
    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
 | 
						|
        !TemplateParameterListsAreEqual(TemplateParams,
 | 
						|
                                   PrevClassTemplate->getTemplateParameters(),
 | 
						|
                                        /*Complain=*/true,
 | 
						|
                                        TPL_TemplateMatch))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // C++ [temp.class]p4:
 | 
						|
    //   In a redeclaration, partial specialization, explicit
 | 
						|
    //   specialization or explicit instantiation of a class template,
 | 
						|
    //   the class-key shall agree in kind with the original class
 | 
						|
    //   template declaration (7.1.5.3).
 | 
						|
    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
 | 
						|
    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
 | 
						|
                                      TUK == TUK_Definition,  KWLoc, *Name)) {
 | 
						|
      Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
        << Name
 | 
						|
        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
 | 
						|
      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
 | 
						|
      Kind = PrevRecordDecl->getTagKind();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for redefinition of this class template.
 | 
						|
    if (TUK == TUK_Definition) {
 | 
						|
      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
 | 
						|
        Diag(NameLoc, diag::err_redefinition) << Name;
 | 
						|
        Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
        // FIXME: Would it make sense to try to "forget" the previous
 | 
						|
        // definition, as part of error recovery?
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }    
 | 
						|
  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    PrevDecl = 0;
 | 
						|
  } else if (PrevDecl) {
 | 
						|
    // C++ [temp]p5:
 | 
						|
    //   A class template shall not have the same name as any other
 | 
						|
    //   template, class, function, object, enumeration, enumerator,
 | 
						|
    //   namespace, or type in the same scope (3.3), except as specified
 | 
						|
    //   in (14.5.4).
 | 
						|
    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the template parameter list of this declaration, possibly
 | 
						|
  // merging in the template parameter list from the previous class
 | 
						|
  // template declaration. Skip this check for a friend in a dependent
 | 
						|
  // context, because the template parameter list might be dependent.
 | 
						|
  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
 | 
						|
      CheckTemplateParameterList(TemplateParams,
 | 
						|
            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
 | 
						|
                                 (SS.isSet() && SemanticContext &&
 | 
						|
                                  SemanticContext->isRecord() &&
 | 
						|
                                  SemanticContext->isDependentContext())
 | 
						|
                                   ? TPC_ClassTemplateMember
 | 
						|
                                   : TPC_ClassTemplate))
 | 
						|
    Invalid = true;
 | 
						|
 | 
						|
  if (SS.isSet()) {
 | 
						|
    // If the name of the template was qualified, we must be defining the
 | 
						|
    // template out-of-line.
 | 
						|
    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
 | 
						|
      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
 | 
						|
                                      : diag::err_member_def_does_not_match)
 | 
						|
        << Name << SemanticContext << SS.getRange();
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CXXRecordDecl *NewClass =
 | 
						|
    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
 | 
						|
                          PrevClassTemplate?
 | 
						|
                            PrevClassTemplate->getTemplatedDecl() : 0,
 | 
						|
                          /*DelayTypeCreation=*/true);
 | 
						|
  SetNestedNameSpecifier(NewClass, SS);
 | 
						|
  if (NumOuterTemplateParamLists > 0)
 | 
						|
    NewClass->setTemplateParameterListsInfo(Context,
 | 
						|
                                            NumOuterTemplateParamLists,
 | 
						|
                                            OuterTemplateParamLists);
 | 
						|
 | 
						|
  // Add alignment attributes if necessary; these attributes are checked when
 | 
						|
  // the ASTContext lays out the structure.
 | 
						|
  if (TUK == TUK_Definition) {
 | 
						|
    AddAlignmentAttributesForRecord(NewClass);
 | 
						|
    AddMsStructLayoutForRecord(NewClass);
 | 
						|
  }
 | 
						|
 | 
						|
  ClassTemplateDecl *NewTemplate
 | 
						|
    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
 | 
						|
                                DeclarationName(Name), TemplateParams,
 | 
						|
                                NewClass, PrevClassTemplate);
 | 
						|
  NewClass->setDescribedClassTemplate(NewTemplate);
 | 
						|
  
 | 
						|
  if (ModulePrivateLoc.isValid())
 | 
						|
    NewTemplate->setModulePrivate();
 | 
						|
  
 | 
						|
  // Build the type for the class template declaration now.
 | 
						|
  QualType T = NewTemplate->getInjectedClassNameSpecialization();
 | 
						|
  T = Context.getInjectedClassNameType(NewClass, T);
 | 
						|
  assert(T->isDependentType() && "Class template type is not dependent?");
 | 
						|
  (void)T;
 | 
						|
 | 
						|
  // If we are providing an explicit specialization of a member that is a
 | 
						|
  // class template, make a note of that.
 | 
						|
  if (PrevClassTemplate &&
 | 
						|
      PrevClassTemplate->getInstantiatedFromMemberTemplate())
 | 
						|
    PrevClassTemplate->setMemberSpecialization();
 | 
						|
 | 
						|
  // Set the access specifier.
 | 
						|
  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
 | 
						|
    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
 | 
						|
 | 
						|
  // Set the lexical context of these templates
 | 
						|
  NewClass->setLexicalDeclContext(CurContext);
 | 
						|
  NewTemplate->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    NewClass->startDefinition();
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, NewClass, Attr);
 | 
						|
 | 
						|
  if (PrevClassTemplate)
 | 
						|
    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
 | 
						|
 | 
						|
  AddPushedVisibilityAttribute(NewClass);
 | 
						|
 | 
						|
  if (TUK != TUK_Friend)
 | 
						|
    PushOnScopeChains(NewTemplate, S);
 | 
						|
  else {
 | 
						|
    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
 | 
						|
      NewTemplate->setAccess(PrevClassTemplate->getAccess());
 | 
						|
      NewClass->setAccess(PrevClassTemplate->getAccess());
 | 
						|
    }
 | 
						|
 | 
						|
    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
 | 
						|
                                       PrevClassTemplate != NULL);
 | 
						|
 | 
						|
    // Friend templates are visible in fairly strange ways.
 | 
						|
    if (!CurContext->isDependentContext()) {
 | 
						|
      DeclContext *DC = SemanticContext->getRedeclContext();
 | 
						|
      DC->makeDeclVisibleInContext(NewTemplate);
 | 
						|
      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | 
						|
        PushOnScopeChains(NewTemplate, EnclosingScope,
 | 
						|
                          /* AddToContext = */ false);
 | 
						|
    }
 | 
						|
 | 
						|
    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
 | 
						|
                                            NewClass->getLocation(),
 | 
						|
                                            NewTemplate,
 | 
						|
                                    /*FIXME:*/NewClass->getLocation());
 | 
						|
    Friend->setAccess(AS_public);
 | 
						|
    CurContext->addDecl(Friend);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Invalid) {
 | 
						|
    NewTemplate->setInvalidDecl();
 | 
						|
    NewClass->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  ActOnDocumentableDecl(NewTemplate);
 | 
						|
 | 
						|
  return NewTemplate;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose the presence of a default template argument on a
 | 
						|
/// template parameter, which is ill-formed in certain contexts.
 | 
						|
///
 | 
						|
/// \returns true if the default template argument should be dropped.
 | 
						|
static bool DiagnoseDefaultTemplateArgument(Sema &S,
 | 
						|
                                            Sema::TemplateParamListContext TPC,
 | 
						|
                                            SourceLocation ParamLoc,
 | 
						|
                                            SourceRange DefArgRange) {
 | 
						|
  switch (TPC) {
 | 
						|
  case Sema::TPC_ClassTemplate:
 | 
						|
  case Sema::TPC_TypeAliasTemplate:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Sema::TPC_FunctionTemplate:
 | 
						|
  case Sema::TPC_FriendFunctionTemplateDefinition:
 | 
						|
    // C++ [temp.param]p9:
 | 
						|
    //   A default template-argument shall not be specified in a
 | 
						|
    //   function template declaration or a function template
 | 
						|
    //   definition [...]
 | 
						|
    //   If a friend function template declaration specifies a default 
 | 
						|
    //   template-argument, that declaration shall be a definition and shall be
 | 
						|
    //   the only declaration of the function template in the translation unit.
 | 
						|
    // (C++98/03 doesn't have this wording; see DR226).
 | 
						|
    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
 | 
						|
         diag::warn_cxx98_compat_template_parameter_default_in_function_template
 | 
						|
           : diag::ext_template_parameter_default_in_function_template)
 | 
						|
      << DefArgRange;
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Sema::TPC_ClassTemplateMember:
 | 
						|
    // C++0x [temp.param]p9:
 | 
						|
    //   A default template-argument shall not be specified in the
 | 
						|
    //   template-parameter-lists of the definition of a member of a
 | 
						|
    //   class template that appears outside of the member's class.
 | 
						|
    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
 | 
						|
      << DefArgRange;
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Sema::TPC_FriendFunctionTemplate:
 | 
						|
    // C++ [temp.param]p9:
 | 
						|
    //   A default template-argument shall not be specified in a
 | 
						|
    //   friend template declaration.
 | 
						|
    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
 | 
						|
      << DefArgRange;
 | 
						|
    return true;
 | 
						|
 | 
						|
    // FIXME: C++0x [temp.param]p9 allows default template-arguments
 | 
						|
    // for friend function templates if there is only a single
 | 
						|
    // declaration (and it is a definition). Strange!
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid TemplateParamListContext!");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check for unexpanded parameter packs within the template parameters
 | 
						|
/// of a template template parameter, recursively.
 | 
						|
static bool DiagnoseUnexpandedParameterPacks(Sema &S,
 | 
						|
                                             TemplateTemplateParmDecl *TTP) {
 | 
						|
  TemplateParameterList *Params = TTP->getTemplateParameters();
 | 
						|
  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | 
						|
    NamedDecl *P = Params->getParam(I);
 | 
						|
    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
 | 
						|
      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
 | 
						|
                                            NTTP->getTypeSourceInfo(),
 | 
						|
                                      Sema::UPPC_NonTypeTemplateParameterType))
 | 
						|
        return true;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TemplateTemplateParmDecl *InnerTTP
 | 
						|
                                        = dyn_cast<TemplateTemplateParmDecl>(P))
 | 
						|
      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks the validity of a template parameter list, possibly
 | 
						|
/// considering the template parameter list from a previous
 | 
						|
/// declaration.
 | 
						|
///
 | 
						|
/// If an "old" template parameter list is provided, it must be
 | 
						|
/// equivalent (per TemplateParameterListsAreEqual) to the "new"
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \param NewParams Template parameter list for a new template
 | 
						|
/// declaration. This template parameter list will be updated with any
 | 
						|
/// default arguments that are carried through from the previous
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \param OldParams If provided, template parameter list from a
 | 
						|
/// previous declaration of the same template. Default template
 | 
						|
/// arguments will be merged from the old template parameter list to
 | 
						|
/// the new template parameter list.
 | 
						|
///
 | 
						|
/// \param TPC Describes the context in which we are checking the given
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \returns true if an error occurred, false otherwise.
 | 
						|
bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
 | 
						|
                                      TemplateParameterList *OldParams,
 | 
						|
                                      TemplateParamListContext TPC) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // C++ [temp.param]p10:
 | 
						|
  //   The set of default template-arguments available for use with a
 | 
						|
  //   template declaration or definition is obtained by merging the
 | 
						|
  //   default arguments from the definition (if in scope) and all
 | 
						|
  //   declarations in scope in the same way default function
 | 
						|
  //   arguments are (8.3.6).
 | 
						|
  bool SawDefaultArgument = false;
 | 
						|
  SourceLocation PreviousDefaultArgLoc;
 | 
						|
 | 
						|
  // Dummy initialization to avoid warnings.
 | 
						|
  TemplateParameterList::iterator OldParam = NewParams->end();
 | 
						|
  if (OldParams)
 | 
						|
    OldParam = OldParams->begin();
 | 
						|
 | 
						|
  bool RemoveDefaultArguments = false;
 | 
						|
  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
 | 
						|
                                    NewParamEnd = NewParams->end();
 | 
						|
       NewParam != NewParamEnd; ++NewParam) {
 | 
						|
    // Variables used to diagnose redundant default arguments
 | 
						|
    bool RedundantDefaultArg = false;
 | 
						|
    SourceLocation OldDefaultLoc;
 | 
						|
    SourceLocation NewDefaultLoc;
 | 
						|
 | 
						|
    // Variable used to diagnose missing default arguments
 | 
						|
    bool MissingDefaultArg = false;
 | 
						|
 | 
						|
    // Variable used to diagnose non-final parameter packs
 | 
						|
    bool SawParameterPack = false;
 | 
						|
 | 
						|
    if (TemplateTypeParmDecl *NewTypeParm
 | 
						|
          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
 | 
						|
      // Check the presence of a default argument here.
 | 
						|
      if (NewTypeParm->hasDefaultArgument() &&
 | 
						|
          DiagnoseDefaultTemplateArgument(*this, TPC,
 | 
						|
                                          NewTypeParm->getLocation(),
 | 
						|
               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
 | 
						|
                                                       .getSourceRange()))
 | 
						|
        NewTypeParm->removeDefaultArgument();
 | 
						|
 | 
						|
      // Merge default arguments for template type parameters.
 | 
						|
      TemplateTypeParmDecl *OldTypeParm
 | 
						|
          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
 | 
						|
 | 
						|
      if (NewTypeParm->isParameterPack()) {
 | 
						|
        assert(!NewTypeParm->hasDefaultArgument() &&
 | 
						|
               "Parameter packs can't have a default argument!");
 | 
						|
        SawParameterPack = true;
 | 
						|
      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
 | 
						|
                 NewTypeParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
 | 
						|
        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
 | 
						|
                                        true);
 | 
						|
        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (NewTypeParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
 | 
						|
               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
 | 
						|
      // Check for unexpanded parameter packs.
 | 
						|
      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
 | 
						|
                                          NewNonTypeParm->getTypeSourceInfo(),
 | 
						|
                                          UPPC_NonTypeTemplateParameterType)) {
 | 
						|
        Invalid = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check the presence of a default argument here.
 | 
						|
      if (NewNonTypeParm->hasDefaultArgument() &&
 | 
						|
          DiagnoseDefaultTemplateArgument(*this, TPC,
 | 
						|
                                          NewNonTypeParm->getLocation(),
 | 
						|
                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
 | 
						|
        NewNonTypeParm->removeDefaultArgument();
 | 
						|
      }
 | 
						|
 | 
						|
      // Merge default arguments for non-type template parameters
 | 
						|
      NonTypeTemplateParmDecl *OldNonTypeParm
 | 
						|
        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
 | 
						|
      if (NewNonTypeParm->isParameterPack()) {
 | 
						|
        assert(!NewNonTypeParm->hasDefaultArgument() &&
 | 
						|
               "Parameter packs can't have a default argument!");
 | 
						|
        SawParameterPack = true;
 | 
						|
      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
 | 
						|
          NewNonTypeParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | 
						|
        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        // FIXME: We need to create a new kind of "default argument"
 | 
						|
        // expression that points to a previous non-type template
 | 
						|
        // parameter.
 | 
						|
        NewNonTypeParm->setDefaultArgument(
 | 
						|
                                         OldNonTypeParm->getDefaultArgument(),
 | 
						|
                                         /*Inherited=*/ true);
 | 
						|
        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (NewNonTypeParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    } else {
 | 
						|
      TemplateTemplateParmDecl *NewTemplateParm
 | 
						|
        = cast<TemplateTemplateParmDecl>(*NewParam);
 | 
						|
 | 
						|
      // Check for unexpanded parameter packs, recursively.
 | 
						|
      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
 | 
						|
        Invalid = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check the presence of a default argument here.
 | 
						|
      if (NewTemplateParm->hasDefaultArgument() &&
 | 
						|
          DiagnoseDefaultTemplateArgument(*this, TPC,
 | 
						|
                                          NewTemplateParm->getLocation(),
 | 
						|
                     NewTemplateParm->getDefaultArgument().getSourceRange()))
 | 
						|
        NewTemplateParm->removeDefaultArgument();
 | 
						|
 | 
						|
      // Merge default arguments for template template parameters
 | 
						|
      TemplateTemplateParmDecl *OldTemplateParm
 | 
						|
        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
 | 
						|
      if (NewTemplateParm->isParameterPack()) {
 | 
						|
        assert(!NewTemplateParm->hasDefaultArgument() &&
 | 
						|
               "Parameter packs can't have a default argument!");
 | 
						|
        SawParameterPack = true;
 | 
						|
      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
 | 
						|
          NewTemplateParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
 | 
						|
        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        // FIXME: We need to create a new kind of "default argument" expression
 | 
						|
        // that points to a previous template template parameter.
 | 
						|
        NewTemplateParm->setDefaultArgument(
 | 
						|
                                          OldTemplateParm->getDefaultArgument(),
 | 
						|
                                          /*Inherited=*/ true);
 | 
						|
        PreviousDefaultArgLoc
 | 
						|
          = OldTemplateParm->getDefaultArgument().getLocation();
 | 
						|
      } else if (NewTemplateParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc
 | 
						|
          = NewTemplateParm->getDefaultArgument().getLocation();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [temp.param]p11:
 | 
						|
    //   If a template parameter of a primary class template or alias template
 | 
						|
    //   is a template parameter pack, it shall be the last template parameter.
 | 
						|
    if (SawParameterPack && (NewParam + 1) != NewParamEnd && 
 | 
						|
        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
 | 
						|
      Diag((*NewParam)->getLocation(),
 | 
						|
           diag::err_template_param_pack_must_be_last_template_parameter);
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RedundantDefaultArg) {
 | 
						|
      // C++ [temp.param]p12:
 | 
						|
      //   A template-parameter shall not be given default arguments
 | 
						|
      //   by two different declarations in the same scope.
 | 
						|
      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
 | 
						|
      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
 | 
						|
      Invalid = true;
 | 
						|
    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
 | 
						|
      // C++ [temp.param]p11:
 | 
						|
      //   If a template-parameter of a class template has a default
 | 
						|
      //   template-argument, each subsequent template-parameter shall either
 | 
						|
      //   have a default template-argument supplied or be a template parameter
 | 
						|
      //   pack.
 | 
						|
      Diag((*NewParam)->getLocation(),
 | 
						|
           diag::err_template_param_default_arg_missing);
 | 
						|
      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
 | 
						|
      Invalid = true;
 | 
						|
      RemoveDefaultArguments = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have an old template parameter list that we're merging
 | 
						|
    // in, move on to the next parameter.
 | 
						|
    if (OldParams)
 | 
						|
      ++OldParam;
 | 
						|
  }
 | 
						|
 | 
						|
  // We were missing some default arguments at the end of the list, so remove
 | 
						|
  // all of the default arguments.
 | 
						|
  if (RemoveDefaultArguments) {
 | 
						|
    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
 | 
						|
                                      NewParamEnd = NewParams->end();
 | 
						|
         NewParam != NewParamEnd; ++NewParam) {
 | 
						|
      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
 | 
						|
        TTP->removeDefaultArgument();
 | 
						|
      else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
 | 
						|
        NTTP->removeDefaultArgument();
 | 
						|
      else
 | 
						|
        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// A class which looks for a use of a certain level of template
 | 
						|
/// parameter.
 | 
						|
struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
 | 
						|
  typedef RecursiveASTVisitor<DependencyChecker> super;
 | 
						|
 | 
						|
  unsigned Depth;
 | 
						|
  bool Match;
 | 
						|
 | 
						|
  DependencyChecker(TemplateParameterList *Params) : Match(false) {
 | 
						|
    NamedDecl *ND = Params->getParam(0);
 | 
						|
    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
 | 
						|
      Depth = PD->getDepth();
 | 
						|
    } else if (NonTypeTemplateParmDecl *PD =
 | 
						|
                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
 | 
						|
      Depth = PD->getDepth();
 | 
						|
    } else {
 | 
						|
      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Matches(unsigned ParmDepth) {
 | 
						|
    if (ParmDepth >= Depth) {
 | 
						|
      Match = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
 | 
						|
    return !Matches(T->getDepth());
 | 
						|
  }
 | 
						|
 | 
						|
  bool TraverseTemplateName(TemplateName N) {
 | 
						|
    if (TemplateTemplateParmDecl *PD =
 | 
						|
          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
 | 
						|
      if (Matches(PD->getDepth())) return false;
 | 
						|
    return super::TraverseTemplateName(N);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitDeclRefExpr(DeclRefExpr *E) {
 | 
						|
    if (NonTypeTemplateParmDecl *PD =
 | 
						|
          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
 | 
						|
      if (PD->getDepth() == Depth) {
 | 
						|
        Match = true;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return super::VisitDeclRefExpr(E);
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
 | 
						|
    return TraverseType(T->getInjectedSpecializationType());
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// Determines whether a given type depends on the given parameter
 | 
						|
/// list.
 | 
						|
static bool
 | 
						|
DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
 | 
						|
  DependencyChecker Checker(Params);
 | 
						|
  Checker.TraverseType(T);
 | 
						|
  return Checker.Match;
 | 
						|
}
 | 
						|
 | 
						|
// Find the source range corresponding to the named type in the given
 | 
						|
// nested-name-specifier, if any.
 | 
						|
static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
 | 
						|
                                                       QualType T,
 | 
						|
                                                       const CXXScopeSpec &SS) {
 | 
						|
  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
 | 
						|
  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
 | 
						|
    if (const Type *CurType = NNS->getAsType()) {
 | 
						|
      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
 | 
						|
        return NNSLoc.getTypeLoc().getSourceRange();
 | 
						|
    } else
 | 
						|
      break;
 | 
						|
    
 | 
						|
    NNSLoc = NNSLoc.getPrefix();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Match the given template parameter lists to the given scope
 | 
						|
/// specifier, returning the template parameter list that applies to the
 | 
						|
/// name.
 | 
						|
///
 | 
						|
/// \param DeclStartLoc the start of the declaration that has a scope
 | 
						|
/// specifier or a template parameter list.
 | 
						|
///
 | 
						|
/// \param DeclLoc The location of the declaration itself.
 | 
						|
///
 | 
						|
/// \param SS the scope specifier that will be matched to the given template
 | 
						|
/// parameter lists. This scope specifier precedes a qualified name that is
 | 
						|
/// being declared.
 | 
						|
///
 | 
						|
/// \param ParamLists the template parameter lists, from the outermost to the
 | 
						|
/// innermost template parameter lists.
 | 
						|
///
 | 
						|
/// \param NumParamLists the number of template parameter lists in ParamLists.
 | 
						|
///
 | 
						|
/// \param IsFriend Whether to apply the slightly different rules for
 | 
						|
/// matching template parameters to scope specifiers in friend
 | 
						|
/// declarations.
 | 
						|
///
 | 
						|
/// \param IsExplicitSpecialization will be set true if the entity being
 | 
						|
/// declared is an explicit specialization, false otherwise.
 | 
						|
///
 | 
						|
/// \returns the template parameter list, if any, that corresponds to the
 | 
						|
/// name that is preceded by the scope specifier @p SS. This template
 | 
						|
/// parameter list may have template parameters (if we're declaring a
 | 
						|
/// template) or may have no template parameters (if we're declaring a
 | 
						|
/// template specialization), or may be NULL (if what we're declaring isn't
 | 
						|
/// itself a template).
 | 
						|
TemplateParameterList *
 | 
						|
Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
 | 
						|
                                              SourceLocation DeclLoc,
 | 
						|
                                              const CXXScopeSpec &SS,
 | 
						|
                                          TemplateParameterList **ParamLists,
 | 
						|
                                              unsigned NumParamLists,
 | 
						|
                                              bool IsFriend,
 | 
						|
                                              bool &IsExplicitSpecialization,
 | 
						|
                                              bool &Invalid) {
 | 
						|
  IsExplicitSpecialization = false;
 | 
						|
  Invalid = false;
 | 
						|
  
 | 
						|
  // The sequence of nested types to which we will match up the template
 | 
						|
  // parameter lists. We first build this list by starting with the type named
 | 
						|
  // by the nested-name-specifier and walking out until we run out of types.
 | 
						|
  SmallVector<QualType, 4> NestedTypes;
 | 
						|
  QualType T;
 | 
						|
  if (SS.getScopeRep()) {
 | 
						|
    if (CXXRecordDecl *Record 
 | 
						|
              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
 | 
						|
      T = Context.getTypeDeclType(Record);
 | 
						|
    else
 | 
						|
      T = QualType(SS.getScopeRep()->getAsType(), 0);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we found an explicit specialization that prevents us from needing
 | 
						|
  // 'template<>' headers, this will be set to the location of that
 | 
						|
  // explicit specialization.
 | 
						|
  SourceLocation ExplicitSpecLoc;
 | 
						|
  
 | 
						|
  while (!T.isNull()) {
 | 
						|
    NestedTypes.push_back(T);
 | 
						|
    
 | 
						|
    // Retrieve the parent of a record type.
 | 
						|
    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
 | 
						|
      // If this type is an explicit specialization, we're done.
 | 
						|
      if (ClassTemplateSpecializationDecl *Spec
 | 
						|
          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
 | 
						|
        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 
 | 
						|
            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
 | 
						|
          ExplicitSpecLoc = Spec->getLocation();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } else if (Record->getTemplateSpecializationKind()
 | 
						|
                                                == TSK_ExplicitSpecialization) {
 | 
						|
        ExplicitSpecLoc = Record->getLocation();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
 | 
						|
        T = Context.getTypeDeclType(Parent);
 | 
						|
      else
 | 
						|
        T = QualType();
 | 
						|
      continue;
 | 
						|
    } 
 | 
						|
    
 | 
						|
    if (const TemplateSpecializationType *TST
 | 
						|
                                     = T->getAs<TemplateSpecializationType>()) {
 | 
						|
      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
 | 
						|
        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
 | 
						|
          T = Context.getTypeDeclType(Parent);
 | 
						|
        else
 | 
						|
          T = QualType();
 | 
						|
        continue;        
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Look one step prior in a dependent template specialization type.
 | 
						|
    if (const DependentTemplateSpecializationType *DependentTST
 | 
						|
                          = T->getAs<DependentTemplateSpecializationType>()) {
 | 
						|
      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
 | 
						|
        T = QualType(NNS->getAsType(), 0);
 | 
						|
      else
 | 
						|
        T = QualType();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Look one step prior in a dependent name type.
 | 
						|
    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
 | 
						|
      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
 | 
						|
        T = QualType(NNS->getAsType(), 0);
 | 
						|
      else
 | 
						|
        T = QualType();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Retrieve the parent of an enumeration type.
 | 
						|
    if (const EnumType *EnumT = T->getAs<EnumType>()) {
 | 
						|
      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
 | 
						|
      // check here.
 | 
						|
      EnumDecl *Enum = EnumT->getDecl();
 | 
						|
      
 | 
						|
      // Get to the parent type.
 | 
						|
      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
 | 
						|
        T = Context.getTypeDeclType(Parent);
 | 
						|
      else
 | 
						|
        T = QualType();      
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    T = QualType();
 | 
						|
  }
 | 
						|
  // Reverse the nested types list, since we want to traverse from the outermost
 | 
						|
  // to the innermost while checking template-parameter-lists.
 | 
						|
  std::reverse(NestedTypes.begin(), NestedTypes.end());
 | 
						|
 | 
						|
  // C++0x [temp.expl.spec]p17:
 | 
						|
  //   A member or a member template may be nested within many
 | 
						|
  //   enclosing class templates. In an explicit specialization for
 | 
						|
  //   such a member, the member declaration shall be preceded by a
 | 
						|
  //   template<> for each enclosing class template that is
 | 
						|
  //   explicitly specialized.
 | 
						|
  bool SawNonEmptyTemplateParameterList = false;
 | 
						|
  unsigned ParamIdx = 0;
 | 
						|
  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
 | 
						|
       ++TypeIdx) {
 | 
						|
    T = NestedTypes[TypeIdx];
 | 
						|
    
 | 
						|
    // Whether we expect a 'template<>' header.
 | 
						|
    bool NeedEmptyTemplateHeader = false;
 | 
						|
 | 
						|
    // Whether we expect a template header with parameters.
 | 
						|
    bool NeedNonemptyTemplateHeader = false;
 | 
						|
    
 | 
						|
    // For a dependent type, the set of template parameters that we
 | 
						|
    // expect to see.
 | 
						|
    TemplateParameterList *ExpectedTemplateParams = 0;
 | 
						|
 | 
						|
    // C++0x [temp.expl.spec]p15:
 | 
						|
    //   A member or a member template may be nested within many enclosing 
 | 
						|
    //   class templates. In an explicit specialization for such a member, the 
 | 
						|
    //   member declaration shall be preceded by a template<> for each 
 | 
						|
    //   enclosing class template that is explicitly specialized.
 | 
						|
    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
 | 
						|
      if (ClassTemplatePartialSpecializationDecl *Partial
 | 
						|
            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
 | 
						|
        ExpectedTemplateParams = Partial->getTemplateParameters();
 | 
						|
        NeedNonemptyTemplateHeader = true;
 | 
						|
      } else if (Record->isDependentType()) {
 | 
						|
        if (Record->getDescribedClassTemplate()) {
 | 
						|
          ExpectedTemplateParams = Record->getDescribedClassTemplate()
 | 
						|
                                                      ->getTemplateParameters();
 | 
						|
          NeedNonemptyTemplateHeader = true;
 | 
						|
        }
 | 
						|
      } else if (ClassTemplateSpecializationDecl *Spec
 | 
						|
                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
 | 
						|
        // C++0x [temp.expl.spec]p4:
 | 
						|
        //   Members of an explicitly specialized class template are defined
 | 
						|
        //   in the same manner as members of normal classes, and not using 
 | 
						|
        //   the template<> syntax. 
 | 
						|
        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
 | 
						|
          NeedEmptyTemplateHeader = true;
 | 
						|
        else
 | 
						|
          continue;
 | 
						|
      } else if (Record->getTemplateSpecializationKind()) {
 | 
						|
        if (Record->getTemplateSpecializationKind() 
 | 
						|
                                                != TSK_ExplicitSpecialization &&
 | 
						|
            TypeIdx == NumTypes - 1)
 | 
						|
          IsExplicitSpecialization = true;
 | 
						|
        
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    } else if (const TemplateSpecializationType *TST
 | 
						|
                                     = T->getAs<TemplateSpecializationType>()) {
 | 
						|
      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {        
 | 
						|
        ExpectedTemplateParams = Template->getTemplateParameters();
 | 
						|
        NeedNonemptyTemplateHeader = true;        
 | 
						|
      }
 | 
						|
    } else if (T->getAs<DependentTemplateSpecializationType>()) {
 | 
						|
      // FIXME:  We actually could/should check the template arguments here
 | 
						|
      // against the corresponding template parameter list.
 | 
						|
      NeedNonemptyTemplateHeader = false;
 | 
						|
    } 
 | 
						|
    
 | 
						|
    // C++ [temp.expl.spec]p16:
 | 
						|
    //   In an explicit specialization declaration for a member of a class 
 | 
						|
    //   template or a member template that ap- pears in namespace scope, the 
 | 
						|
    //   member template and some of its enclosing class templates may remain 
 | 
						|
    //   unspecialized, except that the declaration shall not explicitly 
 | 
						|
    //   specialize a class member template if its en- closing class templates 
 | 
						|
    //   are not explicitly specialized as well.
 | 
						|
    if (ParamIdx < NumParamLists) {
 | 
						|
      if (ParamLists[ParamIdx]->size() == 0) {
 | 
						|
        if (SawNonEmptyTemplateParameterList) {
 | 
						|
          Diag(DeclLoc, diag::err_specialize_member_of_template)
 | 
						|
            << ParamLists[ParamIdx]->getSourceRange();
 | 
						|
          Invalid = true;
 | 
						|
          IsExplicitSpecialization = false;
 | 
						|
          return 0;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        SawNonEmptyTemplateParameterList = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (NeedEmptyTemplateHeader) {
 | 
						|
      // If we're on the last of the types, and we need a 'template<>' header
 | 
						|
      // here, then it's an explicit specialization.
 | 
						|
      if (TypeIdx == NumTypes - 1)
 | 
						|
        IsExplicitSpecialization = true;
 | 
						|
      
 | 
						|
      if (ParamIdx < NumParamLists) {
 | 
						|
        if (ParamLists[ParamIdx]->size() > 0) {
 | 
						|
          // The header has template parameters when it shouldn't. Complain.
 | 
						|
          Diag(ParamLists[ParamIdx]->getTemplateLoc(), 
 | 
						|
               diag::err_template_param_list_matches_nontemplate)
 | 
						|
            << T
 | 
						|
            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
 | 
						|
                           ParamLists[ParamIdx]->getRAngleLoc())
 | 
						|
            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
 | 
						|
          Invalid = true;
 | 
						|
          return 0;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Consume this template header.
 | 
						|
        ++ParamIdx;
 | 
						|
        continue;
 | 
						|
      } 
 | 
						|
      
 | 
						|
      if (!IsFriend) {
 | 
						|
        // We don't have a template header, but we should.
 | 
						|
        SourceLocation ExpectedTemplateLoc;
 | 
						|
        if (NumParamLists > 0)
 | 
						|
          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
 | 
						|
        else
 | 
						|
          ExpectedTemplateLoc = DeclStartLoc;
 | 
						|
 | 
						|
        Diag(DeclLoc, diag::err_template_spec_needs_header)
 | 
						|
          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
 | 
						|
          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
 | 
						|
      }
 | 
						|
      
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (NeedNonemptyTemplateHeader) {
 | 
						|
      // In friend declarations we can have template-ids which don't
 | 
						|
      // depend on the corresponding template parameter lists.  But
 | 
						|
      // assume that empty parameter lists are supposed to match this
 | 
						|
      // template-id.
 | 
						|
      if (IsFriend && T->isDependentType()) {
 | 
						|
        if (ParamIdx < NumParamLists &&
 | 
						|
            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
 | 
						|
          ExpectedTemplateParams = 0;
 | 
						|
        else 
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (ParamIdx < NumParamLists) {
 | 
						|
        // Check the template parameter list, if we can.        
 | 
						|
        if (ExpectedTemplateParams &&
 | 
						|
            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
 | 
						|
                                            ExpectedTemplateParams,
 | 
						|
                                            true, TPL_TemplateMatch))
 | 
						|
          Invalid = true;
 | 
						|
        
 | 
						|
        if (!Invalid &&
 | 
						|
            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
 | 
						|
                                       TPC_ClassTemplateMember))
 | 
						|
          Invalid = true;
 | 
						|
        
 | 
						|
        ++ParamIdx;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
 | 
						|
        << T
 | 
						|
        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
 | 
						|
      Invalid = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  // If there were at least as many template-ids as there were template
 | 
						|
  // parameter lists, then there are no template parameter lists remaining for
 | 
						|
  // the declaration itself.
 | 
						|
  if (ParamIdx >= NumParamLists)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If there were too many template parameter lists, complain about that now.
 | 
						|
  if (ParamIdx < NumParamLists - 1) {
 | 
						|
    bool HasAnyExplicitSpecHeader = false;
 | 
						|
    bool AllExplicitSpecHeaders = true;
 | 
						|
    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
 | 
						|
      if (ParamLists[I]->size() == 0)
 | 
						|
        HasAnyExplicitSpecHeader = true;
 | 
						|
      else
 | 
						|
        AllExplicitSpecHeaders = false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
 | 
						|
         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
 | 
						|
                               : diag::err_template_spec_extra_headers)
 | 
						|
      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
 | 
						|
                     ParamLists[NumParamLists - 2]->getRAngleLoc());
 | 
						|
 | 
						|
    // If there was a specialization somewhere, such that 'template<>' is
 | 
						|
    // not required, and there were any 'template<>' headers, note where the
 | 
						|
    // specialization occurred.
 | 
						|
    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
 | 
						|
      Diag(ExplicitSpecLoc, 
 | 
						|
           diag::note_explicit_template_spec_does_not_need_header)
 | 
						|
        << NestedTypes.back();
 | 
						|
    
 | 
						|
    // We have a template parameter list with no corresponding scope, which
 | 
						|
    // means that the resulting template declaration can't be instantiated
 | 
						|
    // properly (we'll end up with dependent nodes when we shouldn't).
 | 
						|
    if (!AllExplicitSpecHeaders)
 | 
						|
      Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p16:
 | 
						|
  //   In an explicit specialization declaration for a member of a class 
 | 
						|
  //   template or a member template that ap- pears in namespace scope, the 
 | 
						|
  //   member template and some of its enclosing class templates may remain 
 | 
						|
  //   unspecialized, except that the declaration shall not explicitly 
 | 
						|
  //   specialize a class member template if its en- closing class templates 
 | 
						|
  //   are not explicitly specialized as well.
 | 
						|
  if (ParamLists[NumParamLists - 1]->size() == 0 && 
 | 
						|
      SawNonEmptyTemplateParameterList) {
 | 
						|
    Diag(DeclLoc, diag::err_specialize_member_of_template)
 | 
						|
      << ParamLists[ParamIdx]->getSourceRange();
 | 
						|
    Invalid = true;
 | 
						|
    IsExplicitSpecialization = false;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Return the last template parameter list, which corresponds to the
 | 
						|
  // entity being declared.
 | 
						|
  return ParamLists[NumParamLists - 1];
 | 
						|
}
 | 
						|
 | 
						|
void Sema::NoteAllFoundTemplates(TemplateName Name) {
 | 
						|
  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
 | 
						|
    Diag(Template->getLocation(), diag::note_template_declared_here)
 | 
						|
      << (isa<FunctionTemplateDecl>(Template)? 0
 | 
						|
          : isa<ClassTemplateDecl>(Template)? 1
 | 
						|
          : isa<TypeAliasTemplateDecl>(Template)? 2
 | 
						|
          : 3)
 | 
						|
      << Template->getDeclName();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
 | 
						|
    for (OverloadedTemplateStorage::iterator I = OST->begin(), 
 | 
						|
                                          IEnd = OST->end();
 | 
						|
         I != IEnd; ++I)
 | 
						|
      Diag((*I)->getLocation(), diag::note_template_declared_here)
 | 
						|
        << 0 << (*I)->getDeclName();
 | 
						|
    
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckTemplateIdType(TemplateName Name,
 | 
						|
                                   SourceLocation TemplateLoc,
 | 
						|
                                   TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
  DependentTemplateName *DTN
 | 
						|
    = Name.getUnderlying().getAsDependentTemplateName();
 | 
						|
  if (DTN && DTN->isIdentifier())
 | 
						|
    // When building a template-id where the template-name is dependent,
 | 
						|
    // assume the template is a type template. Either our assumption is
 | 
						|
    // correct, or the code is ill-formed and will be diagnosed when the
 | 
						|
    // dependent name is substituted.
 | 
						|
    return Context.getDependentTemplateSpecializationType(ETK_None,
 | 
						|
                                                          DTN->getQualifier(),
 | 
						|
                                                          DTN->getIdentifier(),
 | 
						|
                                                          TemplateArgs);
 | 
						|
 | 
						|
  TemplateDecl *Template = Name.getAsTemplateDecl();
 | 
						|
  if (!Template || isa<FunctionTemplateDecl>(Template)) {
 | 
						|
    // We might have a substituted template template parameter pack. If so,
 | 
						|
    // build a template specialization type for it.
 | 
						|
    if (Name.getAsSubstTemplateTemplateParmPack())
 | 
						|
      return Context.getTemplateSpecializationType(Name, TemplateArgs);
 | 
						|
 | 
						|
    Diag(TemplateLoc, diag::err_template_id_not_a_type)
 | 
						|
      << Name;
 | 
						|
    NoteAllFoundTemplates(Name);
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  SmallVector<TemplateArgument, 4> Converted;
 | 
						|
  bool ExpansionIntoFixedList = false;
 | 
						|
  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
 | 
						|
                                false, Converted, &ExpansionIntoFixedList))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  QualType CanonType;
 | 
						|
 | 
						|
  bool InstantiationDependent = false;
 | 
						|
  TypeAliasTemplateDecl *AliasTemplate = 0;
 | 
						|
  if (!ExpansionIntoFixedList &&
 | 
						|
      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
 | 
						|
    // Find the canonical type for this type alias template specialization.
 | 
						|
    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
 | 
						|
    if (Pattern->isInvalidDecl())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                      Converted.data(), Converted.size());
 | 
						|
 | 
						|
    // Only substitute for the innermost template argument list.
 | 
						|
    MultiLevelTemplateArgumentList TemplateArgLists;
 | 
						|
    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
 | 
						|
    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
 | 
						|
    for (unsigned I = 0; I < Depth; ++I)
 | 
						|
      TemplateArgLists.addOuterTemplateArguments(0, 0);
 | 
						|
 | 
						|
    LocalInstantiationScope Scope(*this);
 | 
						|
    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
 | 
						|
    if (Inst)
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    CanonType = SubstType(Pattern->getUnderlyingType(),
 | 
						|
                          TemplateArgLists, AliasTemplate->getLocation(),
 | 
						|
                          AliasTemplate->getDeclName());
 | 
						|
    if (CanonType.isNull())
 | 
						|
      return QualType();
 | 
						|
  } else if (Name.isDependent() ||
 | 
						|
             TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
               TemplateArgs, InstantiationDependent)) {
 | 
						|
    // This class template specialization is a dependent
 | 
						|
    // type. Therefore, its canonical type is another class template
 | 
						|
    // specialization type that contains all of the converted
 | 
						|
    // arguments in canonical form. This ensures that, e.g., A<T> and
 | 
						|
    // A<T, T> have identical types when A is declared as:
 | 
						|
    //
 | 
						|
    //   template<typename T, typename U = T> struct A;
 | 
						|
    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
 | 
						|
    CanonType = Context.getTemplateSpecializationType(CanonName,
 | 
						|
                                                      Converted.data(),
 | 
						|
                                                      Converted.size());
 | 
						|
 | 
						|
    // FIXME: CanonType is not actually the canonical type, and unfortunately
 | 
						|
    // it is a TemplateSpecializationType that we will never use again.
 | 
						|
    // In the future, we need to teach getTemplateSpecializationType to only
 | 
						|
    // build the canonical type and return that to us.
 | 
						|
    CanonType = Context.getCanonicalType(CanonType);
 | 
						|
 | 
						|
    // This might work out to be a current instantiation, in which
 | 
						|
    // case the canonical type needs to be the InjectedClassNameType.
 | 
						|
    //
 | 
						|
    // TODO: in theory this could be a simple hashtable lookup; most
 | 
						|
    // changes to CurContext don't change the set of current
 | 
						|
    // instantiations.
 | 
						|
    if (isa<ClassTemplateDecl>(Template)) {
 | 
						|
      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
 | 
						|
        // If we get out to a namespace, we're done.
 | 
						|
        if (Ctx->isFileContext()) break;
 | 
						|
 | 
						|
        // If this isn't a record, keep looking.
 | 
						|
        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
 | 
						|
        if (!Record) continue;
 | 
						|
 | 
						|
        // Look for one of the two cases with InjectedClassNameTypes
 | 
						|
        // and check whether it's the same template.
 | 
						|
        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
 | 
						|
            !Record->getDescribedClassTemplate())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Fetch the injected class name type and check whether its
 | 
						|
        // injected type is equal to the type we just built.
 | 
						|
        QualType ICNT = Context.getTypeDeclType(Record);
 | 
						|
        QualType Injected = cast<InjectedClassNameType>(ICNT)
 | 
						|
          ->getInjectedSpecializationType();
 | 
						|
 | 
						|
        if (CanonType != Injected->getCanonicalTypeInternal())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If so, the canonical type of this TST is the injected
 | 
						|
        // class name type of the record we just found.
 | 
						|
        assert(ICNT.isCanonical());
 | 
						|
        CanonType = ICNT;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ClassTemplateDecl *ClassTemplate
 | 
						|
               = dyn_cast<ClassTemplateDecl>(Template)) {
 | 
						|
    // Find the class template specialization declaration that
 | 
						|
    // corresponds to these arguments.
 | 
						|
    void *InsertPos = 0;
 | 
						|
    ClassTemplateSpecializationDecl *Decl
 | 
						|
      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
 | 
						|
                                          InsertPos);
 | 
						|
    if (!Decl) {
 | 
						|
      // This is the first time we have referenced this class template
 | 
						|
      // specialization. Create the canonical declaration and add it to
 | 
						|
      // the set of specializations.
 | 
						|
      Decl = ClassTemplateSpecializationDecl::Create(Context,
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getTagKind(),
 | 
						|
                                                ClassTemplate->getDeclContext(),
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getLocStart(),
 | 
						|
                                                ClassTemplate->getLocation(),
 | 
						|
                                                     ClassTemplate,
 | 
						|
                                                     Converted.data(),
 | 
						|
                                                     Converted.size(), 0);
 | 
						|
      ClassTemplate->AddSpecialization(Decl, InsertPos);
 | 
						|
      if (ClassTemplate->isOutOfLine())
 | 
						|
        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
 | 
						|
    }
 | 
						|
 | 
						|
    CanonType = Context.getTypeDeclType(Decl);
 | 
						|
    assert(isa<RecordType>(CanonType) &&
 | 
						|
           "type of non-dependent specialization is not a RecordType");
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the fully-sugared type for this class template
 | 
						|
  // specialization, which refers back to the class template
 | 
						|
  // specialization we created or found.
 | 
						|
  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
 | 
						|
}
 | 
						|
 | 
						|
TypeResult
 | 
						|
Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
 | 
						|
                          TemplateTy TemplateD, SourceLocation TemplateLoc,
 | 
						|
                          SourceLocation LAngleLoc,
 | 
						|
                          ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                          SourceLocation RAngleLoc,
 | 
						|
                          bool IsCtorOrDtorName) {
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  TemplateName Template = TemplateD.getAsVal<TemplateName>();
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | 
						|
    QualType T
 | 
						|
      = Context.getDependentTemplateSpecializationType(ETK_None,
 | 
						|
                                                       DTN->getQualifier(),
 | 
						|
                                                       DTN->getIdentifier(),
 | 
						|
                                                       TemplateArgs);
 | 
						|
    // Build type-source information.
 | 
						|
    TypeLocBuilder TLB;
 | 
						|
    DependentTemplateSpecializationTypeLoc SpecTL
 | 
						|
      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
 | 
						|
    SpecTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
    SpecTL.setTemplateNameLoc(TemplateLoc);
 | 
						|
    SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
    SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
 | 
						|
      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
 | 
						|
  }
 | 
						|
  
 | 
						|
  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
 | 
						|
 | 
						|
  if (Result.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Build type-source information.
 | 
						|
  TypeLocBuilder TLB;
 | 
						|
  TemplateSpecializationTypeLoc SpecTL
 | 
						|
    = TLB.push<TemplateSpecializationTypeLoc>(Result);
 | 
						|
  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  SpecTL.setTemplateNameLoc(TemplateLoc);
 | 
						|
  SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
  SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
 | 
						|
    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
 | 
						|
 | 
						|
  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
 | 
						|
  // constructor or destructor name (in such a case, the scope specifier
 | 
						|
  // will be attached to the enclosing Decl or Expr node).
 | 
						|
  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
 | 
						|
    // Create an elaborated-type-specifier containing the nested-name-specifier.
 | 
						|
    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
 | 
						|
    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
 | 
						|
    ElabTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
  }
 | 
						|
  
 | 
						|
  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
 | 
						|
}
 | 
						|
 | 
						|
TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
 | 
						|
                                        TypeSpecifierType TagSpec,
 | 
						|
                                        SourceLocation TagLoc,
 | 
						|
                                        CXXScopeSpec &SS,
 | 
						|
                                        SourceLocation TemplateKWLoc,
 | 
						|
                                        TemplateTy TemplateD,
 | 
						|
                                        SourceLocation TemplateLoc,
 | 
						|
                                        SourceLocation LAngleLoc,
 | 
						|
                                        ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                        SourceLocation RAngleLoc) {
 | 
						|
  TemplateName Template = TemplateD.getAsVal<TemplateName>();
 | 
						|
  
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
  
 | 
						|
  // Determine the tag kind
 | 
						|
  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  ElaboratedTypeKeyword Keyword
 | 
						|
    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
 | 
						|
 | 
						|
  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | 
						|
    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
 | 
						|
                                                          DTN->getQualifier(), 
 | 
						|
                                                          DTN->getIdentifier(), 
 | 
						|
                                                                TemplateArgs);
 | 
						|
    
 | 
						|
    // Build type-source information.    
 | 
						|
    TypeLocBuilder TLB;
 | 
						|
    DependentTemplateSpecializationTypeLoc SpecTL
 | 
						|
      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
 | 
						|
    SpecTL.setElaboratedKeywordLoc(TagLoc);
 | 
						|
    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
    SpecTL.setTemplateNameLoc(TemplateLoc);
 | 
						|
    SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
    SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
 | 
						|
      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
 | 
						|
  }
 | 
						|
 | 
						|
  if (TypeAliasTemplateDecl *TAT =
 | 
						|
        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
 | 
						|
    // C++0x [dcl.type.elab]p2:
 | 
						|
    //   If the identifier resolves to a typedef-name or the simple-template-id
 | 
						|
    //   resolves to an alias template specialization, the
 | 
						|
    //   elaborated-type-specifier is ill-formed.
 | 
						|
    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
 | 
						|
    Diag(TAT->getLocation(), diag::note_declared_at);
 | 
						|
  }
 | 
						|
  
 | 
						|
  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
 | 
						|
  if (Result.isNull())
 | 
						|
    return TypeResult(true);
 | 
						|
  
 | 
						|
  // Check the tag kind
 | 
						|
  if (const RecordType *RT = Result->getAs<RecordType>()) {
 | 
						|
    RecordDecl *D = RT->getDecl();
 | 
						|
    
 | 
						|
    IdentifierInfo *Id = D->getIdentifier();
 | 
						|
    assert(Id && "templated class must have an identifier");
 | 
						|
    
 | 
						|
    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
 | 
						|
                                      TagLoc, *Id)) {
 | 
						|
      Diag(TagLoc, diag::err_use_with_wrong_tag)
 | 
						|
        << Result
 | 
						|
        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
 | 
						|
      Diag(D->getLocation(), diag::note_previous_use);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Provide source-location information for the template specialization.
 | 
						|
  TypeLocBuilder TLB;
 | 
						|
  TemplateSpecializationTypeLoc SpecTL
 | 
						|
    = TLB.push<TemplateSpecializationTypeLoc>(Result);
 | 
						|
  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  SpecTL.setTemplateNameLoc(TemplateLoc);
 | 
						|
  SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
  SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
 | 
						|
    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
 | 
						|
 | 
						|
  // Construct an elaborated type containing the nested-name-specifier (if any)
 | 
						|
  // and tag keyword.
 | 
						|
  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
 | 
						|
  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
 | 
						|
  ElabTL.setElaboratedKeywordLoc(TagLoc);
 | 
						|
  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
 | 
						|
                                     SourceLocation TemplateKWLoc,
 | 
						|
                                     LookupResult &R,
 | 
						|
                                     bool RequiresADL,
 | 
						|
                                 const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  // FIXME: Can we do any checking at this point? I guess we could check the
 | 
						|
  // template arguments that we have against the template name, if the template
 | 
						|
  // name refers to a single template. That's not a terribly common case,
 | 
						|
  // though.
 | 
						|
  // foo<int> could identify a single function unambiguously
 | 
						|
  // This approach does NOT work, since f<int>(1);
 | 
						|
  // gets resolved prior to resorting to overload resolution
 | 
						|
  // i.e., template<class T> void f(double);
 | 
						|
  //       vs template<class T, class U> void f(U);
 | 
						|
 | 
						|
  // These should be filtered out by our callers.
 | 
						|
  assert(!R.empty() && "empty lookup results when building templateid");
 | 
						|
  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
 | 
						|
 | 
						|
  // We don't want lookup warnings at this point.
 | 
						|
  R.suppressDiagnostics();
 | 
						|
 | 
						|
  UnresolvedLookupExpr *ULE
 | 
						|
    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
 | 
						|
                                   SS.getWithLocInContext(Context),
 | 
						|
                                   TemplateKWLoc,
 | 
						|
                                   R.getLookupNameInfo(),
 | 
						|
                                   RequiresADL, TemplateArgs,
 | 
						|
                                   R.begin(), R.end());
 | 
						|
 | 
						|
  return Owned(ULE);
 | 
						|
}
 | 
						|
 | 
						|
// We actually only call this from template instantiation.
 | 
						|
ExprResult
 | 
						|
Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
 | 
						|
                                   SourceLocation TemplateKWLoc,
 | 
						|
                                   const DeclarationNameInfo &NameInfo,
 | 
						|
                             const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  assert(TemplateArgs || TemplateKWLoc.isValid());
 | 
						|
  DeclContext *DC;
 | 
						|
  if (!(DC = computeDeclContext(SS, false)) ||
 | 
						|
      DC->isDependentContext() ||
 | 
						|
      RequireCompleteDeclContext(SS, DC))
 | 
						|
    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
 | 
						|
 | 
						|
  bool MemberOfUnknownSpecialization;
 | 
						|
  LookupResult R(*this, NameInfo, LookupOrdinaryName);
 | 
						|
  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
 | 
						|
                     MemberOfUnknownSpecialization);
 | 
						|
 | 
						|
  if (R.isAmbiguous())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (R.empty()) {
 | 
						|
    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
 | 
						|
      << NameInfo.getName() << SS.getRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
 | 
						|
    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
 | 
						|
      << (NestedNameSpecifier*) SS.getScopeRep()
 | 
						|
      << NameInfo.getName() << SS.getRange();
 | 
						|
    Diag(Temp->getLocation(), diag::note_referenced_class_template);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form a dependent template name.
 | 
						|
///
 | 
						|
/// This action forms a dependent template name given the template
 | 
						|
/// name and its (presumably dependent) scope specifier. For
 | 
						|
/// example, given "MetaFun::template apply", the scope specifier \p
 | 
						|
/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
 | 
						|
/// of the "template" keyword, and "apply" is the \p Name.
 | 
						|
TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
 | 
						|
                                                  CXXScopeSpec &SS,
 | 
						|
                                                  SourceLocation TemplateKWLoc,
 | 
						|
                                                  UnqualifiedId &Name,
 | 
						|
                                                  ParsedType ObjectType,
 | 
						|
                                                  bool EnteringContext,
 | 
						|
                                                  TemplateTy &Result) {
 | 
						|
  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
 | 
						|
    Diag(TemplateKWLoc,
 | 
						|
         getLangOpts().CPlusPlus0x ?
 | 
						|
           diag::warn_cxx98_compat_template_outside_of_template :
 | 
						|
           diag::ext_template_outside_of_template)
 | 
						|
      << FixItHint::CreateRemoval(TemplateKWLoc);
 | 
						|
 | 
						|
  DeclContext *LookupCtx = 0;
 | 
						|
  if (SS.isSet())
 | 
						|
    LookupCtx = computeDeclContext(SS, EnteringContext);
 | 
						|
  if (!LookupCtx && ObjectType)
 | 
						|
    LookupCtx = computeDeclContext(ObjectType.get());
 | 
						|
  if (LookupCtx) {
 | 
						|
    // C++0x [temp.names]p5:
 | 
						|
    //   If a name prefixed by the keyword template is not the name of
 | 
						|
    //   a template, the program is ill-formed. [Note: the keyword
 | 
						|
    //   template may not be applied to non-template members of class
 | 
						|
    //   templates. -end note ] [ Note: as is the case with the
 | 
						|
    //   typename prefix, the template prefix is allowed in cases
 | 
						|
    //   where it is not strictly necessary; i.e., when the
 | 
						|
    //   nested-name-specifier or the expression on the left of the ->
 | 
						|
    //   or . is not dependent on a template-parameter, or the use
 | 
						|
    //   does not appear in the scope of a template. -end note]
 | 
						|
    //
 | 
						|
    // Note: C++03 was more strict here, because it banned the use of
 | 
						|
    // the "template" keyword prior to a template-name that was not a
 | 
						|
    // dependent name. C++ DR468 relaxed this requirement (the
 | 
						|
    // "template" keyword is now permitted). We follow the C++0x
 | 
						|
    // rules, even in C++03 mode with a warning, retroactively applying the DR.
 | 
						|
    bool MemberOfUnknownSpecialization;
 | 
						|
    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
 | 
						|
                                          ObjectType, EnteringContext, Result,
 | 
						|
                                          MemberOfUnknownSpecialization);
 | 
						|
    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
 | 
						|
        isa<CXXRecordDecl>(LookupCtx) &&
 | 
						|
        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
 | 
						|
         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
 | 
						|
      // This is a dependent template. Handle it below.
 | 
						|
    } else if (TNK == TNK_Non_template) {
 | 
						|
      Diag(Name.getLocStart(),
 | 
						|
           diag::err_template_kw_refers_to_non_template)
 | 
						|
        << GetNameFromUnqualifiedId(Name).getName()
 | 
						|
        << Name.getSourceRange()
 | 
						|
        << TemplateKWLoc;
 | 
						|
      return TNK_Non_template;
 | 
						|
    } else {
 | 
						|
      // We found something; return it.
 | 
						|
      return TNK;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  NestedNameSpecifier *Qualifier
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
 | 
						|
  switch (Name.getKind()) {
 | 
						|
  case UnqualifiedId::IK_Identifier:
 | 
						|
    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
 | 
						|
                                                              Name.Identifier));
 | 
						|
    return TNK_Dependent_template_name;
 | 
						|
 | 
						|
  case UnqualifiedId::IK_OperatorFunctionId:
 | 
						|
    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
 | 
						|
                                             Name.OperatorFunctionId.Operator));
 | 
						|
    return TNK_Dependent_template_name;
 | 
						|
 | 
						|
  case UnqualifiedId::IK_LiteralOperatorId:
 | 
						|
    llvm_unreachable(
 | 
						|
            "We don't support these; Parse shouldn't have allowed propagation");
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(Name.getLocStart(),
 | 
						|
       diag::err_template_kw_refers_to_non_template)
 | 
						|
    << GetNameFromUnqualifiedId(Name).getName()
 | 
						|
    << Name.getSourceRange()
 | 
						|
    << TemplateKWLoc;
 | 
						|
  return TNK_Non_template;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
 | 
						|
                                     const TemplateArgumentLoc &AL,
 | 
						|
                          SmallVectorImpl<TemplateArgument> &Converted) {
 | 
						|
  const TemplateArgument &Arg = AL.getArgument();
 | 
						|
 | 
						|
  // Check template type parameter.
 | 
						|
  switch(Arg.getKind()) {
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    // C++ [temp.arg.type]p1:
 | 
						|
    //   A template-argument for a template-parameter which is a
 | 
						|
    //   type shall be a type-id.
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Template: {
 | 
						|
    // We have a template type parameter but the template argument
 | 
						|
    // is a template without any arguments.
 | 
						|
    SourceRange SR = AL.getSourceRange();
 | 
						|
    TemplateName Name = Arg.getAsTemplate();
 | 
						|
    Diag(SR.getBegin(), diag::err_template_missing_args)
 | 
						|
      << Name << SR;
 | 
						|
    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
 | 
						|
      Diag(Decl->getLocation(), diag::note_template_decl_here);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case TemplateArgument::Expression: {
 | 
						|
    // We have a template type parameter but the template argument is an
 | 
						|
    // expression; see if maybe it is missing the "typename" keyword.
 | 
						|
    CXXScopeSpec SS;
 | 
						|
    DeclarationNameInfo NameInfo;
 | 
						|
 | 
						|
    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
 | 
						|
      SS.Adopt(ArgExpr->getQualifierLoc());
 | 
						|
      NameInfo = ArgExpr->getNameInfo();
 | 
						|
    } else if (DependentScopeDeclRefExpr *ArgExpr =
 | 
						|
               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
 | 
						|
      SS.Adopt(ArgExpr->getQualifierLoc());
 | 
						|
      NameInfo = ArgExpr->getNameInfo();
 | 
						|
    } else if (CXXDependentScopeMemberExpr *ArgExpr =
 | 
						|
               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
 | 
						|
      if (ArgExpr->isImplicitAccess()) {
 | 
						|
        SS.Adopt(ArgExpr->getQualifierLoc());
 | 
						|
        NameInfo = ArgExpr->getMemberNameInfo();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (NameInfo.getName().isIdentifier()) {
 | 
						|
      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
 | 
						|
      LookupParsedName(Result, CurScope, &SS);
 | 
						|
 | 
						|
      if (Result.getAsSingle<TypeDecl>() ||
 | 
						|
          Result.getResultKind() ==
 | 
						|
            LookupResult::NotFoundInCurrentInstantiation) {
 | 
						|
        // FIXME: Add a FixIt and fix up the template argument for recovery.
 | 
						|
        SourceLocation Loc = AL.getSourceRange().getBegin();
 | 
						|
        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // fallthrough
 | 
						|
  }
 | 
						|
  default: {
 | 
						|
    // We have a template type parameter but the template argument
 | 
						|
    // is not a type.
 | 
						|
    SourceRange SR = AL.getSourceRange();
 | 
						|
    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
 | 
						|
    Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Add the converted template type argument.
 | 
						|
  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
 | 
						|
  
 | 
						|
  // Objective-C ARC:
 | 
						|
  //   If an explicitly-specified template argument type is a lifetime type
 | 
						|
  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
 | 
						|
  if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
      ArgType->isObjCLifetimeType() &&
 | 
						|
      !ArgType.getObjCLifetime()) {
 | 
						|
    Qualifiers Qs;
 | 
						|
    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
 | 
						|
    ArgType = Context.getQualifiedType(ArgType, Qs);
 | 
						|
  }
 | 
						|
  
 | 
						|
  Converted.push_back(TemplateArgument(ArgType));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute template arguments into the default template argument for
 | 
						|
/// the given template type parameter.
 | 
						|
///
 | 
						|
/// \param SemaRef the semantic analysis object for which we are performing
 | 
						|
/// the substitution.
 | 
						|
///
 | 
						|
/// \param Template the template that we are synthesizing template arguments
 | 
						|
/// for.
 | 
						|
///
 | 
						|
/// \param TemplateLoc the location of the template name that started the
 | 
						|
/// template-id we are checking.
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>') that
 | 
						|
/// terminates the template-id.
 | 
						|
///
 | 
						|
/// \param Param the template template parameter whose default we are
 | 
						|
/// substituting into.
 | 
						|
///
 | 
						|
/// \param Converted the list of template arguments provided for template
 | 
						|
/// parameters that precede \p Param in the template parameter list.
 | 
						|
/// \returns the substituted template argument, or NULL if an error occurred.
 | 
						|
static TypeSourceInfo *
 | 
						|
SubstDefaultTemplateArgument(Sema &SemaRef,
 | 
						|
                             TemplateDecl *Template,
 | 
						|
                             SourceLocation TemplateLoc,
 | 
						|
                             SourceLocation RAngleLoc,
 | 
						|
                             TemplateTypeParmDecl *Param,
 | 
						|
                         SmallVectorImpl<TemplateArgument> &Converted) {
 | 
						|
  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
 | 
						|
 | 
						|
  // If the argument type is dependent, instantiate it now based
 | 
						|
  // on the previously-computed template arguments.
 | 
						|
  if (ArgType->getType()->isDependentType()) {
 | 
						|
    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                      Converted.data(), Converted.size());
 | 
						|
 | 
						|
    MultiLevelTemplateArgumentList AllTemplateArgs
 | 
						|
      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
 | 
						|
 | 
						|
    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | 
						|
                                     Template, Converted,
 | 
						|
                                     SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
    if (Inst)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
 | 
						|
    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
 | 
						|
                                Param->getDefaultArgumentLoc(),
 | 
						|
                                Param->getDeclName());
 | 
						|
  }
 | 
						|
 | 
						|
  return ArgType;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute template arguments into the default template argument for
 | 
						|
/// the given non-type template parameter.
 | 
						|
///
 | 
						|
/// \param SemaRef the semantic analysis object for which we are performing
 | 
						|
/// the substitution.
 | 
						|
///
 | 
						|
/// \param Template the template that we are synthesizing template arguments
 | 
						|
/// for.
 | 
						|
///
 | 
						|
/// \param TemplateLoc the location of the template name that started the
 | 
						|
/// template-id we are checking.
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>') that
 | 
						|
/// terminates the template-id.
 | 
						|
///
 | 
						|
/// \param Param the non-type template parameter whose default we are
 | 
						|
/// substituting into.
 | 
						|
///
 | 
						|
/// \param Converted the list of template arguments provided for template
 | 
						|
/// parameters that precede \p Param in the template parameter list.
 | 
						|
///
 | 
						|
/// \returns the substituted template argument, or NULL if an error occurred.
 | 
						|
static ExprResult
 | 
						|
SubstDefaultTemplateArgument(Sema &SemaRef,
 | 
						|
                             TemplateDecl *Template,
 | 
						|
                             SourceLocation TemplateLoc,
 | 
						|
                             SourceLocation RAngleLoc,
 | 
						|
                             NonTypeTemplateParmDecl *Param,
 | 
						|
                        SmallVectorImpl<TemplateArgument> &Converted) {
 | 
						|
  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                    Converted.data(), Converted.size());
 | 
						|
 | 
						|
  MultiLevelTemplateArgumentList AllTemplateArgs
 | 
						|
    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
 | 
						|
 | 
						|
  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | 
						|
                                   Template, Converted,
 | 
						|
                                   SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
  if (Inst)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
 | 
						|
  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute template arguments into the default template argument for
 | 
						|
/// the given template template parameter.
 | 
						|
///
 | 
						|
/// \param SemaRef the semantic analysis object for which we are performing
 | 
						|
/// the substitution.
 | 
						|
///
 | 
						|
/// \param Template the template that we are synthesizing template arguments
 | 
						|
/// for.
 | 
						|
///
 | 
						|
/// \param TemplateLoc the location of the template name that started the
 | 
						|
/// template-id we are checking.
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>') that
 | 
						|
/// terminates the template-id.
 | 
						|
///
 | 
						|
/// \param Param the template template parameter whose default we are
 | 
						|
/// substituting into.
 | 
						|
///
 | 
						|
/// \param Converted the list of template arguments provided for template
 | 
						|
/// parameters that precede \p Param in the template parameter list.
 | 
						|
///
 | 
						|
/// \param QualifierLoc Will be set to the nested-name-specifier (with 
 | 
						|
/// source-location information) that precedes the template name.
 | 
						|
///
 | 
						|
/// \returns the substituted template argument, or NULL if an error occurred.
 | 
						|
static TemplateName
 | 
						|
SubstDefaultTemplateArgument(Sema &SemaRef,
 | 
						|
                             TemplateDecl *Template,
 | 
						|
                             SourceLocation TemplateLoc,
 | 
						|
                             SourceLocation RAngleLoc,
 | 
						|
                             TemplateTemplateParmDecl *Param,
 | 
						|
                       SmallVectorImpl<TemplateArgument> &Converted,
 | 
						|
                             NestedNameSpecifierLoc &QualifierLoc) {
 | 
						|
  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                    Converted.data(), Converted.size());
 | 
						|
 | 
						|
  MultiLevelTemplateArgumentList AllTemplateArgs
 | 
						|
    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
 | 
						|
 | 
						|
  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | 
						|
                                   Template, Converted,
 | 
						|
                                   SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
  if (Inst)
 | 
						|
    return TemplateName();
 | 
						|
 | 
						|
  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
 | 
						|
  // Substitute into the nested-name-specifier first, 
 | 
						|
  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
 | 
						|
  if (QualifierLoc) {
 | 
						|
    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 
 | 
						|
                                                       AllTemplateArgs);
 | 
						|
    if (!QualifierLoc)
 | 
						|
      return TemplateName();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SemaRef.SubstTemplateName(QualifierLoc,
 | 
						|
                      Param->getDefaultArgument().getArgument().getAsTemplate(),
 | 
						|
                              Param->getDefaultArgument().getTemplateNameLoc(),
 | 
						|
                                   AllTemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If the given template parameter has a default template
 | 
						|
/// argument, substitute into that default template argument and
 | 
						|
/// return the corresponding template argument.
 | 
						|
TemplateArgumentLoc
 | 
						|
Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
 | 
						|
                                              SourceLocation TemplateLoc,
 | 
						|
                                              SourceLocation RAngleLoc,
 | 
						|
                                              Decl *Param,
 | 
						|
                      SmallVectorImpl<TemplateArgument> &Converted) {
 | 
						|
   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | 
						|
    if (!TypeParm->hasDefaultArgument())
 | 
						|
      return TemplateArgumentLoc();
 | 
						|
 | 
						|
    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                      TemplateLoc,
 | 
						|
                                                      RAngleLoc,
 | 
						|
                                                      TypeParm,
 | 
						|
                                                      Converted);
 | 
						|
    if (DI)
 | 
						|
      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
 | 
						|
 | 
						|
    return TemplateArgumentLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  if (NonTypeTemplateParmDecl *NonTypeParm
 | 
						|
        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
    if (!NonTypeParm->hasDefaultArgument())
 | 
						|
      return TemplateArgumentLoc();
 | 
						|
 | 
						|
    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                  TemplateLoc,
 | 
						|
                                                  RAngleLoc,
 | 
						|
                                                  NonTypeParm,
 | 
						|
                                                  Converted);
 | 
						|
    if (Arg.isInvalid())
 | 
						|
      return TemplateArgumentLoc();
 | 
						|
 | 
						|
    Expr *ArgE = Arg.takeAs<Expr>();
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateTemplateParmDecl *TempTempParm
 | 
						|
    = cast<TemplateTemplateParmDecl>(Param);
 | 
						|
  if (!TempTempParm->hasDefaultArgument())
 | 
						|
    return TemplateArgumentLoc();
 | 
						|
 | 
						|
 | 
						|
  NestedNameSpecifierLoc QualifierLoc;
 | 
						|
  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                    TemplateLoc,
 | 
						|
                                                    RAngleLoc,
 | 
						|
                                                    TempTempParm,
 | 
						|
                                                    Converted,
 | 
						|
                                                    QualifierLoc);
 | 
						|
  if (TName.isNull())
 | 
						|
    return TemplateArgumentLoc();
 | 
						|
 | 
						|
  return TemplateArgumentLoc(TemplateArgument(TName),
 | 
						|
                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
 | 
						|
                TempTempParm->getDefaultArgument().getTemplateNameLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the given template argument corresponds to the given
 | 
						|
/// template parameter.
 | 
						|
///
 | 
						|
/// \param Param The template parameter against which the argument will be
 | 
						|
/// checked.
 | 
						|
///
 | 
						|
/// \param Arg The template argument.
 | 
						|
///
 | 
						|
/// \param Template The template in which the template argument resides.
 | 
						|
///
 | 
						|
/// \param TemplateLoc The location of the template name for the template
 | 
						|
/// whose argument list we're matching.
 | 
						|
///
 | 
						|
/// \param RAngleLoc The location of the right angle bracket ('>') that closes
 | 
						|
/// the template argument list.
 | 
						|
///
 | 
						|
/// \param ArgumentPackIndex The index into the argument pack where this
 | 
						|
/// argument will be placed. Only valid if the parameter is a parameter pack.
 | 
						|
///
 | 
						|
/// \param Converted The checked, converted argument will be added to the
 | 
						|
/// end of this small vector.
 | 
						|
///
 | 
						|
/// \param CTAK Describes how we arrived at this particular template argument:
 | 
						|
/// explicitly written, deduced, etc.
 | 
						|
///
 | 
						|
/// \returns true on error, false otherwise.
 | 
						|
bool Sema::CheckTemplateArgument(NamedDecl *Param,
 | 
						|
                                 const TemplateArgumentLoc &Arg,
 | 
						|
                                 NamedDecl *Template,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 SourceLocation RAngleLoc,
 | 
						|
                                 unsigned ArgumentPackIndex,
 | 
						|
                            SmallVectorImpl<TemplateArgument> &Converted,
 | 
						|
                                 CheckTemplateArgumentKind CTAK) {
 | 
						|
  // Check template type parameters.
 | 
						|
  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
 | 
						|
    return CheckTemplateTypeArgument(TTP, Arg, Converted);
 | 
						|
 | 
						|
  // Check non-type template parameters.
 | 
						|
  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
    // Do substitution on the type of the non-type template parameter
 | 
						|
    // with the template arguments we've seen thus far.  But if the
 | 
						|
    // template has a dependent context then we cannot substitute yet.
 | 
						|
    QualType NTTPType = NTTP->getType();
 | 
						|
    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
 | 
						|
      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
 | 
						|
 | 
						|
    if (NTTPType->isDependentType() &&
 | 
						|
        !isa<TemplateTemplateParmDecl>(Template) &&
 | 
						|
        !Template->getDeclContext()->isDependentContext()) {
 | 
						|
      // Do substitution on the type of the non-type template parameter.
 | 
						|
      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
 | 
						|
                                 NTTP, Converted,
 | 
						|
                                 SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
      if (Inst)
 | 
						|
        return true;
 | 
						|
 | 
						|
      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                        Converted.data(), Converted.size());
 | 
						|
      NTTPType = SubstType(NTTPType,
 | 
						|
                           MultiLevelTemplateArgumentList(TemplateArgs),
 | 
						|
                           NTTP->getLocation(),
 | 
						|
                           NTTP->getDeclName());
 | 
						|
      // If that worked, check the non-type template parameter type
 | 
						|
      // for validity.
 | 
						|
      if (!NTTPType.isNull())
 | 
						|
        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
 | 
						|
                                                     NTTP->getLocation());
 | 
						|
      if (NTTPType.isNull())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Arg.getArgument().getKind()) {
 | 
						|
    case TemplateArgument::Null:
 | 
						|
      llvm_unreachable("Should never see a NULL template argument here");
 | 
						|
 | 
						|
    case TemplateArgument::Expression: {
 | 
						|
      TemplateArgument Result;
 | 
						|
      ExprResult Res =
 | 
						|
        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
 | 
						|
                              Result, CTAK);
 | 
						|
      if (Res.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      Converted.push_back(Result);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case TemplateArgument::Declaration:
 | 
						|
    case TemplateArgument::Integral:
 | 
						|
      // We've already checked this template argument, so just copy
 | 
						|
      // it to the list of converted arguments.
 | 
						|
      Converted.push_back(Arg.getArgument());
 | 
						|
      break;
 | 
						|
 | 
						|
    case TemplateArgument::Template:
 | 
						|
    case TemplateArgument::TemplateExpansion:
 | 
						|
      // We were given a template template argument. It may not be ill-formed;
 | 
						|
      // see below.
 | 
						|
      if (DependentTemplateName *DTN
 | 
						|
            = Arg.getArgument().getAsTemplateOrTemplatePattern()
 | 
						|
                                              .getAsDependentTemplateName()) {
 | 
						|
        // We have a template argument such as \c T::template X, which we
 | 
						|
        // parsed as a template template argument. However, since we now
 | 
						|
        // know that we need a non-type template argument, convert this
 | 
						|
        // template name into an expression.
 | 
						|
 | 
						|
        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
 | 
						|
                                     Arg.getTemplateNameLoc());
 | 
						|
 | 
						|
        CXXScopeSpec SS;
 | 
						|
        SS.Adopt(Arg.getTemplateQualifierLoc());
 | 
						|
        // FIXME: the template-template arg was a DependentTemplateName,
 | 
						|
        // so it was provided with a template keyword. However, its source
 | 
						|
        // location is not stored in the template argument structure.
 | 
						|
        SourceLocation TemplateKWLoc;
 | 
						|
        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
 | 
						|
                                                SS.getWithLocInContext(Context),
 | 
						|
                                                               TemplateKWLoc,
 | 
						|
                                                               NameInfo, 0));
 | 
						|
 | 
						|
        // If we parsed the template argument as a pack expansion, create a
 | 
						|
        // pack expansion expression.
 | 
						|
        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
 | 
						|
          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
 | 
						|
          if (E.isInvalid())
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        TemplateArgument Result;
 | 
						|
        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
 | 
						|
        if (E.isInvalid())
 | 
						|
          return true;
 | 
						|
 | 
						|
        Converted.push_back(Result);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // We have a template argument that actually does refer to a class
 | 
						|
      // template, alias template, or template template parameter, and
 | 
						|
      // therefore cannot be a non-type template argument.
 | 
						|
      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
 | 
						|
        << Arg.getSourceRange();
 | 
						|
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
 | 
						|
    case TemplateArgument::Type: {
 | 
						|
      // We have a non-type template parameter but the template
 | 
						|
      // argument is a type.
 | 
						|
 | 
						|
      // C++ [temp.arg]p2:
 | 
						|
      //   In a template-argument, an ambiguity between a type-id and
 | 
						|
      //   an expression is resolved to a type-id, regardless of the
 | 
						|
      //   form of the corresponding template-parameter.
 | 
						|
      //
 | 
						|
      // We warn specifically about this case, since it can be rather
 | 
						|
      // confusing for users.
 | 
						|
      QualType T = Arg.getArgument().getAsType();
 | 
						|
      SourceRange SR = Arg.getSourceRange();
 | 
						|
      if (T->isFunctionType())
 | 
						|
        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
 | 
						|
      else
 | 
						|
        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    case TemplateArgument::Pack:
 | 
						|
      llvm_unreachable("Caller must expand template argument packs");
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Check template template parameters.
 | 
						|
  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
 | 
						|
 | 
						|
  // Substitute into the template parameter list of the template
 | 
						|
  // template parameter, since previously-supplied template arguments
 | 
						|
  // may appear within the template template parameter.
 | 
						|
  {
 | 
						|
    // Set up a template instantiation context.
 | 
						|
    LocalInstantiationScope Scope(*this);
 | 
						|
    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
 | 
						|
                               TempParm, Converted,
 | 
						|
                               SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
    if (Inst)
 | 
						|
      return true;
 | 
						|
 | 
						|
    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                      Converted.data(), Converted.size());
 | 
						|
    TempParm = cast_or_null<TemplateTemplateParmDecl>(
 | 
						|
                      SubstDecl(TempParm, CurContext,
 | 
						|
                                MultiLevelTemplateArgumentList(TemplateArgs)));
 | 
						|
    if (!TempParm)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Arg.getArgument().getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
    llvm_unreachable("Should never see a NULL template argument here");
 | 
						|
 | 
						|
  case TemplateArgument::Template:
 | 
						|
  case TemplateArgument::TemplateExpansion:
 | 
						|
    if (CheckTemplateArgument(TempParm, Arg))
 | 
						|
      return true;
 | 
						|
 | 
						|
    Converted.push_back(Arg.getArgument());
 | 
						|
    break;
 | 
						|
 | 
						|
  case TemplateArgument::Expression:
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    // We have a template template parameter but the template
 | 
						|
    // argument does not refer to a template.
 | 
						|
    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
 | 
						|
      << getLangOpts().CPlusPlus0x;
 | 
						|
    return true;
 | 
						|
 | 
						|
  case TemplateArgument::Declaration:
 | 
						|
    llvm_unreachable("Declaration argument with template template parameter");
 | 
						|
  case TemplateArgument::Integral:
 | 
						|
    llvm_unreachable("Integral argument with template template parameter");
 | 
						|
 | 
						|
  case TemplateArgument::Pack:
 | 
						|
    llvm_unreachable("Caller must expand template argument packs");
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose an arity mismatch in the 
 | 
						|
static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
 | 
						|
                                  SourceLocation TemplateLoc,
 | 
						|
                                  TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
  TemplateParameterList *Params = Template->getTemplateParameters();
 | 
						|
  unsigned NumParams = Params->size();
 | 
						|
  unsigned NumArgs = TemplateArgs.size();
 | 
						|
 | 
						|
  SourceRange Range;
 | 
						|
  if (NumArgs > NumParams)
 | 
						|
    Range = SourceRange(TemplateArgs[NumParams].getLocation(), 
 | 
						|
                        TemplateArgs.getRAngleLoc());
 | 
						|
  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
 | 
						|
    << (NumArgs > NumParams)
 | 
						|
    << (isa<ClassTemplateDecl>(Template)? 0 :
 | 
						|
        isa<FunctionTemplateDecl>(Template)? 1 :
 | 
						|
        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
 | 
						|
    << Template << Range;
 | 
						|
  S.Diag(Template->getLocation(), diag::note_template_decl_here)
 | 
						|
    << Params->getSourceRange();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the given template argument list is well-formed
 | 
						|
/// for specializing the given template.
 | 
						|
bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
 | 
						|
                                     SourceLocation TemplateLoc,
 | 
						|
                                     TemplateArgumentListInfo &TemplateArgs,
 | 
						|
                                     bool PartialTemplateArgs,
 | 
						|
                          SmallVectorImpl<TemplateArgument> &Converted,
 | 
						|
                                     bool *ExpansionIntoFixedList) {
 | 
						|
  if (ExpansionIntoFixedList)
 | 
						|
    *ExpansionIntoFixedList = false;
 | 
						|
 | 
						|
  TemplateParameterList *Params = Template->getTemplateParameters();
 | 
						|
  unsigned NumParams = Params->size();
 | 
						|
  unsigned NumArgs = TemplateArgs.size();
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
 | 
						|
 | 
						|
  bool HasParameterPack =
 | 
						|
    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
 | 
						|
  
 | 
						|
  // C++ [temp.arg]p1:
 | 
						|
  //   [...] The type and form of each template-argument specified in
 | 
						|
  //   a template-id shall match the type and form specified for the
 | 
						|
  //   corresponding parameter declared by the template in its
 | 
						|
  //   template-parameter-list.
 | 
						|
  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
 | 
						|
  SmallVector<TemplateArgument, 2> ArgumentPack;
 | 
						|
  TemplateParameterList::iterator Param = Params->begin(),
 | 
						|
                               ParamEnd = Params->end();
 | 
						|
  unsigned ArgIdx = 0;
 | 
						|
  LocalInstantiationScope InstScope(*this, true);
 | 
						|
  bool SawPackExpansion = false;
 | 
						|
  while (Param != ParamEnd) {
 | 
						|
    if (ArgIdx < NumArgs) {
 | 
						|
      // If we have an expanded parameter pack, make sure we don't have too
 | 
						|
      // many arguments.
 | 
						|
      // FIXME: This really should fall out from the normal arity checking.
 | 
						|
      if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
 | 
						|
        if (NTTP->isExpandedParameterPack() &&
 | 
						|
            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
 | 
						|
          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
 | 
						|
            << true
 | 
						|
            << (isa<ClassTemplateDecl>(Template)? 0 :
 | 
						|
                isa<FunctionTemplateDecl>(Template)? 1 :
 | 
						|
                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
 | 
						|
            << Template;
 | 
						|
          Diag(Template->getLocation(), diag::note_template_decl_here)
 | 
						|
            << Params->getSourceRange();
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Check the template argument we were given.
 | 
						|
      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
 | 
						|
                                TemplateLoc, RAngleLoc,
 | 
						|
                                ArgumentPack.size(), Converted))
 | 
						|
        return true;
 | 
						|
 | 
						|
      if ((*Param)->isTemplateParameterPack()) {
 | 
						|
        // The template parameter was a template parameter pack, so take the
 | 
						|
        // deduced argument and place it on the argument pack. Note that we
 | 
						|
        // stay on the same template parameter so that we can deduce more
 | 
						|
        // arguments.
 | 
						|
        ArgumentPack.push_back(Converted.back());
 | 
						|
        Converted.pop_back();
 | 
						|
      } else {
 | 
						|
        // Move to the next template parameter.
 | 
						|
        ++Param;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If this template argument is a pack expansion, record that fact
 | 
						|
      // and break out; we can't actually check any more.
 | 
						|
      if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
 | 
						|
        SawPackExpansion = true;
 | 
						|
        ++ArgIdx;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      ++ArgIdx;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we're checking a partial template argument list, we're done.
 | 
						|
    if (PartialTemplateArgs) {
 | 
						|
      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
 | 
						|
        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
 | 
						|
                                                         ArgumentPack.data(),
 | 
						|
                                                         ArgumentPack.size()));
 | 
						|
        
 | 
						|
      return Invalid;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a template parameter pack with no more corresponding
 | 
						|
    // arguments, just break out now and we'll fill in the argument pack below.
 | 
						|
    if ((*Param)->isTemplateParameterPack())
 | 
						|
      break;
 | 
						|
    
 | 
						|
    // Check whether we have a default argument.
 | 
						|
    TemplateArgumentLoc Arg;
 | 
						|
 | 
						|
    // Retrieve the default template argument from the template
 | 
						|
    // parameter. For each kind of template parameter, we substitute the
 | 
						|
    // template arguments provided thus far and any "outer" template arguments
 | 
						|
    // (when the template parameter was part of a nested template) into
 | 
						|
    // the default argument.
 | 
						|
    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
 | 
						|
      if (!TTP->hasDefaultArgument())
 | 
						|
        return diagnoseArityMismatch(*this, Template, TemplateLoc, 
 | 
						|
                                     TemplateArgs);
 | 
						|
 | 
						|
      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
 | 
						|
                                                             Template,
 | 
						|
                                                             TemplateLoc,
 | 
						|
                                                             RAngleLoc,
 | 
						|
                                                             TTP,
 | 
						|
                                                             Converted);
 | 
						|
      if (!ArgType)
 | 
						|
        return true;
 | 
						|
 | 
						|
      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
 | 
						|
                                ArgType);
 | 
						|
    } else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
 | 
						|
      if (!NTTP->hasDefaultArgument())
 | 
						|
        return diagnoseArityMismatch(*this, Template, TemplateLoc, 
 | 
						|
                                     TemplateArgs);
 | 
						|
 | 
						|
      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                              TemplateLoc,
 | 
						|
                                                              RAngleLoc,
 | 
						|
                                                              NTTP,
 | 
						|
                                                              Converted);
 | 
						|
      if (E.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      Expr *Ex = E.takeAs<Expr>();
 | 
						|
      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
 | 
						|
    } else {
 | 
						|
      TemplateTemplateParmDecl *TempParm
 | 
						|
        = cast<TemplateTemplateParmDecl>(*Param);
 | 
						|
 | 
						|
      if (!TempParm->hasDefaultArgument())
 | 
						|
        return diagnoseArityMismatch(*this, Template, TemplateLoc, 
 | 
						|
                                     TemplateArgs);
 | 
						|
 | 
						|
      NestedNameSpecifierLoc QualifierLoc;
 | 
						|
      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                       TemplateLoc,
 | 
						|
                                                       RAngleLoc,
 | 
						|
                                                       TempParm,
 | 
						|
                                                       Converted,
 | 
						|
                                                       QualifierLoc);
 | 
						|
      if (Name.isNull())
 | 
						|
        return true;
 | 
						|
 | 
						|
      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
 | 
						|
                           TempParm->getDefaultArgument().getTemplateNameLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // Introduce an instantiation record that describes where we are using
 | 
						|
    // the default template argument.
 | 
						|
    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
 | 
						|
                                        *Param, Converted,
 | 
						|
                                        SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
    if (Instantiating)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Check the default template argument.
 | 
						|
    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
 | 
						|
                              RAngleLoc, 0, Converted))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Core issue 150 (assumed resolution): if this is a template template 
 | 
						|
    // parameter, keep track of the default template arguments from the 
 | 
						|
    // template definition.
 | 
						|
    if (isTemplateTemplateParameter)
 | 
						|
      TemplateArgs.addArgument(Arg);
 | 
						|
    
 | 
						|
    // Move to the next template parameter and argument.
 | 
						|
    ++Param;
 | 
						|
    ++ArgIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we saw a pack expansion, then directly convert the remaining arguments,
 | 
						|
  // because we don't know what parameters they'll match up with.
 | 
						|
  if (SawPackExpansion) {
 | 
						|
    bool AddToArgumentPack
 | 
						|
      = Param != ParamEnd && (*Param)->isTemplateParameterPack();
 | 
						|
    while (ArgIdx < NumArgs) {
 | 
						|
      if (AddToArgumentPack)
 | 
						|
        ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
 | 
						|
      else
 | 
						|
        Converted.push_back(TemplateArgs[ArgIdx].getArgument());
 | 
						|
      ++ArgIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    // Push the argument pack onto the list of converted arguments.
 | 
						|
    if (AddToArgumentPack) {
 | 
						|
      if (ArgumentPack.empty())
 | 
						|
        Converted.push_back(TemplateArgument(0, 0));
 | 
						|
      else {
 | 
						|
        Converted.push_back(
 | 
						|
          TemplateArgument::CreatePackCopy(Context,
 | 
						|
                                           ArgumentPack.data(),
 | 
						|
                                           ArgumentPack.size()));
 | 
						|
        ArgumentPack.clear();
 | 
						|
      }      
 | 
						|
    } else if (ExpansionIntoFixedList) {
 | 
						|
      // We have expanded a pack into a fixed list.
 | 
						|
      *ExpansionIntoFixedList = true;
 | 
						|
    }
 | 
						|
 | 
						|
    return Invalid;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have any leftover arguments, then there were too many arguments.
 | 
						|
  // Complain and fail.
 | 
						|
  if (ArgIdx < NumArgs)
 | 
						|
    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
 | 
						|
  
 | 
						|
  // If we have an expanded parameter pack, make sure we don't have too
 | 
						|
  // many arguments.
 | 
						|
  // FIXME: This really should fall out from the normal arity checking.
 | 
						|
  if (Param != ParamEnd) {
 | 
						|
    if (NonTypeTemplateParmDecl *NTTP
 | 
						|
          = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
 | 
						|
      if (NTTP->isExpandedParameterPack() &&
 | 
						|
          ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
 | 
						|
        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
 | 
						|
          << false
 | 
						|
          << (isa<ClassTemplateDecl>(Template)? 0 :
 | 
						|
              isa<FunctionTemplateDecl>(Template)? 1 :
 | 
						|
              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
 | 
						|
          << Template;
 | 
						|
        Diag(Template->getLocation(), diag::note_template_decl_here)
 | 
						|
          << Params->getSourceRange();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Form argument packs for each of the parameter packs remaining.
 | 
						|
  while (Param != ParamEnd) {
 | 
						|
    // If we're checking a partial list of template arguments, don't fill
 | 
						|
    // in arguments for non-template parameter packs.
 | 
						|
    if ((*Param)->isTemplateParameterPack()) {
 | 
						|
      if (!HasParameterPack)
 | 
						|
        return true;
 | 
						|
      if (ArgumentPack.empty())
 | 
						|
        Converted.push_back(TemplateArgument(0, 0));
 | 
						|
      else {
 | 
						|
        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
 | 
						|
                                                          ArgumentPack.data(),
 | 
						|
                                                         ArgumentPack.size()));
 | 
						|
        ArgumentPack.clear();
 | 
						|
      }
 | 
						|
    } else if (!PartialTemplateArgs)
 | 
						|
      return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
 | 
						|
 | 
						|
    ++Param;
 | 
						|
  }
 | 
						|
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class UnnamedLocalNoLinkageFinder
 | 
						|
    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
 | 
						|
  {
 | 
						|
    Sema &S;
 | 
						|
    SourceRange SR;
 | 
						|
 | 
						|
    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
 | 
						|
 | 
						|
  public:
 | 
						|
    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
 | 
						|
 | 
						|
    bool Visit(QualType T) {
 | 
						|
      return inherited::Visit(T.getTypePtr());
 | 
						|
    }
 | 
						|
 | 
						|
#define TYPE(Class, Parent) \
 | 
						|
    bool Visit##Class##Type(const Class##Type *);
 | 
						|
#define ABSTRACT_TYPE(Class, Parent) \
 | 
						|
    bool Visit##Class##Type(const Class##Type *) { return false; }
 | 
						|
#define NON_CANONICAL_TYPE(Class, Parent) \
 | 
						|
    bool Visit##Class##Type(const Class##Type *) { return false; }
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
 | 
						|
    bool VisitTagDecl(const TagDecl *Tag);
 | 
						|
    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
 | 
						|
  return Visit(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
 | 
						|
                                                    const BlockPointerType* T) {
 | 
						|
  return Visit(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
 | 
						|
                                                const LValueReferenceType* T) {
 | 
						|
  return Visit(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
 | 
						|
                                                const RValueReferenceType* T) {
 | 
						|
  return Visit(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
 | 
						|
                                                  const MemberPointerType* T) {
 | 
						|
  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
 | 
						|
                                                  const ConstantArrayType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
 | 
						|
                                                 const IncompleteArrayType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
 | 
						|
                                                   const VariableArrayType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
 | 
						|
                                            const DependentSizedArrayType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
 | 
						|
                                         const DependentSizedExtVectorType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
 | 
						|
                                                  const FunctionProtoType* T) {
 | 
						|
  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
 | 
						|
                                         AEnd = T->arg_type_end();
 | 
						|
       A != AEnd; ++A) {
 | 
						|
    if (Visit(*A))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Visit(T->getResultType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
 | 
						|
                                               const FunctionNoProtoType* T) {
 | 
						|
  return Visit(T->getResultType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
 | 
						|
                                                  const UnresolvedUsingType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
 | 
						|
  return Visit(T->getUnderlyingType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
 | 
						|
                                                    const UnaryTransformType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
 | 
						|
  return Visit(T->getDeducedType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
 | 
						|
  return VisitTagDecl(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
 | 
						|
  return VisitTagDecl(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
 | 
						|
                                                 const TemplateTypeParmType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
 | 
						|
                                        const SubstTemplateTypeParmPackType *) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
 | 
						|
                                            const TemplateSpecializationType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
 | 
						|
                                              const InjectedClassNameType* T) {
 | 
						|
  return VisitTagDecl(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
 | 
						|
                                                   const DependentNameType* T) {
 | 
						|
  return VisitNestedNameSpecifier(T->getQualifier());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
 | 
						|
                                 const DependentTemplateSpecializationType* T) {
 | 
						|
  return VisitNestedNameSpecifier(T->getQualifier());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
 | 
						|
                                                   const PackExpansionType* T) {
 | 
						|
  return Visit(T->getPattern());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
 | 
						|
                                                   const ObjCInterfaceType *) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
 | 
						|
                                                const ObjCObjectPointerType *) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
 | 
						|
  return Visit(T->getValueType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
 | 
						|
  if (Tag->getDeclContext()->isFunctionOrMethod()) {
 | 
						|
    S.Diag(SR.getBegin(),
 | 
						|
           S.getLangOpts().CPlusPlus0x ?
 | 
						|
             diag::warn_cxx98_compat_template_arg_local_type :
 | 
						|
             diag::ext_template_arg_local_type)
 | 
						|
      << S.Context.getTypeDeclType(Tag) << SR;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
 | 
						|
    S.Diag(SR.getBegin(),
 | 
						|
           S.getLangOpts().CPlusPlus0x ?
 | 
						|
             diag::warn_cxx98_compat_template_arg_unnamed_type :
 | 
						|
             diag::ext_template_arg_unnamed_type) << SR;
 | 
						|
    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
 | 
						|
                                                    NestedNameSpecifier *NNS) {
 | 
						|
  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (NNS->getKind()) {
 | 
						|
  case NestedNameSpecifier::Identifier:
 | 
						|
  case NestedNameSpecifier::Namespace:
 | 
						|
  case NestedNameSpecifier::NamespaceAlias:
 | 
						|
  case NestedNameSpecifier::Global:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case NestedNameSpecifier::TypeSpec:
 | 
						|
  case NestedNameSpecifier::TypeSpecWithTemplate:
 | 
						|
    return Visit(QualType(NNS->getAsType(), 0));
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// template type parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.type]. It
 | 
						|
/// returns true if an error occurred, and false otherwise.
 | 
						|
bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
 | 
						|
                                 TypeSourceInfo *ArgInfo) {
 | 
						|
  assert(ArgInfo && "invalid TypeSourceInfo");
 | 
						|
  QualType Arg = ArgInfo->getType();
 | 
						|
  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
 | 
						|
 | 
						|
  if (Arg->isVariablyModifiedType()) {
 | 
						|
    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
 | 
						|
  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
 | 
						|
    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++03 [temp.arg.type]p2:
 | 
						|
  //   A local type, a type with no linkage, an unnamed type or a type
 | 
						|
  //   compounded from any of these types shall not be used as a
 | 
						|
  //   template-argument for a template type-parameter.
 | 
						|
  //
 | 
						|
  // C++11 allows these, and even in C++03 we allow them as an extension with
 | 
						|
  // a warning.
 | 
						|
  if (LangOpts.CPlusPlus0x ?
 | 
						|
     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
 | 
						|
                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
 | 
						|
      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
 | 
						|
                               SR.getBegin()) != DiagnosticsEngine::Ignored :
 | 
						|
      Arg->hasUnnamedOrLocalType()) {
 | 
						|
    UnnamedLocalNoLinkageFinder Finder(*this, SR);
 | 
						|
    (void)Finder.Visit(Context.getCanonicalType(Arg));
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
enum NullPointerValueKind {
 | 
						|
  NPV_NotNullPointer,
 | 
						|
  NPV_NullPointer,
 | 
						|
  NPV_Error
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Determine whether the given template argument is a null pointer
 | 
						|
/// value of the appropriate type.
 | 
						|
static NullPointerValueKind
 | 
						|
isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
 | 
						|
                                   QualType ParamType, Expr *Arg) {
 | 
						|
  if (Arg->isValueDependent() || Arg->isTypeDependent())
 | 
						|
    return NPV_NotNullPointer;
 | 
						|
  
 | 
						|
  if (!S.getLangOpts().CPlusPlus0x)
 | 
						|
    return NPV_NotNullPointer;
 | 
						|
  
 | 
						|
  // Determine whether we have a constant expression.
 | 
						|
  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
 | 
						|
  if (ArgRV.isInvalid())
 | 
						|
    return NPV_Error;
 | 
						|
  Arg = ArgRV.take();
 | 
						|
  
 | 
						|
  Expr::EvalResult EvalResult;
 | 
						|
  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
 | 
						|
  EvalResult.Diag = &Notes;
 | 
						|
  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
 | 
						|
      EvalResult.HasSideEffects) {
 | 
						|
    SourceLocation DiagLoc = Arg->getExprLoc();
 | 
						|
    
 | 
						|
    // If our only note is the usual "invalid subexpression" note, just point
 | 
						|
    // the caret at its location rather than producing an essentially
 | 
						|
    // redundant note.
 | 
						|
    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
 | 
						|
        diag::note_invalid_subexpr_in_const_expr) {
 | 
						|
      DiagLoc = Notes[0].first;
 | 
						|
      Notes.clear();
 | 
						|
    }
 | 
						|
    
 | 
						|
    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
 | 
						|
      << Arg->getType() << Arg->getSourceRange();
 | 
						|
    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
 | 
						|
      S.Diag(Notes[I].first, Notes[I].second);
 | 
						|
    
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return NPV_Error;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // C++11 [temp.arg.nontype]p1:
 | 
						|
  //   - an address constant expression of type std::nullptr_t
 | 
						|
  if (Arg->getType()->isNullPtrType())
 | 
						|
    return NPV_NullPointer;
 | 
						|
  
 | 
						|
  //   - a constant expression that evaluates to a null pointer value (4.10); or
 | 
						|
  //   - a constant expression that evaluates to a null member pointer value
 | 
						|
  //     (4.11); or
 | 
						|
  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
 | 
						|
      (EvalResult.Val.isMemberPointer() &&
 | 
						|
       !EvalResult.Val.getMemberPointerDecl())) {
 | 
						|
    // If our expression has an appropriate type, we've succeeded.
 | 
						|
    bool ObjCLifetimeConversion;
 | 
						|
    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
 | 
						|
        S.IsQualificationConversion(Arg->getType(), ParamType, false,
 | 
						|
                                     ObjCLifetimeConversion))
 | 
						|
      return NPV_NullPointer;
 | 
						|
    
 | 
						|
    // The types didn't match, but we know we got a null pointer; complain,
 | 
						|
    // then recover as if the types were correct.
 | 
						|
    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
 | 
						|
      << Arg->getType() << ParamType << Arg->getSourceRange();
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return NPV_NullPointer;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we don't have a null pointer value, but we do have a NULL pointer
 | 
						|
  // constant, suggest a cast to the appropriate type.
 | 
						|
  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
 | 
						|
    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
 | 
						|
    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
 | 
						|
      << ParamType
 | 
						|
      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
 | 
						|
      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
 | 
						|
                                    ")");
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return NPV_NullPointer;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: If we ever want to support general, address-constant expressions
 | 
						|
  // as non-type template arguments, we should return the ExprResult here to
 | 
						|
  // be interpreted by the caller.
 | 
						|
  return NPV_NotNullPointer;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether the given template argument is the address
 | 
						|
/// of an object or function according to C++ [temp.arg.nontype]p1.
 | 
						|
static bool
 | 
						|
CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
 | 
						|
                                               NonTypeTemplateParmDecl *Param,
 | 
						|
                                               QualType ParamType,
 | 
						|
                                               Expr *ArgIn,
 | 
						|
                                               TemplateArgument &Converted) {
 | 
						|
  bool Invalid = false;
 | 
						|
  Expr *Arg = ArgIn;
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
 | 
						|
  // If our parameter has pointer type, check for a null template value.
 | 
						|
  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
 | 
						|
    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
 | 
						|
    case NPV_NullPointer:
 | 
						|
      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
 | 
						|
      Converted = TemplateArgument((Decl *)0);
 | 
						|
      return false;
 | 
						|
 | 
						|
    case NPV_Error:
 | 
						|
      return true;
 | 
						|
        
 | 
						|
    case NPV_NotNullPointer:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // See through any implicit casts we added to fix the type.
 | 
						|
  Arg = Arg->IgnoreImpCasts();
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p1:
 | 
						|
  //
 | 
						|
  //   A template-argument for a non-type, non-template
 | 
						|
  //   template-parameter shall be one of: [...]
 | 
						|
  //
 | 
						|
  //     -- the address of an object or function with external
 | 
						|
  //        linkage, including function templates and function
 | 
						|
  //        template-ids but excluding non-static class members,
 | 
						|
  //        expressed as & id-expression where the & is optional if
 | 
						|
  //        the name refers to a function or array, or if the
 | 
						|
  //        corresponding template-parameter is a reference; or
 | 
						|
 | 
						|
  // In C++98/03 mode, give an extension warning on any extra parentheses.
 | 
						|
  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
 | 
						|
  bool ExtraParens = false;
 | 
						|
  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | 
						|
    if (!Invalid && !ExtraParens) {
 | 
						|
      S.Diag(Arg->getLocStart(),
 | 
						|
             S.getLangOpts().CPlusPlus0x ?
 | 
						|
               diag::warn_cxx98_compat_template_arg_extra_parens :
 | 
						|
               diag::ext_template_arg_extra_parens)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      ExtraParens = true;
 | 
						|
    }
 | 
						|
 | 
						|
    Arg = Parens->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  while (SubstNonTypeTemplateParmExpr *subst =
 | 
						|
           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
 | 
						|
    Arg = subst->getReplacement()->IgnoreImpCasts();
 | 
						|
 | 
						|
  bool AddressTaken = false;
 | 
						|
  SourceLocation AddrOpLoc;
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | 
						|
    if (UnOp->getOpcode() == UO_AddrOf) {
 | 
						|
      Arg = UnOp->getSubExpr();
 | 
						|
      AddressTaken = true;
 | 
						|
      AddrOpLoc = UnOp->getOperatorLoc();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
 | 
						|
    Converted = TemplateArgument(ArgIn);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  while (SubstNonTypeTemplateParmExpr *subst =
 | 
						|
           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
 | 
						|
    Arg = subst->getReplacement()->IgnoreImpCasts();
 | 
						|
 | 
						|
  // Stop checking the precise nature of the argument if it is value dependent,
 | 
						|
  // it should be checked when instantiated.
 | 
						|
  if (Arg->isValueDependent()) {
 | 
						|
    Converted = TemplateArgument(ArgIn);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
 | 
						|
  if (!DRE) {
 | 
						|
    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
 | 
						|
    << Arg->getSourceRange();
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isa<ValueDecl>(DRE->getDecl())) {
 | 
						|
    S.Diag(Arg->getLocStart(),
 | 
						|
           diag::err_template_arg_not_object_or_func_form)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  NamedDecl *Entity = DRE->getDecl();
 | 
						|
 | 
						|
  // Cannot refer to non-static data members
 | 
						|
  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
 | 
						|
    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
 | 
						|
      << Field << Arg->getSourceRange();
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Cannot refer to non-static member functions
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
 | 
						|
    if (!Method->isStatic()) {
 | 
						|
      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
 | 
						|
        << Method << Arg->getSourceRange();
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
 | 
						|
  VarDecl *Var = dyn_cast<VarDecl>(Entity);
 | 
						|
 | 
						|
  // A non-type template argument must refer to an object or function.
 | 
						|
  if (!Func && !Var) {
 | 
						|
    // We found something, but we don't know specifically what it is.
 | 
						|
    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Address / reference template args must have external linkage in C++98.
 | 
						|
  if (Entity->getLinkage() == InternalLinkage) {
 | 
						|
    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
 | 
						|
             diag::warn_cxx98_compat_template_arg_object_internal :
 | 
						|
             diag::ext_template_arg_object_internal)
 | 
						|
      << !Func << Entity << Arg->getSourceRange();
 | 
						|
    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
 | 
						|
      << !Func;
 | 
						|
  } else if (Entity->getLinkage() == NoLinkage) {
 | 
						|
    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
 | 
						|
      << !Func << Entity << Arg->getSourceRange();
 | 
						|
    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
 | 
						|
      << !Func;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Func) {
 | 
						|
    // If the template parameter has pointer type, the function decays.
 | 
						|
    if (ParamType->isPointerType() && !AddressTaken)
 | 
						|
      ArgType = S.Context.getPointerType(Func->getType());
 | 
						|
    else if (AddressTaken && ParamType->isReferenceType()) {
 | 
						|
      // If we originally had an address-of operator, but the
 | 
						|
      // parameter has reference type, complain and (if things look
 | 
						|
      // like they will work) drop the address-of operator.
 | 
						|
      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
 | 
						|
                                            ParamType.getNonReferenceType())) {
 | 
						|
        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | 
						|
          << ParamType;
 | 
						|
        S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | 
						|
        << ParamType
 | 
						|
        << FixItHint::CreateRemoval(AddrOpLoc);
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
 | 
						|
      ArgType = Func->getType();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // A value of reference type is not an object.
 | 
						|
    if (Var->getType()->isReferenceType()) {
 | 
						|
      S.Diag(Arg->getLocStart(),
 | 
						|
             diag::err_template_arg_reference_var)
 | 
						|
        << Var->getType() << Arg->getSourceRange();
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // A template argument must have static storage duration.
 | 
						|
    // FIXME: Ensure this works for thread_local as well as __thread.
 | 
						|
    if (Var->isThreadSpecified()) {
 | 
						|
      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the template parameter has pointer type, we must have taken
 | 
						|
    // the address of this object.
 | 
						|
    if (ParamType->isReferenceType()) {
 | 
						|
      if (AddressTaken) {
 | 
						|
        // If we originally had an address-of operator, but the
 | 
						|
        // parameter has reference type, complain and (if things look
 | 
						|
        // like they will work) drop the address-of operator.
 | 
						|
        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
 | 
						|
                                            ParamType.getNonReferenceType())) {
 | 
						|
          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | 
						|
            << ParamType;
 | 
						|
          S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | 
						|
          << ParamType
 | 
						|
          << FixItHint::CreateRemoval(AddrOpLoc);
 | 
						|
        S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
 | 
						|
        ArgType = Var->getType();
 | 
						|
      }
 | 
						|
    } else if (!AddressTaken && ParamType->isPointerType()) {
 | 
						|
      if (Var->getType()->isArrayType()) {
 | 
						|
        // Array-to-pointer decay.
 | 
						|
        ArgType = S.Context.getArrayDecayedType(Var->getType());
 | 
						|
      } else {
 | 
						|
        // If the template parameter has pointer type but the address of
 | 
						|
        // this object was not taken, complain and (possibly) recover by
 | 
						|
        // taking the address of the entity.
 | 
						|
        ArgType = S.Context.getPointerType(Var->getType());
 | 
						|
        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
 | 
						|
          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
 | 
						|
            << ParamType;
 | 
						|
          S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
 | 
						|
          << ParamType
 | 
						|
          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
 | 
						|
 | 
						|
        S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool ObjCLifetimeConversion;
 | 
						|
  if (ParamType->isPointerType() &&
 | 
						|
      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
 | 
						|
      S.IsQualificationConversion(ArgType, ParamType, false, 
 | 
						|
                                  ObjCLifetimeConversion)) {
 | 
						|
    // For pointer-to-object types, qualification conversions are
 | 
						|
    // permitted.
 | 
						|
  } else {
 | 
						|
    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
 | 
						|
      if (!ParamRef->getPointeeType()->isFunctionType()) {
 | 
						|
        // C++ [temp.arg.nontype]p5b3:
 | 
						|
        //   For a non-type template-parameter of type reference to
 | 
						|
        //   object, no conversions apply. The type referred to by the
 | 
						|
        //   reference may be more cv-qualified than the (otherwise
 | 
						|
        //   identical) type of the template- argument. The
 | 
						|
        //   template-parameter is bound directly to the
 | 
						|
        //   template-argument, which shall be an lvalue.
 | 
						|
 | 
						|
        // FIXME: Other qualifiers?
 | 
						|
        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
 | 
						|
        unsigned ArgQuals = ArgType.getCVRQualifiers();
 | 
						|
 | 
						|
        if ((ParamQuals | ArgQuals) != ParamQuals) {
 | 
						|
          S.Diag(Arg->getLocStart(),
 | 
						|
                 diag::err_template_arg_ref_bind_ignores_quals)
 | 
						|
            << ParamType << Arg->getType()
 | 
						|
            << Arg->getSourceRange();
 | 
						|
          S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // At this point, the template argument refers to an object or
 | 
						|
    // function with external linkage. We now need to check whether the
 | 
						|
    // argument and parameter types are compatible.
 | 
						|
    if (!S.Context.hasSameUnqualifiedType(ArgType,
 | 
						|
                                          ParamType.getNonReferenceType())) {
 | 
						|
      // We can't perform this conversion or binding.
 | 
						|
      if (ParamType->isReferenceType())
 | 
						|
        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
 | 
						|
          << ParamType << ArgIn->getType() << Arg->getSourceRange();
 | 
						|
      else
 | 
						|
        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
 | 
						|
          << ArgIn->getType() << ParamType << Arg->getSourceRange();
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the template argument.
 | 
						|
  Converted = TemplateArgument(Entity->getCanonicalDecl());
 | 
						|
  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether the given template argument is a pointer to
 | 
						|
/// member constant according to C++ [temp.arg.nontype]p1.
 | 
						|
static bool CheckTemplateArgumentPointerToMember(Sema &S,
 | 
						|
                                                 NonTypeTemplateParmDecl *Param,
 | 
						|
                                                 QualType ParamType,
 | 
						|
                                                 Expr *&ResultArg,
 | 
						|
                                                 TemplateArgument &Converted) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // Check for a null pointer value.
 | 
						|
  Expr *Arg = ResultArg;
 | 
						|
  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
 | 
						|
  case NPV_Error:
 | 
						|
    return true;
 | 
						|
  case NPV_NullPointer:
 | 
						|
    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
 | 
						|
    Converted = TemplateArgument((Decl *)0);
 | 
						|
    return false;
 | 
						|
  case NPV_NotNullPointer:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ObjCLifetimeConversion;
 | 
						|
  if (S.IsQualificationConversion(Arg->getType(),
 | 
						|
                                  ParamType.getNonReferenceType(),
 | 
						|
                                  false, ObjCLifetimeConversion)) {
 | 
						|
    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
 | 
						|
                              Arg->getValueKind()).take();
 | 
						|
    ResultArg = Arg;
 | 
						|
  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
 | 
						|
                ParamType.getNonReferenceType())) {
 | 
						|
    // We can't perform this conversion.
 | 
						|
    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
 | 
						|
      << Arg->getType() << ParamType << Arg->getSourceRange();
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // See through any implicit casts we added to fix the type.
 | 
						|
  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
 | 
						|
    Arg = Cast->getSubExpr();
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p1:
 | 
						|
  //
 | 
						|
  //   A template-argument for a non-type, non-template
 | 
						|
  //   template-parameter shall be one of: [...]
 | 
						|
  //
 | 
						|
  //     -- a pointer to member expressed as described in 5.3.1.
 | 
						|
  DeclRefExpr *DRE = 0;
 | 
						|
 | 
						|
  // In C++98/03 mode, give an extension warning on any extra parentheses.
 | 
						|
  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
 | 
						|
  bool ExtraParens = false;
 | 
						|
  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | 
						|
    if (!Invalid && !ExtraParens) {
 | 
						|
      S.Diag(Arg->getLocStart(),
 | 
						|
             S.getLangOpts().CPlusPlus0x ?
 | 
						|
               diag::warn_cxx98_compat_template_arg_extra_parens :
 | 
						|
               diag::ext_template_arg_extra_parens)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      ExtraParens = true;
 | 
						|
    }
 | 
						|
 | 
						|
    Arg = Parens->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  while (SubstNonTypeTemplateParmExpr *subst =
 | 
						|
           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
 | 
						|
    Arg = subst->getReplacement()->IgnoreImpCasts();
 | 
						|
 | 
						|
  // A pointer-to-member constant written &Class::member.
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | 
						|
    if (UnOp->getOpcode() == UO_AddrOf) {
 | 
						|
      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
 | 
						|
      if (DRE && !DRE->getQualifier())
 | 
						|
        DRE = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // A constant of pointer-to-member type.
 | 
						|
  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
 | 
						|
    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
 | 
						|
      if (VD->getType()->isMemberPointerType()) {
 | 
						|
        if (isa<NonTypeTemplateParmDecl>(VD) ||
 | 
						|
            (isa<VarDecl>(VD) &&
 | 
						|
             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
 | 
						|
          if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
            Converted = TemplateArgument(Arg);
 | 
						|
          else
 | 
						|
            Converted = TemplateArgument(VD->getCanonicalDecl());
 | 
						|
          return Invalid;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DRE = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DRE)
 | 
						|
    return S.Diag(Arg->getLocStart(),
 | 
						|
                  diag::err_template_arg_not_pointer_to_member_form)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
 | 
						|
  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
 | 
						|
    assert((isa<FieldDecl>(DRE->getDecl()) ||
 | 
						|
            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
 | 
						|
           "Only non-static member pointers can make it here");
 | 
						|
 | 
						|
    // Okay: this is the address of a non-static member, and therefore
 | 
						|
    // a member pointer constant.
 | 
						|
    if (Arg->isTypeDependent() || Arg->isValueDependent())
 | 
						|
      Converted = TemplateArgument(Arg);
 | 
						|
    else
 | 
						|
      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
 | 
						|
    return Invalid;
 | 
						|
  }
 | 
						|
 | 
						|
  // We found something else, but we don't know specifically what it is.
 | 
						|
  S.Diag(Arg->getLocStart(),
 | 
						|
         diag::err_template_arg_not_pointer_to_member_form)
 | 
						|
    << Arg->getSourceRange();
 | 
						|
  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// non-type template parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.nontype].
 | 
						|
/// If an error occurred, it returns ExprError(); otherwise, it
 | 
						|
/// returns the converted template argument. \p
 | 
						|
/// InstantiatedParamType is the type of the non-type template
 | 
						|
/// parameter after it has been instantiated.
 | 
						|
ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
 | 
						|
                                       QualType InstantiatedParamType, Expr *Arg,
 | 
						|
                                       TemplateArgument &Converted,
 | 
						|
                                       CheckTemplateArgumentKind CTAK) {
 | 
						|
  SourceLocation StartLoc = Arg->getLocStart();
 | 
						|
 | 
						|
  // If either the parameter has a dependent type or the argument is
 | 
						|
  // type-dependent, there's nothing we can check now.
 | 
						|
  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
 | 
						|
    // FIXME: Produce a cloned, canonical expression?
 | 
						|
    Converted = TemplateArgument(Arg);
 | 
						|
    return Owned(Arg);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p5:
 | 
						|
  //   The following conversions are performed on each expression used
 | 
						|
  //   as a non-type template-argument. If a non-type
 | 
						|
  //   template-argument cannot be converted to the type of the
 | 
						|
  //   corresponding template-parameter then the program is
 | 
						|
  //   ill-formed.
 | 
						|
  QualType ParamType = InstantiatedParamType;
 | 
						|
  if (ParamType->isIntegralOrEnumerationType()) {
 | 
						|
    // C++11:
 | 
						|
    //   -- for a non-type template-parameter of integral or
 | 
						|
    //      enumeration type, conversions permitted in a converted
 | 
						|
    //      constant expression are applied.
 | 
						|
    //
 | 
						|
    // C++98:
 | 
						|
    //   -- for a non-type template-parameter of integral or
 | 
						|
    //      enumeration type, integral promotions (4.5) and integral
 | 
						|
    //      conversions (4.7) are applied.
 | 
						|
 | 
						|
    if (CTAK == CTAK_Deduced &&
 | 
						|
        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
 | 
						|
      // C++ [temp.deduct.type]p17:
 | 
						|
      //   If, in the declaration of a function template with a non-type
 | 
						|
      //   template-parameter, the non-type template-parameter is used
 | 
						|
      //   in an expression in the function parameter-list and, if the
 | 
						|
      //   corresponding template-argument is deduced, the
 | 
						|
      //   template-argument type shall match the type of the
 | 
						|
      //   template-parameter exactly, except that a template-argument
 | 
						|
      //   deduced from an array bound may be of any integral type.
 | 
						|
      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
 | 
						|
        << Arg->getType().getUnqualifiedType()
 | 
						|
        << ParamType.getUnqualifiedType();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    if (getLangOpts().CPlusPlus0x) {
 | 
						|
      // We can't check arbitrary value-dependent arguments.
 | 
						|
      // FIXME: If there's no viable conversion to the template parameter type,
 | 
						|
      // we should be able to diagnose that prior to instantiation.
 | 
						|
      if (Arg->isValueDependent()) {
 | 
						|
        Converted = TemplateArgument(Arg);
 | 
						|
        return Owned(Arg);
 | 
						|
      }
 | 
						|
 | 
						|
      // C++ [temp.arg.nontype]p1:
 | 
						|
      //   A template-argument for a non-type, non-template template-parameter
 | 
						|
      //   shall be one of:
 | 
						|
      //
 | 
						|
      //     -- for a non-type template-parameter of integral or enumeration
 | 
						|
      //        type, a converted constant expression of the type of the
 | 
						|
      //        template-parameter; or
 | 
						|
      llvm::APSInt Value;
 | 
						|
      ExprResult ArgResult =
 | 
						|
        CheckConvertedConstantExpression(Arg, ParamType, Value,
 | 
						|
                                         CCEK_TemplateArg);
 | 
						|
      if (ArgResult.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // Widen the argument value to sizeof(parameter type). This is almost
 | 
						|
      // always a no-op, except when the parameter type is bool. In
 | 
						|
      // that case, this may extend the argument from 1 bit to 8 bits.
 | 
						|
      QualType IntegerType = ParamType;
 | 
						|
      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
 | 
						|
        IntegerType = Enum->getDecl()->getIntegerType();
 | 
						|
      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
 | 
						|
 | 
						|
      Converted = TemplateArgument(Context, Value,
 | 
						|
                                   Context.getCanonicalType(ParamType));
 | 
						|
      return ArgResult;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult ArgResult = DefaultLvalueConversion(Arg);
 | 
						|
    if (ArgResult.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    Arg = ArgResult.take();
 | 
						|
 | 
						|
    QualType ArgType = Arg->getType();
 | 
						|
 | 
						|
    // C++ [temp.arg.nontype]p1:
 | 
						|
    //   A template-argument for a non-type, non-template
 | 
						|
    //   template-parameter shall be one of:
 | 
						|
    //
 | 
						|
    //     -- an integral constant-expression of integral or enumeration
 | 
						|
    //        type; or
 | 
						|
    //     -- the name of a non-type template-parameter; or
 | 
						|
    SourceLocation NonConstantLoc;
 | 
						|
    llvm::APSInt Value;
 | 
						|
    if (!ArgType->isIntegralOrEnumerationType()) {
 | 
						|
      Diag(Arg->getLocStart(),
 | 
						|
           diag::err_template_arg_not_integral_or_enumeral)
 | 
						|
        << ArgType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return ExprError();
 | 
						|
    } else if (!Arg->isValueDependent()) {
 | 
						|
      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
 | 
						|
        QualType T;
 | 
						|
        
 | 
						|
      public:
 | 
						|
        TmplArgICEDiagnoser(QualType T) : T(T) { }
 | 
						|
        
 | 
						|
        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
 | 
						|
                                    SourceRange SR) {
 | 
						|
          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
 | 
						|
        }
 | 
						|
      } Diagnoser(ArgType);
 | 
						|
 | 
						|
      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
 | 
						|
                                            false).take();
 | 
						|
      if (!Arg)
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    // From here on out, all we care about are the unqualified forms
 | 
						|
    // of the parameter and argument types.
 | 
						|
    ParamType = ParamType.getUnqualifiedType();
 | 
						|
    ArgType = ArgType.getUnqualifiedType();
 | 
						|
 | 
						|
    // Try to convert the argument to the parameter's type.
 | 
						|
    if (Context.hasSameType(ParamType, ArgType)) {
 | 
						|
      // Okay: no conversion necessary
 | 
						|
    } else if (ParamType->isBooleanType()) {
 | 
						|
      // This is an integral-to-boolean conversion.
 | 
						|
      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
 | 
						|
    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
 | 
						|
               !ParamType->isEnumeralType()) {
 | 
						|
      // This is an integral promotion or conversion.
 | 
						|
      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
 | 
						|
    } else {
 | 
						|
      // We can't perform this conversion.
 | 
						|
      Diag(Arg->getLocStart(),
 | 
						|
           diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the value of this argument to the list of converted
 | 
						|
    // arguments. We use the bitwidth and signedness of the template
 | 
						|
    // parameter.
 | 
						|
    if (Arg->isValueDependent()) {
 | 
						|
      // The argument is value-dependent. Create a new
 | 
						|
      // TemplateArgument with the converted expression.
 | 
						|
      Converted = TemplateArgument(Arg);
 | 
						|
      return Owned(Arg);
 | 
						|
    }
 | 
						|
 | 
						|
    QualType IntegerType = Context.getCanonicalType(ParamType);
 | 
						|
    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
 | 
						|
      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
 | 
						|
 | 
						|
    if (ParamType->isBooleanType()) {
 | 
						|
      // Value must be zero or one.
 | 
						|
      Value = Value != 0;
 | 
						|
      unsigned AllowedBits = Context.getTypeSize(IntegerType);
 | 
						|
      if (Value.getBitWidth() != AllowedBits)
 | 
						|
        Value = Value.extOrTrunc(AllowedBits);
 | 
						|
      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
 | 
						|
    } else {
 | 
						|
      llvm::APSInt OldValue = Value;
 | 
						|
      
 | 
						|
      // Coerce the template argument's value to the value it will have
 | 
						|
      // based on the template parameter's type.
 | 
						|
      unsigned AllowedBits = Context.getTypeSize(IntegerType);
 | 
						|
      if (Value.getBitWidth() != AllowedBits)
 | 
						|
        Value = Value.extOrTrunc(AllowedBits);
 | 
						|
      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
 | 
						|
      
 | 
						|
      // Complain if an unsigned parameter received a negative value.
 | 
						|
      if (IntegerType->isUnsignedIntegerOrEnumerationType()
 | 
						|
               && (OldValue.isSigned() && OldValue.isNegative())) {
 | 
						|
        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
 | 
						|
          << OldValue.toString(10) << Value.toString(10) << Param->getType()
 | 
						|
          << Arg->getSourceRange();
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Complain if we overflowed the template parameter's type.
 | 
						|
      unsigned RequiredBits;
 | 
						|
      if (IntegerType->isUnsignedIntegerOrEnumerationType())
 | 
						|
        RequiredBits = OldValue.getActiveBits();
 | 
						|
      else if (OldValue.isUnsigned())
 | 
						|
        RequiredBits = OldValue.getActiveBits() + 1;
 | 
						|
      else
 | 
						|
        RequiredBits = OldValue.getMinSignedBits();
 | 
						|
      if (RequiredBits > AllowedBits) {
 | 
						|
        Diag(Arg->getLocStart(),
 | 
						|
             diag::warn_template_arg_too_large)
 | 
						|
          << OldValue.toString(10) << Value.toString(10) << Param->getType()
 | 
						|
          << Arg->getSourceRange();
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Converted = TemplateArgument(Context, Value,
 | 
						|
                                 ParamType->isEnumeralType() 
 | 
						|
                                   ? Context.getCanonicalType(ParamType)
 | 
						|
                                   : IntegerType);
 | 
						|
    return Owned(Arg);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
 | 
						|
 | 
						|
  // Handle pointer-to-function, reference-to-function, and
 | 
						|
  // pointer-to-member-function all in (roughly) the same way.
 | 
						|
  if (// -- For a non-type template-parameter of type pointer to
 | 
						|
      //    function, only the function-to-pointer conversion (4.3) is
 | 
						|
      //    applied. If the template-argument represents a set of
 | 
						|
      //    overloaded functions (or a pointer to such), the matching
 | 
						|
      //    function is selected from the set (13.4).
 | 
						|
      (ParamType->isPointerType() &&
 | 
						|
       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
 | 
						|
      // -- For a non-type template-parameter of type reference to
 | 
						|
      //    function, no conversions apply. If the template-argument
 | 
						|
      //    represents a set of overloaded functions, the matching
 | 
						|
      //    function is selected from the set (13.4).
 | 
						|
      (ParamType->isReferenceType() &&
 | 
						|
       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
 | 
						|
      // -- For a non-type template-parameter of type pointer to
 | 
						|
      //    member function, no conversions apply. If the
 | 
						|
      //    template-argument represents a set of overloaded member
 | 
						|
      //    functions, the matching member function is selected from
 | 
						|
      //    the set (13.4).
 | 
						|
      (ParamType->isMemberPointerType() &&
 | 
						|
       ParamType->getAs<MemberPointerType>()->getPointeeType()
 | 
						|
         ->isFunctionType())) {
 | 
						|
 | 
						|
    if (Arg->getType() == Context.OverloadTy) {
 | 
						|
      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
 | 
						|
                                                                true,
 | 
						|
                                                                FoundResult)) {
 | 
						|
        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
 | 
						|
        ArgType = Arg->getType();
 | 
						|
      } else
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ParamType->isMemberPointerType()) {
 | 
						|
      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
 | 
						|
                                                         ParamType,
 | 
						|
                                                         Arg, Converted))
 | 
						|
        return ExprError();
 | 
						|
      return Owned(Arg);
 | 
						|
    }
 | 
						|
 | 
						|
    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
 | 
						|
                                             Converted))
 | 
						|
      return ExprError();
 | 
						|
    return Owned(Arg);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ParamType->isPointerType()) {
 | 
						|
    //   -- for a non-type template-parameter of type pointer to
 | 
						|
    //      object, qualification conversions (4.4) and the
 | 
						|
    //      array-to-pointer conversion (4.2) are applied.
 | 
						|
    // C++0x also allows a value of std::nullptr_t.
 | 
						|
    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
 | 
						|
           "Only object pointers allowed here");
 | 
						|
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
 | 
						|
                                                       ParamType,
 | 
						|
                                                       Arg, Converted))
 | 
						|
      return ExprError();
 | 
						|
    return Owned(Arg);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
 | 
						|
    //   -- For a non-type template-parameter of type reference to
 | 
						|
    //      object, no conversions apply. The type referred to by the
 | 
						|
    //      reference may be more cv-qualified than the (otherwise
 | 
						|
    //      identical) type of the template-argument. The
 | 
						|
    //      template-parameter is bound directly to the
 | 
						|
    //      template-argument, which must be an lvalue.
 | 
						|
    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
 | 
						|
           "Only object references allowed here");
 | 
						|
 | 
						|
    if (Arg->getType() == Context.OverloadTy) {
 | 
						|
      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
 | 
						|
                                                 ParamRefType->getPointeeType(),
 | 
						|
                                                                true,
 | 
						|
                                                                FoundResult)) {
 | 
						|
        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
 | 
						|
        ArgType = Arg->getType();
 | 
						|
      } else
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
 | 
						|
                                                       ParamType,
 | 
						|
                                                       Arg, Converted))
 | 
						|
      return ExprError();
 | 
						|
    return Owned(Arg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Deal with parameters of type std::nullptr_t.
 | 
						|
  if (ParamType->isNullPtrType()) {
 | 
						|
    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
 | 
						|
      Converted = TemplateArgument(Arg);
 | 
						|
      return Owned(Arg);
 | 
						|
    }
 | 
						|
    
 | 
						|
    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
 | 
						|
    case NPV_NotNullPointer:
 | 
						|
      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << ParamType;
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return ExprError();
 | 
						|
      
 | 
						|
    case NPV_Error:
 | 
						|
      return ExprError();
 | 
						|
      
 | 
						|
    case NPV_NullPointer:
 | 
						|
      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
 | 
						|
      Converted = TemplateArgument((Decl *)0);
 | 
						|
      return Owned(Arg);;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //     -- For a non-type template-parameter of type pointer to data
 | 
						|
  //        member, qualification conversions (4.4) are applied.
 | 
						|
  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
 | 
						|
 | 
						|
  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
 | 
						|
                                           Converted))
 | 
						|
    return ExprError();
 | 
						|
  return Owned(Arg);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// template template parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.template].
 | 
						|
/// It returns true if an error occurred, and false otherwise.
 | 
						|
bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
 | 
						|
                                 const TemplateArgumentLoc &Arg) {
 | 
						|
  TemplateName Name = Arg.getArgument().getAsTemplate();
 | 
						|
  TemplateDecl *Template = Name.getAsTemplateDecl();
 | 
						|
  if (!Template) {
 | 
						|
    // Any dependent template name is fine.
 | 
						|
    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.arg.template]p1:
 | 
						|
  //   A template-argument for a template template-parameter shall be
 | 
						|
  //   the name of a class template or an alias template, expressed as an
 | 
						|
  //   id-expression. When the template-argument names a class template, only
 | 
						|
  //   primary class templates are considered when matching the
 | 
						|
  //   template template argument with the corresponding parameter;
 | 
						|
  //   partial specializations are not considered even if their
 | 
						|
  //   parameter lists match that of the template template parameter.
 | 
						|
  //
 | 
						|
  // Note that we also allow template template parameters here, which
 | 
						|
  // will happen when we are dealing with, e.g., class template
 | 
						|
  // partial specializations.
 | 
						|
  if (!isa<ClassTemplateDecl>(Template) &&
 | 
						|
      !isa<TemplateTemplateParmDecl>(Template) &&
 | 
						|
      !isa<TypeAliasTemplateDecl>(Template)) {
 | 
						|
    assert(isa<FunctionTemplateDecl>(Template) &&
 | 
						|
           "Only function templates are possible here");
 | 
						|
    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
 | 
						|
    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
 | 
						|
      << Template;
 | 
						|
  }
 | 
						|
 | 
						|
  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
 | 
						|
                                         Param->getTemplateParameters(),
 | 
						|
                                         true,
 | 
						|
                                         TPL_TemplateTemplateArgumentMatch,
 | 
						|
                                         Arg.getLocation());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Given a non-type template argument that refers to a
 | 
						|
/// declaration and the type of its corresponding non-type template
 | 
						|
/// parameter, produce an expression that properly refers to that
 | 
						|
/// declaration.
 | 
						|
ExprResult
 | 
						|
Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
 | 
						|
                                              QualType ParamType,
 | 
						|
                                              SourceLocation Loc) {
 | 
						|
  assert(Arg.getKind() == TemplateArgument::Declaration &&
 | 
						|
         "Only declaration template arguments permitted here");
 | 
						|
  
 | 
						|
  // For a NULL non-type template argument, return nullptr casted to the
 | 
						|
  // parameter's type.
 | 
						|
  if (!Arg.getAsDecl()) {
 | 
						|
    return ImpCastExprToType(
 | 
						|
             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
 | 
						|
                             ParamType,
 | 
						|
                             ParamType->getAs<MemberPointerType>()
 | 
						|
                               ? CK_NullToMemberPointer
 | 
						|
                               : CK_NullToPointer);
 | 
						|
  }
 | 
						|
  
 | 
						|
  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
 | 
						|
 | 
						|
  if (VD->getDeclContext()->isRecord() &&
 | 
						|
      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
 | 
						|
    // If the value is a class member, we might have a pointer-to-member.
 | 
						|
    // Determine whether the non-type template template parameter is of
 | 
						|
    // pointer-to-member type. If so, we need to build an appropriate
 | 
						|
    // expression for a pointer-to-member, since a "normal" DeclRefExpr
 | 
						|
    // would refer to the member itself.
 | 
						|
    if (ParamType->isMemberPointerType()) {
 | 
						|
      QualType ClassType
 | 
						|
        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
 | 
						|
      NestedNameSpecifier *Qualifier
 | 
						|
        = NestedNameSpecifier::Create(Context, 0, false,
 | 
						|
                                      ClassType.getTypePtr());
 | 
						|
      CXXScopeSpec SS;
 | 
						|
      SS.MakeTrivial(Context, Qualifier, Loc);
 | 
						|
 | 
						|
      // The actual value-ness of this is unimportant, but for
 | 
						|
      // internal consistency's sake, references to instance methods
 | 
						|
      // are r-values.
 | 
						|
      ExprValueKind VK = VK_LValue;
 | 
						|
      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
 | 
						|
        VK = VK_RValue;
 | 
						|
 | 
						|
      ExprResult RefExpr = BuildDeclRefExpr(VD,
 | 
						|
                                            VD->getType().getNonReferenceType(),
 | 
						|
                                            VK,
 | 
						|
                                            Loc,
 | 
						|
                                            &SS);
 | 
						|
      if (RefExpr.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
 | 
						|
 | 
						|
      // We might need to perform a trailing qualification conversion, since
 | 
						|
      // the element type on the parameter could be more qualified than the
 | 
						|
      // element type in the expression we constructed.
 | 
						|
      bool ObjCLifetimeConversion;
 | 
						|
      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
 | 
						|
                                    ParamType.getUnqualifiedType(), false,
 | 
						|
                                    ObjCLifetimeConversion))
 | 
						|
        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
 | 
						|
 | 
						|
      assert(!RefExpr.isInvalid() &&
 | 
						|
             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
 | 
						|
                                 ParamType.getUnqualifiedType()));
 | 
						|
      return RefExpr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  QualType T = VD->getType().getNonReferenceType();
 | 
						|
  if (ParamType->isPointerType()) {
 | 
						|
    // When the non-type template parameter is a pointer, take the
 | 
						|
    // address of the declaration.
 | 
						|
    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
 | 
						|
    if (RefExpr.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (T->isFunctionType() || T->isArrayType()) {
 | 
						|
      // Decay functions and arrays.
 | 
						|
      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
 | 
						|
      if (RefExpr.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      return RefExpr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Take the address of everything else
 | 
						|
    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
 | 
						|
  }
 | 
						|
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
 | 
						|
  // If the non-type template parameter has reference type, qualify the
 | 
						|
  // resulting declaration reference with the extra qualifiers on the
 | 
						|
  // type that the reference refers to.
 | 
						|
  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
 | 
						|
    VK = VK_LValue;
 | 
						|
    T = Context.getQualifiedType(T,
 | 
						|
                              TargetRef->getPointeeType().getQualifiers());
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDeclRefExpr(VD, T, VK, Loc);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Construct a new expression that refers to the given
 | 
						|
/// integral template argument with the given source-location
 | 
						|
/// information.
 | 
						|
///
 | 
						|
/// This routine takes care of the mapping from an integral template
 | 
						|
/// argument (which may have any integral type) to the appropriate
 | 
						|
/// literal value.
 | 
						|
ExprResult
 | 
						|
Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
 | 
						|
                                                  SourceLocation Loc) {
 | 
						|
  assert(Arg.getKind() == TemplateArgument::Integral &&
 | 
						|
         "Operation is only valid for integral template arguments");
 | 
						|
  QualType T = Arg.getIntegralType();
 | 
						|
  if (T->isAnyCharacterType()) {
 | 
						|
    CharacterLiteral::CharacterKind Kind;
 | 
						|
    if (T->isWideCharType())
 | 
						|
      Kind = CharacterLiteral::Wide;
 | 
						|
    else if (T->isChar16Type())
 | 
						|
      Kind = CharacterLiteral::UTF16;
 | 
						|
    else if (T->isChar32Type())
 | 
						|
      Kind = CharacterLiteral::UTF32;
 | 
						|
    else
 | 
						|
      Kind = CharacterLiteral::Ascii;
 | 
						|
 | 
						|
    return Owned(new (Context) CharacterLiteral(
 | 
						|
                                            Arg.getAsIntegral().getZExtValue(),
 | 
						|
                                            Kind, T, Loc));
 | 
						|
  }
 | 
						|
 | 
						|
  if (T->isBooleanType())
 | 
						|
    return Owned(new (Context) CXXBoolLiteralExpr(
 | 
						|
                                            Arg.getAsIntegral().getBoolValue(),
 | 
						|
                                            T, Loc));
 | 
						|
 | 
						|
  if (T->isNullPtrType())
 | 
						|
    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
 | 
						|
  
 | 
						|
  // If this is an enum type that we're instantiating, we need to use an integer
 | 
						|
  // type the same size as the enumerator.  We don't want to build an
 | 
						|
  // IntegerLiteral with enum type.
 | 
						|
  QualType BT;
 | 
						|
  if (const EnumType *ET = T->getAs<EnumType>())
 | 
						|
    BT = ET->getDecl()->getIntegerType();
 | 
						|
  else
 | 
						|
    BT = T;
 | 
						|
 | 
						|
  Expr *E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), BT, Loc);
 | 
						|
  if (T->isEnumeralType()) {
 | 
						|
    // FIXME: This is a hack. We need a better way to handle substituted
 | 
						|
    // non-type template parameters.
 | 
						|
    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 
 | 
						|
                               Context.getTrivialTypeSourceInfo(T, Loc),
 | 
						|
                               Loc, Loc);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Match two template parameters within template parameter lists.
 | 
						|
static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
 | 
						|
                                       bool Complain,
 | 
						|
                                     Sema::TemplateParameterListEqualKind Kind,
 | 
						|
                                       SourceLocation TemplateArgLoc) {
 | 
						|
  // Check the actual kind (type, non-type, template).
 | 
						|
  if (Old->getKind() != New->getKind()) {
 | 
						|
    if (Complain) {
 | 
						|
      unsigned NextDiag = diag::err_template_param_different_kind;
 | 
						|
      if (TemplateArgLoc.isValid()) {
 | 
						|
        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | 
						|
        NextDiag = diag::note_template_param_different_kind;
 | 
						|
      }
 | 
						|
      S.Diag(New->getLocation(), NextDiag)
 | 
						|
        << (Kind != Sema::TPL_TemplateMatch);
 | 
						|
      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
 | 
						|
        << (Kind != Sema::TPL_TemplateMatch);
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that both are parameter packs are neither are parameter packs.
 | 
						|
  // However, if we are matching a template template argument to a
 | 
						|
  // template template parameter, the template template parameter can have
 | 
						|
  // a parameter pack where the template template argument does not.
 | 
						|
  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
 | 
						|
      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
 | 
						|
        Old->isTemplateParameterPack())) {
 | 
						|
    if (Complain) {
 | 
						|
      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
 | 
						|
      if (TemplateArgLoc.isValid()) {
 | 
						|
        S.Diag(TemplateArgLoc,
 | 
						|
             diag::err_template_arg_template_params_mismatch);
 | 
						|
        NextDiag = diag::note_template_parameter_pack_non_pack;
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
 | 
						|
                      : isa<NonTypeTemplateParmDecl>(New)? 1
 | 
						|
                      : 2;
 | 
						|
      S.Diag(New->getLocation(), NextDiag)
 | 
						|
        << ParamKind << New->isParameterPack();
 | 
						|
      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
 | 
						|
        << ParamKind << Old->isParameterPack();
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // For non-type template parameters, check the type of the parameter.
 | 
						|
  if (NonTypeTemplateParmDecl *OldNTTP
 | 
						|
                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
 | 
						|
    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
 | 
						|
 | 
						|
    // If we are matching a template template argument to a template
 | 
						|
    // template parameter and one of the non-type template parameter types
 | 
						|
    // is dependent, then we must wait until template instantiation time
 | 
						|
    // to actually compare the arguments.
 | 
						|
    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
 | 
						|
        (OldNTTP->getType()->isDependentType() ||
 | 
						|
         NewNTTP->getType()->isDependentType()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
 | 
						|
      if (Complain) {
 | 
						|
        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
 | 
						|
        if (TemplateArgLoc.isValid()) {
 | 
						|
          S.Diag(TemplateArgLoc,
 | 
						|
                 diag::err_template_arg_template_params_mismatch);
 | 
						|
          NextDiag = diag::note_template_nontype_parm_different_type;
 | 
						|
        }
 | 
						|
        S.Diag(NewNTTP->getLocation(), NextDiag)
 | 
						|
          << NewNTTP->getType()
 | 
						|
          << (Kind != Sema::TPL_TemplateMatch);
 | 
						|
        S.Diag(OldNTTP->getLocation(),
 | 
						|
               diag::note_template_nontype_parm_prev_declaration)
 | 
						|
          << OldNTTP->getType();
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // For template template parameters, check the template parameter types.
 | 
						|
  // The template parameter lists of template template
 | 
						|
  // parameters must agree.
 | 
						|
  if (TemplateTemplateParmDecl *OldTTP
 | 
						|
                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
 | 
						|
    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
 | 
						|
    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
 | 
						|
                                            OldTTP->getTemplateParameters(),
 | 
						|
                                            Complain,
 | 
						|
                                        (Kind == Sema::TPL_TemplateMatch
 | 
						|
                                           ? Sema::TPL_TemplateTemplateParmMatch
 | 
						|
                                           : Kind),
 | 
						|
                                            TemplateArgLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose a known arity mismatch when comparing template argument
 | 
						|
/// lists.
 | 
						|
static
 | 
						|
void DiagnoseTemplateParameterListArityMismatch(Sema &S,
 | 
						|
                                                TemplateParameterList *New,
 | 
						|
                                                TemplateParameterList *Old,
 | 
						|
                                      Sema::TemplateParameterListEqualKind Kind,
 | 
						|
                                                SourceLocation TemplateArgLoc) {
 | 
						|
  unsigned NextDiag = diag::err_template_param_list_different_arity;
 | 
						|
  if (TemplateArgLoc.isValid()) {
 | 
						|
    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | 
						|
    NextDiag = diag::note_template_param_list_different_arity;
 | 
						|
  }
 | 
						|
  S.Diag(New->getTemplateLoc(), NextDiag)
 | 
						|
    << (New->size() > Old->size())
 | 
						|
    << (Kind != Sema::TPL_TemplateMatch)
 | 
						|
    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
 | 
						|
  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
 | 
						|
    << (Kind != Sema::TPL_TemplateMatch)
 | 
						|
    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given template parameter lists are
 | 
						|
/// equivalent.
 | 
						|
///
 | 
						|
/// \param New  The new template parameter list, typically written in the
 | 
						|
/// source code as part of a new template declaration.
 | 
						|
///
 | 
						|
/// \param Old  The old template parameter list, typically found via
 | 
						|
/// name lookup of the template declared with this template parameter
 | 
						|
/// list.
 | 
						|
///
 | 
						|
/// \param Complain  If true, this routine will produce a diagnostic if
 | 
						|
/// the template parameter lists are not equivalent.
 | 
						|
///
 | 
						|
/// \param Kind describes how we are to match the template parameter lists.
 | 
						|
///
 | 
						|
/// \param TemplateArgLoc If this source location is valid, then we
 | 
						|
/// are actually checking the template parameter list of a template
 | 
						|
/// argument (New) against the template parameter list of its
 | 
						|
/// corresponding template template parameter (Old). We produce
 | 
						|
/// slightly different diagnostics in this scenario.
 | 
						|
///
 | 
						|
/// \returns True if the template parameter lists are equal, false
 | 
						|
/// otherwise.
 | 
						|
bool
 | 
						|
Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
 | 
						|
                                     TemplateParameterList *Old,
 | 
						|
                                     bool Complain,
 | 
						|
                                     TemplateParameterListEqualKind Kind,
 | 
						|
                                     SourceLocation TemplateArgLoc) {
 | 
						|
  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
 | 
						|
    if (Complain)
 | 
						|
      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
 | 
						|
                                                 TemplateArgLoc);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.arg.template]p3:
 | 
						|
  //   A template-argument matches a template template-parameter (call it P)
 | 
						|
  //   when each of the template parameters in the template-parameter-list of
 | 
						|
  //   the template-argument's corresponding class template or alias template
 | 
						|
  //   (call it A) matches the corresponding template parameter in the
 | 
						|
  //   template-parameter-list of P. [...]
 | 
						|
  TemplateParameterList::iterator NewParm = New->begin();
 | 
						|
  TemplateParameterList::iterator NewParmEnd = New->end();
 | 
						|
  for (TemplateParameterList::iterator OldParm = Old->begin(),
 | 
						|
                                    OldParmEnd = Old->end();
 | 
						|
       OldParm != OldParmEnd; ++OldParm) {
 | 
						|
    if (Kind != TPL_TemplateTemplateArgumentMatch ||
 | 
						|
        !(*OldParm)->isTemplateParameterPack()) {
 | 
						|
      if (NewParm == NewParmEnd) {
 | 
						|
        if (Complain)
 | 
						|
          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
 | 
						|
                                                     TemplateArgLoc);
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
 | 
						|
                                      Kind, TemplateArgLoc))
 | 
						|
        return false;
 | 
						|
 | 
						|
      ++NewParm;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [temp.arg.template]p3:
 | 
						|
    //   [...] When P's template- parameter-list contains a template parameter
 | 
						|
    //   pack (14.5.3), the template parameter pack will match zero or more
 | 
						|
    //   template parameters or template parameter packs in the
 | 
						|
    //   template-parameter-list of A with the same type and form as the
 | 
						|
    //   template parameter pack in P (ignoring whether those template
 | 
						|
    //   parameters are template parameter packs).
 | 
						|
    for (; NewParm != NewParmEnd; ++NewParm) {
 | 
						|
      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
 | 
						|
                                      Kind, TemplateArgLoc))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure we exhausted all of the arguments.
 | 
						|
  if (NewParm != NewParmEnd) {
 | 
						|
    if (Complain)
 | 
						|
      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
 | 
						|
                                                 TemplateArgLoc);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a template can be declared within this scope.
 | 
						|
///
 | 
						|
/// If the template declaration is valid in this scope, returns
 | 
						|
/// false. Otherwise, issues a diagnostic and returns true.
 | 
						|
bool
 | 
						|
Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
 | 
						|
  if (!S)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the nearest enclosing declaration scope.
 | 
						|
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | 
						|
         (S->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  // C++ [temp]p2:
 | 
						|
  //   A template-declaration can appear only as a namespace scope or
 | 
						|
  //   class scope declaration.
 | 
						|
  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
 | 
						|
  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
 | 
						|
      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
 | 
						|
    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
 | 
						|
             << TemplateParams->getSourceRange();
 | 
						|
 | 
						|
  while (Ctx && isa<LinkageSpecDecl>(Ctx))
 | 
						|
    Ctx = Ctx->getParent();
 | 
						|
 | 
						|
  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Diag(TemplateParams->getTemplateLoc(),
 | 
						|
              diag::err_template_outside_namespace_or_class_scope)
 | 
						|
    << TemplateParams->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine what kind of template specialization the given declaration
 | 
						|
/// is.
 | 
						|
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
 | 
						|
  if (!D)
 | 
						|
    return TSK_Undeclared;
 | 
						|
 | 
						|
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
 | 
						|
    return Record->getTemplateSpecializationKind();
 | 
						|
  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
 | 
						|
    return Function->getTemplateSpecializationKind();
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(D))
 | 
						|
    return Var->getTemplateSpecializationKind();
 | 
						|
 | 
						|
  return TSK_Undeclared;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a specialization is well-formed in the current
 | 
						|
/// context.
 | 
						|
///
 | 
						|
/// This routine determines whether a template specialization can be declared
 | 
						|
/// in the current context (C++ [temp.expl.spec]p2).
 | 
						|
///
 | 
						|
/// \param S the semantic analysis object for which this check is being
 | 
						|
/// performed.
 | 
						|
///
 | 
						|
/// \param Specialized the entity being specialized or instantiated, which
 | 
						|
/// may be a kind of template (class template, function template, etc.) or
 | 
						|
/// a member of a class template (member function, static data member,
 | 
						|
/// member class).
 | 
						|
///
 | 
						|
/// \param PrevDecl the previous declaration of this entity, if any.
 | 
						|
///
 | 
						|
/// \param Loc the location of the explicit specialization or instantiation of
 | 
						|
/// this entity.
 | 
						|
///
 | 
						|
/// \param IsPartialSpecialization whether this is a partial specialization of
 | 
						|
/// a class template.
 | 
						|
///
 | 
						|
/// \returns true if there was an error that we cannot recover from, false
 | 
						|
/// otherwise.
 | 
						|
static bool CheckTemplateSpecializationScope(Sema &S,
 | 
						|
                                             NamedDecl *Specialized,
 | 
						|
                                             NamedDecl *PrevDecl,
 | 
						|
                                             SourceLocation Loc,
 | 
						|
                                             bool IsPartialSpecialization) {
 | 
						|
  // Keep these "kind" numbers in sync with the %select statements in the
 | 
						|
  // various diagnostics emitted by this routine.
 | 
						|
  int EntityKind = 0;
 | 
						|
  if (isa<ClassTemplateDecl>(Specialized))
 | 
						|
    EntityKind = IsPartialSpecialization? 1 : 0;
 | 
						|
  else if (isa<FunctionTemplateDecl>(Specialized))
 | 
						|
    EntityKind = 2;
 | 
						|
  else if (isa<CXXMethodDecl>(Specialized))
 | 
						|
    EntityKind = 3;
 | 
						|
  else if (isa<VarDecl>(Specialized))
 | 
						|
    EntityKind = 4;
 | 
						|
  else if (isa<RecordDecl>(Specialized))
 | 
						|
    EntityKind = 5;
 | 
						|
  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
 | 
						|
    EntityKind = 6;
 | 
						|
  else {
 | 
						|
    S.Diag(Loc, diag::err_template_spec_unknown_kind)
 | 
						|
      << S.getLangOpts().CPlusPlus0x;
 | 
						|
    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p2:
 | 
						|
  //   An explicit specialization shall be declared in the namespace
 | 
						|
  //   of which the template is a member, or, for member templates, in
 | 
						|
  //   the namespace of which the enclosing class or enclosing class
 | 
						|
  //   template is a member. An explicit specialization of a member
 | 
						|
  //   function, member class or static data member of a class
 | 
						|
  //   template shall be declared in the namespace of which the class
 | 
						|
  //   template is a member. Such a declaration may also be a
 | 
						|
  //   definition. If the declaration is not a definition, the
 | 
						|
  //   specialization may be defined later in the name- space in which
 | 
						|
  //   the explicit specialization was declared, or in a namespace
 | 
						|
  //   that encloses the one in which the explicit specialization was
 | 
						|
  //   declared.
 | 
						|
  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
 | 
						|
    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
 | 
						|
      << Specialized;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
 | 
						|
    if (S.getLangOpts().MicrosoftExt) {
 | 
						|
      // Do not warn for class scope explicit specialization during
 | 
						|
      // instantiation, warning was already emitted during pattern
 | 
						|
      // semantic analysis.
 | 
						|
      if (!S.ActiveTemplateInstantiations.size())
 | 
						|
        S.Diag(Loc, diag::ext_function_specialization_in_class)
 | 
						|
          << Specialized;
 | 
						|
    } else {
 | 
						|
      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
 | 
						|
        << Specialized;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.CurContext->isRecord() &&
 | 
						|
      !S.CurContext->Equals(Specialized->getDeclContext())) {
 | 
						|
    // Make sure that we're specializing in the right record context.
 | 
						|
    // Otherwise, things can go horribly wrong.
 | 
						|
    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
 | 
						|
      << Specialized;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // C++ [temp.class.spec]p6:
 | 
						|
  //   A class template partial specialization may be declared or redeclared
 | 
						|
  //   in any namespace scope in which its definition may be defined (14.5.1
 | 
						|
  //   and 14.5.2).
 | 
						|
  bool ComplainedAboutScope = false;
 | 
						|
  DeclContext *SpecializedContext 
 | 
						|
    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
 | 
						|
  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
 | 
						|
  if ((!PrevDecl ||
 | 
						|
       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
 | 
						|
       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
 | 
						|
    // C++ [temp.exp.spec]p2:
 | 
						|
    //   An explicit specialization shall be declared in the namespace of which
 | 
						|
    //   the template is a member, or, for member templates, in the namespace
 | 
						|
    //   of which the enclosing class or enclosing class template is a member.
 | 
						|
    //   An explicit specialization of a member function, member class or
 | 
						|
    //   static data member of a class template shall be declared in the
 | 
						|
    //   namespace of which the class template is a member.
 | 
						|
    //
 | 
						|
    // C++0x [temp.expl.spec]p2:
 | 
						|
    //   An explicit specialization shall be declared in a namespace enclosing
 | 
						|
    //   the specialized template.
 | 
						|
    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
 | 
						|
      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
 | 
						|
      if (isa<TranslationUnitDecl>(SpecializedContext)) {
 | 
						|
        assert(!IsCPlusPlus0xExtension &&
 | 
						|
               "DC encloses TU but isn't in enclosing namespace set");
 | 
						|
        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
 | 
						|
          << EntityKind << Specialized;
 | 
						|
      } else if (isa<NamespaceDecl>(SpecializedContext)) {
 | 
						|
        int Diag;
 | 
						|
        if (!IsCPlusPlus0xExtension)
 | 
						|
          Diag = diag::err_template_spec_decl_out_of_scope;
 | 
						|
        else if (!S.getLangOpts().CPlusPlus0x)
 | 
						|
          Diag = diag::ext_template_spec_decl_out_of_scope;
 | 
						|
        else
 | 
						|
          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
 | 
						|
        S.Diag(Loc, Diag)
 | 
						|
          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
 | 
						|
      }
 | 
						|
 | 
						|
      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | 
						|
      ComplainedAboutScope =
 | 
						|
        !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that this redeclaration (or definition) occurs in an enclosing
 | 
						|
  // namespace.
 | 
						|
  // Note that HandleDeclarator() performs this check for explicit
 | 
						|
  // specializations of function templates, static data members, and member
 | 
						|
  // functions, so we skip the check here for those kinds of entities.
 | 
						|
  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
 | 
						|
  // Should we refactor that check, so that it occurs later?
 | 
						|
  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
 | 
						|
      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
 | 
						|
        isa<FunctionDecl>(Specialized))) {
 | 
						|
    if (isa<TranslationUnitDecl>(SpecializedContext))
 | 
						|
      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
 | 
						|
        << EntityKind << Specialized;
 | 
						|
    else if (isa<NamespaceDecl>(SpecializedContext))
 | 
						|
      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
 | 
						|
        << EntityKind << Specialized
 | 
						|
        << cast<NamedDecl>(SpecializedContext);
 | 
						|
 | 
						|
    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: check for specialization-after-instantiation errors and such.
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
 | 
						|
/// that checks non-type template partial specialization arguments.
 | 
						|
static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
 | 
						|
                                                NonTypeTemplateParmDecl *Param,
 | 
						|
                                                  const TemplateArgument *Args,
 | 
						|
                                                        unsigned NumArgs) {
 | 
						|
  for (unsigned I = 0; I != NumArgs; ++I) {
 | 
						|
    if (Args[I].getKind() == TemplateArgument::Pack) {
 | 
						|
      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
 | 
						|
                                                           Args[I].pack_begin(),
 | 
						|
                                                           Args[I].pack_size()))
 | 
						|
        return true;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Expr *ArgExpr = Args[I].getAsExpr();
 | 
						|
    if (!ArgExpr) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We can have a pack expansion of any of the bullets below.
 | 
						|
    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
 | 
						|
      ArgExpr = Expansion->getPattern();
 | 
						|
 | 
						|
    // Strip off any implicit casts we added as part of type checking.
 | 
						|
    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
 | 
						|
      ArgExpr = ICE->getSubExpr();
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p8:
 | 
						|
    //   A non-type argument is non-specialized if it is the name of a
 | 
						|
    //   non-type parameter. All other non-type arguments are
 | 
						|
    //   specialized.
 | 
						|
    //
 | 
						|
    // Below, we check the two conditions that only apply to
 | 
						|
    // specialized non-type arguments, so skip any non-specialized
 | 
						|
    // arguments.
 | 
						|
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
 | 
						|
      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
 | 
						|
        continue;
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p9:
 | 
						|
    //   Within the argument list of a class template partial
 | 
						|
    //   specialization, the following restrictions apply:
 | 
						|
    //     -- A partially specialized non-type argument expression
 | 
						|
    //        shall not involve a template parameter of the partial
 | 
						|
    //        specialization except when the argument expression is a
 | 
						|
    //        simple identifier.
 | 
						|
    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
 | 
						|
      S.Diag(ArgExpr->getLocStart(),
 | 
						|
           diag::err_dependent_non_type_arg_in_partial_spec)
 | 
						|
        << ArgExpr->getSourceRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    //     -- The type of a template parameter corresponding to a
 | 
						|
    //        specialized non-type argument shall not be dependent on a
 | 
						|
    //        parameter of the specialization.
 | 
						|
    if (Param->getType()->isDependentType()) {
 | 
						|
      S.Diag(ArgExpr->getLocStart(),
 | 
						|
           diag::err_dependent_typed_non_type_arg_in_partial_spec)
 | 
						|
        << Param->getType()
 | 
						|
        << ArgExpr->getSourceRange();
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the non-type template arguments of a class template
 | 
						|
/// partial specialization according to C++ [temp.class.spec]p9.
 | 
						|
///
 | 
						|
/// \param TemplateParams the template parameters of the primary class
 | 
						|
/// template.
 | 
						|
///
 | 
						|
/// \param TemplateArgs the template arguments of the class template
 | 
						|
/// partial specialization.
 | 
						|
///
 | 
						|
/// \returns true if there was an error, false otherwise.
 | 
						|
static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
 | 
						|
                                        TemplateParameterList *TemplateParams,
 | 
						|
                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
 | 
						|
  const TemplateArgument *ArgList = TemplateArgs.data();
 | 
						|
 | 
						|
  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | 
						|
    NonTypeTemplateParmDecl *Param
 | 
						|
      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
 | 
						|
    if (!Param)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
 | 
						|
                                                           &ArgList[I], 1))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
DeclResult
 | 
						|
Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
 | 
						|
                                       TagUseKind TUK,
 | 
						|
                                       SourceLocation KWLoc,
 | 
						|
                                       SourceLocation ModulePrivateLoc,
 | 
						|
                                       CXXScopeSpec &SS,
 | 
						|
                                       TemplateTy TemplateD,
 | 
						|
                                       SourceLocation TemplateNameLoc,
 | 
						|
                                       SourceLocation LAngleLoc,
 | 
						|
                                       ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                       SourceLocation RAngleLoc,
 | 
						|
                                       AttributeList *Attr,
 | 
						|
                               MultiTemplateParamsArg TemplateParameterLists) {
 | 
						|
  assert(TUK != TUK_Reference && "References are not specializations");
 | 
						|
 | 
						|
  // NOTE: KWLoc is the location of the tag keyword. This will instead
 | 
						|
  // store the location of the outermost template keyword in the declaration.
 | 
						|
  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
 | 
						|
    ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
 | 
						|
 | 
						|
  // Find the class template we're specializing
 | 
						|
  TemplateName Name = TemplateD.getAsVal<TemplateName>();
 | 
						|
  ClassTemplateDecl *ClassTemplate
 | 
						|
    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
 | 
						|
 | 
						|
  if (!ClassTemplate) {
 | 
						|
    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
 | 
						|
      << (Name.getAsTemplateDecl() &&
 | 
						|
          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isExplicitSpecialization = false;
 | 
						|
  bool isPartialSpecialization = false;
 | 
						|
 | 
						|
  // Check the validity of the template headers that introduce this
 | 
						|
  // template.
 | 
						|
  // FIXME: We probably shouldn't complain about these headers for
 | 
						|
  // friend declarations.
 | 
						|
  bool Invalid = false;
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 
 | 
						|
                                              TemplateNameLoc,
 | 
						|
                                              SS,
 | 
						|
                                              TemplateParameterLists.data(),
 | 
						|
                                              TemplateParameterLists.size(),
 | 
						|
                                              TUK == TUK_Friend,
 | 
						|
                                              isExplicitSpecialization,
 | 
						|
                                              Invalid);
 | 
						|
  if (Invalid)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (TemplateParams && TemplateParams->size() > 0) {
 | 
						|
    isPartialSpecialization = true;
 | 
						|
 | 
						|
    if (TUK == TUK_Friend) {
 | 
						|
      Diag(KWLoc, diag::err_partial_specialization_friend)
 | 
						|
        << SourceRange(LAngleLoc, RAngleLoc);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p10:
 | 
						|
    //   The template parameter list of a specialization shall not
 | 
						|
    //   contain default template argument values.
 | 
						|
    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | 
						|
      Decl *Param = TemplateParams->getParam(I);
 | 
						|
      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | 
						|
        if (TTP->hasDefaultArgument()) {
 | 
						|
          Diag(TTP->getDefaultArgumentLoc(),
 | 
						|
               diag::err_default_arg_in_partial_spec);
 | 
						|
          TTP->removeDefaultArgument();
 | 
						|
        }
 | 
						|
      } else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
        if (Expr *DefArg = NTTP->getDefaultArgument()) {
 | 
						|
          Diag(NTTP->getDefaultArgumentLoc(),
 | 
						|
               diag::err_default_arg_in_partial_spec)
 | 
						|
            << DefArg->getSourceRange();
 | 
						|
          NTTP->removeDefaultArgument();
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
 | 
						|
        if (TTP->hasDefaultArgument()) {
 | 
						|
          Diag(TTP->getDefaultArgument().getLocation(),
 | 
						|
               diag::err_default_arg_in_partial_spec)
 | 
						|
            << TTP->getDefaultArgument().getSourceRange();
 | 
						|
          TTP->removeDefaultArgument();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (TemplateParams) {
 | 
						|
    if (TUK == TUK_Friend)
 | 
						|
      Diag(KWLoc, diag::err_template_spec_friend)
 | 
						|
        << FixItHint::CreateRemoval(
 | 
						|
                                SourceRange(TemplateParams->getTemplateLoc(),
 | 
						|
                                            TemplateParams->getRAngleLoc()))
 | 
						|
        << SourceRange(LAngleLoc, RAngleLoc);
 | 
						|
    else
 | 
						|
      isExplicitSpecialization = true;
 | 
						|
  } else if (TUK != TUK_Friend) {
 | 
						|
    Diag(KWLoc, diag::err_template_spec_needs_header)
 | 
						|
      << FixItHint::CreateInsertion(KWLoc, "template<> ");
 | 
						|
    isExplicitSpecialization = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the specialization uses the same tag kind as the
 | 
						|
  // original template.
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
 | 
						|
  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | 
						|
                                    Kind, TUK == TUK_Definition, KWLoc,
 | 
						|
                                    *ClassTemplate->getIdentifier())) {
 | 
						|
    Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
      << ClassTemplate
 | 
						|
      << FixItHint::CreateReplacement(KWLoc,
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getKindName());
 | 
						|
    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
 | 
						|
         diag::note_previous_use);
 | 
						|
    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | 
						|
  }
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs;
 | 
						|
  TemplateArgs.setLAngleLoc(LAngleLoc);
 | 
						|
  TemplateArgs.setRAngleLoc(RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  // Check for unexpanded parameter packs in any of the template arguments.
 | 
						|
  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
 | 
						|
                                        UPPC_PartialSpecialization))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  SmallVector<TemplateArgument, 4> Converted;
 | 
						|
  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
 | 
						|
                                TemplateArgs, false, Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Find the class template (partial) specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  if (isPartialSpecialization) {
 | 
						|
    if (CheckClassTemplatePartialSpecializationArgs(*this,
 | 
						|
                                         ClassTemplate->getTemplateParameters(),
 | 
						|
                                         Converted))
 | 
						|
      return true;
 | 
						|
 | 
						|
    bool InstantiationDependent;
 | 
						|
    if (!Name.isDependent() &&
 | 
						|
        !TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
                                             TemplateArgs.getArgumentArray(),
 | 
						|
                                                         TemplateArgs.size(),
 | 
						|
                                                     InstantiationDependent)) {
 | 
						|
      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
 | 
						|
        << ClassTemplate->getDeclName();
 | 
						|
      isPartialSpecialization = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  ClassTemplateSpecializationDecl *PrevDecl = 0;
 | 
						|
 | 
						|
  if (isPartialSpecialization)
 | 
						|
    // FIXME: Template parameter list matters, too
 | 
						|
    PrevDecl
 | 
						|
      = ClassTemplate->findPartialSpecialization(Converted.data(),
 | 
						|
                                                 Converted.size(),
 | 
						|
                                                 InsertPos);
 | 
						|
  else
 | 
						|
    PrevDecl
 | 
						|
      = ClassTemplate->findSpecialization(Converted.data(),
 | 
						|
                                          Converted.size(), InsertPos);
 | 
						|
 | 
						|
  ClassTemplateSpecializationDecl *Specialization = 0;
 | 
						|
 | 
						|
  // Check whether we can declare a class template specialization in
 | 
						|
  // the current scope.
 | 
						|
  if (TUK != TUK_Friend &&
 | 
						|
      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
 | 
						|
                                       TemplateNameLoc,
 | 
						|
                                       isPartialSpecialization))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The canonical type
 | 
						|
  QualType CanonType;
 | 
						|
  if (PrevDecl &&
 | 
						|
      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
 | 
						|
               TUK == TUK_Friend)) {
 | 
						|
    // Since the only prior class template specialization with these
 | 
						|
    // arguments was referenced but not declared, or we're only
 | 
						|
    // referencing this specialization as a friend, reuse that
 | 
						|
    // declaration node as our own, updating its source location and
 | 
						|
    // the list of outer template parameters to reflect our new declaration.
 | 
						|
    Specialization = PrevDecl;
 | 
						|
    Specialization->setLocation(TemplateNameLoc);
 | 
						|
    if (TemplateParameterLists.size() > 0) {
 | 
						|
      Specialization->setTemplateParameterListsInfo(Context,
 | 
						|
                                              TemplateParameterLists.size(),
 | 
						|
                                              TemplateParameterLists.data());
 | 
						|
    }
 | 
						|
    PrevDecl = 0;
 | 
						|
    CanonType = Context.getTypeDeclType(Specialization);
 | 
						|
  } else if (isPartialSpecialization) {
 | 
						|
    // Build the canonical type that describes the converted template
 | 
						|
    // arguments of the class template partial specialization.
 | 
						|
    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
 | 
						|
    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
 | 
						|
                                                      Converted.data(),
 | 
						|
                                                      Converted.size());
 | 
						|
 | 
						|
    if (Context.hasSameType(CanonType,
 | 
						|
                        ClassTemplate->getInjectedClassNameSpecialization())) {
 | 
						|
      // C++ [temp.class.spec]p9b3:
 | 
						|
      //
 | 
						|
      //   -- The argument list of the specialization shall not be identical
 | 
						|
      //      to the implicit argument list of the primary template.
 | 
						|
      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
 | 
						|
        << (TUK == TUK_Definition)
 | 
						|
        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
 | 
						|
      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
 | 
						|
                                ClassTemplate->getIdentifier(),
 | 
						|
                                TemplateNameLoc,
 | 
						|
                                Attr,
 | 
						|
                                TemplateParams,
 | 
						|
                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
 | 
						|
                                TemplateParameterLists.size() - 1,
 | 
						|
                                TemplateParameterLists.data());
 | 
						|
    }
 | 
						|
 | 
						|
    // Create a new class template partial specialization declaration node.
 | 
						|
    ClassTemplatePartialSpecializationDecl *PrevPartial
 | 
						|
      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
 | 
						|
    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
 | 
						|
                            : ClassTemplate->getNextPartialSpecSequenceNumber();
 | 
						|
    ClassTemplatePartialSpecializationDecl *Partial
 | 
						|
      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                       KWLoc, TemplateNameLoc,
 | 
						|
                                                       TemplateParams,
 | 
						|
                                                       ClassTemplate,
 | 
						|
                                                       Converted.data(),
 | 
						|
                                                       Converted.size(),
 | 
						|
                                                       TemplateArgs,
 | 
						|
                                                       CanonType,
 | 
						|
                                                       PrevPartial,
 | 
						|
                                                       SequenceNumber);
 | 
						|
    SetNestedNameSpecifier(Partial, SS);
 | 
						|
    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
 | 
						|
      Partial->setTemplateParameterListsInfo(Context,
 | 
						|
                                             TemplateParameterLists.size() - 1,
 | 
						|
                                             TemplateParameterLists.data());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PrevPartial)
 | 
						|
      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
 | 
						|
    Specialization = Partial;
 | 
						|
 | 
						|
    // If we are providing an explicit specialization of a member class
 | 
						|
    // template specialization, make a note of that.
 | 
						|
    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
 | 
						|
      PrevPartial->setMemberSpecialization();
 | 
						|
 | 
						|
    // Check that all of the template parameters of the class template
 | 
						|
    // partial specialization are deducible from the template
 | 
						|
    // arguments. If not, this class template partial specialization
 | 
						|
    // will never be used.
 | 
						|
    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
 | 
						|
    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
 | 
						|
                               TemplateParams->getDepth(),
 | 
						|
                               DeducibleParams);
 | 
						|
 | 
						|
    if (!DeducibleParams.all()) {
 | 
						|
      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
 | 
						|
      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
 | 
						|
        << (NumNonDeducible > 1)
 | 
						|
        << SourceRange(TemplateNameLoc, RAngleLoc);
 | 
						|
      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
 | 
						|
        if (!DeducibleParams[I]) {
 | 
						|
          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
 | 
						|
          if (Param->getDeclName())
 | 
						|
            Diag(Param->getLocation(),
 | 
						|
                 diag::note_partial_spec_unused_parameter)
 | 
						|
              << Param->getDeclName();
 | 
						|
          else
 | 
						|
            Diag(Param->getLocation(),
 | 
						|
                 diag::note_partial_spec_unused_parameter)
 | 
						|
              << "<anonymous>";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Create a new class template specialization declaration node for
 | 
						|
    // this explicit specialization or friend declaration.
 | 
						|
    Specialization
 | 
						|
      = ClassTemplateSpecializationDecl::Create(Context, Kind,
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                KWLoc, TemplateNameLoc,
 | 
						|
                                                ClassTemplate,
 | 
						|
                                                Converted.data(),
 | 
						|
                                                Converted.size(),
 | 
						|
                                                PrevDecl);
 | 
						|
    SetNestedNameSpecifier(Specialization, SS);
 | 
						|
    if (TemplateParameterLists.size() > 0) {
 | 
						|
      Specialization->setTemplateParameterListsInfo(Context,
 | 
						|
                                              TemplateParameterLists.size(),
 | 
						|
                                              TemplateParameterLists.data());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PrevDecl)
 | 
						|
      ClassTemplate->AddSpecialization(Specialization, InsertPos);
 | 
						|
 | 
						|
    CanonType = Context.getTypeDeclType(Specialization);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that specialization shall be declared
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
 | 
						|
    bool Okay = false;
 | 
						|
    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | 
						|
      // Is there any previous explicit specialization declaration?
 | 
						|
      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
 | 
						|
        Okay = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Okay) {
 | 
						|
      SourceRange Range(TemplateNameLoc, RAngleLoc);
 | 
						|
      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
 | 
						|
        << Context.getTypeDeclType(Specialization) << Range;
 | 
						|
 | 
						|
      Diag(PrevDecl->getPointOfInstantiation(),
 | 
						|
           diag::note_instantiation_required_here)
 | 
						|
        << (PrevDecl->getTemplateSpecializationKind()
 | 
						|
                                                != TSK_ImplicitInstantiation);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is not a friend, note that this is an explicit specialization.
 | 
						|
  if (TUK != TUK_Friend)
 | 
						|
    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
 | 
						|
 | 
						|
  // Check that this isn't a redefinition of this specialization.
 | 
						|
  if (TUK == TUK_Definition) {
 | 
						|
    if (RecordDecl *Def = Specialization->getDefinition()) {
 | 
						|
      SourceRange Range(TemplateNameLoc, RAngleLoc);
 | 
						|
      Diag(TemplateNameLoc, diag::err_redefinition)
 | 
						|
        << Context.getTypeDeclType(Specialization) << Range;
 | 
						|
      Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
      Specialization->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Specialization, Attr);
 | 
						|
 | 
						|
  // Add alignment attributes if necessary; these attributes are checked when
 | 
						|
  // the ASTContext lays out the structure.
 | 
						|
  if (TUK == TUK_Definition) {
 | 
						|
    AddAlignmentAttributesForRecord(Specialization);
 | 
						|
    AddMsStructLayoutForRecord(Specialization);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ModulePrivateLoc.isValid())
 | 
						|
    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
 | 
						|
      << (isPartialSpecialization? 1 : 0)
 | 
						|
      << FixItHint::CreateRemoval(ModulePrivateLoc);
 | 
						|
  
 | 
						|
  // Build the fully-sugared type for this class template
 | 
						|
  // specialization as the user wrote in the specialization
 | 
						|
  // itself. This means that we'll pretty-print the type retrieved
 | 
						|
  // from the specialization's declaration the way that the user
 | 
						|
  // actually wrote the specialization, rather than formatting the
 | 
						|
  // name based on the "canonical" representation used to store the
 | 
						|
  // template arguments in the specialization.
 | 
						|
  TypeSourceInfo *WrittenTy
 | 
						|
    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
 | 
						|
                                                TemplateArgs, CanonType);
 | 
						|
  if (TUK != TUK_Friend) {
 | 
						|
    Specialization->setTypeAsWritten(WrittenTy);
 | 
						|
    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p9:
 | 
						|
  //   A template explicit specialization is in the scope of the
 | 
						|
  //   namespace in which the template was defined.
 | 
						|
  //
 | 
						|
  // We actually implement this paragraph where we set the semantic
 | 
						|
  // context (in the creation of the ClassTemplateSpecializationDecl),
 | 
						|
  // but we also maintain the lexical context where the actual
 | 
						|
  // definition occurs.
 | 
						|
  Specialization->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  // We may be starting the definition of this specialization.
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    Specialization->startDefinition();
 | 
						|
 | 
						|
  if (TUK == TUK_Friend) {
 | 
						|
    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
 | 
						|
                                            TemplateNameLoc,
 | 
						|
                                            WrittenTy,
 | 
						|
                                            /*FIXME:*/KWLoc);
 | 
						|
    Friend->setAccess(AS_public);
 | 
						|
    CurContext->addDecl(Friend);
 | 
						|
  } else {
 | 
						|
    // Add the specialization into its lexical context, so that it can
 | 
						|
    // be seen when iterating through the list of declarations in that
 | 
						|
    // context. However, specializations are not found by name lookup.
 | 
						|
    CurContext->addDecl(Specialization);
 | 
						|
  }
 | 
						|
  return Specialization;
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnTemplateDeclarator(Scope *S,
 | 
						|
                              MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                                    Declarator &D) {
 | 
						|
  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
 | 
						|
  ActOnDocumentableDecl(NewDecl);
 | 
						|
  return NewDecl;
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
 | 
						|
                               MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                                            Declarator &D) {
 | 
						|
  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
 | 
						|
  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | 
						|
 | 
						|
  if (FTI.hasPrototype) {
 | 
						|
    // FIXME: Diagnose arguments without names in C.
 | 
						|
  }
 | 
						|
 | 
						|
  Scope *ParentScope = FnBodyScope->getParent();
 | 
						|
 | 
						|
  D.setFunctionDefinitionKind(FDK_Definition);
 | 
						|
  Decl *DP = HandleDeclarator(ParentScope, D,
 | 
						|
                              TemplateParameterLists);
 | 
						|
  if (FunctionTemplateDecl *FunctionTemplate
 | 
						|
        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
 | 
						|
    return ActOnStartOfFunctionDef(FnBodyScope,
 | 
						|
                                   FunctionTemplate->getTemplatedDecl());
 | 
						|
  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
 | 
						|
    return ActOnStartOfFunctionDef(FnBodyScope, Function);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Strips various properties off an implicit instantiation
 | 
						|
/// that has just been explicitly specialized.
 | 
						|
static void StripImplicitInstantiation(NamedDecl *D) {
 | 
						|
  // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
 | 
						|
  D->dropAttrs();
 | 
						|
 | 
						|
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    FD->setInlineSpecified(false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compute the diagnostic location for an explicit instantiation
 | 
						|
//  declaration or definition.
 | 
						|
static SourceLocation DiagLocForExplicitInstantiation(
 | 
						|
    NamedDecl* D, SourceLocation PointOfInstantiation) {
 | 
						|
  // Explicit instantiations following a specialization have no effect and
 | 
						|
  // hence no PointOfInstantiation. In that case, walk decl backwards
 | 
						|
  // until a valid name loc is found.
 | 
						|
  SourceLocation PrevDiagLoc = PointOfInstantiation;
 | 
						|
  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
 | 
						|
       Prev = Prev->getPreviousDecl()) {
 | 
						|
    PrevDiagLoc = Prev->getLocation();
 | 
						|
  }
 | 
						|
  assert(PrevDiagLoc.isValid() &&
 | 
						|
         "Explicit instantiation without point of instantiation?");
 | 
						|
  return PrevDiagLoc;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose cases where we have an explicit template specialization
 | 
						|
/// before/after an explicit template instantiation, producing diagnostics
 | 
						|
/// for those cases where they are required and determining whether the
 | 
						|
/// new specialization/instantiation will have any effect.
 | 
						|
///
 | 
						|
/// \param NewLoc the location of the new explicit specialization or
 | 
						|
/// instantiation.
 | 
						|
///
 | 
						|
/// \param NewTSK the kind of the new explicit specialization or instantiation.
 | 
						|
///
 | 
						|
/// \param PrevDecl the previous declaration of the entity.
 | 
						|
///
 | 
						|
/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
 | 
						|
///
 | 
						|
/// \param PrevPointOfInstantiation if valid, indicates where the previus
 | 
						|
/// declaration was instantiated (either implicitly or explicitly).
 | 
						|
///
 | 
						|
/// \param HasNoEffect will be set to true to indicate that the new
 | 
						|
/// specialization or instantiation has no effect and should be ignored.
 | 
						|
///
 | 
						|
/// \returns true if there was an error that should prevent the introduction of
 | 
						|
/// the new declaration into the AST, false otherwise.
 | 
						|
bool
 | 
						|
Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
 | 
						|
                                             TemplateSpecializationKind NewTSK,
 | 
						|
                                             NamedDecl *PrevDecl,
 | 
						|
                                             TemplateSpecializationKind PrevTSK,
 | 
						|
                                        SourceLocation PrevPointOfInstantiation,
 | 
						|
                                             bool &HasNoEffect) {
 | 
						|
  HasNoEffect = false;
 | 
						|
 | 
						|
  switch (NewTSK) {
 | 
						|
  case TSK_Undeclared:
 | 
						|
  case TSK_ImplicitInstantiation:
 | 
						|
    llvm_unreachable("Don't check implicit instantiations here");
 | 
						|
 | 
						|
  case TSK_ExplicitSpecialization:
 | 
						|
    switch (PrevTSK) {
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      // Okay, we're just specializing something that is either already
 | 
						|
      // explicitly specialized or has merely been mentioned without any
 | 
						|
      // instantiation.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      if (PrevPointOfInstantiation.isInvalid()) {
 | 
						|
        // The declaration itself has not actually been instantiated, so it is
 | 
						|
        // still okay to specialize it.
 | 
						|
        StripImplicitInstantiation(PrevDecl);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // Fall through
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      assert((PrevTSK == TSK_ImplicitInstantiation ||
 | 
						|
              PrevPointOfInstantiation.isValid()) &&
 | 
						|
             "Explicit instantiation without point of instantiation?");
 | 
						|
 | 
						|
      // C++ [temp.expl.spec]p6:
 | 
						|
      //   If a template, a member template or the member of a class template
 | 
						|
      //   is explicitly specialized then that specialization shall be declared
 | 
						|
      //   before the first use of that specialization that would cause an
 | 
						|
      //   implicit instantiation to take place, in every translation unit in
 | 
						|
      //   which such a use occurs; no diagnostic is required.
 | 
						|
      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | 
						|
        // Is there any previous explicit specialization declaration?
 | 
						|
        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
 | 
						|
      Diag(NewLoc, diag::err_specialization_after_instantiation)
 | 
						|
        << PrevDecl;
 | 
						|
      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
 | 
						|
        << (PrevTSK != TSK_ImplicitInstantiation);
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  case TSK_ExplicitInstantiationDeclaration:
 | 
						|
    switch (PrevTSK) {
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
      // This explicit instantiation declaration is redundant (that's okay).
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      // We're explicitly instantiating something that may have already been
 | 
						|
      // implicitly instantiated; that's fine.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      // C++0x [temp.explicit]p4:
 | 
						|
      //   For a given set of template parameters, if an explicit instantiation
 | 
						|
      //   of a template appears after a declaration of an explicit
 | 
						|
      //   specialization for that template, the explicit instantiation has no
 | 
						|
      //   effect.
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      // C++0x [temp.explicit]p10:
 | 
						|
      //   If an entity is the subject of both an explicit instantiation
 | 
						|
      //   declaration and an explicit instantiation definition in the same
 | 
						|
      //   translation unit, the definition shall follow the declaration.
 | 
						|
      Diag(NewLoc,
 | 
						|
           diag::err_explicit_instantiation_declaration_after_definition);
 | 
						|
 | 
						|
      // Explicit instantiations following a specialization have no effect and
 | 
						|
      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
 | 
						|
      // until a valid name loc is found.
 | 
						|
      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
 | 
						|
           diag::note_explicit_instantiation_definition_here);
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  case TSK_ExplicitInstantiationDefinition:
 | 
						|
    switch (PrevTSK) {
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      // We're explicitly instantiating something that may have already been
 | 
						|
      // implicitly instantiated; that's fine.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      // C++ DR 259, C++0x [temp.explicit]p4:
 | 
						|
      //   For a given set of template parameters, if an explicit
 | 
						|
      //   instantiation of a template appears after a declaration of
 | 
						|
      //   an explicit specialization for that template, the explicit
 | 
						|
      //   instantiation has no effect.
 | 
						|
      //
 | 
						|
      // In C++98/03 mode, we only give an extension warning here, because it
 | 
						|
      // is not harmful to try to explicitly instantiate something that
 | 
						|
      // has been explicitly specialized.
 | 
						|
      Diag(NewLoc, getLangOpts().CPlusPlus0x ?
 | 
						|
           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
 | 
						|
           diag::ext_explicit_instantiation_after_specialization)
 | 
						|
        << PrevDecl;
 | 
						|
      Diag(PrevDecl->getLocation(),
 | 
						|
           diag::note_previous_template_specialization);
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
      // We're explicity instantiating a definition for something for which we
 | 
						|
      // were previously asked to suppress instantiations. That's fine.
 | 
						|
 | 
						|
      // C++0x [temp.explicit]p4:
 | 
						|
      //   For a given set of template parameters, if an explicit instantiation
 | 
						|
      //   of a template appears after a declaration of an explicit
 | 
						|
      //   specialization for that template, the explicit instantiation has no
 | 
						|
      //   effect.
 | 
						|
      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | 
						|
        // Is there any previous explicit specialization declaration?
 | 
						|
        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
 | 
						|
          HasNoEffect = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      // C++0x [temp.spec]p5:
 | 
						|
      //   For a given template and a given set of template-arguments,
 | 
						|
      //     - an explicit instantiation definition shall appear at most once
 | 
						|
      //       in a program,
 | 
						|
      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
 | 
						|
        << PrevDecl;
 | 
						|
      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
 | 
						|
           diag::note_previous_explicit_instantiation);
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Missing specialization/instantiation case?");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic analysis for the given dependent function
 | 
						|
/// template specialization.
 | 
						|
///
 | 
						|
/// The only possible way to get a dependent function template specialization
 | 
						|
/// is with a friend declaration, like so:
 | 
						|
///
 | 
						|
/// \code
 | 
						|
///   template \<class T> void foo(T);
 | 
						|
///   template \<class T> class A {
 | 
						|
///     friend void foo<>(T);
 | 
						|
///   };
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// There really isn't any useful analysis we can do here, so we
 | 
						|
/// just store the information.
 | 
						|
bool
 | 
						|
Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
 | 
						|
                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
 | 
						|
                                                   LookupResult &Previous) {
 | 
						|
  // Remove anything from Previous that isn't a function template in
 | 
						|
  // the correct context.
 | 
						|
  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
 | 
						|
  LookupResult::Filter F = Previous.makeFilter();
 | 
						|
  while (F.hasNext()) {
 | 
						|
    NamedDecl *D = F.next()->getUnderlyingDecl();
 | 
						|
    if (!isa<FunctionTemplateDecl>(D) ||
 | 
						|
        !FDLookupContext->InEnclosingNamespaceSetOf(
 | 
						|
                              D->getDeclContext()->getRedeclContext()))
 | 
						|
      F.erase();
 | 
						|
  }
 | 
						|
  F.done();
 | 
						|
 | 
						|
  // Should this be diagnosed here?
 | 
						|
  if (Previous.empty()) return true;
 | 
						|
 | 
						|
  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
 | 
						|
                                         ExplicitTemplateArgs);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic analysis for the given function template
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// This routine performs all of the semantic analysis required for an
 | 
						|
/// explicit function template specialization. On successful completion,
 | 
						|
/// the function declaration \p FD will become a function template
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \param FD the function declaration, which will be updated to become a
 | 
						|
/// function template specialization.
 | 
						|
///
 | 
						|
/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
 | 
						|
/// if any. Note that this may be valid info even when 0 arguments are
 | 
						|
/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
 | 
						|
/// as it anyway contains info on the angle brackets locations.
 | 
						|
///
 | 
						|
/// \param Previous the set of declarations that may be specialized by
 | 
						|
/// this function specialization.
 | 
						|
bool
 | 
						|
Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
 | 
						|
                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                                          LookupResult &Previous) {
 | 
						|
  // The set of function template specializations that could match this
 | 
						|
  // explicit function template specialization.
 | 
						|
  UnresolvedSet<8> Candidates;
 | 
						|
 | 
						|
  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
 | 
						|
  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | 
						|
         I != E; ++I) {
 | 
						|
    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
 | 
						|
    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
 | 
						|
      // Only consider templates found within the same semantic lookup scope as
 | 
						|
      // FD.
 | 
						|
      if (!FDLookupContext->InEnclosingNamespaceSetOf(
 | 
						|
                                Ovl->getDeclContext()->getRedeclContext()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // C++ [temp.expl.spec]p11:
 | 
						|
      //   A trailing template-argument can be left unspecified in the
 | 
						|
      //   template-id naming an explicit function template specialization
 | 
						|
      //   provided it can be deduced from the function argument type.
 | 
						|
      // Perform template argument deduction to determine whether we may be
 | 
						|
      // specializing this template.
 | 
						|
      // FIXME: It is somewhat wasteful to build
 | 
						|
      TemplateDeductionInfo Info(Context, FD->getLocation());
 | 
						|
      FunctionDecl *Specialization = 0;
 | 
						|
      if (TemplateDeductionResult TDK
 | 
						|
            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
 | 
						|
                                      FD->getType(),
 | 
						|
                                      Specialization,
 | 
						|
                                      Info)) {
 | 
						|
        // FIXME: Template argument deduction failed; record why it failed, so
 | 
						|
        // that we can provide nifty diagnostics.
 | 
						|
        (void)TDK;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Record this candidate.
 | 
						|
      Candidates.addDecl(Specialization, I.getAccess());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the most specialized function template.
 | 
						|
  UnresolvedSetIterator Result
 | 
						|
    = getMostSpecialized(Candidates.begin(), Candidates.end(),
 | 
						|
                         TPOC_Other, 0, FD->getLocation(),
 | 
						|
                  PDiag(diag::err_function_template_spec_no_match)
 | 
						|
                    << FD->getDeclName(),
 | 
						|
                  PDiag(diag::err_function_template_spec_ambiguous)
 | 
						|
                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
 | 
						|
                  PDiag(diag::note_function_template_spec_matched));
 | 
						|
  if (Result == Candidates.end())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Ignore access information;  it doesn't figure into redeclaration checking.
 | 
						|
  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
 | 
						|
 | 
						|
  FunctionTemplateSpecializationInfo *SpecInfo
 | 
						|
    = Specialization->getTemplateSpecializationInfo();
 | 
						|
  assert(SpecInfo && "Function template specialization info missing?");
 | 
						|
 | 
						|
  // Note: do not overwrite location info if previous template
 | 
						|
  // specialization kind was explicit.
 | 
						|
  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
 | 
						|
  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
 | 
						|
    Specialization->setLocation(FD->getLocation());
 | 
						|
    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
 | 
						|
    // function can differ from the template declaration with respect to
 | 
						|
    // the constexpr specifier.
 | 
						|
    Specialization->setConstexpr(FD->isConstexpr());
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Check if the prior specialization has a point of instantiation.
 | 
						|
  // If so, we have run afoul of .
 | 
						|
 | 
						|
  // If this is a friend declaration, then we're not really declaring
 | 
						|
  // an explicit specialization.
 | 
						|
  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
 | 
						|
 | 
						|
  // Check the scope of this explicit specialization.
 | 
						|
  if (!isFriend &&
 | 
						|
      CheckTemplateSpecializationScope(*this,
 | 
						|
                                       Specialization->getPrimaryTemplate(),
 | 
						|
                                       Specialization, FD->getLocation(),
 | 
						|
                                       false))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that specialization shall be declared
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  bool HasNoEffect = false;
 | 
						|
  if (!isFriend &&
 | 
						|
      CheckSpecializationInstantiationRedecl(FD->getLocation(),
 | 
						|
                                             TSK_ExplicitSpecialization,
 | 
						|
                                             Specialization,
 | 
						|
                                   SpecInfo->getTemplateSpecializationKind(),
 | 
						|
                                         SpecInfo->getPointOfInstantiation(),
 | 
						|
                                             HasNoEffect))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Mark the prior declaration as an explicit specialization, so that later
 | 
						|
  // clients know that this is an explicit specialization.
 | 
						|
  if (!isFriend) {
 | 
						|
    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
 | 
						|
    MarkUnusedFileScopedDecl(Specialization);
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn the given function declaration into a function template
 | 
						|
  // specialization, with the template arguments from the previous
 | 
						|
  // specialization.
 | 
						|
  // Take copies of (semantic and syntactic) template argument lists.
 | 
						|
  const TemplateArgumentList* TemplArgs = new (Context)
 | 
						|
    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
 | 
						|
  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
 | 
						|
                                        TemplArgs, /*InsertPos=*/0,
 | 
						|
                                    SpecInfo->getTemplateSpecializationKind(),
 | 
						|
                                        ExplicitTemplateArgs);
 | 
						|
  FD->setStorageClass(Specialization->getStorageClass());
 | 
						|
  
 | 
						|
  // The "previous declaration" for this function template specialization is
 | 
						|
  // the prior function template specialization.
 | 
						|
  Previous.clear();
 | 
						|
  Previous.addDecl(Specialization);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic analysis for the given non-template member
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// This routine performs all of the semantic analysis required for an
 | 
						|
/// explicit member function specialization. On successful completion,
 | 
						|
/// the function declaration \p FD will become a member function
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \param Member the member declaration, which will be updated to become a
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \param Previous the set of declarations, one of which may be specialized
 | 
						|
/// by this function specialization;  the set will be modified to contain the
 | 
						|
/// redeclared member.
 | 
						|
bool
 | 
						|
Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
 | 
						|
  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
 | 
						|
 | 
						|
  // Try to find the member we are instantiating.
 | 
						|
  NamedDecl *Instantiation = 0;
 | 
						|
  NamedDecl *InstantiatedFrom = 0;
 | 
						|
  MemberSpecializationInfo *MSInfo = 0;
 | 
						|
 | 
						|
  if (Previous.empty()) {
 | 
						|
    // Nowhere to look anyway.
 | 
						|
  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
 | 
						|
    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | 
						|
           I != E; ++I) {
 | 
						|
      NamedDecl *D = (*I)->getUnderlyingDecl();
 | 
						|
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
        if (Context.hasSameType(Function->getType(), Method->getType())) {
 | 
						|
          Instantiation = Method;
 | 
						|
          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
 | 
						|
          MSInfo = Method->getMemberSpecializationInfo();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (isa<VarDecl>(Member)) {
 | 
						|
    VarDecl *PrevVar;
 | 
						|
    if (Previous.isSingleResult() &&
 | 
						|
        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
 | 
						|
      if (PrevVar->isStaticDataMember()) {
 | 
						|
        Instantiation = PrevVar;
 | 
						|
        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
 | 
						|
        MSInfo = PrevVar->getMemberSpecializationInfo();
 | 
						|
      }
 | 
						|
  } else if (isa<RecordDecl>(Member)) {
 | 
						|
    CXXRecordDecl *PrevRecord;
 | 
						|
    if (Previous.isSingleResult() &&
 | 
						|
        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
 | 
						|
      Instantiation = PrevRecord;
 | 
						|
      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
 | 
						|
      MSInfo = PrevRecord->getMemberSpecializationInfo();
 | 
						|
    }
 | 
						|
  } else if (isa<EnumDecl>(Member)) {
 | 
						|
    EnumDecl *PrevEnum;
 | 
						|
    if (Previous.isSingleResult() &&
 | 
						|
        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
 | 
						|
      Instantiation = PrevEnum;
 | 
						|
      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
 | 
						|
      MSInfo = PrevEnum->getMemberSpecializationInfo();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Instantiation) {
 | 
						|
    // There is no previous declaration that matches. Since member
 | 
						|
    // specializations are always out-of-line, the caller will complain about
 | 
						|
    // this mismatch later.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a friend, just bail out here before we start turning
 | 
						|
  // things into explicit specializations.
 | 
						|
  if (Member->getFriendObjectKind() != Decl::FOK_None) {
 | 
						|
    // Preserve instantiation information.
 | 
						|
    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
 | 
						|
      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
 | 
						|
                                      cast<CXXMethodDecl>(InstantiatedFrom),
 | 
						|
        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
 | 
						|
    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
 | 
						|
      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
 | 
						|
                                      cast<CXXRecordDecl>(InstantiatedFrom),
 | 
						|
        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
 | 
						|
    }
 | 
						|
 | 
						|
    Previous.clear();
 | 
						|
    Previous.addDecl(Instantiation);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that this is a specialization of a member.
 | 
						|
  if (!InstantiatedFrom) {
 | 
						|
    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
 | 
						|
      << Member;
 | 
						|
    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that specialization shall be declared
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  assert(MSInfo && "Member specialization info missing?");
 | 
						|
 | 
						|
  bool HasNoEffect = false;
 | 
						|
  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
 | 
						|
                                             TSK_ExplicitSpecialization,
 | 
						|
                                             Instantiation,
 | 
						|
                                     MSInfo->getTemplateSpecializationKind(),
 | 
						|
                                           MSInfo->getPointOfInstantiation(),
 | 
						|
                                             HasNoEffect))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check the scope of this explicit specialization.
 | 
						|
  if (CheckTemplateSpecializationScope(*this,
 | 
						|
                                       InstantiatedFrom,
 | 
						|
                                       Instantiation, Member->getLocation(),
 | 
						|
                                       false))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Note that this is an explicit instantiation of a member.
 | 
						|
  // the original declaration to note that it is an explicit specialization
 | 
						|
  // (if it was previously an implicit instantiation). This latter step
 | 
						|
  // makes bookkeeping easier.
 | 
						|
  if (isa<FunctionDecl>(Member)) {
 | 
						|
    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
 | 
						|
    if (InstantiationFunction->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ImplicitInstantiation) {
 | 
						|
      InstantiationFunction->setTemplateSpecializationKind(
 | 
						|
                                                  TSK_ExplicitSpecialization);
 | 
						|
      InstantiationFunction->setLocation(Member->getLocation());
 | 
						|
    }
 | 
						|
 | 
						|
    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
 | 
						|
                                        cast<CXXMethodDecl>(InstantiatedFrom),
 | 
						|
                                                  TSK_ExplicitSpecialization);
 | 
						|
    MarkUnusedFileScopedDecl(InstantiationFunction);
 | 
						|
  } else if (isa<VarDecl>(Member)) {
 | 
						|
    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
 | 
						|
    if (InstantiationVar->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ImplicitInstantiation) {
 | 
						|
      InstantiationVar->setTemplateSpecializationKind(
 | 
						|
                                                  TSK_ExplicitSpecialization);
 | 
						|
      InstantiationVar->setLocation(Member->getLocation());
 | 
						|
    }
 | 
						|
 | 
						|
    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
 | 
						|
                                                cast<VarDecl>(InstantiatedFrom),
 | 
						|
                                                TSK_ExplicitSpecialization);
 | 
						|
    MarkUnusedFileScopedDecl(InstantiationVar);
 | 
						|
  } else if (isa<CXXRecordDecl>(Member)) {
 | 
						|
    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
 | 
						|
    if (InstantiationClass->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ImplicitInstantiation) {
 | 
						|
      InstantiationClass->setTemplateSpecializationKind(
 | 
						|
                                                   TSK_ExplicitSpecialization);
 | 
						|
      InstantiationClass->setLocation(Member->getLocation());
 | 
						|
    }
 | 
						|
 | 
						|
    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
 | 
						|
                                        cast<CXXRecordDecl>(InstantiatedFrom),
 | 
						|
                                                   TSK_ExplicitSpecialization);
 | 
						|
  } else {
 | 
						|
    assert(isa<EnumDecl>(Member) && "Only member enums remain");
 | 
						|
    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
 | 
						|
    if (InstantiationEnum->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ImplicitInstantiation) {
 | 
						|
      InstantiationEnum->setTemplateSpecializationKind(
 | 
						|
                                                   TSK_ExplicitSpecialization);
 | 
						|
      InstantiationEnum->setLocation(Member->getLocation());
 | 
						|
    }
 | 
						|
 | 
						|
    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
 | 
						|
        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
 | 
						|
  }
 | 
						|
 | 
						|
  // Save the caller the trouble of having to figure out which declaration
 | 
						|
  // this specialization matches.
 | 
						|
  Previous.clear();
 | 
						|
  Previous.addDecl(Instantiation);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the scope of an explicit instantiation.
 | 
						|
///
 | 
						|
/// \returns true if a serious error occurs, false otherwise.
 | 
						|
static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
 | 
						|
                                            SourceLocation InstLoc,
 | 
						|
                                            bool WasQualifiedName) {
 | 
						|
  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
 | 
						|
  DeclContext *CurContext = S.CurContext->getRedeclContext();
 | 
						|
 | 
						|
  if (CurContext->isRecord()) {
 | 
						|
    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
 | 
						|
      << D;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [temp.explicit]p3:
 | 
						|
  //   An explicit instantiation shall appear in an enclosing namespace of its
 | 
						|
  //   template. If the name declared in the explicit instantiation is an
 | 
						|
  //   unqualified name, the explicit instantiation shall appear in the
 | 
						|
  //   namespace where its template is declared or, if that namespace is inline
 | 
						|
  //   (7.3.1), any namespace from its enclosing namespace set.
 | 
						|
  //
 | 
						|
  // This is DR275, which we do not retroactively apply to C++98/03.
 | 
						|
  if (WasQualifiedName) {
 | 
						|
    if (CurContext->Encloses(OrigContext))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
 | 
						|
    if (WasQualifiedName)
 | 
						|
      S.Diag(InstLoc,
 | 
						|
             S.getLangOpts().CPlusPlus0x?
 | 
						|
               diag::err_explicit_instantiation_out_of_scope :
 | 
						|
               diag::warn_explicit_instantiation_out_of_scope_0x)
 | 
						|
        << D << NS;
 | 
						|
    else
 | 
						|
      S.Diag(InstLoc,
 | 
						|
             S.getLangOpts().CPlusPlus0x?
 | 
						|
               diag::err_explicit_instantiation_unqualified_wrong_namespace :
 | 
						|
               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
 | 
						|
        << D << NS;
 | 
						|
  } else
 | 
						|
    S.Diag(InstLoc,
 | 
						|
           S.getLangOpts().CPlusPlus0x?
 | 
						|
             diag::err_explicit_instantiation_must_be_global :
 | 
						|
             diag::warn_explicit_instantiation_must_be_global_0x)
 | 
						|
      << D;
 | 
						|
  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given scope specifier has a template-id in it.
 | 
						|
static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
 | 
						|
  if (!SS.isSet())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++11 [temp.explicit]p3:
 | 
						|
  //   If the explicit instantiation is for a member function, a member class
 | 
						|
  //   or a static data member of a class template specialization, the name of
 | 
						|
  //   the class template specialization in the qualified-id for the member
 | 
						|
  //   name shall be a simple-template-id.
 | 
						|
  //
 | 
						|
  // C++98 has the same restriction, just worded differently.
 | 
						|
  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
 | 
						|
       NNS; NNS = NNS->getPrefix())
 | 
						|
    if (const Type *T = NNS->getAsType())
 | 
						|
      if (isa<TemplateSpecializationType>(T))
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Explicit instantiation of a class template specialization
 | 
						|
DeclResult
 | 
						|
Sema::ActOnExplicitInstantiation(Scope *S,
 | 
						|
                                 SourceLocation ExternLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 unsigned TagSpec,
 | 
						|
                                 SourceLocation KWLoc,
 | 
						|
                                 const CXXScopeSpec &SS,
 | 
						|
                                 TemplateTy TemplateD,
 | 
						|
                                 SourceLocation TemplateNameLoc,
 | 
						|
                                 SourceLocation LAngleLoc,
 | 
						|
                                 ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                 SourceLocation RAngleLoc,
 | 
						|
                                 AttributeList *Attr) {
 | 
						|
  // Find the class template we're specializing
 | 
						|
  TemplateName Name = TemplateD.getAsVal<TemplateName>();
 | 
						|
  ClassTemplateDecl *ClassTemplate
 | 
						|
    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
 | 
						|
 | 
						|
  // Check that the specialization uses the same tag kind as the
 | 
						|
  // original template.
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  assert(Kind != TTK_Enum &&
 | 
						|
         "Invalid enum tag in class template explicit instantiation!");
 | 
						|
  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | 
						|
                                    Kind, /*isDefinition*/false, KWLoc,
 | 
						|
                                    *ClassTemplate->getIdentifier())) {
 | 
						|
    Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
      << ClassTemplate
 | 
						|
      << FixItHint::CreateReplacement(KWLoc,
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getKindName());
 | 
						|
    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
 | 
						|
         diag::note_previous_use);
 | 
						|
    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   There are two forms of explicit instantiation: an explicit instantiation
 | 
						|
  //   definition and an explicit instantiation declaration. An explicit
 | 
						|
  //   instantiation declaration begins with the extern keyword. [...]
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  SmallVector<TemplateArgument, 4> Converted;
 | 
						|
  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
 | 
						|
                                TemplateArgs, false, Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Find the class template specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  void *InsertPos = 0;
 | 
						|
  ClassTemplateSpecializationDecl *PrevDecl
 | 
						|
    = ClassTemplate->findSpecialization(Converted.data(),
 | 
						|
                                        Converted.size(), InsertPos);
 | 
						|
 | 
						|
  TemplateSpecializationKind PrevDecl_TSK
 | 
						|
    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   [...] An explicit instantiation shall appear in an enclosing
 | 
						|
  //   namespace of its template. [...]
 | 
						|
  //
 | 
						|
  // This is C++ DR 275.
 | 
						|
  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
 | 
						|
                                      SS.isSet()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ClassTemplateSpecializationDecl *Specialization = 0;
 | 
						|
 | 
						|
  bool HasNoEffect = false;
 | 
						|
  if (PrevDecl) {
 | 
						|
    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
 | 
						|
                                               PrevDecl, PrevDecl_TSK,
 | 
						|
                                            PrevDecl->getPointOfInstantiation(),
 | 
						|
                                               HasNoEffect))
 | 
						|
      return PrevDecl;
 | 
						|
 | 
						|
    // Even though HasNoEffect == true means that this explicit instantiation
 | 
						|
    // has no effect on semantics, we go on to put its syntax in the AST.
 | 
						|
 | 
						|
    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
 | 
						|
        PrevDecl_TSK == TSK_Undeclared) {
 | 
						|
      // Since the only prior class template specialization with these
 | 
						|
      // arguments was referenced but not declared, reuse that
 | 
						|
      // declaration node as our own, updating the source location
 | 
						|
      // for the template name to reflect our new declaration.
 | 
						|
      // (Other source locations will be updated later.)
 | 
						|
      Specialization = PrevDecl;
 | 
						|
      Specialization->setLocation(TemplateNameLoc);
 | 
						|
      PrevDecl = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Specialization) {
 | 
						|
    // Create a new class template specialization declaration node for
 | 
						|
    // this explicit specialization.
 | 
						|
    Specialization
 | 
						|
      = ClassTemplateSpecializationDecl::Create(Context, Kind,
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                KWLoc, TemplateNameLoc,
 | 
						|
                                                ClassTemplate,
 | 
						|
                                                Converted.data(),
 | 
						|
                                                Converted.size(),
 | 
						|
                                                PrevDecl);
 | 
						|
    SetNestedNameSpecifier(Specialization, SS);
 | 
						|
 | 
						|
    if (!HasNoEffect && !PrevDecl) {
 | 
						|
      // Insert the new specialization.
 | 
						|
      ClassTemplate->AddSpecialization(Specialization, InsertPos);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the fully-sugared type for this explicit instantiation as
 | 
						|
  // the user wrote in the explicit instantiation itself. This means
 | 
						|
  // that we'll pretty-print the type retrieved from the
 | 
						|
  // specialization's declaration the way that the user actually wrote
 | 
						|
  // the explicit instantiation, rather than formatting the name based
 | 
						|
  // on the "canonical" representation used to store the template
 | 
						|
  // arguments in the specialization.
 | 
						|
  TypeSourceInfo *WrittenTy
 | 
						|
    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
 | 
						|
                                                TemplateArgs,
 | 
						|
                                  Context.getTypeDeclType(Specialization));
 | 
						|
  Specialization->setTypeAsWritten(WrittenTy);
 | 
						|
 | 
						|
  // Set source locations for keywords.
 | 
						|
  Specialization->setExternLoc(ExternLoc);
 | 
						|
  Specialization->setTemplateKeywordLoc(TemplateLoc);
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Specialization, Attr);
 | 
						|
 | 
						|
  // Add the explicit instantiation into its lexical context. However,
 | 
						|
  // since explicit instantiations are never found by name lookup, we
 | 
						|
  // just put it into the declaration context directly.
 | 
						|
  Specialization->setLexicalDeclContext(CurContext);
 | 
						|
  CurContext->addDecl(Specialization);
 | 
						|
 | 
						|
  // Syntax is now OK, so return if it has no other effect on semantics.
 | 
						|
  if (HasNoEffect) {
 | 
						|
    // Set the template specialization kind.
 | 
						|
    Specialization->setTemplateSpecializationKind(TSK);
 | 
						|
    return Specialization;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.explicit]p3:
 | 
						|
  //   A definition of a class template or class member template
 | 
						|
  //   shall be in scope at the point of the explicit instantiation of
 | 
						|
  //   the class template or class member template.
 | 
						|
  //
 | 
						|
  // This check comes when we actually try to perform the
 | 
						|
  // instantiation.
 | 
						|
  ClassTemplateSpecializationDecl *Def
 | 
						|
    = cast_or_null<ClassTemplateSpecializationDecl>(
 | 
						|
                                              Specialization->getDefinition());
 | 
						|
  if (!Def)
 | 
						|
    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
 | 
						|
  else if (TSK == TSK_ExplicitInstantiationDefinition) {
 | 
						|
    MarkVTableUsed(TemplateNameLoc, Specialization, true);
 | 
						|
    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
 | 
						|
  }
 | 
						|
 | 
						|
  // Instantiate the members of this class template specialization.
 | 
						|
  Def = cast_or_null<ClassTemplateSpecializationDecl>(
 | 
						|
                                       Specialization->getDefinition());
 | 
						|
  if (Def) {
 | 
						|
    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
 | 
						|
 | 
						|
    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
 | 
						|
    // TSK_ExplicitInstantiationDefinition
 | 
						|
    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
 | 
						|
        TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
      Def->setTemplateSpecializationKind(TSK);
 | 
						|
 | 
						|
    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the template specialization kind.
 | 
						|
  Specialization->setTemplateSpecializationKind(TSK);
 | 
						|
  return Specialization;
 | 
						|
}
 | 
						|
 | 
						|
// Explicit instantiation of a member class of a class template.
 | 
						|
DeclResult
 | 
						|
Sema::ActOnExplicitInstantiation(Scope *S,
 | 
						|
                                 SourceLocation ExternLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 unsigned TagSpec,
 | 
						|
                                 SourceLocation KWLoc,
 | 
						|
                                 CXXScopeSpec &SS,
 | 
						|
                                 IdentifierInfo *Name,
 | 
						|
                                 SourceLocation NameLoc,
 | 
						|
                                 AttributeList *Attr) {
 | 
						|
 | 
						|
  bool Owned = false;
 | 
						|
  bool IsDependent = false;
 | 
						|
  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
 | 
						|
                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
 | 
						|
                        /*ModulePrivateLoc=*/SourceLocation(),
 | 
						|
                        MultiTemplateParamsArg(), Owned, IsDependent,
 | 
						|
                        SourceLocation(), false, TypeResult());
 | 
						|
  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
 | 
						|
 | 
						|
  if (!TagD)
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD);
 | 
						|
  assert(!Tag->isEnum() && "shouldn't see enumerations here");
 | 
						|
 | 
						|
  if (Tag->isInvalidDecl())
 | 
						|
    return true;
 | 
						|
 | 
						|
  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
 | 
						|
  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
 | 
						|
  if (!Pattern) {
 | 
						|
    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
 | 
						|
      << Context.getTypeDeclType(Record);
 | 
						|
    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   If the explicit instantiation is for a class or member class, the
 | 
						|
  //   elaborated-type-specifier in the declaration shall include a
 | 
						|
  //   simple-template-id.
 | 
						|
  //
 | 
						|
  // C++98 has the same restriction, just worded differently.
 | 
						|
  if (!ScopeSpecifierHasTemplateId(SS))
 | 
						|
    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
 | 
						|
      << Record << SS.getRange();
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   There are two forms of explicit instantiation: an explicit instantiation
 | 
						|
  //   definition and an explicit instantiation declaration. An explicit
 | 
						|
  //   instantiation declaration begins with the extern keyword. [...]
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   [...] An explicit instantiation shall appear in an enclosing
 | 
						|
  //   namespace of its template. [...]
 | 
						|
  //
 | 
						|
  // This is C++ DR 275.
 | 
						|
  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
 | 
						|
 | 
						|
  // Verify that it is okay to explicitly instantiate here.
 | 
						|
  CXXRecordDecl *PrevDecl
 | 
						|
    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
 | 
						|
  if (!PrevDecl && Record->getDefinition())
 | 
						|
    PrevDecl = Record;
 | 
						|
  if (PrevDecl) {
 | 
						|
    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
 | 
						|
    bool HasNoEffect = false;
 | 
						|
    assert(MSInfo && "No member specialization information?");
 | 
						|
    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
 | 
						|
                                               PrevDecl,
 | 
						|
                                        MSInfo->getTemplateSpecializationKind(),
 | 
						|
                                             MSInfo->getPointOfInstantiation(),
 | 
						|
                                               HasNoEffect))
 | 
						|
      return true;
 | 
						|
    if (HasNoEffect)
 | 
						|
      return TagD;
 | 
						|
  }
 | 
						|
 | 
						|
  CXXRecordDecl *RecordDef
 | 
						|
    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
 | 
						|
  if (!RecordDef) {
 | 
						|
    // C++ [temp.explicit]p3:
 | 
						|
    //   A definition of a member class of a class template shall be in scope
 | 
						|
    //   at the point of an explicit instantiation of the member class.
 | 
						|
    CXXRecordDecl *Def
 | 
						|
      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
 | 
						|
    if (!Def) {
 | 
						|
      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
 | 
						|
        << 0 << Record->getDeclName() << Record->getDeclContext();
 | 
						|
      Diag(Pattern->getLocation(), diag::note_forward_declaration)
 | 
						|
        << Pattern;
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      if (InstantiateClass(NameLoc, Record, Def,
 | 
						|
                           getTemplateInstantiationArgs(Record),
 | 
						|
                           TSK))
 | 
						|
        return true;
 | 
						|
 | 
						|
      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
 | 
						|
      if (!RecordDef)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Instantiate all of the members of the class.
 | 
						|
  InstantiateClassMembers(NameLoc, RecordDef,
 | 
						|
                          getTemplateInstantiationArgs(Record), TSK);
 | 
						|
 | 
						|
  if (TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
    MarkVTableUsed(NameLoc, RecordDef, true);
 | 
						|
 | 
						|
  // FIXME: We don't have any representation for explicit instantiations of
 | 
						|
  // member classes. Such a representation is not needed for compilation, but it
 | 
						|
  // should be available for clients that want to see all of the declarations in
 | 
						|
  // the source code.
 | 
						|
  return TagD;
 | 
						|
}
 | 
						|
 | 
						|
DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
 | 
						|
                                            SourceLocation ExternLoc,
 | 
						|
                                            SourceLocation TemplateLoc,
 | 
						|
                                            Declarator &D) {
 | 
						|
  // Explicit instantiations always require a name.
 | 
						|
  // TODO: check if/when DNInfo should replace Name.
 | 
						|
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
  if (!Name) {
 | 
						|
    if (!D.isInvalidType())
 | 
						|
      Diag(D.getDeclSpec().getLocStart(),
 | 
						|
           diag::err_explicit_instantiation_requires_name)
 | 
						|
        << D.getDeclSpec().getSourceRange()
 | 
						|
        << D.getSourceRange();
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | 
						|
  // we find one that is.
 | 
						|
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | 
						|
         (S->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  // Determine the type of the declaration.
 | 
						|
  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
 | 
						|
  QualType R = T->getType();
 | 
						|
  if (R.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C++ [dcl.stc]p1:
 | 
						|
  //   A storage-class-specifier shall not be specified in [...] an explicit 
 | 
						|
  //   instantiation (14.7.2) directive.
 | 
						|
  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
 | 
						|
      << Name;
 | 
						|
    return true;
 | 
						|
  } else if (D.getDeclSpec().getStorageClassSpec() 
 | 
						|
                                                != DeclSpec::SCS_unspecified) {
 | 
						|
    // Complain about then remove the storage class specifier.
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
 | 
						|
      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
    
 | 
						|
    D.getMutableDeclSpec().ClearStorageClassSpecs();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p1:
 | 
						|
  //   [...] An explicit instantiation of a function template shall not use the
 | 
						|
  //   inline or constexpr specifiers.
 | 
						|
  // Presumably, this also applies to member functions of class templates as
 | 
						|
  // well.
 | 
						|
  if (D.getDeclSpec().isInlineSpecified())
 | 
						|
    Diag(D.getDeclSpec().getInlineSpecLoc(),
 | 
						|
         getLangOpts().CPlusPlus0x ?
 | 
						|
           diag::err_explicit_instantiation_inline :
 | 
						|
           diag::warn_explicit_instantiation_inline_0x)
 | 
						|
      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
 | 
						|
  if (D.getDeclSpec().isConstexprSpecified())
 | 
						|
    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
 | 
						|
    // not already specified.
 | 
						|
    Diag(D.getDeclSpec().getConstexprSpecLoc(),
 | 
						|
         diag::err_explicit_instantiation_constexpr);
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   There are two forms of explicit instantiation: an explicit instantiation
 | 
						|
  //   definition and an explicit instantiation declaration. An explicit
 | 
						|
  //   instantiation declaration begins with the extern keyword. [...]
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
 | 
						|
  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
 | 
						|
  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
 | 
						|
 | 
						|
  if (!R->isFunctionType()) {
 | 
						|
    // C++ [temp.explicit]p1:
 | 
						|
    //   A [...] static data member of a class template can be explicitly
 | 
						|
    //   instantiated from the member definition associated with its class
 | 
						|
    //   template.
 | 
						|
    if (Previous.isAmbiguous())
 | 
						|
      return true;
 | 
						|
 | 
						|
    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
 | 
						|
    if (!Prev || !Prev->isStaticDataMember()) {
 | 
						|
      // We expect to see a data data member here.
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
 | 
						|
        << Name;
 | 
						|
      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
 | 
						|
           P != PEnd; ++P)
 | 
						|
        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Prev->getInstantiatedFromStaticDataMember()) {
 | 
						|
      // FIXME: Check for explicit specialization?
 | 
						|
      Diag(D.getIdentifierLoc(),
 | 
						|
           diag::err_explicit_instantiation_data_member_not_instantiated)
 | 
						|
        << Prev;
 | 
						|
      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
      // FIXME: Can we provide a note showing where this was declared?
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [temp.explicit]p2:
 | 
						|
    //   If the explicit instantiation is for a member function, a member class
 | 
						|
    //   or a static data member of a class template specialization, the name of
 | 
						|
    //   the class template specialization in the qualified-id for the member
 | 
						|
    //   name shall be a simple-template-id.
 | 
						|
    //
 | 
						|
    // C++98 has the same restriction, just worded differently.
 | 
						|
    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
 | 
						|
      Diag(D.getIdentifierLoc(),
 | 
						|
           diag::ext_explicit_instantiation_without_qualified_id)
 | 
						|
        << Prev << D.getCXXScopeSpec().getRange();
 | 
						|
 | 
						|
    // Check the scope of this explicit instantiation.
 | 
						|
    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
 | 
						|
 | 
						|
    // Verify that it is okay to explicitly instantiate here.
 | 
						|
    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
 | 
						|
    assert(MSInfo && "Missing static data member specialization info?");
 | 
						|
    bool HasNoEffect = false;
 | 
						|
    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
 | 
						|
                                        MSInfo->getTemplateSpecializationKind(),
 | 
						|
                                              MSInfo->getPointOfInstantiation(),
 | 
						|
                                               HasNoEffect))
 | 
						|
      return true;
 | 
						|
    if (HasNoEffect)
 | 
						|
      return (Decl*) 0;
 | 
						|
 | 
						|
    // Instantiate static data member.
 | 
						|
    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
 | 
						|
    if (TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
 | 
						|
 | 
						|
    // FIXME: Create an ExplicitInstantiation node?
 | 
						|
    return (Decl*) 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the declarator is a template-id, translate the parser's template
 | 
						|
  // argument list into our AST format.
 | 
						|
  bool HasExplicitTemplateArgs = false;
 | 
						|
  TemplateArgumentListInfo TemplateArgs;
 | 
						|
  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
 | 
						|
    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
 | 
						|
    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
 | 
						|
    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
 | 
						|
    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
 | 
						|
                                       TemplateId->NumArgs);
 | 
						|
    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
 | 
						|
    HasExplicitTemplateArgs = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.explicit]p1:
 | 
						|
  //   A [...] function [...] can be explicitly instantiated from its template.
 | 
						|
  //   A member function [...] of a class template can be explicitly
 | 
						|
  //  instantiated from the member definition associated with its class
 | 
						|
  //  template.
 | 
						|
  UnresolvedSet<8> Matches;
 | 
						|
  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
 | 
						|
       P != PEnd; ++P) {
 | 
						|
    NamedDecl *Prev = *P;
 | 
						|
    if (!HasExplicitTemplateArgs) {
 | 
						|
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
 | 
						|
        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
 | 
						|
          Matches.clear();
 | 
						|
 | 
						|
          Matches.addDecl(Method, P.getAccess());
 | 
						|
          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
 | 
						|
    if (!FunTmpl)
 | 
						|
      continue;
 | 
						|
 | 
						|
    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
 | 
						|
    FunctionDecl *Specialization = 0;
 | 
						|
    if (TemplateDeductionResult TDK
 | 
						|
          = DeduceTemplateArguments(FunTmpl,
 | 
						|
                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
 | 
						|
                                    R, Specialization, Info)) {
 | 
						|
      // FIXME: Keep track of almost-matches?
 | 
						|
      (void)TDK;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Matches.addDecl(Specialization, P.getAccess());
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the most specialized function template specialization.
 | 
						|
  UnresolvedSetIterator Result
 | 
						|
    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
 | 
						|
                         D.getIdentifierLoc(),
 | 
						|
                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
 | 
						|
                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
 | 
						|
                         PDiag(diag::note_explicit_instantiation_candidate));
 | 
						|
 | 
						|
  if (Result == Matches.end())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Ignore access control bits, we don't need them for redeclaration checking.
 | 
						|
  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
 | 
						|
 | 
						|
  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
 | 
						|
    Diag(D.getIdentifierLoc(),
 | 
						|
         diag::err_explicit_instantiation_member_function_not_instantiated)
 | 
						|
      << Specialization
 | 
						|
      << (Specialization->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ExplicitSpecialization);
 | 
						|
    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
 | 
						|
  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
 | 
						|
    PrevDecl = Specialization;
 | 
						|
 | 
						|
  if (PrevDecl) {
 | 
						|
    bool HasNoEffect = false;
 | 
						|
    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
 | 
						|
                                               PrevDecl,
 | 
						|
                                     PrevDecl->getTemplateSpecializationKind(),
 | 
						|
                                          PrevDecl->getPointOfInstantiation(),
 | 
						|
                                               HasNoEffect))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // FIXME: We may still want to build some representation of this
 | 
						|
    // explicit specialization.
 | 
						|
    if (HasNoEffect)
 | 
						|
      return (Decl*) 0;
 | 
						|
  }
 | 
						|
 | 
						|
  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
 | 
						|
  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Specialization, Attr);
 | 
						|
 | 
						|
  if (TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   If the explicit instantiation is for a member function, a member class
 | 
						|
  //   or a static data member of a class template specialization, the name of
 | 
						|
  //   the class template specialization in the qualified-id for the member
 | 
						|
  //   name shall be a simple-template-id.
 | 
						|
  //
 | 
						|
  // C++98 has the same restriction, just worded differently.
 | 
						|
  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
 | 
						|
  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
 | 
						|
      D.getCXXScopeSpec().isSet() &&
 | 
						|
      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
 | 
						|
    Diag(D.getIdentifierLoc(),
 | 
						|
         diag::ext_explicit_instantiation_without_qualified_id)
 | 
						|
    << Specialization << D.getCXXScopeSpec().getRange();
 | 
						|
 | 
						|
  CheckExplicitInstantiationScope(*this,
 | 
						|
                   FunTmpl? (NamedDecl *)FunTmpl
 | 
						|
                          : Specialization->getInstantiatedFromMemberFunction(),
 | 
						|
                                  D.getIdentifierLoc(),
 | 
						|
                                  D.getCXXScopeSpec().isSet());
 | 
						|
 | 
						|
  // FIXME: Create some kind of ExplicitInstantiationDecl here.
 | 
						|
  return (Decl*) 0;
 | 
						|
}
 | 
						|
 | 
						|
TypeResult
 | 
						|
Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | 
						|
                        const CXXScopeSpec &SS, IdentifierInfo *Name,
 | 
						|
                        SourceLocation TagLoc, SourceLocation NameLoc) {
 | 
						|
  // This has to hold, because SS is expected to be defined.
 | 
						|
  assert(Name && "Expected a name in a dependent tag");
 | 
						|
 | 
						|
  NestedNameSpecifier *NNS
 | 
						|
    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | 
						|
  if (!NNS)
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
 | 
						|
  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
 | 
						|
    Diag(NameLoc, diag::err_dependent_tag_decl)
 | 
						|
      << (TUK == TUK_Definition) << Kind << SS.getRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the resulting type.
 | 
						|
  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
 | 
						|
  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
 | 
						|
  
 | 
						|
  // Create type-source location information for this type.
 | 
						|
  TypeLocBuilder TLB;
 | 
						|
  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
 | 
						|
  TL.setElaboratedKeywordLoc(TagLoc);
 | 
						|
  TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
  TL.setNameLoc(NameLoc);
 | 
						|
  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
 | 
						|
}
 | 
						|
 | 
						|
TypeResult
 | 
						|
Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
 | 
						|
                        const CXXScopeSpec &SS, const IdentifierInfo &II,
 | 
						|
                        SourceLocation IdLoc) {
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
 | 
						|
    Diag(TypenameLoc,
 | 
						|
         getLangOpts().CPlusPlus0x ?
 | 
						|
           diag::warn_cxx98_compat_typename_outside_of_template :
 | 
						|
           diag::ext_typename_outside_of_template)
 | 
						|
      << FixItHint::CreateRemoval(TypenameLoc);
 | 
						|
 | 
						|
  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | 
						|
  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
 | 
						|
                                 TypenameLoc, QualifierLoc, II, IdLoc);
 | 
						|
  if (T.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
 | 
						|
  if (isa<DependentNameType>(T)) {
 | 
						|
    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
 | 
						|
    TL.setElaboratedKeywordLoc(TypenameLoc);
 | 
						|
    TL.setQualifierLoc(QualifierLoc);
 | 
						|
    TL.setNameLoc(IdLoc);
 | 
						|
  } else {
 | 
						|
    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
 | 
						|
    TL.setElaboratedKeywordLoc(TypenameLoc);
 | 
						|
    TL.setQualifierLoc(QualifierLoc);
 | 
						|
    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  return CreateParsedType(T, TSI);
 | 
						|
}
 | 
						|
 | 
						|
TypeResult
 | 
						|
Sema::ActOnTypenameType(Scope *S,
 | 
						|
                        SourceLocation TypenameLoc,
 | 
						|
                        const CXXScopeSpec &SS,
 | 
						|
                        SourceLocation TemplateKWLoc,
 | 
						|
                        TemplateTy TemplateIn,
 | 
						|
                        SourceLocation TemplateNameLoc,
 | 
						|
                        SourceLocation LAngleLoc,
 | 
						|
                        ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                        SourceLocation RAngleLoc) {
 | 
						|
  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
 | 
						|
    Diag(TypenameLoc,
 | 
						|
         getLangOpts().CPlusPlus0x ?
 | 
						|
           diag::warn_cxx98_compat_typename_outside_of_template :
 | 
						|
           diag::ext_typename_outside_of_template)
 | 
						|
      << FixItHint::CreateRemoval(TypenameLoc);
 | 
						|
  
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
  
 | 
						|
  TemplateName Template = TemplateIn.get();
 | 
						|
  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | 
						|
    // Construct a dependent template specialization type.
 | 
						|
    assert(DTN && "dependent template has non-dependent name?");
 | 
						|
    assert(DTN->getQualifier()
 | 
						|
           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
 | 
						|
    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
 | 
						|
                                                          DTN->getQualifier(),
 | 
						|
                                                          DTN->getIdentifier(),
 | 
						|
                                                                TemplateArgs);
 | 
						|
    
 | 
						|
    // Create source-location information for this type.
 | 
						|
    TypeLocBuilder Builder;
 | 
						|
    DependentTemplateSpecializationTypeLoc SpecTL 
 | 
						|
    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
 | 
						|
    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
 | 
						|
    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
    SpecTL.setTemplateNameLoc(TemplateNameLoc);
 | 
						|
    SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
    SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | 
						|
  }
 | 
						|
  
 | 
						|
  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
 | 
						|
  if (T.isNull())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Provide source-location information for the template specialization type.
 | 
						|
  TypeLocBuilder Builder;
 | 
						|
  TemplateSpecializationTypeLoc SpecTL
 | 
						|
    = Builder.push<TemplateSpecializationTypeLoc>(T);
 | 
						|
  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  SpecTL.setTemplateNameLoc(TemplateNameLoc);
 | 
						|
  SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
  SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
  
 | 
						|
  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
 | 
						|
  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
 | 
						|
  TL.setElaboratedKeywordLoc(TypenameLoc);
 | 
						|
  TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
  
 | 
						|
  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
 | 
						|
  return CreateParsedType(T, TSI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Determine whether this failed name lookup should be treated as being
 | 
						|
/// disabled by a usage of std::enable_if.
 | 
						|
static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
 | 
						|
                       SourceRange &CondRange) {
 | 
						|
  // We must be looking for a ::type...
 | 
						|
  if (!II.isStr("type"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // ... within an explicitly-written template specialization...
 | 
						|
  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
 | 
						|
    return false;
 | 
						|
  TypeLoc EnableIfTy = NNS.getTypeLoc();
 | 
						|
  TemplateSpecializationTypeLoc *EnableIfTSTLoc =
 | 
						|
    dyn_cast<TemplateSpecializationTypeLoc>(&EnableIfTy);
 | 
						|
  if (!EnableIfTSTLoc || EnableIfTSTLoc->getNumArgs() == 0)
 | 
						|
    return false;
 | 
						|
  const TemplateSpecializationType *EnableIfTST =
 | 
						|
    cast<TemplateSpecializationType>(EnableIfTSTLoc->getTypePtr());
 | 
						|
 | 
						|
  // ... which names a complete class template declaration...
 | 
						|
  const TemplateDecl *EnableIfDecl =
 | 
						|
    EnableIfTST->getTemplateName().getAsTemplateDecl();
 | 
						|
  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // ... called "enable_if".
 | 
						|
  const IdentifierInfo *EnableIfII =
 | 
						|
    EnableIfDecl->getDeclName().getAsIdentifierInfo();
 | 
						|
  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Assume the first template argument is the condition.
 | 
						|
  CondRange = EnableIfTSTLoc->getArgLoc(0).getSourceRange();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build the type that describes a C++ typename specifier,
 | 
						|
/// e.g., "typename T::type".
 | 
						|
QualType
 | 
						|
Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 
 | 
						|
                        SourceLocation KeywordLoc,
 | 
						|
                        NestedNameSpecifierLoc QualifierLoc, 
 | 
						|
                        const IdentifierInfo &II,
 | 
						|
                        SourceLocation IILoc) {
 | 
						|
  CXXScopeSpec SS;
 | 
						|
  SS.Adopt(QualifierLoc);
 | 
						|
 | 
						|
  DeclContext *Ctx = computeDeclContext(SS);
 | 
						|
  if (!Ctx) {
 | 
						|
    // If the nested-name-specifier is dependent and couldn't be
 | 
						|
    // resolved to a type, build a typename type.
 | 
						|
    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
 | 
						|
    return Context.getDependentNameType(Keyword, 
 | 
						|
                                        QualifierLoc.getNestedNameSpecifier(), 
 | 
						|
                                        &II);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the nested-name-specifier refers to the current instantiation,
 | 
						|
  // the "typename" keyword itself is superfluous. In C++03, the
 | 
						|
  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
 | 
						|
  // allows such extraneous "typename" keywords, and we retroactively
 | 
						|
  // apply this DR to C++03 code with only a warning. In any case we continue.
 | 
						|
 | 
						|
  if (RequireCompleteDeclContext(SS, Ctx))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  DeclarationName Name(&II);
 | 
						|
  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
 | 
						|
  LookupQualifiedName(Result, Ctx);
 | 
						|
  unsigned DiagID = 0;
 | 
						|
  Decl *Referenced = 0;
 | 
						|
  switch (Result.getResultKind()) {
 | 
						|
  case LookupResult::NotFound: {
 | 
						|
    // If we're looking up 'type' within a template named 'enable_if', produce
 | 
						|
    // a more specific diagnostic.
 | 
						|
    SourceRange CondRange;
 | 
						|
    if (isEnableIf(QualifierLoc, II, CondRange)) {
 | 
						|
      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
 | 
						|
        << Ctx << CondRange;
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
 | 
						|
    DiagID = diag::err_typename_nested_not_found;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case LookupResult::FoundUnresolvedValue: {
 | 
						|
    // We found a using declaration that is a value. Most likely, the using
 | 
						|
    // declaration itself is meant to have the 'typename' keyword.
 | 
						|
    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
 | 
						|
                          IILoc);
 | 
						|
    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
 | 
						|
      << Name << Ctx << FullRange;
 | 
						|
    if (UnresolvedUsingValueDecl *Using
 | 
						|
          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
 | 
						|
      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
 | 
						|
      Diag(Loc, diag::note_using_value_decl_missing_typename)
 | 
						|
        << FixItHint::CreateInsertion(Loc, "typename ");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Fall through to create a dependent typename type, from which we can recover
 | 
						|
  // better.
 | 
						|
 | 
						|
  case LookupResult::NotFoundInCurrentInstantiation:
 | 
						|
    // Okay, it's a member of an unknown instantiation.
 | 
						|
    return Context.getDependentNameType(Keyword, 
 | 
						|
                                        QualifierLoc.getNestedNameSpecifier(), 
 | 
						|
                                        &II);
 | 
						|
 | 
						|
  case LookupResult::Found:
 | 
						|
    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
 | 
						|
      // We found a type. Build an ElaboratedType, since the
 | 
						|
      // typename-specifier was just sugar.
 | 
						|
      return Context.getElaboratedType(ETK_Typename, 
 | 
						|
                                       QualifierLoc.getNestedNameSpecifier(),
 | 
						|
                                       Context.getTypeDeclType(Type));
 | 
						|
    }
 | 
						|
 | 
						|
    DiagID = diag::err_typename_nested_not_type;
 | 
						|
    Referenced = Result.getFoundDecl();
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::FoundOverloaded:
 | 
						|
    DiagID = diag::err_typename_nested_not_type;
 | 
						|
    Referenced = *Result.begin();
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::Ambiguous:
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, it's because name lookup did not find a
 | 
						|
  // type. Emit an appropriate diagnostic and return an error.
 | 
						|
  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
 | 
						|
                        IILoc);
 | 
						|
  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
 | 
						|
  if (Referenced)
 | 
						|
    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
 | 
						|
      << Name;
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // See Sema::RebuildTypeInCurrentInstantiation
 | 
						|
  class CurrentInstantiationRebuilder
 | 
						|
    : public TreeTransform<CurrentInstantiationRebuilder> {
 | 
						|
    SourceLocation Loc;
 | 
						|
    DeclarationName Entity;
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
 | 
						|
 | 
						|
    CurrentInstantiationRebuilder(Sema &SemaRef,
 | 
						|
                                  SourceLocation Loc,
 | 
						|
                                  DeclarationName Entity)
 | 
						|
    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
 | 
						|
      Loc(Loc), Entity(Entity) { }
 | 
						|
 | 
						|
    /// \brief Determine whether the given type \p T has already been
 | 
						|
    /// transformed.
 | 
						|
    ///
 | 
						|
    /// For the purposes of type reconstruction, a type has already been
 | 
						|
    /// transformed if it is NULL or if it is not dependent.
 | 
						|
    bool AlreadyTransformed(QualType T) {
 | 
						|
      return T.isNull() || !T->isDependentType();
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Returns the location of the entity whose type is being
 | 
						|
    /// rebuilt.
 | 
						|
    SourceLocation getBaseLocation() { return Loc; }
 | 
						|
 | 
						|
    /// \brief Returns the name of the entity whose type is being rebuilt.
 | 
						|
    DeclarationName getBaseEntity() { return Entity; }
 | 
						|
 | 
						|
    /// \brief Sets the "base" location and entity when that
 | 
						|
    /// information is known based on another transformation.
 | 
						|
    void setBase(SourceLocation Loc, DeclarationName Entity) {
 | 
						|
      this->Loc = Loc;
 | 
						|
      this->Entity = Entity;
 | 
						|
    }
 | 
						|
      
 | 
						|
    ExprResult TransformLambdaExpr(LambdaExpr *E) {
 | 
						|
      // Lambdas never need to be transformed.
 | 
						|
      return E;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Rebuilds a type within the context of the current instantiation.
 | 
						|
///
 | 
						|
/// The type \p T is part of the type of an out-of-line member definition of
 | 
						|
/// a class template (or class template partial specialization) that was parsed
 | 
						|
/// and constructed before we entered the scope of the class template (or
 | 
						|
/// partial specialization thereof). This routine will rebuild that type now
 | 
						|
/// that we have entered the declarator's scope, which may produce different
 | 
						|
/// canonical types, e.g.,
 | 
						|
///
 | 
						|
/// \code
 | 
						|
/// template<typename T>
 | 
						|
/// struct X {
 | 
						|
///   typedef T* pointer;
 | 
						|
///   pointer data();
 | 
						|
/// };
 | 
						|
///
 | 
						|
/// template<typename T>
 | 
						|
/// typename X<T>::pointer X<T>::data() { ... }
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
 | 
						|
/// since we do not know that we can look into X<T> when we parsed the type.
 | 
						|
/// This function will rebuild the type, performing the lookup of "pointer"
 | 
						|
/// in X<T> and returning an ElaboratedType whose canonical type is the same
 | 
						|
/// as the canonical type of T*, allowing the return types of the out-of-line
 | 
						|
/// definition and the declaration to match.
 | 
						|
TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
 | 
						|
                                                        SourceLocation Loc,
 | 
						|
                                                        DeclarationName Name) {
 | 
						|
  if (!T || !T->getType()->isDependentType())
 | 
						|
    return T;
 | 
						|
 | 
						|
  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
 | 
						|
  return Rebuilder.TransformType(T);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
 | 
						|
  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
 | 
						|
                                          DeclarationName());
 | 
						|
  return Rebuilder.TransformExpr(E);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
 | 
						|
  if (SS.isInvalid()) 
 | 
						|
    return true;
 | 
						|
 | 
						|
  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | 
						|
  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
 | 
						|
                                          DeclarationName());
 | 
						|
  NestedNameSpecifierLoc Rebuilt 
 | 
						|
    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
 | 
						|
  if (!Rebuilt) 
 | 
						|
    return true;
 | 
						|
 | 
						|
  SS.Adopt(Rebuilt);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Rebuild the template parameters now that we know we're in a current
 | 
						|
/// instantiation.
 | 
						|
bool Sema::RebuildTemplateParamsInCurrentInstantiation(
 | 
						|
                                               TemplateParameterList *Params) {
 | 
						|
  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | 
						|
    Decl *Param = Params->getParam(I);
 | 
						|
    
 | 
						|
    // There is nothing to rebuild in a type parameter.
 | 
						|
    if (isa<TemplateTypeParmDecl>(Param))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Rebuild the template parameter list of a template template parameter.
 | 
						|
    if (TemplateTemplateParmDecl *TTP 
 | 
						|
        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
 | 
						|
      if (RebuildTemplateParamsInCurrentInstantiation(
 | 
						|
            TTP->getTemplateParameters()))
 | 
						|
        return true;
 | 
						|
      
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Rebuild the type of a non-type template parameter.
 | 
						|
    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
 | 
						|
    TypeSourceInfo *NewTSI 
 | 
						|
      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 
 | 
						|
                                          NTTP->getLocation(), 
 | 
						|
                                          NTTP->getDeclName());
 | 
						|
    if (!NewTSI)
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    if (NewTSI != NTTP->getTypeSourceInfo()) {
 | 
						|
      NTTP->setTypeSourceInfo(NewTSI);
 | 
						|
      NTTP->setType(NewTSI->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Produces a formatted string that describes the binding of
 | 
						|
/// template parameters to template arguments.
 | 
						|
std::string
 | 
						|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
 | 
						|
                                      const TemplateArgumentList &Args) {
 | 
						|
  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
 | 
						|
}
 | 
						|
 | 
						|
std::string
 | 
						|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
 | 
						|
                                      const TemplateArgument *Args,
 | 
						|
                                      unsigned NumArgs) {
 | 
						|
  SmallString<128> Str;
 | 
						|
  llvm::raw_svector_ostream Out(Str);
 | 
						|
 | 
						|
  if (!Params || Params->size() == 0 || NumArgs == 0)
 | 
						|
    return std::string();
 | 
						|
 | 
						|
  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | 
						|
    if (I >= NumArgs)
 | 
						|
      break;
 | 
						|
 | 
						|
    if (I == 0)
 | 
						|
      Out << "[with ";
 | 
						|
    else
 | 
						|
      Out << ", ";
 | 
						|
 | 
						|
    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
 | 
						|
      Out << Id->getName();
 | 
						|
    } else {
 | 
						|
      Out << '$' << I;
 | 
						|
    }
 | 
						|
 | 
						|
    Out << " = ";
 | 
						|
    Args[I].print(getPrintingPolicy(), Out);
 | 
						|
  }
 | 
						|
 | 
						|
  Out << ']';
 | 
						|
  return Out.str();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
 | 
						|
  if (!FD)
 | 
						|
    return;
 | 
						|
  FD->setLateTemplateParsed(Flag);
 | 
						|
} 
 | 
						|
 | 
						|
bool Sema::IsInsideALocalClassWithinATemplateFunction() {
 | 
						|
  DeclContext *DC = CurContext;
 | 
						|
 | 
						|
  while (DC) {
 | 
						|
    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
 | 
						|
      const FunctionDecl *FD = RD->isLocalClass();
 | 
						|
      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
 | 
						|
    } else if (DC->isTranslationUnit() || DC->isNamespace())
 | 
						|
      return false;
 | 
						|
 | 
						|
    DC = DC->getParent();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 |