forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4584 lines
		
	
	
		
			184 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4584 lines
		
	
	
		
			184 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//===----------------------------------------------------------------------===/
 | 
						|
//
 | 
						|
//  This file implements C++ template argument deduction.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===/
 | 
						|
 | 
						|
#include "clang/Sema/Sema.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/Template.h"
 | 
						|
#include "clang/Sema/TemplateDeduction.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "TreeTransform.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
namespace clang {
 | 
						|
  using namespace sema;
 | 
						|
 | 
						|
  /// \brief Various flags that control template argument deduction.
 | 
						|
  ///
 | 
						|
  /// These flags can be bitwise-OR'd together.
 | 
						|
  enum TemplateDeductionFlags {
 | 
						|
    /// \brief No template argument deduction flags, which indicates the
 | 
						|
    /// strictest results for template argument deduction (as used for, e.g.,
 | 
						|
    /// matching class template partial specializations).
 | 
						|
    TDF_None = 0,
 | 
						|
    /// \brief Within template argument deduction from a function call, we are
 | 
						|
    /// matching with a parameter type for which the original parameter was
 | 
						|
    /// a reference.
 | 
						|
    TDF_ParamWithReferenceType = 0x1,
 | 
						|
    /// \brief Within template argument deduction from a function call, we
 | 
						|
    /// are matching in a case where we ignore cv-qualifiers.
 | 
						|
    TDF_IgnoreQualifiers = 0x02,
 | 
						|
    /// \brief Within template argument deduction from a function call,
 | 
						|
    /// we are matching in a case where we can perform template argument
 | 
						|
    /// deduction from a template-id of a derived class of the argument type.
 | 
						|
    TDF_DerivedClass = 0x04,
 | 
						|
    /// \brief Allow non-dependent types to differ, e.g., when performing
 | 
						|
    /// template argument deduction from a function call where conversions
 | 
						|
    /// may apply.
 | 
						|
    TDF_SkipNonDependent = 0x08,
 | 
						|
    /// \brief Whether we are performing template argument deduction for
 | 
						|
    /// parameters and arguments in a top-level template argument
 | 
						|
    TDF_TopLevelParameterTypeList = 0x10
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// \brief Compare two APSInts, extending and switching the sign as
 | 
						|
/// necessary to compare their values regardless of underlying type.
 | 
						|
static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
 | 
						|
  if (Y.getBitWidth() > X.getBitWidth())
 | 
						|
    X = X.extend(Y.getBitWidth());
 | 
						|
  else if (Y.getBitWidth() < X.getBitWidth())
 | 
						|
    Y = Y.extend(X.getBitWidth());
 | 
						|
 | 
						|
  // If there is a signedness mismatch, correct it.
 | 
						|
  if (X.isSigned() != Y.isSigned()) {
 | 
						|
    // If the signed value is negative, then the values cannot be the same.
 | 
						|
    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Y.setIsSigned(true);
 | 
						|
    X.setIsSigned(true);
 | 
						|
  }
 | 
						|
 | 
						|
  return X == Y;
 | 
						|
}
 | 
						|
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArguments(Sema &S,
 | 
						|
                        TemplateParameterList *TemplateParams,
 | 
						|
                        const TemplateArgument &Param,
 | 
						|
                        TemplateArgument Arg,
 | 
						|
                        TemplateDeductionInfo &Info,
 | 
						|
                      SmallVectorImpl<DeducedTemplateArgument> &Deduced);
 | 
						|
 | 
						|
/// \brief Whether template argument deduction for two reference parameters
 | 
						|
/// resulted in the argument type, parameter type, or neither type being more
 | 
						|
/// qualified than the other.
 | 
						|
enum DeductionQualifierComparison {
 | 
						|
  NeitherMoreQualified = 0,
 | 
						|
  ParamMoreQualified,
 | 
						|
  ArgMoreQualified
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Stores the result of comparing two reference parameters while
 | 
						|
/// performing template argument deduction for partial ordering of function
 | 
						|
/// templates.
 | 
						|
struct RefParamPartialOrderingComparison {
 | 
						|
  /// \brief Whether the parameter type is an rvalue reference type.
 | 
						|
  bool ParamIsRvalueRef;
 | 
						|
  /// \brief Whether the argument type is an rvalue reference type.
 | 
						|
  bool ArgIsRvalueRef;
 | 
						|
 | 
						|
  /// \brief Whether the parameter or argument (or neither) is more qualified.
 | 
						|
  DeductionQualifierComparison Qualifiers;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArgumentsByTypeMatch(Sema &S,
 | 
						|
                                   TemplateParameterList *TemplateParams,
 | 
						|
                                   QualType Param,
 | 
						|
                                   QualType Arg,
 | 
						|
                                   TemplateDeductionInfo &Info,
 | 
						|
                                   SmallVectorImpl<DeducedTemplateArgument> &
 | 
						|
                                                      Deduced,
 | 
						|
                                   unsigned TDF,
 | 
						|
                                   bool PartialOrdering = false,
 | 
						|
                            SmallVectorImpl<RefParamPartialOrderingComparison> *
 | 
						|
                                                      RefParamComparisons = 0);
 | 
						|
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArguments(Sema &S,
 | 
						|
                        TemplateParameterList *TemplateParams,
 | 
						|
                        const TemplateArgument *Params, unsigned NumParams,
 | 
						|
                        const TemplateArgument *Args, unsigned NumArgs,
 | 
						|
                        TemplateDeductionInfo &Info,
 | 
						|
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                        bool NumberOfArgumentsMustMatch = true);
 | 
						|
 | 
						|
/// \brief If the given expression is of a form that permits the deduction
 | 
						|
/// of a non-type template parameter, return the declaration of that
 | 
						|
/// non-type template parameter.
 | 
						|
static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
 | 
						|
  // If we are within an alias template, the expression may have undergone
 | 
						|
  // any number of parameter substitutions already.
 | 
						|
  while (1) {
 | 
						|
    if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
 | 
						|
      E = IC->getSubExpr();
 | 
						|
    else if (SubstNonTypeTemplateParmExpr *Subst =
 | 
						|
               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
 | 
						|
      E = Subst->getReplacement();
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | 
						|
    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether two declaration pointers refer to the same
 | 
						|
/// declaration.
 | 
						|
static bool isSameDeclaration(Decl *X, Decl *Y) {
 | 
						|
  if (!X || !Y)
 | 
						|
    return !X && !Y;
 | 
						|
 | 
						|
  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
 | 
						|
    X = NX->getUnderlyingDecl();
 | 
						|
  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
 | 
						|
    Y = NY->getUnderlyingDecl();
 | 
						|
 | 
						|
  return X->getCanonicalDecl() == Y->getCanonicalDecl();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Verify that the given, deduced template arguments are compatible.
 | 
						|
///
 | 
						|
/// \returns The deduced template argument, or a NULL template argument if
 | 
						|
/// the deduced template arguments were incompatible.
 | 
						|
static DeducedTemplateArgument
 | 
						|
checkDeducedTemplateArguments(ASTContext &Context,
 | 
						|
                              const DeducedTemplateArgument &X,
 | 
						|
                              const DeducedTemplateArgument &Y) {
 | 
						|
  // We have no deduction for one or both of the arguments; they're compatible.
 | 
						|
  if (X.isNull())
 | 
						|
    return Y;
 | 
						|
  if (Y.isNull())
 | 
						|
    return X;
 | 
						|
 | 
						|
  switch (X.getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
    llvm_unreachable("Non-deduced template arguments handled above");
 | 
						|
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    // If two template type arguments have the same type, they're compatible.
 | 
						|
    if (Y.getKind() == TemplateArgument::Type &&
 | 
						|
        Context.hasSameType(X.getAsType(), Y.getAsType()))
 | 
						|
      return X;
 | 
						|
 | 
						|
    return DeducedTemplateArgument();
 | 
						|
 | 
						|
  case TemplateArgument::Integral:
 | 
						|
    // If we deduced a constant in one case and either a dependent expression or
 | 
						|
    // declaration in another case, keep the integral constant.
 | 
						|
    // If both are integral constants with the same value, keep that value.
 | 
						|
    if (Y.getKind() == TemplateArgument::Expression ||
 | 
						|
        Y.getKind() == TemplateArgument::Declaration ||
 | 
						|
        (Y.getKind() == TemplateArgument::Integral &&
 | 
						|
         hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
 | 
						|
      return DeducedTemplateArgument(X,
 | 
						|
                                     X.wasDeducedFromArrayBound() &&
 | 
						|
                                     Y.wasDeducedFromArrayBound());
 | 
						|
 | 
						|
    // All other combinations are incompatible.
 | 
						|
    return DeducedTemplateArgument();
 | 
						|
 | 
						|
  case TemplateArgument::Template:
 | 
						|
    if (Y.getKind() == TemplateArgument::Template &&
 | 
						|
        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
 | 
						|
      return X;
 | 
						|
 | 
						|
    // All other combinations are incompatible.
 | 
						|
    return DeducedTemplateArgument();
 | 
						|
 | 
						|
  case TemplateArgument::TemplateExpansion:
 | 
						|
    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
 | 
						|
        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
 | 
						|
                                    Y.getAsTemplateOrTemplatePattern()))
 | 
						|
      return X;
 | 
						|
 | 
						|
    // All other combinations are incompatible.
 | 
						|
    return DeducedTemplateArgument();
 | 
						|
 | 
						|
  case TemplateArgument::Expression:
 | 
						|
    // If we deduced a dependent expression in one case and either an integral
 | 
						|
    // constant or a declaration in another case, keep the integral constant
 | 
						|
    // or declaration.
 | 
						|
    if (Y.getKind() == TemplateArgument::Integral ||
 | 
						|
        Y.getKind() == TemplateArgument::Declaration)
 | 
						|
      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
 | 
						|
                                     Y.wasDeducedFromArrayBound());
 | 
						|
 | 
						|
    if (Y.getKind() == TemplateArgument::Expression) {
 | 
						|
      // Compare the expressions for equality
 | 
						|
      llvm::FoldingSetNodeID ID1, ID2;
 | 
						|
      X.getAsExpr()->Profile(ID1, Context, true);
 | 
						|
      Y.getAsExpr()->Profile(ID2, Context, true);
 | 
						|
      if (ID1 == ID2)
 | 
						|
        return X;
 | 
						|
    }
 | 
						|
 | 
						|
    // All other combinations are incompatible.
 | 
						|
    return DeducedTemplateArgument();
 | 
						|
 | 
						|
  case TemplateArgument::Declaration:
 | 
						|
    // If we deduced a declaration and a dependent expression, keep the
 | 
						|
    // declaration.
 | 
						|
    if (Y.getKind() == TemplateArgument::Expression)
 | 
						|
      return X;
 | 
						|
 | 
						|
    // If we deduced a declaration and an integral constant, keep the
 | 
						|
    // integral constant.
 | 
						|
    if (Y.getKind() == TemplateArgument::Integral)
 | 
						|
      return Y;
 | 
						|
 | 
						|
    // If we deduced two declarations, make sure they they refer to the
 | 
						|
    // same declaration.
 | 
						|
    if (Y.getKind() == TemplateArgument::Declaration &&
 | 
						|
        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
 | 
						|
      return X;
 | 
						|
 | 
						|
    // All other combinations are incompatible.
 | 
						|
    return DeducedTemplateArgument();
 | 
						|
 | 
						|
  case TemplateArgument::Pack:
 | 
						|
    if (Y.getKind() != TemplateArgument::Pack ||
 | 
						|
        X.pack_size() != Y.pack_size())
 | 
						|
      return DeducedTemplateArgument();
 | 
						|
 | 
						|
    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
 | 
						|
                                      XAEnd = X.pack_end(),
 | 
						|
                                         YA = Y.pack_begin();
 | 
						|
         XA != XAEnd; ++XA, ++YA) {
 | 
						|
      if (checkDeducedTemplateArguments(Context,
 | 
						|
                    DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
 | 
						|
                    DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
 | 
						|
            .isNull())
 | 
						|
        return DeducedTemplateArgument();
 | 
						|
    }
 | 
						|
 | 
						|
    return X;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid TemplateArgument Kind!");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce the value of the given non-type template parameter
 | 
						|
/// from the given constant.
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceNonTypeTemplateArgument(Sema &S,
 | 
						|
                              NonTypeTemplateParmDecl *NTTP,
 | 
						|
                              llvm::APSInt Value, QualType ValueType,
 | 
						|
                              bool DeducedFromArrayBound,
 | 
						|
                              TemplateDeductionInfo &Info,
 | 
						|
                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | 
						|
  assert(NTTP->getDepth() == 0 &&
 | 
						|
         "Cannot deduce non-type template argument with depth > 0");
 | 
						|
 | 
						|
  DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
 | 
						|
                                     DeducedFromArrayBound);
 | 
						|
  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | 
						|
                                                     Deduced[NTTP->getIndex()],
 | 
						|
                                                                 NewDeduced);
 | 
						|
  if (Result.isNull()) {
 | 
						|
    Info.Param = NTTP;
 | 
						|
    Info.FirstArg = Deduced[NTTP->getIndex()];
 | 
						|
    Info.SecondArg = NewDeduced;
 | 
						|
    return Sema::TDK_Inconsistent;
 | 
						|
  }
 | 
						|
 | 
						|
  Deduced[NTTP->getIndex()] = Result;
 | 
						|
  return Sema::TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce the value of the given non-type template parameter
 | 
						|
/// from the given type- or value-dependent expression.
 | 
						|
///
 | 
						|
/// \returns true if deduction succeeded, false otherwise.
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceNonTypeTemplateArgument(Sema &S,
 | 
						|
                              NonTypeTemplateParmDecl *NTTP,
 | 
						|
                              Expr *Value,
 | 
						|
                              TemplateDeductionInfo &Info,
 | 
						|
                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | 
						|
  assert(NTTP->getDepth() == 0 &&
 | 
						|
         "Cannot deduce non-type template argument with depth > 0");
 | 
						|
  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
 | 
						|
         "Expression template argument must be type- or value-dependent.");
 | 
						|
 | 
						|
  DeducedTemplateArgument NewDeduced(Value);
 | 
						|
  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | 
						|
                                                     Deduced[NTTP->getIndex()],
 | 
						|
                                                                 NewDeduced);
 | 
						|
 | 
						|
  if (Result.isNull()) {
 | 
						|
    Info.Param = NTTP;
 | 
						|
    Info.FirstArg = Deduced[NTTP->getIndex()];
 | 
						|
    Info.SecondArg = NewDeduced;
 | 
						|
    return Sema::TDK_Inconsistent;
 | 
						|
  }
 | 
						|
 | 
						|
  Deduced[NTTP->getIndex()] = Result;
 | 
						|
  return Sema::TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce the value of the given non-type template parameter
 | 
						|
/// from the given declaration.
 | 
						|
///
 | 
						|
/// \returns true if deduction succeeded, false otherwise.
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceNonTypeTemplateArgument(Sema &S,
 | 
						|
                              NonTypeTemplateParmDecl *NTTP,
 | 
						|
                              Decl *D,
 | 
						|
                              TemplateDeductionInfo &Info,
 | 
						|
                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | 
						|
  assert(NTTP->getDepth() == 0 &&
 | 
						|
         "Cannot deduce non-type template argument with depth > 0");
 | 
						|
 | 
						|
  DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
 | 
						|
  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | 
						|
                                                     Deduced[NTTP->getIndex()],
 | 
						|
                                                                 NewDeduced);
 | 
						|
  if (Result.isNull()) {
 | 
						|
    Info.Param = NTTP;
 | 
						|
    Info.FirstArg = Deduced[NTTP->getIndex()];
 | 
						|
    Info.SecondArg = NewDeduced;
 | 
						|
    return Sema::TDK_Inconsistent;
 | 
						|
  }
 | 
						|
 | 
						|
  Deduced[NTTP->getIndex()] = Result;
 | 
						|
  return Sema::TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArguments(Sema &S,
 | 
						|
                        TemplateParameterList *TemplateParams,
 | 
						|
                        TemplateName Param,
 | 
						|
                        TemplateName Arg,
 | 
						|
                        TemplateDeductionInfo &Info,
 | 
						|
                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | 
						|
  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
 | 
						|
  if (!ParamDecl) {
 | 
						|
    // The parameter type is dependent and is not a template template parameter,
 | 
						|
    // so there is nothing that we can deduce.
 | 
						|
    return Sema::TDK_Success;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TemplateTemplateParmDecl *TempParam
 | 
						|
        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
 | 
						|
    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
 | 
						|
    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | 
						|
                                                 Deduced[TempParam->getIndex()],
 | 
						|
                                                                   NewDeduced);
 | 
						|
    if (Result.isNull()) {
 | 
						|
      Info.Param = TempParam;
 | 
						|
      Info.FirstArg = Deduced[TempParam->getIndex()];
 | 
						|
      Info.SecondArg = NewDeduced;
 | 
						|
      return Sema::TDK_Inconsistent;
 | 
						|
    }
 | 
						|
 | 
						|
    Deduced[TempParam->getIndex()] = Result;
 | 
						|
    return Sema::TDK_Success;
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify that the two template names are equivalent.
 | 
						|
  if (S.Context.hasSameTemplateName(Param, Arg))
 | 
						|
    return Sema::TDK_Success;
 | 
						|
 | 
						|
  // Mismatch of non-dependent template parameter to argument.
 | 
						|
  Info.FirstArg = TemplateArgument(Param);
 | 
						|
  Info.SecondArg = TemplateArgument(Arg);
 | 
						|
  return Sema::TDK_NonDeducedMismatch;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce the template arguments by comparing the template parameter
 | 
						|
/// type (which is a template-id) with the template argument type.
 | 
						|
///
 | 
						|
/// \param S the Sema
 | 
						|
///
 | 
						|
/// \param TemplateParams the template parameters that we are deducing
 | 
						|
///
 | 
						|
/// \param Param the parameter type
 | 
						|
///
 | 
						|
/// \param Arg the argument type
 | 
						|
///
 | 
						|
/// \param Info information about the template argument deduction itself
 | 
						|
///
 | 
						|
/// \param Deduced the deduced template arguments
 | 
						|
///
 | 
						|
/// \returns the result of template argument deduction so far. Note that a
 | 
						|
/// "success" result means that template argument deduction has not yet failed,
 | 
						|
/// but it may still fail, later, for other reasons.
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArguments(Sema &S,
 | 
						|
                        TemplateParameterList *TemplateParams,
 | 
						|
                        const TemplateSpecializationType *Param,
 | 
						|
                        QualType Arg,
 | 
						|
                        TemplateDeductionInfo &Info,
 | 
						|
                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | 
						|
  assert(Arg.isCanonical() && "Argument type must be canonical");
 | 
						|
 | 
						|
  // Check whether the template argument is a dependent template-id.
 | 
						|
  if (const TemplateSpecializationType *SpecArg
 | 
						|
        = dyn_cast<TemplateSpecializationType>(Arg)) {
 | 
						|
    // Perform template argument deduction for the template name.
 | 
						|
    if (Sema::TemplateDeductionResult Result
 | 
						|
          = DeduceTemplateArguments(S, TemplateParams,
 | 
						|
                                    Param->getTemplateName(),
 | 
						|
                                    SpecArg->getTemplateName(),
 | 
						|
                                    Info, Deduced))
 | 
						|
      return Result;
 | 
						|
 | 
						|
 | 
						|
    // Perform template argument deduction on each template
 | 
						|
    // argument. Ignore any missing/extra arguments, since they could be
 | 
						|
    // filled in by default arguments.
 | 
						|
    return DeduceTemplateArguments(S, TemplateParams,
 | 
						|
                                   Param->getArgs(), Param->getNumArgs(),
 | 
						|
                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
 | 
						|
                                   Info, Deduced,
 | 
						|
                                   /*NumberOfArgumentsMustMatch=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the argument type is a class template specialization, we
 | 
						|
  // perform template argument deduction using its template
 | 
						|
  // arguments.
 | 
						|
  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
 | 
						|
  if (!RecordArg)
 | 
						|
    return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  ClassTemplateSpecializationDecl *SpecArg
 | 
						|
    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
 | 
						|
  if (!SpecArg)
 | 
						|
    return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  // Perform template argument deduction for the template name.
 | 
						|
  if (Sema::TemplateDeductionResult Result
 | 
						|
        = DeduceTemplateArguments(S,
 | 
						|
                                  TemplateParams,
 | 
						|
                                  Param->getTemplateName(),
 | 
						|
                               TemplateName(SpecArg->getSpecializedTemplate()),
 | 
						|
                                  Info, Deduced))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Perform template argument deduction for the template arguments.
 | 
						|
  return DeduceTemplateArguments(S, TemplateParams,
 | 
						|
                                 Param->getArgs(), Param->getNumArgs(),
 | 
						|
                                 SpecArg->getTemplateArgs().data(),
 | 
						|
                                 SpecArg->getTemplateArgs().size(),
 | 
						|
                                 Info, Deduced);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determines whether the given type is an opaque type that
 | 
						|
/// might be more qualified when instantiated.
 | 
						|
static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
 | 
						|
  switch (T->getTypeClass()) {
 | 
						|
  case Type::TypeOfExpr:
 | 
						|
  case Type::TypeOf:
 | 
						|
  case Type::DependentName:
 | 
						|
  case Type::Decltype:
 | 
						|
  case Type::UnresolvedUsing:
 | 
						|
  case Type::TemplateTypeParm:
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Type::ConstantArray:
 | 
						|
  case Type::IncompleteArray:
 | 
						|
  case Type::VariableArray:
 | 
						|
  case Type::DependentSizedArray:
 | 
						|
    return IsPossiblyOpaquelyQualifiedType(
 | 
						|
                                      cast<ArrayType>(T)->getElementType());
 | 
						|
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve the depth and index of a template parameter.
 | 
						|
static std::pair<unsigned, unsigned>
 | 
						|
getDepthAndIndex(NamedDecl *ND) {
 | 
						|
  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
 | 
						|
    return std::make_pair(TTP->getDepth(), TTP->getIndex());
 | 
						|
 | 
						|
  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
 | 
						|
    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
 | 
						|
 | 
						|
  TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
 | 
						|
  return std::make_pair(TTP->getDepth(), TTP->getIndex());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve the depth and index of an unexpanded parameter pack.
 | 
						|
static std::pair<unsigned, unsigned>
 | 
						|
getDepthAndIndex(UnexpandedParameterPack UPP) {
 | 
						|
  if (const TemplateTypeParmType *TTP
 | 
						|
                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
 | 
						|
    return std::make_pair(TTP->getDepth(), TTP->getIndex());
 | 
						|
 | 
						|
  return getDepthAndIndex(UPP.first.get<NamedDecl *>());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function to build a TemplateParameter when we don't
 | 
						|
/// know its type statically.
 | 
						|
static TemplateParameter makeTemplateParameter(Decl *D) {
 | 
						|
  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
 | 
						|
    return TemplateParameter(TTP);
 | 
						|
  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
 | 
						|
    return TemplateParameter(NTTP);
 | 
						|
 | 
						|
  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Prepare to perform template argument deduction for all of the
 | 
						|
/// arguments in a set of argument packs.
 | 
						|
static void PrepareArgumentPackDeduction(Sema &S,
 | 
						|
                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                                           ArrayRef<unsigned> PackIndices,
 | 
						|
                     SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
 | 
						|
         SmallVectorImpl<
 | 
						|
           SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
 | 
						|
  // Save the deduced template arguments for each parameter pack expanded
 | 
						|
  // by this pack expansion, then clear out the deduction.
 | 
						|
  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | 
						|
    // Save the previously-deduced argument pack, then clear it out so that we
 | 
						|
    // can deduce a new argument pack.
 | 
						|
    SavedPacks[I] = Deduced[PackIndices[I]];
 | 
						|
    Deduced[PackIndices[I]] = TemplateArgument();
 | 
						|
 | 
						|
    if (!S.CurrentInstantiationScope)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the template arugment pack was explicitly specified, add that to
 | 
						|
    // the set of deduced arguments.
 | 
						|
    const TemplateArgument *ExplicitArgs;
 | 
						|
    unsigned NumExplicitArgs;
 | 
						|
    if (NamedDecl *PartiallySubstitutedPack
 | 
						|
        = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
 | 
						|
                                                           &ExplicitArgs,
 | 
						|
                                                           &NumExplicitArgs)) {
 | 
						|
      if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
 | 
						|
        NewlyDeducedPacks[I].append(ExplicitArgs,
 | 
						|
                                    ExplicitArgs + NumExplicitArgs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Finish template argument deduction for a set of argument packs,
 | 
						|
/// producing the argument packs and checking for consistency with prior
 | 
						|
/// deductions.
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
FinishArgumentPackDeduction(Sema &S,
 | 
						|
                            TemplateParameterList *TemplateParams,
 | 
						|
                            bool HasAnyArguments,
 | 
						|
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                            ArrayRef<unsigned> PackIndices,
 | 
						|
                    SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
 | 
						|
        SmallVectorImpl<
 | 
						|
          SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
 | 
						|
                            TemplateDeductionInfo &Info) {
 | 
						|
  // Build argument packs for each of the parameter packs expanded by this
 | 
						|
  // pack expansion.
 | 
						|
  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | 
						|
    if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
 | 
						|
      // We were not able to deduce anything for this parameter pack,
 | 
						|
      // so just restore the saved argument pack.
 | 
						|
      Deduced[PackIndices[I]] = SavedPacks[I];
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    DeducedTemplateArgument NewPack;
 | 
						|
 | 
						|
    if (NewlyDeducedPacks[I].empty()) {
 | 
						|
      // If we deduced an empty argument pack, create it now.
 | 
						|
      NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
 | 
						|
    } else {
 | 
						|
      TemplateArgument *ArgumentPack
 | 
						|
        = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
 | 
						|
      std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
 | 
						|
                ArgumentPack);
 | 
						|
      NewPack
 | 
						|
        = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
 | 
						|
                                                   NewlyDeducedPacks[I].size()),
 | 
						|
                            NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
 | 
						|
    }
 | 
						|
 | 
						|
    DeducedTemplateArgument Result
 | 
						|
      = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
 | 
						|
    if (Result.isNull()) {
 | 
						|
      Info.Param
 | 
						|
        = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
 | 
						|
      Info.FirstArg = SavedPacks[I];
 | 
						|
      Info.SecondArg = NewPack;
 | 
						|
      return Sema::TDK_Inconsistent;
 | 
						|
    }
 | 
						|
 | 
						|
    Deduced[PackIndices[I]] = Result;
 | 
						|
  }
 | 
						|
 | 
						|
  return Sema::TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce the template arguments by comparing the list of parameter
 | 
						|
/// types to the list of argument types, as in the parameter-type-lists of
 | 
						|
/// function types (C++ [temp.deduct.type]p10).
 | 
						|
///
 | 
						|
/// \param S The semantic analysis object within which we are deducing
 | 
						|
///
 | 
						|
/// \param TemplateParams The template parameters that we are deducing
 | 
						|
///
 | 
						|
/// \param Params The list of parameter types
 | 
						|
///
 | 
						|
/// \param NumParams The number of types in \c Params
 | 
						|
///
 | 
						|
/// \param Args The list of argument types
 | 
						|
///
 | 
						|
/// \param NumArgs The number of types in \c Args
 | 
						|
///
 | 
						|
/// \param Info information about the template argument deduction itself
 | 
						|
///
 | 
						|
/// \param Deduced the deduced template arguments
 | 
						|
///
 | 
						|
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
 | 
						|
/// how template argument deduction is performed.
 | 
						|
///
 | 
						|
/// \param PartialOrdering If true, we are performing template argument
 | 
						|
/// deduction for during partial ordering for a call
 | 
						|
/// (C++0x [temp.deduct.partial]).
 | 
						|
///
 | 
						|
/// \param RefParamComparisons If we're performing template argument deduction
 | 
						|
/// in the context of partial ordering, the set of qualifier comparisons.
 | 
						|
///
 | 
						|
/// \returns the result of template argument deduction so far. Note that a
 | 
						|
/// "success" result means that template argument deduction has not yet failed,
 | 
						|
/// but it may still fail, later, for other reasons.
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArguments(Sema &S,
 | 
						|
                        TemplateParameterList *TemplateParams,
 | 
						|
                        const QualType *Params, unsigned NumParams,
 | 
						|
                        const QualType *Args, unsigned NumArgs,
 | 
						|
                        TemplateDeductionInfo &Info,
 | 
						|
                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                        unsigned TDF,
 | 
						|
                        bool PartialOrdering = false,
 | 
						|
                        SmallVectorImpl<RefParamPartialOrderingComparison> *
 | 
						|
                                                     RefParamComparisons = 0) {
 | 
						|
  // Fast-path check to see if we have too many/too few arguments.
 | 
						|
  if (NumParams != NumArgs &&
 | 
						|
      !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
 | 
						|
      !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
 | 
						|
    return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  // C++0x [temp.deduct.type]p10:
 | 
						|
  //   Similarly, if P has a form that contains (T), then each parameter type
 | 
						|
  //   Pi of the respective parameter-type- list of P is compared with the
 | 
						|
  //   corresponding parameter type Ai of the corresponding parameter-type-list
 | 
						|
  //   of A. [...]
 | 
						|
  unsigned ArgIdx = 0, ParamIdx = 0;
 | 
						|
  for (; ParamIdx != NumParams; ++ParamIdx) {
 | 
						|
    // Check argument types.
 | 
						|
    const PackExpansionType *Expansion
 | 
						|
                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
 | 
						|
    if (!Expansion) {
 | 
						|
      // Simple case: compare the parameter and argument types at this point.
 | 
						|
 | 
						|
      // Make sure we have an argument.
 | 
						|
      if (ArgIdx >= NumArgs)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      if (isa<PackExpansionType>(Args[ArgIdx])) {
 | 
						|
        // C++0x [temp.deduct.type]p22:
 | 
						|
        //   If the original function parameter associated with A is a function
 | 
						|
        //   parameter pack and the function parameter associated with P is not
 | 
						|
        //   a function parameter pack, then template argument deduction fails.
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Sema::TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                                 Params[ParamIdx], Args[ArgIdx],
 | 
						|
                                                 Info, Deduced, TDF,
 | 
						|
                                                 PartialOrdering,
 | 
						|
                                                 RefParamComparisons))
 | 
						|
        return Result;
 | 
						|
 | 
						|
      ++ArgIdx;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [temp.deduct.type]p5:
 | 
						|
    //   The non-deduced contexts are:
 | 
						|
    //     - A function parameter pack that does not occur at the end of the
 | 
						|
    //       parameter-declaration-clause.
 | 
						|
    if (ParamIdx + 1 < NumParams)
 | 
						|
      return Sema::TDK_Success;
 | 
						|
 | 
						|
    // C++0x [temp.deduct.type]p10:
 | 
						|
    //   If the parameter-declaration corresponding to Pi is a function
 | 
						|
    //   parameter pack, then the type of its declarator- id is compared with
 | 
						|
    //   each remaining parameter type in the parameter-type-list of A. Each
 | 
						|
    //   comparison deduces template arguments for subsequent positions in the
 | 
						|
    //   template parameter packs expanded by the function parameter pack.
 | 
						|
 | 
						|
    // Compute the set of template parameter indices that correspond to
 | 
						|
    // parameter packs expanded by the pack expansion.
 | 
						|
    SmallVector<unsigned, 2> PackIndices;
 | 
						|
    QualType Pattern = Expansion->getPattern();
 | 
						|
    {
 | 
						|
      llvm::SmallBitVector SawIndices(TemplateParams->size());
 | 
						|
      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | 
						|
      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
 | 
						|
      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
 | 
						|
        unsigned Depth, Index;
 | 
						|
        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
 | 
						|
        if (Depth == 0 && !SawIndices[Index]) {
 | 
						|
          SawIndices[Index] = true;
 | 
						|
          PackIndices.push_back(Index);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
 | 
						|
 | 
						|
    // Keep track of the deduced template arguments for each parameter pack
 | 
						|
    // expanded by this pack expansion (the outer index) and for each
 | 
						|
    // template argument (the inner SmallVectors).
 | 
						|
    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
 | 
						|
      NewlyDeducedPacks(PackIndices.size());
 | 
						|
    SmallVector<DeducedTemplateArgument, 2>
 | 
						|
      SavedPacks(PackIndices.size());
 | 
						|
    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
 | 
						|
                                 NewlyDeducedPacks);
 | 
						|
 | 
						|
    bool HasAnyArguments = false;
 | 
						|
    for (; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
      HasAnyArguments = true;
 | 
						|
 | 
						|
      // Deduce template arguments from the pattern.
 | 
						|
      if (Sema::TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
 | 
						|
                                                 Args[ArgIdx], Info, Deduced,
 | 
						|
                                                 TDF, PartialOrdering,
 | 
						|
                                                 RefParamComparisons))
 | 
						|
        return Result;
 | 
						|
 | 
						|
      // Capture the deduced template arguments for each parameter pack expanded
 | 
						|
      // by this pack expansion, add them to the list of arguments we've deduced
 | 
						|
      // for that pack, then clear out the deduced argument.
 | 
						|
      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | 
						|
        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
 | 
						|
        if (!DeducedArg.isNull()) {
 | 
						|
          NewlyDeducedPacks[I].push_back(DeducedArg);
 | 
						|
          DeducedArg = DeducedTemplateArgument();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Build argument packs for each of the parameter packs expanded by this
 | 
						|
    // pack expansion.
 | 
						|
    if (Sema::TemplateDeductionResult Result
 | 
						|
          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
 | 
						|
                                        Deduced, PackIndices, SavedPacks,
 | 
						|
                                        NewlyDeducedPacks, Info))
 | 
						|
      return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure we don't have any extra arguments.
 | 
						|
  if (ArgIdx < NumArgs)
 | 
						|
    return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  return Sema::TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the parameter has qualifiers that are either
 | 
						|
/// inconsistent with or a superset of the argument's qualifiers.
 | 
						|
static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
 | 
						|
                                                  QualType ArgType) {
 | 
						|
  Qualifiers ParamQs = ParamType.getQualifiers();
 | 
						|
  Qualifiers ArgQs = ArgType.getQualifiers();
 | 
						|
 | 
						|
  if (ParamQs == ArgQs)
 | 
						|
    return false;
 | 
						|
       
 | 
						|
  // Mismatched (but not missing) Objective-C GC attributes.
 | 
						|
  if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 
 | 
						|
      ParamQs.hasObjCGCAttr())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Mismatched (but not missing) address spaces.
 | 
						|
  if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
 | 
						|
      ParamQs.hasAddressSpace())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Mismatched (but not missing) Objective-C lifetime qualifiers.
 | 
						|
  if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
 | 
						|
      ParamQs.hasObjCLifetime())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // CVR qualifier superset.
 | 
						|
  return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
 | 
						|
      ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
 | 
						|
                                                == ParamQs.getCVRQualifiers());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce the template arguments by comparing the parameter type and
 | 
						|
/// the argument type (C++ [temp.deduct.type]).
 | 
						|
///
 | 
						|
/// \param S the semantic analysis object within which we are deducing
 | 
						|
///
 | 
						|
/// \param TemplateParams the template parameters that we are deducing
 | 
						|
///
 | 
						|
/// \param ParamIn the parameter type
 | 
						|
///
 | 
						|
/// \param ArgIn the argument type
 | 
						|
///
 | 
						|
/// \param Info information about the template argument deduction itself
 | 
						|
///
 | 
						|
/// \param Deduced the deduced template arguments
 | 
						|
///
 | 
						|
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
 | 
						|
/// how template argument deduction is performed.
 | 
						|
///
 | 
						|
/// \param PartialOrdering Whether we're performing template argument deduction
 | 
						|
/// in the context of partial ordering (C++0x [temp.deduct.partial]).
 | 
						|
///
 | 
						|
/// \param RefParamComparisons If we're performing template argument deduction
 | 
						|
/// in the context of partial ordering, the set of qualifier comparisons.
 | 
						|
///
 | 
						|
/// \returns the result of template argument deduction so far. Note that a
 | 
						|
/// "success" result means that template argument deduction has not yet failed,
 | 
						|
/// but it may still fail, later, for other reasons.
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArgumentsByTypeMatch(Sema &S,
 | 
						|
                                   TemplateParameterList *TemplateParams,
 | 
						|
                                   QualType ParamIn, QualType ArgIn,
 | 
						|
                                   TemplateDeductionInfo &Info,
 | 
						|
                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                                   unsigned TDF,
 | 
						|
                                   bool PartialOrdering,
 | 
						|
                            SmallVectorImpl<RefParamPartialOrderingComparison> *
 | 
						|
                                                          RefParamComparisons) {
 | 
						|
  // We only want to look at the canonical types, since typedefs and
 | 
						|
  // sugar are not part of template argument deduction.
 | 
						|
  QualType Param = S.Context.getCanonicalType(ParamIn);
 | 
						|
  QualType Arg = S.Context.getCanonicalType(ArgIn);
 | 
						|
 | 
						|
  // If the argument type is a pack expansion, look at its pattern.
 | 
						|
  // This isn't explicitly called out
 | 
						|
  if (const PackExpansionType *ArgExpansion
 | 
						|
                                            = dyn_cast<PackExpansionType>(Arg))
 | 
						|
    Arg = ArgExpansion->getPattern();
 | 
						|
 | 
						|
  if (PartialOrdering) {
 | 
						|
    // C++0x [temp.deduct.partial]p5:
 | 
						|
    //   Before the partial ordering is done, certain transformations are
 | 
						|
    //   performed on the types used for partial ordering:
 | 
						|
    //     - If P is a reference type, P is replaced by the type referred to.
 | 
						|
    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
 | 
						|
    if (ParamRef)
 | 
						|
      Param = ParamRef->getPointeeType();
 | 
						|
 | 
						|
    //     - If A is a reference type, A is replaced by the type referred to.
 | 
						|
    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
 | 
						|
    if (ArgRef)
 | 
						|
      Arg = ArgRef->getPointeeType();
 | 
						|
 | 
						|
    if (RefParamComparisons && ParamRef && ArgRef) {
 | 
						|
      // C++0x [temp.deduct.partial]p6:
 | 
						|
      //   If both P and A were reference types (before being replaced with the
 | 
						|
      //   type referred to above), determine which of the two types (if any) is
 | 
						|
      //   more cv-qualified than the other; otherwise the types are considered
 | 
						|
      //   to be equally cv-qualified for partial ordering purposes. The result
 | 
						|
      //   of this determination will be used below.
 | 
						|
      //
 | 
						|
      // We save this information for later, using it only when deduction
 | 
						|
      // succeeds in both directions.
 | 
						|
      RefParamPartialOrderingComparison Comparison;
 | 
						|
      Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
 | 
						|
      Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
 | 
						|
      Comparison.Qualifiers = NeitherMoreQualified;
 | 
						|
      
 | 
						|
      Qualifiers ParamQuals = Param.getQualifiers();
 | 
						|
      Qualifiers ArgQuals = Arg.getQualifiers();
 | 
						|
      if (ParamQuals.isStrictSupersetOf(ArgQuals))
 | 
						|
        Comparison.Qualifiers = ParamMoreQualified;
 | 
						|
      else if (ArgQuals.isStrictSupersetOf(ParamQuals))
 | 
						|
        Comparison.Qualifiers = ArgMoreQualified;
 | 
						|
      RefParamComparisons->push_back(Comparison);
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [temp.deduct.partial]p7:
 | 
						|
    //   Remove any top-level cv-qualifiers:
 | 
						|
    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
 | 
						|
    //       version of P.
 | 
						|
    Param = Param.getUnqualifiedType();
 | 
						|
    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
 | 
						|
    //       version of A.
 | 
						|
    Arg = Arg.getUnqualifiedType();
 | 
						|
  } else {
 | 
						|
    // C++0x [temp.deduct.call]p4 bullet 1:
 | 
						|
    //   - If the original P is a reference type, the deduced A (i.e., the type
 | 
						|
    //     referred to by the reference) can be more cv-qualified than the
 | 
						|
    //     transformed A.
 | 
						|
    if (TDF & TDF_ParamWithReferenceType) {
 | 
						|
      Qualifiers Quals;
 | 
						|
      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
 | 
						|
      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
 | 
						|
                             Arg.getCVRQualifiers());
 | 
						|
      Param = S.Context.getQualifiedType(UnqualParam, Quals);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
 | 
						|
      // C++0x [temp.deduct.type]p10:
 | 
						|
      //   If P and A are function types that originated from deduction when
 | 
						|
      //   taking the address of a function template (14.8.2.2) or when deducing
 | 
						|
      //   template arguments from a function declaration (14.8.2.6) and Pi and
 | 
						|
      //   Ai are parameters of the top-level parameter-type-list of P and A,
 | 
						|
      //   respectively, Pi is adjusted if it is an rvalue reference to a
 | 
						|
      //   cv-unqualified template parameter and Ai is an lvalue reference, in
 | 
						|
      //   which case the type of Pi is changed to be the template parameter
 | 
						|
      //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
 | 
						|
      //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
 | 
						|
      //   deduced as X&. - end note ]
 | 
						|
      TDF &= ~TDF_TopLevelParameterTypeList;
 | 
						|
 | 
						|
      if (const RValueReferenceType *ParamRef
 | 
						|
                                        = Param->getAs<RValueReferenceType>()) {
 | 
						|
        if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
 | 
						|
            !ParamRef->getPointeeType().getQualifiers())
 | 
						|
          if (Arg->isLValueReferenceType())
 | 
						|
            Param = ParamRef->getPointeeType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.deduct.type]p9:
 | 
						|
  //   A template type argument T, a template template argument TT or a
 | 
						|
  //   template non-type argument i can be deduced if P and A have one of
 | 
						|
  //   the following forms:
 | 
						|
  //
 | 
						|
  //     T
 | 
						|
  //     cv-list T
 | 
						|
  if (const TemplateTypeParmType *TemplateTypeParm
 | 
						|
        = Param->getAs<TemplateTypeParmType>()) {
 | 
						|
    // Just skip any attempts to deduce from a placeholder type.
 | 
						|
    if (Arg->isPlaceholderType())
 | 
						|
      return Sema::TDK_Success;
 | 
						|
    
 | 
						|
    unsigned Index = TemplateTypeParm->getIndex();
 | 
						|
    bool RecanonicalizeArg = false;
 | 
						|
 | 
						|
    // If the argument type is an array type, move the qualifiers up to the
 | 
						|
    // top level, so they can be matched with the qualifiers on the parameter.
 | 
						|
    if (isa<ArrayType>(Arg)) {
 | 
						|
      Qualifiers Quals;
 | 
						|
      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
 | 
						|
      if (Quals) {
 | 
						|
        Arg = S.Context.getQualifiedType(Arg, Quals);
 | 
						|
        RecanonicalizeArg = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The argument type can not be less qualified than the parameter
 | 
						|
    // type.
 | 
						|
    if (!(TDF & TDF_IgnoreQualifiers) &&
 | 
						|
        hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
 | 
						|
      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
 | 
						|
      Info.FirstArg = TemplateArgument(Param);
 | 
						|
      Info.SecondArg = TemplateArgument(Arg);
 | 
						|
      return Sema::TDK_Underqualified;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
 | 
						|
    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
 | 
						|
    QualType DeducedType = Arg;
 | 
						|
 | 
						|
    // Remove any qualifiers on the parameter from the deduced type.
 | 
						|
    // We checked the qualifiers for consistency above.
 | 
						|
    Qualifiers DeducedQs = DeducedType.getQualifiers();
 | 
						|
    Qualifiers ParamQs = Param.getQualifiers();
 | 
						|
    DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
 | 
						|
    if (ParamQs.hasObjCGCAttr())
 | 
						|
      DeducedQs.removeObjCGCAttr();
 | 
						|
    if (ParamQs.hasAddressSpace())
 | 
						|
      DeducedQs.removeAddressSpace();
 | 
						|
    if (ParamQs.hasObjCLifetime())
 | 
						|
      DeducedQs.removeObjCLifetime();
 | 
						|
    
 | 
						|
    // Objective-C ARC:
 | 
						|
    //   If template deduction would produce a lifetime qualifier on a type
 | 
						|
    //   that is not a lifetime type, template argument deduction fails.
 | 
						|
    if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
 | 
						|
        !DeducedType->isDependentType()) {
 | 
						|
      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
 | 
						|
      Info.FirstArg = TemplateArgument(Param);
 | 
						|
      Info.SecondArg = TemplateArgument(Arg);
 | 
						|
      return Sema::TDK_Underqualified;      
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Objective-C ARC:
 | 
						|
    //   If template deduction would produce an argument type with lifetime type
 | 
						|
    //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
 | 
						|
    if (S.getLangOpts().ObjCAutoRefCount &&
 | 
						|
        DeducedType->isObjCLifetimeType() &&
 | 
						|
        !DeducedQs.hasObjCLifetime())
 | 
						|
      DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
 | 
						|
    
 | 
						|
    DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
 | 
						|
                                             DeducedQs);
 | 
						|
    
 | 
						|
    if (RecanonicalizeArg)
 | 
						|
      DeducedType = S.Context.getCanonicalType(DeducedType);
 | 
						|
 | 
						|
    DeducedTemplateArgument NewDeduced(DeducedType);
 | 
						|
    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | 
						|
                                                                 Deduced[Index],
 | 
						|
                                                                   NewDeduced);
 | 
						|
    if (Result.isNull()) {
 | 
						|
      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
 | 
						|
      Info.FirstArg = Deduced[Index];
 | 
						|
      Info.SecondArg = NewDeduced;
 | 
						|
      return Sema::TDK_Inconsistent;
 | 
						|
    }
 | 
						|
 | 
						|
    Deduced[Index] = Result;
 | 
						|
    return Sema::TDK_Success;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set up the template argument deduction information for a failure.
 | 
						|
  Info.FirstArg = TemplateArgument(ParamIn);
 | 
						|
  Info.SecondArg = TemplateArgument(ArgIn);
 | 
						|
 | 
						|
  // If the parameter is an already-substituted template parameter
 | 
						|
  // pack, do nothing: we don't know which of its arguments to look
 | 
						|
  // at, so we have to wait until all of the parameter packs in this
 | 
						|
  // expansion have arguments.
 | 
						|
  if (isa<SubstTemplateTypeParmPackType>(Param))
 | 
						|
    return Sema::TDK_Success;
 | 
						|
 | 
						|
  // Check the cv-qualifiers on the parameter and argument types.
 | 
						|
  if (!(TDF & TDF_IgnoreQualifiers)) {
 | 
						|
    if (TDF & TDF_ParamWithReferenceType) {
 | 
						|
      if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
 | 
						|
      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the parameter type is not dependent, there is nothing to deduce.
 | 
						|
    if (!Param->isDependentType()) {
 | 
						|
      if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
      
 | 
						|
      return Sema::TDK_Success;
 | 
						|
    }
 | 
						|
  } else if (!Param->isDependentType() &&
 | 
						|
             Param.getUnqualifiedType() == Arg.getUnqualifiedType()) {
 | 
						|
    return Sema::TDK_Success;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Param->getTypeClass()) {
 | 
						|
    // Non-canonical types cannot appear here.
 | 
						|
#define NON_CANONICAL_TYPE(Class, Base) \
 | 
						|
  case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
 | 
						|
#define TYPE(Class, Base)
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
      
 | 
						|
    case Type::TemplateTypeParm:
 | 
						|
    case Type::SubstTemplateTypeParmPack:
 | 
						|
      llvm_unreachable("Type nodes handled above");
 | 
						|
 | 
						|
    // These types cannot be dependent, so simply check whether the types are
 | 
						|
    // the same.
 | 
						|
    case Type::Builtin:
 | 
						|
    case Type::VariableArray:
 | 
						|
    case Type::Vector:
 | 
						|
    case Type::FunctionNoProto:
 | 
						|
    case Type::Record:
 | 
						|
    case Type::Enum:
 | 
						|
    case Type::ObjCObject:
 | 
						|
    case Type::ObjCInterface:
 | 
						|
    case Type::ObjCObjectPointer: {
 | 
						|
      if (TDF & TDF_SkipNonDependent)
 | 
						|
        return Sema::TDK_Success;
 | 
						|
      
 | 
						|
      if (TDF & TDF_IgnoreQualifiers) {
 | 
						|
        Param = Param.getUnqualifiedType();
 | 
						|
        Arg = Arg.getUnqualifiedType();
 | 
						|
      }
 | 
						|
            
 | 
						|
      return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
 | 
						|
    }
 | 
						|
      
 | 
						|
    //     _Complex T   [placeholder extension]  
 | 
						|
    case Type::Complex:
 | 
						|
      if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
 | 
						|
        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 
 | 
						|
                                    cast<ComplexType>(Param)->getElementType(), 
 | 
						|
                                    ComplexArg->getElementType(),
 | 
						|
                                    Info, Deduced, TDF);
 | 
						|
 | 
						|
      return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
    //     _Atomic T   [extension]
 | 
						|
    case Type::Atomic:
 | 
						|
      if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
 | 
						|
        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                       cast<AtomicType>(Param)->getValueType(),
 | 
						|
                                       AtomicArg->getValueType(),
 | 
						|
                                       Info, Deduced, TDF);
 | 
						|
 | 
						|
      return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
    //     T *
 | 
						|
    case Type::Pointer: {
 | 
						|
      QualType PointeeType;
 | 
						|
      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
 | 
						|
        PointeeType = PointerArg->getPointeeType();
 | 
						|
      } else if (const ObjCObjectPointerType *PointerArg
 | 
						|
                   = Arg->getAs<ObjCObjectPointerType>()) {
 | 
						|
        PointeeType = PointerArg->getPointeeType();
 | 
						|
      } else {
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
 | 
						|
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                     cast<PointerType>(Param)->getPointeeType(),
 | 
						|
                                     PointeeType,
 | 
						|
                                     Info, Deduced, SubTDF);
 | 
						|
    }
 | 
						|
 | 
						|
    //     T &
 | 
						|
    case Type::LValueReference: {
 | 
						|
      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
 | 
						|
      if (!ReferenceArg)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                           cast<LValueReferenceType>(Param)->getPointeeType(),
 | 
						|
                           ReferenceArg->getPointeeType(), Info, Deduced, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    //     T && [C++0x]
 | 
						|
    case Type::RValueReference: {
 | 
						|
      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
 | 
						|
      if (!ReferenceArg)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                             cast<RValueReferenceType>(Param)->getPointeeType(),
 | 
						|
                             ReferenceArg->getPointeeType(),
 | 
						|
                             Info, Deduced, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    //     T [] (implied, but not stated explicitly)
 | 
						|
    case Type::IncompleteArray: {
 | 
						|
      const IncompleteArrayType *IncompleteArrayArg =
 | 
						|
        S.Context.getAsIncompleteArrayType(Arg);
 | 
						|
      if (!IncompleteArrayArg)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
 | 
						|
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                    S.Context.getAsIncompleteArrayType(Param)->getElementType(),
 | 
						|
                    IncompleteArrayArg->getElementType(),
 | 
						|
                    Info, Deduced, SubTDF);
 | 
						|
    }
 | 
						|
 | 
						|
    //     T [integer-constant]
 | 
						|
    case Type::ConstantArray: {
 | 
						|
      const ConstantArrayType *ConstantArrayArg =
 | 
						|
        S.Context.getAsConstantArrayType(Arg);
 | 
						|
      if (!ConstantArrayArg)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      const ConstantArrayType *ConstantArrayParm =
 | 
						|
        S.Context.getAsConstantArrayType(Param);
 | 
						|
      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
 | 
						|
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                           ConstantArrayParm->getElementType(),
 | 
						|
                                           ConstantArrayArg->getElementType(),
 | 
						|
                                           Info, Deduced, SubTDF);
 | 
						|
    }
 | 
						|
 | 
						|
    //     type [i]
 | 
						|
    case Type::DependentSizedArray: {
 | 
						|
      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
 | 
						|
      if (!ArrayArg)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
 | 
						|
 | 
						|
      // Check the element type of the arrays
 | 
						|
      const DependentSizedArrayType *DependentArrayParm
 | 
						|
        = S.Context.getAsDependentSizedArrayType(Param);
 | 
						|
      if (Sema::TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                          DependentArrayParm->getElementType(),
 | 
						|
                                          ArrayArg->getElementType(),
 | 
						|
                                          Info, Deduced, SubTDF))
 | 
						|
        return Result;
 | 
						|
 | 
						|
      // Determine the array bound is something we can deduce.
 | 
						|
      NonTypeTemplateParmDecl *NTTP
 | 
						|
        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
 | 
						|
      if (!NTTP)
 | 
						|
        return Sema::TDK_Success;
 | 
						|
 | 
						|
      // We can perform template argument deduction for the given non-type
 | 
						|
      // template parameter.
 | 
						|
      assert(NTTP->getDepth() == 0 &&
 | 
						|
             "Cannot deduce non-type template argument at depth > 0");
 | 
						|
      if (const ConstantArrayType *ConstantArrayArg
 | 
						|
            = dyn_cast<ConstantArrayType>(ArrayArg)) {
 | 
						|
        llvm::APSInt Size(ConstantArrayArg->getSize());
 | 
						|
        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
 | 
						|
                                             S.Context.getSizeType(),
 | 
						|
                                             /*ArrayBound=*/true,
 | 
						|
                                             Info, Deduced);
 | 
						|
      }
 | 
						|
      if (const DependentSizedArrayType *DependentArrayArg
 | 
						|
            = dyn_cast<DependentSizedArrayType>(ArrayArg))
 | 
						|
        if (DependentArrayArg->getSizeExpr())
 | 
						|
          return DeduceNonTypeTemplateArgument(S, NTTP,
 | 
						|
                                               DependentArrayArg->getSizeExpr(),
 | 
						|
                                               Info, Deduced);
 | 
						|
 | 
						|
      // Incomplete type does not match a dependently-sized array type
 | 
						|
      return Sema::TDK_NonDeducedMismatch;
 | 
						|
    }
 | 
						|
 | 
						|
    //     type(*)(T)
 | 
						|
    //     T(*)()
 | 
						|
    //     T(*)(T)
 | 
						|
    case Type::FunctionProto: {
 | 
						|
      unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
 | 
						|
      const FunctionProtoType *FunctionProtoArg =
 | 
						|
        dyn_cast<FunctionProtoType>(Arg);
 | 
						|
      if (!FunctionProtoArg)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      const FunctionProtoType *FunctionProtoParam =
 | 
						|
        cast<FunctionProtoType>(Param);
 | 
						|
 | 
						|
      if (FunctionProtoParam->getTypeQuals()
 | 
						|
            != FunctionProtoArg->getTypeQuals() ||
 | 
						|
          FunctionProtoParam->getRefQualifier()
 | 
						|
            != FunctionProtoArg->getRefQualifier() ||
 | 
						|
          FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      // Check return types.
 | 
						|
      if (Sema::TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                            FunctionProtoParam->getResultType(),
 | 
						|
                                            FunctionProtoArg->getResultType(),
 | 
						|
                                            Info, Deduced, 0))
 | 
						|
        return Result;
 | 
						|
 | 
						|
      return DeduceTemplateArguments(S, TemplateParams,
 | 
						|
                                     FunctionProtoParam->arg_type_begin(),
 | 
						|
                                     FunctionProtoParam->getNumArgs(),
 | 
						|
                                     FunctionProtoArg->arg_type_begin(),
 | 
						|
                                     FunctionProtoArg->getNumArgs(),
 | 
						|
                                     Info, Deduced, SubTDF);
 | 
						|
    }
 | 
						|
 | 
						|
    case Type::InjectedClassName: {
 | 
						|
      // Treat a template's injected-class-name as if the template
 | 
						|
      // specialization type had been used.
 | 
						|
      Param = cast<InjectedClassNameType>(Param)
 | 
						|
        ->getInjectedSpecializationType();
 | 
						|
      assert(isa<TemplateSpecializationType>(Param) &&
 | 
						|
             "injected class name is not a template specialization type");
 | 
						|
      // fall through
 | 
						|
    }
 | 
						|
 | 
						|
    //     template-name<T> (where template-name refers to a class template)
 | 
						|
    //     template-name<i>
 | 
						|
    //     TT<T>
 | 
						|
    //     TT<i>
 | 
						|
    //     TT<>
 | 
						|
    case Type::TemplateSpecialization: {
 | 
						|
      const TemplateSpecializationType *SpecParam
 | 
						|
        = cast<TemplateSpecializationType>(Param);
 | 
						|
 | 
						|
      // Try to deduce template arguments from the template-id.
 | 
						|
      Sema::TemplateDeductionResult Result
 | 
						|
        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
 | 
						|
                                  Info, Deduced);
 | 
						|
 | 
						|
      if (Result && (TDF & TDF_DerivedClass)) {
 | 
						|
        // C++ [temp.deduct.call]p3b3:
 | 
						|
        //   If P is a class, and P has the form template-id, then A can be a
 | 
						|
        //   derived class of the deduced A. Likewise, if P is a pointer to a
 | 
						|
        //   class of the form template-id, A can be a pointer to a derived
 | 
						|
        //   class pointed to by the deduced A.
 | 
						|
        //
 | 
						|
        // More importantly:
 | 
						|
        //   These alternatives are considered only if type deduction would
 | 
						|
        //   otherwise fail.
 | 
						|
        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
 | 
						|
          // We cannot inspect base classes as part of deduction when the type
 | 
						|
          // is incomplete, so either instantiate any templates necessary to
 | 
						|
          // complete the type, or skip over it if it cannot be completed.
 | 
						|
          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
 | 
						|
            return Result;
 | 
						|
 | 
						|
          // Use data recursion to crawl through the list of base classes.
 | 
						|
          // Visited contains the set of nodes we have already visited, while
 | 
						|
          // ToVisit is our stack of records that we still need to visit.
 | 
						|
          llvm::SmallPtrSet<const RecordType *, 8> Visited;
 | 
						|
          SmallVector<const RecordType *, 8> ToVisit;
 | 
						|
          ToVisit.push_back(RecordT);
 | 
						|
          bool Successful = false;
 | 
						|
          SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
 | 
						|
                                                              Deduced.end());
 | 
						|
          while (!ToVisit.empty()) {
 | 
						|
            // Retrieve the next class in the inheritance hierarchy.
 | 
						|
            const RecordType *NextT = ToVisit.back();
 | 
						|
            ToVisit.pop_back();
 | 
						|
 | 
						|
            // If we have already seen this type, skip it.
 | 
						|
            if (!Visited.insert(NextT))
 | 
						|
              continue;
 | 
						|
 | 
						|
            // If this is a base class, try to perform template argument
 | 
						|
            // deduction from it.
 | 
						|
            if (NextT != RecordT) {
 | 
						|
              Sema::TemplateDeductionResult BaseResult
 | 
						|
                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
 | 
						|
                                          QualType(NextT, 0), Info, Deduced);
 | 
						|
 | 
						|
              // If template argument deduction for this base was successful,
 | 
						|
              // note that we had some success. Otherwise, ignore any deductions
 | 
						|
              // from this base class.
 | 
						|
              if (BaseResult == Sema::TDK_Success) {
 | 
						|
                Successful = true;
 | 
						|
                DeducedOrig.clear();
 | 
						|
                DeducedOrig.append(Deduced.begin(), Deduced.end());
 | 
						|
              }
 | 
						|
              else
 | 
						|
                Deduced = DeducedOrig;
 | 
						|
            }
 | 
						|
 | 
						|
            // Visit base classes
 | 
						|
            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
 | 
						|
            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
 | 
						|
                                                 BaseEnd = Next->bases_end();
 | 
						|
                 Base != BaseEnd; ++Base) {
 | 
						|
              assert(Base->getType()->isRecordType() &&
 | 
						|
                     "Base class that isn't a record?");
 | 
						|
              ToVisit.push_back(Base->getType()->getAs<RecordType>());
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          if (Successful)
 | 
						|
            return Sema::TDK_Success;
 | 
						|
        }
 | 
						|
 | 
						|
      }
 | 
						|
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    //     T type::*
 | 
						|
    //     T T::*
 | 
						|
    //     T (type::*)()
 | 
						|
    //     type (T::*)()
 | 
						|
    //     type (type::*)(T)
 | 
						|
    //     type (T::*)(T)
 | 
						|
    //     T (type::*)(T)
 | 
						|
    //     T (T::*)()
 | 
						|
    //     T (T::*)(T)
 | 
						|
    case Type::MemberPointer: {
 | 
						|
      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
 | 
						|
      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
 | 
						|
      if (!MemPtrArg)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      if (Sema::TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                                 MemPtrParam->getPointeeType(),
 | 
						|
                                                 MemPtrArg->getPointeeType(),
 | 
						|
                                                 Info, Deduced,
 | 
						|
                                                 TDF & TDF_IgnoreQualifiers))
 | 
						|
        return Result;
 | 
						|
 | 
						|
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                           QualType(MemPtrParam->getClass(), 0),
 | 
						|
                                           QualType(MemPtrArg->getClass(), 0),
 | 
						|
                                           Info, Deduced, 
 | 
						|
                                           TDF & TDF_IgnoreQualifiers);
 | 
						|
    }
 | 
						|
 | 
						|
    //     (clang extension)
 | 
						|
    //
 | 
						|
    //     type(^)(T)
 | 
						|
    //     T(^)()
 | 
						|
    //     T(^)(T)
 | 
						|
    case Type::BlockPointer: {
 | 
						|
      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
 | 
						|
      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
 | 
						|
 | 
						|
      if (!BlockPtrArg)
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                                BlockPtrParam->getPointeeType(),
 | 
						|
                                                BlockPtrArg->getPointeeType(),
 | 
						|
                                                Info, Deduced, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    //     (clang extension)
 | 
						|
    //
 | 
						|
    //     T __attribute__(((ext_vector_type(<integral constant>))))
 | 
						|
    case Type::ExtVector: {
 | 
						|
      const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
 | 
						|
      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
 | 
						|
        // Make sure that the vectors have the same number of elements.
 | 
						|
        if (VectorParam->getNumElements() != VectorArg->getNumElements())
 | 
						|
          return Sema::TDK_NonDeducedMismatch;
 | 
						|
        
 | 
						|
        // Perform deduction on the element types.
 | 
						|
        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                                  VectorParam->getElementType(),
 | 
						|
                                                  VectorArg->getElementType(),
 | 
						|
                                                  Info, Deduced, TDF);
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (const DependentSizedExtVectorType *VectorArg 
 | 
						|
                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
 | 
						|
        // We can't check the number of elements, since the argument has a
 | 
						|
        // dependent number of elements. This can only occur during partial
 | 
						|
        // ordering.
 | 
						|
 | 
						|
        // Perform deduction on the element types.
 | 
						|
        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                                  VectorParam->getElementType(),
 | 
						|
                                                  VectorArg->getElementType(),
 | 
						|
                                                  Info, Deduced, TDF);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return Sema::TDK_NonDeducedMismatch;
 | 
						|
    }
 | 
						|
      
 | 
						|
    //     (clang extension)
 | 
						|
    //
 | 
						|
    //     T __attribute__(((ext_vector_type(N))))
 | 
						|
    case Type::DependentSizedExtVector: {
 | 
						|
      const DependentSizedExtVectorType *VectorParam
 | 
						|
        = cast<DependentSizedExtVectorType>(Param);
 | 
						|
 | 
						|
      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
 | 
						|
        // Perform deduction on the element types.
 | 
						|
        if (Sema::TemplateDeductionResult Result
 | 
						|
              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                                  VectorParam->getElementType(),
 | 
						|
                                                   VectorArg->getElementType(),
 | 
						|
                                                   Info, Deduced, TDF))
 | 
						|
          return Result;
 | 
						|
        
 | 
						|
        // Perform deduction on the vector size, if we can.
 | 
						|
        NonTypeTemplateParmDecl *NTTP
 | 
						|
          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
 | 
						|
        if (!NTTP)
 | 
						|
          return Sema::TDK_Success;
 | 
						|
 | 
						|
        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
 | 
						|
        ArgSize = VectorArg->getNumElements();
 | 
						|
        return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
 | 
						|
                                             false, Info, Deduced);
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (const DependentSizedExtVectorType *VectorArg 
 | 
						|
                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
 | 
						|
        // Perform deduction on the element types.
 | 
						|
        if (Sema::TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                                 VectorParam->getElementType(),
 | 
						|
                                                 VectorArg->getElementType(),
 | 
						|
                                                 Info, Deduced, TDF))
 | 
						|
          return Result;
 | 
						|
        
 | 
						|
        // Perform deduction on the vector size, if we can.
 | 
						|
        NonTypeTemplateParmDecl *NTTP
 | 
						|
          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
 | 
						|
        if (!NTTP)
 | 
						|
          return Sema::TDK_Success;
 | 
						|
        
 | 
						|
        return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
 | 
						|
                                             Info, Deduced);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return Sema::TDK_NonDeducedMismatch;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Type::TypeOfExpr:
 | 
						|
    case Type::TypeOf:
 | 
						|
    case Type::DependentName:
 | 
						|
    case Type::UnresolvedUsing:
 | 
						|
    case Type::Decltype:
 | 
						|
    case Type::UnaryTransform:
 | 
						|
    case Type::Auto:
 | 
						|
    case Type::DependentTemplateSpecialization:
 | 
						|
    case Type::PackExpansion:
 | 
						|
      // No template argument deduction for these types
 | 
						|
      return Sema::TDK_Success;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid Type Class!");
 | 
						|
}
 | 
						|
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArguments(Sema &S,
 | 
						|
                        TemplateParameterList *TemplateParams,
 | 
						|
                        const TemplateArgument &Param,
 | 
						|
                        TemplateArgument Arg,
 | 
						|
                        TemplateDeductionInfo &Info,
 | 
						|
                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | 
						|
  // If the template argument is a pack expansion, perform template argument
 | 
						|
  // deduction against the pattern of that expansion. This only occurs during
 | 
						|
  // partial ordering.
 | 
						|
  if (Arg.isPackExpansion())
 | 
						|
    Arg = Arg.getPackExpansionPattern();
 | 
						|
 | 
						|
  switch (Param.getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
    llvm_unreachable("Null template argument in parameter list");
 | 
						|
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    if (Arg.getKind() == TemplateArgument::Type)
 | 
						|
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                                Param.getAsType(),
 | 
						|
                                                Arg.getAsType(),
 | 
						|
                                                Info, Deduced, 0);
 | 
						|
    Info.FirstArg = Param;
 | 
						|
    Info.SecondArg = Arg;
 | 
						|
    return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  case TemplateArgument::Template:
 | 
						|
    if (Arg.getKind() == TemplateArgument::Template)
 | 
						|
      return DeduceTemplateArguments(S, TemplateParams,
 | 
						|
                                     Param.getAsTemplate(),
 | 
						|
                                     Arg.getAsTemplate(), Info, Deduced);
 | 
						|
    Info.FirstArg = Param;
 | 
						|
    Info.SecondArg = Arg;
 | 
						|
    return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  case TemplateArgument::TemplateExpansion:
 | 
						|
    llvm_unreachable("caller should handle pack expansions");
 | 
						|
 | 
						|
  case TemplateArgument::Declaration:
 | 
						|
    if (Arg.getKind() == TemplateArgument::Declaration &&
 | 
						|
        isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
 | 
						|
      return Sema::TDK_Success;
 | 
						|
 | 
						|
    Info.FirstArg = Param;
 | 
						|
    Info.SecondArg = Arg;
 | 
						|
    return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  case TemplateArgument::Integral:
 | 
						|
    if (Arg.getKind() == TemplateArgument::Integral) {
 | 
						|
      if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
 | 
						|
        return Sema::TDK_Success;
 | 
						|
 | 
						|
      Info.FirstArg = Param;
 | 
						|
      Info.SecondArg = Arg;
 | 
						|
      return Sema::TDK_NonDeducedMismatch;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Arg.getKind() == TemplateArgument::Expression) {
 | 
						|
      Info.FirstArg = Param;
 | 
						|
      Info.SecondArg = Arg;
 | 
						|
      return Sema::TDK_NonDeducedMismatch;
 | 
						|
    }
 | 
						|
 | 
						|
    Info.FirstArg = Param;
 | 
						|
    Info.SecondArg = Arg;
 | 
						|
    return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  case TemplateArgument::Expression: {
 | 
						|
    if (NonTypeTemplateParmDecl *NTTP
 | 
						|
          = getDeducedParameterFromExpr(Param.getAsExpr())) {
 | 
						|
      if (Arg.getKind() == TemplateArgument::Integral)
 | 
						|
        return DeduceNonTypeTemplateArgument(S, NTTP,
 | 
						|
                                             Arg.getAsIntegral(),
 | 
						|
                                             Arg.getIntegralType(),
 | 
						|
                                             /*ArrayBound=*/false,
 | 
						|
                                             Info, Deduced);
 | 
						|
      if (Arg.getKind() == TemplateArgument::Expression)
 | 
						|
        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
 | 
						|
                                             Info, Deduced);
 | 
						|
      if (Arg.getKind() == TemplateArgument::Declaration)
 | 
						|
        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
 | 
						|
                                             Info, Deduced);
 | 
						|
 | 
						|
      Info.FirstArg = Param;
 | 
						|
      Info.SecondArg = Arg;
 | 
						|
      return Sema::TDK_NonDeducedMismatch;
 | 
						|
    }
 | 
						|
 | 
						|
    // Can't deduce anything, but that's okay.
 | 
						|
    return Sema::TDK_Success;
 | 
						|
  }
 | 
						|
  case TemplateArgument::Pack:
 | 
						|
    llvm_unreachable("Argument packs should be expanded by the caller!");
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid TemplateArgument Kind!");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether there is a template argument to be used for
 | 
						|
/// deduction.
 | 
						|
///
 | 
						|
/// This routine "expands" argument packs in-place, overriding its input
 | 
						|
/// parameters so that \c Args[ArgIdx] will be the available template argument.
 | 
						|
///
 | 
						|
/// \returns true if there is another template argument (which will be at
 | 
						|
/// \c Args[ArgIdx]), false otherwise.
 | 
						|
static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
 | 
						|
                                            unsigned &ArgIdx,
 | 
						|
                                            unsigned &NumArgs) {
 | 
						|
  if (ArgIdx == NumArgs)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TemplateArgument &Arg = Args[ArgIdx];
 | 
						|
  if (Arg.getKind() != TemplateArgument::Pack)
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
 | 
						|
  Args = Arg.pack_begin();
 | 
						|
  NumArgs = Arg.pack_size();
 | 
						|
  ArgIdx = 0;
 | 
						|
  return ArgIdx < NumArgs;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given set of template arguments has a pack
 | 
						|
/// expansion that is not the last template argument.
 | 
						|
static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
 | 
						|
                                      unsigned NumArgs) {
 | 
						|
  unsigned ArgIdx = 0;
 | 
						|
  while (ArgIdx < NumArgs) {
 | 
						|
    const TemplateArgument &Arg = Args[ArgIdx];
 | 
						|
 | 
						|
    // Unwrap argument packs.
 | 
						|
    if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
 | 
						|
      Args = Arg.pack_begin();
 | 
						|
      NumArgs = Arg.pack_size();
 | 
						|
      ArgIdx = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ++ArgIdx;
 | 
						|
    if (ArgIdx == NumArgs)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Arg.isPackExpansion())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArguments(Sema &S,
 | 
						|
                        TemplateParameterList *TemplateParams,
 | 
						|
                        const TemplateArgument *Params, unsigned NumParams,
 | 
						|
                        const TemplateArgument *Args, unsigned NumArgs,
 | 
						|
                        TemplateDeductionInfo &Info,
 | 
						|
                    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                        bool NumberOfArgumentsMustMatch) {
 | 
						|
  // C++0x [temp.deduct.type]p9:
 | 
						|
  //   If the template argument list of P contains a pack expansion that is not
 | 
						|
  //   the last template argument, the entire template argument list is a
 | 
						|
  //   non-deduced context.
 | 
						|
  if (hasPackExpansionBeforeEnd(Params, NumParams))
 | 
						|
    return Sema::TDK_Success;
 | 
						|
 | 
						|
  // C++0x [temp.deduct.type]p9:
 | 
						|
  //   If P has a form that contains <T> or <i>, then each argument Pi of the
 | 
						|
  //   respective template argument list P is compared with the corresponding
 | 
						|
  //   argument Ai of the corresponding template argument list of A.
 | 
						|
  unsigned ArgIdx = 0, ParamIdx = 0;
 | 
						|
  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
 | 
						|
       ++ParamIdx) {
 | 
						|
    if (!Params[ParamIdx].isPackExpansion()) {
 | 
						|
      // The simple case: deduce template arguments by matching Pi and Ai.
 | 
						|
 | 
						|
      // Check whether we have enough arguments.
 | 
						|
      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
 | 
						|
        return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
 | 
						|
                                         : Sema::TDK_Success;
 | 
						|
 | 
						|
      if (Args[ArgIdx].isPackExpansion()) {
 | 
						|
        // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
 | 
						|
        // but applied to pack expansions that are template arguments.
 | 
						|
        return Sema::TDK_NonDeducedMismatch;
 | 
						|
      }
 | 
						|
 | 
						|
      // Perform deduction for this Pi/Ai pair.
 | 
						|
      if (Sema::TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArguments(S, TemplateParams,
 | 
						|
                                      Params[ParamIdx], Args[ArgIdx],
 | 
						|
                                      Info, Deduced))
 | 
						|
        return Result;
 | 
						|
 | 
						|
      // Move to the next argument.
 | 
						|
      ++ArgIdx;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // The parameter is a pack expansion.
 | 
						|
 | 
						|
    // C++0x [temp.deduct.type]p9:
 | 
						|
    //   If Pi is a pack expansion, then the pattern of Pi is compared with
 | 
						|
    //   each remaining argument in the template argument list of A. Each
 | 
						|
    //   comparison deduces template arguments for subsequent positions in the
 | 
						|
    //   template parameter packs expanded by Pi.
 | 
						|
    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
 | 
						|
 | 
						|
    // Compute the set of template parameter indices that correspond to
 | 
						|
    // parameter packs expanded by the pack expansion.
 | 
						|
    SmallVector<unsigned, 2> PackIndices;
 | 
						|
    {
 | 
						|
      llvm::SmallBitVector SawIndices(TemplateParams->size());
 | 
						|
      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | 
						|
      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
 | 
						|
      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
 | 
						|
        unsigned Depth, Index;
 | 
						|
        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
 | 
						|
        if (Depth == 0 && !SawIndices[Index]) {
 | 
						|
          SawIndices[Index] = true;
 | 
						|
          PackIndices.push_back(Index);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
 | 
						|
 | 
						|
    // FIXME: If there are no remaining arguments, we can bail out early
 | 
						|
    // and set any deduced parameter packs to an empty argument pack.
 | 
						|
    // The latter part of this is a (minor) correctness issue.
 | 
						|
 | 
						|
    // Save the deduced template arguments for each parameter pack expanded
 | 
						|
    // by this pack expansion, then clear out the deduction.
 | 
						|
    SmallVector<DeducedTemplateArgument, 2>
 | 
						|
      SavedPacks(PackIndices.size());
 | 
						|
    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
 | 
						|
      NewlyDeducedPacks(PackIndices.size());
 | 
						|
    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
 | 
						|
                                 NewlyDeducedPacks);
 | 
						|
 | 
						|
    // Keep track of the deduced template arguments for each parameter pack
 | 
						|
    // expanded by this pack expansion (the outer index) and for each
 | 
						|
    // template argument (the inner SmallVectors).
 | 
						|
    bool HasAnyArguments = false;
 | 
						|
    while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
 | 
						|
      HasAnyArguments = true;
 | 
						|
 | 
						|
      // Deduce template arguments from the pattern.
 | 
						|
      if (Sema::TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
 | 
						|
                                      Info, Deduced))
 | 
						|
        return Result;
 | 
						|
 | 
						|
      // Capture the deduced template arguments for each parameter pack expanded
 | 
						|
      // by this pack expansion, add them to the list of arguments we've deduced
 | 
						|
      // for that pack, then clear out the deduced argument.
 | 
						|
      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | 
						|
        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
 | 
						|
        if (!DeducedArg.isNull()) {
 | 
						|
          NewlyDeducedPacks[I].push_back(DeducedArg);
 | 
						|
          DeducedArg = DeducedTemplateArgument();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      ++ArgIdx;
 | 
						|
    }
 | 
						|
 | 
						|
    // Build argument packs for each of the parameter packs expanded by this
 | 
						|
    // pack expansion.
 | 
						|
    if (Sema::TemplateDeductionResult Result
 | 
						|
          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
 | 
						|
                                        Deduced, PackIndices, SavedPacks,
 | 
						|
                                        NewlyDeducedPacks, Info))
 | 
						|
      return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is an argument remaining, then we had too many arguments.
 | 
						|
  if (NumberOfArgumentsMustMatch &&
 | 
						|
      hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
 | 
						|
    return Sema::TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  return Sema::TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArguments(Sema &S,
 | 
						|
                        TemplateParameterList *TemplateParams,
 | 
						|
                        const TemplateArgumentList &ParamList,
 | 
						|
                        const TemplateArgumentList &ArgList,
 | 
						|
                        TemplateDeductionInfo &Info,
 | 
						|
                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | 
						|
  return DeduceTemplateArguments(S, TemplateParams,
 | 
						|
                                 ParamList.data(), ParamList.size(),
 | 
						|
                                 ArgList.data(), ArgList.size(),
 | 
						|
                                 Info, Deduced);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether two template arguments are the same.
 | 
						|
static bool isSameTemplateArg(ASTContext &Context,
 | 
						|
                              const TemplateArgument &X,
 | 
						|
                              const TemplateArgument &Y) {
 | 
						|
  if (X.getKind() != Y.getKind())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (X.getKind()) {
 | 
						|
    case TemplateArgument::Null:
 | 
						|
      llvm_unreachable("Comparing NULL template argument");
 | 
						|
 | 
						|
    case TemplateArgument::Type:
 | 
						|
      return Context.getCanonicalType(X.getAsType()) ==
 | 
						|
             Context.getCanonicalType(Y.getAsType());
 | 
						|
 | 
						|
    case TemplateArgument::Declaration:
 | 
						|
      return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
 | 
						|
 | 
						|
    case TemplateArgument::Template:
 | 
						|
    case TemplateArgument::TemplateExpansion:
 | 
						|
      return Context.getCanonicalTemplateName(
 | 
						|
                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
 | 
						|
             Context.getCanonicalTemplateName(
 | 
						|
                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
 | 
						|
 | 
						|
    case TemplateArgument::Integral:
 | 
						|
      return X.getAsIntegral() == Y.getAsIntegral();
 | 
						|
 | 
						|
    case TemplateArgument::Expression: {
 | 
						|
      llvm::FoldingSetNodeID XID, YID;
 | 
						|
      X.getAsExpr()->Profile(XID, Context, true);
 | 
						|
      Y.getAsExpr()->Profile(YID, Context, true);
 | 
						|
      return XID == YID;
 | 
						|
    }
 | 
						|
 | 
						|
    case TemplateArgument::Pack:
 | 
						|
      if (X.pack_size() != Y.pack_size())
 | 
						|
        return false;
 | 
						|
 | 
						|
      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
 | 
						|
                                        XPEnd = X.pack_end(),
 | 
						|
                                           YP = Y.pack_begin();
 | 
						|
           XP != XPEnd; ++XP, ++YP)
 | 
						|
        if (!isSameTemplateArg(Context, *XP, *YP))
 | 
						|
          return false;
 | 
						|
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid TemplateArgument Kind!");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Allocate a TemplateArgumentLoc where all locations have
 | 
						|
/// been initialized to the given location.
 | 
						|
///
 | 
						|
/// \param S The semantic analysis object.
 | 
						|
///
 | 
						|
/// \param Arg The template argument we are producing template argument
 | 
						|
/// location information for.
 | 
						|
///
 | 
						|
/// \param NTTPType For a declaration template argument, the type of
 | 
						|
/// the non-type template parameter that corresponds to this template
 | 
						|
/// argument.
 | 
						|
///
 | 
						|
/// \param Loc The source location to use for the resulting template
 | 
						|
/// argument.
 | 
						|
static TemplateArgumentLoc
 | 
						|
getTrivialTemplateArgumentLoc(Sema &S,
 | 
						|
                              const TemplateArgument &Arg,
 | 
						|
                              QualType NTTPType,
 | 
						|
                              SourceLocation Loc) {
 | 
						|
  switch (Arg.getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
    llvm_unreachable("Can't get a NULL template argument here");
 | 
						|
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    return TemplateArgumentLoc(Arg,
 | 
						|
                     S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
 | 
						|
 | 
						|
  case TemplateArgument::Declaration: {
 | 
						|
    Expr *E
 | 
						|
      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
 | 
						|
          .takeAs<Expr>();
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(E), E);
 | 
						|
  }
 | 
						|
 | 
						|
  case TemplateArgument::Integral: {
 | 
						|
    Expr *E
 | 
						|
      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(E), E);
 | 
						|
  }
 | 
						|
 | 
						|
    case TemplateArgument::Template:
 | 
						|
    case TemplateArgument::TemplateExpansion: {
 | 
						|
      NestedNameSpecifierLocBuilder Builder;
 | 
						|
      TemplateName Template = Arg.getAsTemplate();
 | 
						|
      if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
 | 
						|
        Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
 | 
						|
      else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
 | 
						|
        Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
 | 
						|
      
 | 
						|
      if (Arg.getKind() == TemplateArgument::Template)
 | 
						|
        return TemplateArgumentLoc(Arg, 
 | 
						|
                                   Builder.getWithLocInContext(S.Context),
 | 
						|
                                   Loc);
 | 
						|
      
 | 
						|
      
 | 
						|
      return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
 | 
						|
                                 Loc, Loc);
 | 
						|
    }
 | 
						|
 | 
						|
  case TemplateArgument::Expression:
 | 
						|
    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
 | 
						|
 | 
						|
  case TemplateArgument::Pack:
 | 
						|
    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid TemplateArgument Kind!");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Convert the given deduced template argument and add it to the set of
 | 
						|
/// fully-converted template arguments.
 | 
						|
static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
 | 
						|
                                           DeducedTemplateArgument Arg,
 | 
						|
                                           NamedDecl *Template,
 | 
						|
                                           QualType NTTPType,
 | 
						|
                                           unsigned ArgumentPackIndex,
 | 
						|
                                           TemplateDeductionInfo &Info,
 | 
						|
                                           bool InFunctionTemplate,
 | 
						|
                             SmallVectorImpl<TemplateArgument> &Output) {
 | 
						|
  if (Arg.getKind() == TemplateArgument::Pack) {
 | 
						|
    // This is a template argument pack, so check each of its arguments against
 | 
						|
    // the template parameter.
 | 
						|
    SmallVector<TemplateArgument, 2> PackedArgsBuilder;
 | 
						|
    for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
 | 
						|
                                      PAEnd = Arg.pack_end();
 | 
						|
         PA != PAEnd; ++PA) {
 | 
						|
      // When converting the deduced template argument, append it to the
 | 
						|
      // general output list. We need to do this so that the template argument
 | 
						|
      // checking logic has all of the prior template arguments available.
 | 
						|
      DeducedTemplateArgument InnerArg(*PA);
 | 
						|
      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
 | 
						|
      if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
 | 
						|
                                         NTTPType, PackedArgsBuilder.size(),
 | 
						|
                                         Info, InFunctionTemplate, Output))
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Move the converted template argument into our argument pack.
 | 
						|
      PackedArgsBuilder.push_back(Output.back());
 | 
						|
      Output.pop_back();
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the resulting argument pack.
 | 
						|
    Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
 | 
						|
                                                      PackedArgsBuilder.data(),
 | 
						|
                                                     PackedArgsBuilder.size()));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the deduced template argument into a template
 | 
						|
  // argument that we can check, almost as if the user had written
 | 
						|
  // the template argument explicitly.
 | 
						|
  TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
 | 
						|
                                                             Info.getLocation());
 | 
						|
 | 
						|
  // Check the template argument, converting it as necessary.
 | 
						|
  return S.CheckTemplateArgument(Param, ArgLoc,
 | 
						|
                                 Template,
 | 
						|
                                 Template->getLocation(),
 | 
						|
                                 Template->getSourceRange().getEnd(),
 | 
						|
                                 ArgumentPackIndex,
 | 
						|
                                 Output,
 | 
						|
                                 InFunctionTemplate
 | 
						|
                                  ? (Arg.wasDeducedFromArrayBound()
 | 
						|
                                       ? Sema::CTAK_DeducedFromArrayBound
 | 
						|
                                       : Sema::CTAK_Deduced)
 | 
						|
                                 : Sema::CTAK_Specified);
 | 
						|
}
 | 
						|
 | 
						|
/// Complete template argument deduction for a class template partial
 | 
						|
/// specialization.
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
FinishTemplateArgumentDeduction(Sema &S,
 | 
						|
                                ClassTemplatePartialSpecializationDecl *Partial,
 | 
						|
                                const TemplateArgumentList &TemplateArgs,
 | 
						|
                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                                TemplateDeductionInfo &Info) {
 | 
						|
  // Unevaluated SFINAE context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
 | 
						|
  Sema::SFINAETrap Trap(S);
 | 
						|
 | 
						|
  Sema::ContextRAII SavedContext(S, Partial);
 | 
						|
 | 
						|
  // C++ [temp.deduct.type]p2:
 | 
						|
  //   [...] or if any template argument remains neither deduced nor
 | 
						|
  //   explicitly specified, template argument deduction fails.
 | 
						|
  SmallVector<TemplateArgument, 4> Builder;
 | 
						|
  TemplateParameterList *PartialParams = Partial->getTemplateParameters();
 | 
						|
  for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
 | 
						|
    NamedDecl *Param = PartialParams->getParam(I);
 | 
						|
    if (Deduced[I].isNull()) {
 | 
						|
      Info.Param = makeTemplateParameter(Param);
 | 
						|
      return Sema::TDK_Incomplete;
 | 
						|
    }
 | 
						|
 | 
						|
    // We have deduced this argument, so it still needs to be
 | 
						|
    // checked and converted.
 | 
						|
 | 
						|
    // First, for a non-type template parameter type that is
 | 
						|
    // initialized by a declaration, we need the type of the
 | 
						|
    // corresponding non-type template parameter.
 | 
						|
    QualType NTTPType;
 | 
						|
    if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                                  = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
      NTTPType = NTTP->getType();
 | 
						|
      if (NTTPType->isDependentType()) {
 | 
						|
        TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                          Builder.data(), Builder.size());
 | 
						|
        NTTPType = S.SubstType(NTTPType,
 | 
						|
                               MultiLevelTemplateArgumentList(TemplateArgs),
 | 
						|
                               NTTP->getLocation(),
 | 
						|
                               NTTP->getDeclName());
 | 
						|
        if (NTTPType.isNull()) {
 | 
						|
          Info.Param = makeTemplateParameter(Param);
 | 
						|
          // FIXME: These template arguments are temporary. Free them!
 | 
						|
          Info.reset(TemplateArgumentList::CreateCopy(S.Context,
 | 
						|
                                                      Builder.data(),
 | 
						|
                                                      Builder.size()));
 | 
						|
          return Sema::TDK_SubstitutionFailure;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
 | 
						|
                                       Partial, NTTPType, 0, Info, false,
 | 
						|
                                       Builder)) {
 | 
						|
      Info.Param = makeTemplateParameter(Param);
 | 
						|
      // FIXME: These template arguments are temporary. Free them!
 | 
						|
      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
 | 
						|
                                                  Builder.size()));
 | 
						|
      return Sema::TDK_SubstitutionFailure;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Form the template argument list from the deduced template arguments.
 | 
						|
  TemplateArgumentList *DeducedArgumentList
 | 
						|
    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
 | 
						|
                                       Builder.size());
 | 
						|
 | 
						|
  Info.reset(DeducedArgumentList);
 | 
						|
 | 
						|
  // Substitute the deduced template arguments into the template
 | 
						|
  // arguments of the class template partial specialization, and
 | 
						|
  // verify that the instantiated template arguments are both valid
 | 
						|
  // and are equivalent to the template arguments originally provided
 | 
						|
  // to the class template.
 | 
						|
  LocalInstantiationScope InstScope(S);
 | 
						|
  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
 | 
						|
  const TemplateArgumentLoc *PartialTemplateArgs
 | 
						|
    = Partial->getTemplateArgsAsWritten();
 | 
						|
 | 
						|
  // Note that we don't provide the langle and rangle locations.
 | 
						|
  TemplateArgumentListInfo InstArgs;
 | 
						|
 | 
						|
  if (S.Subst(PartialTemplateArgs,
 | 
						|
              Partial->getNumTemplateArgsAsWritten(),
 | 
						|
              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
 | 
						|
    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
 | 
						|
    if (ParamIdx >= Partial->getTemplateParameters()->size())
 | 
						|
      ParamIdx = Partial->getTemplateParameters()->size() - 1;
 | 
						|
 | 
						|
    Decl *Param
 | 
						|
      = const_cast<NamedDecl *>(
 | 
						|
                          Partial->getTemplateParameters()->getParam(ParamIdx));
 | 
						|
    Info.Param = makeTemplateParameter(Param);
 | 
						|
    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
 | 
						|
    return Sema::TDK_SubstitutionFailure;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
 | 
						|
  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
 | 
						|
                                  InstArgs, false, ConvertedInstArgs))
 | 
						|
    return Sema::TDK_SubstitutionFailure;
 | 
						|
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = ClassTemplate->getTemplateParameters();
 | 
						|
  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
 | 
						|
    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
 | 
						|
    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
 | 
						|
      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
 | 
						|
      Info.FirstArg = TemplateArgs[I];
 | 
						|
      Info.SecondArg = InstArg;
 | 
						|
      return Sema::TDK_NonDeducedMismatch;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Trap.hasErrorOccurred())
 | 
						|
    return Sema::TDK_SubstitutionFailure;
 | 
						|
 | 
						|
  return Sema::TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform template argument deduction to determine whether
 | 
						|
/// the given template arguments match the given class template
 | 
						|
/// partial specialization per C++ [temp.class.spec.match].
 | 
						|
Sema::TemplateDeductionResult
 | 
						|
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
 | 
						|
                              const TemplateArgumentList &TemplateArgs,
 | 
						|
                              TemplateDeductionInfo &Info) {
 | 
						|
  // C++ [temp.class.spec.match]p2:
 | 
						|
  //   A partial specialization matches a given actual template
 | 
						|
  //   argument list if the template arguments of the partial
 | 
						|
  //   specialization can be deduced from the actual template argument
 | 
						|
  //   list (14.8.2).
 | 
						|
 | 
						|
  // Unevaluated SFINAE context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
  SFINAETrap Trap(*this);
 | 
						|
 | 
						|
  SmallVector<DeducedTemplateArgument, 4> Deduced;
 | 
						|
  Deduced.resize(Partial->getTemplateParameters()->size());
 | 
						|
  if (TemplateDeductionResult Result
 | 
						|
        = ::DeduceTemplateArguments(*this,
 | 
						|
                                    Partial->getTemplateParameters(),
 | 
						|
                                    Partial->getTemplateArgs(),
 | 
						|
                                    TemplateArgs, Info, Deduced))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
 | 
						|
  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
 | 
						|
                             DeducedArgs, Info);
 | 
						|
  if (Inst)
 | 
						|
    return TDK_InstantiationDepth;
 | 
						|
 | 
						|
  if (Trap.hasErrorOccurred())
 | 
						|
    return Sema::TDK_SubstitutionFailure;
 | 
						|
 | 
						|
  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
 | 
						|
                                           Deduced, Info);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given type T is a simple-template-id type.
 | 
						|
static bool isSimpleTemplateIdType(QualType T) {
 | 
						|
  if (const TemplateSpecializationType *Spec
 | 
						|
        = T->getAs<TemplateSpecializationType>())
 | 
						|
    return Spec->getTemplateName().getAsTemplateDecl() != 0;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute the explicitly-provided template arguments into the
 | 
						|
/// given function template according to C++ [temp.arg.explicit].
 | 
						|
///
 | 
						|
/// \param FunctionTemplate the function template into which the explicit
 | 
						|
/// template arguments will be substituted.
 | 
						|
///
 | 
						|
/// \param ExplicitTemplateArgs the explicitly-specified template
 | 
						|
/// arguments.
 | 
						|
///
 | 
						|
/// \param Deduced the deduced template arguments, which will be populated
 | 
						|
/// with the converted and checked explicit template arguments.
 | 
						|
///
 | 
						|
/// \param ParamTypes will be populated with the instantiated function
 | 
						|
/// parameters.
 | 
						|
///
 | 
						|
/// \param FunctionType if non-NULL, the result type of the function template
 | 
						|
/// will also be instantiated and the pointed-to value will be updated with
 | 
						|
/// the instantiated function type.
 | 
						|
///
 | 
						|
/// \param Info if substitution fails for any reason, this object will be
 | 
						|
/// populated with more information about the failure.
 | 
						|
///
 | 
						|
/// \returns TDK_Success if substitution was successful, or some failure
 | 
						|
/// condition.
 | 
						|
Sema::TemplateDeductionResult
 | 
						|
Sema::SubstituteExplicitTemplateArguments(
 | 
						|
                                      FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                               TemplateArgumentListInfo &ExplicitTemplateArgs,
 | 
						|
                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                                 SmallVectorImpl<QualType> &ParamTypes,
 | 
						|
                                          QualType *FunctionType,
 | 
						|
                                          TemplateDeductionInfo &Info) {
 | 
						|
  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = FunctionTemplate->getTemplateParameters();
 | 
						|
 | 
						|
  if (ExplicitTemplateArgs.size() == 0) {
 | 
						|
    // No arguments to substitute; just copy over the parameter types and
 | 
						|
    // fill in the function type.
 | 
						|
    for (FunctionDecl::param_iterator P = Function->param_begin(),
 | 
						|
                                   PEnd = Function->param_end();
 | 
						|
         P != PEnd;
 | 
						|
         ++P)
 | 
						|
      ParamTypes.push_back((*P)->getType());
 | 
						|
 | 
						|
    if (FunctionType)
 | 
						|
      *FunctionType = Function->getType();
 | 
						|
    return TDK_Success;
 | 
						|
  }
 | 
						|
 | 
						|
  // Unevaluated SFINAE context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
  SFINAETrap Trap(*this);
 | 
						|
 | 
						|
  // C++ [temp.arg.explicit]p3:
 | 
						|
  //   Template arguments that are present shall be specified in the
 | 
						|
  //   declaration order of their corresponding template-parameters. The
 | 
						|
  //   template argument list shall not specify more template-arguments than
 | 
						|
  //   there are corresponding template-parameters.
 | 
						|
  SmallVector<TemplateArgument, 4> Builder;
 | 
						|
 | 
						|
  // Enter a new template instantiation context where we check the
 | 
						|
  // explicitly-specified template arguments against this function template,
 | 
						|
  // and then substitute them into the function parameter types.
 | 
						|
  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
 | 
						|
  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
 | 
						|
                             FunctionTemplate, DeducedArgs,
 | 
						|
           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
 | 
						|
                             Info);
 | 
						|
  if (Inst)
 | 
						|
    return TDK_InstantiationDepth;
 | 
						|
 | 
						|
  if (CheckTemplateArgumentList(FunctionTemplate,
 | 
						|
                                SourceLocation(),
 | 
						|
                                ExplicitTemplateArgs,
 | 
						|
                                true,
 | 
						|
                                Builder) || Trap.hasErrorOccurred()) {
 | 
						|
    unsigned Index = Builder.size();
 | 
						|
    if (Index >= TemplateParams->size())
 | 
						|
      Index = TemplateParams->size() - 1;
 | 
						|
    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
 | 
						|
    return TDK_InvalidExplicitArguments;
 | 
						|
  }
 | 
						|
 | 
						|
  // Form the template argument list from the explicitly-specified
 | 
						|
  // template arguments.
 | 
						|
  TemplateArgumentList *ExplicitArgumentList
 | 
						|
    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
 | 
						|
  Info.reset(ExplicitArgumentList);
 | 
						|
 | 
						|
  // Template argument deduction and the final substitution should be
 | 
						|
  // done in the context of the templated declaration.  Explicit
 | 
						|
  // argument substitution, on the other hand, needs to happen in the
 | 
						|
  // calling context.
 | 
						|
  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
 | 
						|
 | 
						|
  // If we deduced template arguments for a template parameter pack,
 | 
						|
  // note that the template argument pack is partially substituted and record
 | 
						|
  // the explicit template arguments. They'll be used as part of deduction
 | 
						|
  // for this template parameter pack.
 | 
						|
  for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
 | 
						|
    const TemplateArgument &Arg = Builder[I];
 | 
						|
    if (Arg.getKind() == TemplateArgument::Pack) {
 | 
						|
      CurrentInstantiationScope->SetPartiallySubstitutedPack(
 | 
						|
                                                 TemplateParams->getParam(I),
 | 
						|
                                                             Arg.pack_begin(),
 | 
						|
                                                             Arg.pack_size());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const FunctionProtoType *Proto
 | 
						|
    = Function->getType()->getAs<FunctionProtoType>();
 | 
						|
  assert(Proto && "Function template does not have a prototype?");
 | 
						|
 | 
						|
  // Instantiate the types of each of the function parameters given the
 | 
						|
  // explicitly-specified template arguments. If the function has a trailing
 | 
						|
  // return type, substitute it after the arguments to ensure we substitute
 | 
						|
  // in lexical order.
 | 
						|
  if (Proto->hasTrailingReturn()) {
 | 
						|
    if (SubstParmTypes(Function->getLocation(),
 | 
						|
                       Function->param_begin(), Function->getNumParams(),
 | 
						|
                       MultiLevelTemplateArgumentList(*ExplicitArgumentList),
 | 
						|
                       ParamTypes))
 | 
						|
      return TDK_SubstitutionFailure;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Instantiate the return type.
 | 
						|
  // FIXME: exception-specifications?
 | 
						|
  QualType ResultType;
 | 
						|
  {
 | 
						|
    // C++11 [expr.prim.general]p3:
 | 
						|
    //   If a declaration declares a member function or member function 
 | 
						|
    //   template of a class X, the expression this is a prvalue of type 
 | 
						|
    //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
 | 
						|
    //   and the end of the function-definition, member-declarator, or 
 | 
						|
    //   declarator.
 | 
						|
    unsigned ThisTypeQuals = 0;
 | 
						|
    CXXRecordDecl *ThisContext = 0;
 | 
						|
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
 | 
						|
      ThisContext = Method->getParent();
 | 
						|
      ThisTypeQuals = Method->getTypeQualifiers();
 | 
						|
    }
 | 
						|
      
 | 
						|
    CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
 | 
						|
                               getLangOpts().CPlusPlus0x);
 | 
						|
    
 | 
						|
    ResultType = SubstType(Proto->getResultType(),
 | 
						|
                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
 | 
						|
                   Function->getTypeSpecStartLoc(),
 | 
						|
                   Function->getDeclName());
 | 
						|
    if (ResultType.isNull() || Trap.hasErrorOccurred())
 | 
						|
      return TDK_SubstitutionFailure;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Instantiate the types of each of the function parameters given the
 | 
						|
  // explicitly-specified template arguments if we didn't do so earlier.
 | 
						|
  if (!Proto->hasTrailingReturn() &&
 | 
						|
      SubstParmTypes(Function->getLocation(),
 | 
						|
                     Function->param_begin(), Function->getNumParams(),
 | 
						|
                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
 | 
						|
                     ParamTypes))
 | 
						|
    return TDK_SubstitutionFailure;
 | 
						|
 | 
						|
  if (FunctionType) {
 | 
						|
    *FunctionType = BuildFunctionType(ResultType,
 | 
						|
                                      ParamTypes.data(), ParamTypes.size(),
 | 
						|
                                      Proto->isVariadic(),
 | 
						|
                                      Proto->hasTrailingReturn(),
 | 
						|
                                      Proto->getTypeQuals(),
 | 
						|
                                      Proto->getRefQualifier(),
 | 
						|
                                      Function->getLocation(),
 | 
						|
                                      Function->getDeclName(),
 | 
						|
                                      Proto->getExtInfo());
 | 
						|
    if (FunctionType->isNull() || Trap.hasErrorOccurred())
 | 
						|
      return TDK_SubstitutionFailure;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.arg.explicit]p2:
 | 
						|
  //   Trailing template arguments that can be deduced (14.8.2) may be
 | 
						|
  //   omitted from the list of explicit template-arguments. If all of the
 | 
						|
  //   template arguments can be deduced, they may all be omitted; in this
 | 
						|
  //   case, the empty template argument list <> itself may also be omitted.
 | 
						|
  //
 | 
						|
  // Take all of the explicitly-specified arguments and put them into
 | 
						|
  // the set of deduced template arguments. Explicitly-specified
 | 
						|
  // parameter packs, however, will be set to NULL since the deduction
 | 
						|
  // mechanisms handle explicitly-specified argument packs directly.
 | 
						|
  Deduced.reserve(TemplateParams->size());
 | 
						|
  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
 | 
						|
    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
 | 
						|
    if (Arg.getKind() == TemplateArgument::Pack)
 | 
						|
      Deduced.push_back(DeducedTemplateArgument());
 | 
						|
    else
 | 
						|
      Deduced.push_back(Arg);
 | 
						|
  }
 | 
						|
 | 
						|
  return TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether the deduced argument type for a call to a function
 | 
						|
/// template matches the actual argument type per C++ [temp.deduct.call]p4.
 | 
						|
static bool 
 | 
						|
CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg, 
 | 
						|
                              QualType DeducedA) {
 | 
						|
  ASTContext &Context = S.Context;
 | 
						|
  
 | 
						|
  QualType A = OriginalArg.OriginalArgType;
 | 
						|
  QualType OriginalParamType = OriginalArg.OriginalParamType;
 | 
						|
  
 | 
						|
  // Check for type equality (top-level cv-qualifiers are ignored).
 | 
						|
  if (Context.hasSameUnqualifiedType(A, DeducedA))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Strip off references on the argument types; they aren't needed for
 | 
						|
  // the following checks.
 | 
						|
  if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
 | 
						|
    DeducedA = DeducedARef->getPointeeType();
 | 
						|
  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
 | 
						|
    A = ARef->getPointeeType();
 | 
						|
  
 | 
						|
  // C++ [temp.deduct.call]p4:
 | 
						|
  //   [...] However, there are three cases that allow a difference:
 | 
						|
  //     - If the original P is a reference type, the deduced A (i.e., the 
 | 
						|
  //       type referred to by the reference) can be more cv-qualified than 
 | 
						|
  //       the transformed A.
 | 
						|
  if (const ReferenceType *OriginalParamRef
 | 
						|
      = OriginalParamType->getAs<ReferenceType>()) {
 | 
						|
    // We don't want to keep the reference around any more.
 | 
						|
    OriginalParamType = OriginalParamRef->getPointeeType();
 | 
						|
    
 | 
						|
    Qualifiers AQuals = A.getQualifiers();
 | 
						|
    Qualifiers DeducedAQuals = DeducedA.getQualifiers();
 | 
						|
 | 
						|
    // Under Objective-C++ ARC, the deduced type may have implicitly been
 | 
						|
    // given strong lifetime. If so, update the original qualifiers to
 | 
						|
    // include this strong lifetime.
 | 
						|
    if (S.getLangOpts().ObjCAutoRefCount &&
 | 
						|
        DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
 | 
						|
        AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
 | 
						|
      AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
 | 
						|
    }
 | 
						|
 | 
						|
    if (AQuals == DeducedAQuals) {
 | 
						|
      // Qualifiers match; there's nothing to do.
 | 
						|
    } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
 | 
						|
      return true;
 | 
						|
    } else {        
 | 
						|
      // Qualifiers are compatible, so have the argument type adopt the
 | 
						|
      // deduced argument type's qualifiers as if we had performed the
 | 
						|
      // qualification conversion.
 | 
						|
      A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  //    - The transformed A can be another pointer or pointer to member 
 | 
						|
  //      type that can be converted to the deduced A via a qualification 
 | 
						|
  //      conversion.
 | 
						|
  //
 | 
						|
  // Also allow conversions which merely strip [[noreturn]] from function types
 | 
						|
  // (recursively) as an extension.
 | 
						|
  // FIXME: Currently, this doesn't place nicely with qualfication conversions.
 | 
						|
  bool ObjCLifetimeConversion = false;
 | 
						|
  QualType ResultTy;
 | 
						|
  if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
 | 
						|
      (S.IsQualificationConversion(A, DeducedA, false,
 | 
						|
                                   ObjCLifetimeConversion) ||
 | 
						|
       S.IsNoReturnConversion(A, DeducedA, ResultTy)))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  
 | 
						|
  //    - If P is a class and P has the form simple-template-id, then the 
 | 
						|
  //      transformed A can be a derived class of the deduced A. [...]
 | 
						|
  //     [...] Likewise, if P is a pointer to a class of the form 
 | 
						|
  //      simple-template-id, the transformed A can be a pointer to a 
 | 
						|
  //      derived class pointed to by the deduced A.
 | 
						|
  if (const PointerType *OriginalParamPtr
 | 
						|
      = OriginalParamType->getAs<PointerType>()) {
 | 
						|
    if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
 | 
						|
      if (const PointerType *APtr = A->getAs<PointerType>()) {
 | 
						|
        if (A->getPointeeType()->isRecordType()) {
 | 
						|
          OriginalParamType = OriginalParamPtr->getPointeeType();
 | 
						|
          DeducedA = DeducedAPtr->getPointeeType();
 | 
						|
          A = APtr->getPointeeType();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Context.hasSameUnqualifiedType(A, DeducedA))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
 | 
						|
      S.IsDerivedFrom(A, DeducedA))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Finish template argument deduction for a function template,
 | 
						|
/// checking the deduced template arguments for completeness and forming
 | 
						|
/// the function template specialization.
 | 
						|
///
 | 
						|
/// \param OriginalCallArgs If non-NULL, the original call arguments against
 | 
						|
/// which the deduced argument types should be compared.
 | 
						|
Sema::TemplateDeductionResult
 | 
						|
Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                                      unsigned NumExplicitlySpecified,
 | 
						|
                                      FunctionDecl *&Specialization,
 | 
						|
                                      TemplateDeductionInfo &Info,
 | 
						|
        SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = FunctionTemplate->getTemplateParameters();
 | 
						|
 | 
						|
  // Unevaluated SFINAE context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
  SFINAETrap Trap(*this);
 | 
						|
 | 
						|
  // Enter a new template instantiation context while we instantiate the
 | 
						|
  // actual function declaration.
 | 
						|
  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
 | 
						|
  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
 | 
						|
                             FunctionTemplate, DeducedArgs,
 | 
						|
              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
 | 
						|
                             Info);
 | 
						|
  if (Inst)
 | 
						|
    return TDK_InstantiationDepth;
 | 
						|
 | 
						|
  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
 | 
						|
 | 
						|
  // C++ [temp.deduct.type]p2:
 | 
						|
  //   [...] or if any template argument remains neither deduced nor
 | 
						|
  //   explicitly specified, template argument deduction fails.
 | 
						|
  SmallVector<TemplateArgument, 4> Builder;
 | 
						|
  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | 
						|
    NamedDecl *Param = TemplateParams->getParam(I);
 | 
						|
 | 
						|
    if (!Deduced[I].isNull()) {
 | 
						|
      if (I < NumExplicitlySpecified) {
 | 
						|
        // We have already fully type-checked and converted this
 | 
						|
        // argument, because it was explicitly-specified. Just record the
 | 
						|
        // presence of this argument.
 | 
						|
        Builder.push_back(Deduced[I]);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // We have deduced this argument, so it still needs to be
 | 
						|
      // checked and converted.
 | 
						|
 | 
						|
      // First, for a non-type template parameter type that is
 | 
						|
      // initialized by a declaration, we need the type of the
 | 
						|
      // corresponding non-type template parameter.
 | 
						|
      QualType NTTPType;
 | 
						|
      if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
        NTTPType = NTTP->getType();
 | 
						|
        if (NTTPType->isDependentType()) {
 | 
						|
          TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                            Builder.data(), Builder.size());
 | 
						|
          NTTPType = SubstType(NTTPType,
 | 
						|
                               MultiLevelTemplateArgumentList(TemplateArgs),
 | 
						|
                               NTTP->getLocation(),
 | 
						|
                               NTTP->getDeclName());
 | 
						|
          if (NTTPType.isNull()) {
 | 
						|
            Info.Param = makeTemplateParameter(Param);
 | 
						|
            // FIXME: These template arguments are temporary. Free them!
 | 
						|
            Info.reset(TemplateArgumentList::CreateCopy(Context,
 | 
						|
                                                        Builder.data(),
 | 
						|
                                                        Builder.size()));
 | 
						|
            return TDK_SubstitutionFailure;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
 | 
						|
                                         FunctionTemplate, NTTPType, 0, Info,
 | 
						|
                                         true, Builder)) {
 | 
						|
        Info.Param = makeTemplateParameter(Param);
 | 
						|
        // FIXME: These template arguments are temporary. Free them!
 | 
						|
        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
 | 
						|
                                                    Builder.size()));
 | 
						|
        return TDK_SubstitutionFailure;
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [temp.arg.explicit]p3:
 | 
						|
    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
 | 
						|
    //    be deduced to an empty sequence of template arguments.
 | 
						|
    // FIXME: Where did the word "trailing" come from?
 | 
						|
    if (Param->isTemplateParameterPack()) {
 | 
						|
      // We may have had explicitly-specified template arguments for this
 | 
						|
      // template parameter pack. If so, our empty deduction extends the
 | 
						|
      // explicitly-specified set (C++0x [temp.arg.explicit]p9).
 | 
						|
      const TemplateArgument *ExplicitArgs;
 | 
						|
      unsigned NumExplicitArgs;
 | 
						|
      if (CurrentInstantiationScope &&
 | 
						|
          CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
 | 
						|
                                                             &NumExplicitArgs)
 | 
						|
          == Param)
 | 
						|
        Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
 | 
						|
      else
 | 
						|
        Builder.push_back(TemplateArgument(0, 0));
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Substitute into the default template argument, if available.
 | 
						|
    TemplateArgumentLoc DefArg
 | 
						|
      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
 | 
						|
                                              FunctionTemplate->getLocation(),
 | 
						|
                                  FunctionTemplate->getSourceRange().getEnd(),
 | 
						|
                                                Param,
 | 
						|
                                                Builder);
 | 
						|
 | 
						|
    // If there was no default argument, deduction is incomplete.
 | 
						|
    if (DefArg.getArgument().isNull()) {
 | 
						|
      Info.Param = makeTemplateParameter(
 | 
						|
                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
 | 
						|
      return TDK_Incomplete;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check whether we can actually use the default argument.
 | 
						|
    if (CheckTemplateArgument(Param, DefArg,
 | 
						|
                              FunctionTemplate,
 | 
						|
                              FunctionTemplate->getLocation(),
 | 
						|
                              FunctionTemplate->getSourceRange().getEnd(),
 | 
						|
                              0, Builder,
 | 
						|
                              CTAK_Specified)) {
 | 
						|
      Info.Param = makeTemplateParameter(
 | 
						|
                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
 | 
						|
      // FIXME: These template arguments are temporary. Free them!
 | 
						|
      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
 | 
						|
                                                  Builder.size()));
 | 
						|
      return TDK_SubstitutionFailure;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we get here, we successfully used the default template argument.
 | 
						|
  }
 | 
						|
 | 
						|
  // Form the template argument list from the deduced template arguments.
 | 
						|
  TemplateArgumentList *DeducedArgumentList
 | 
						|
    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
 | 
						|
  Info.reset(DeducedArgumentList);
 | 
						|
 | 
						|
  // Substitute the deduced template arguments into the function template
 | 
						|
  // declaration to produce the function template specialization.
 | 
						|
  DeclContext *Owner = FunctionTemplate->getDeclContext();
 | 
						|
  if (FunctionTemplate->getFriendObjectKind())
 | 
						|
    Owner = FunctionTemplate->getLexicalDeclContext();
 | 
						|
  Specialization = cast_or_null<FunctionDecl>(
 | 
						|
                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
 | 
						|
                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
 | 
						|
  if (!Specialization || Specialization->isInvalidDecl())
 | 
						|
    return TDK_SubstitutionFailure;
 | 
						|
 | 
						|
  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
 | 
						|
         FunctionTemplate->getCanonicalDecl());
 | 
						|
 | 
						|
  // If the template argument list is owned by the function template
 | 
						|
  // specialization, release it.
 | 
						|
  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
 | 
						|
      !Trap.hasErrorOccurred())
 | 
						|
    Info.take();
 | 
						|
 | 
						|
  // There may have been an error that did not prevent us from constructing a
 | 
						|
  // declaration. Mark the declaration invalid and return with a substitution
 | 
						|
  // failure.
 | 
						|
  if (Trap.hasErrorOccurred()) {
 | 
						|
    Specialization->setInvalidDecl(true);
 | 
						|
    return TDK_SubstitutionFailure;
 | 
						|
  }
 | 
						|
 | 
						|
  if (OriginalCallArgs) {
 | 
						|
    // C++ [temp.deduct.call]p4:
 | 
						|
    //   In general, the deduction process attempts to find template argument
 | 
						|
    //   values that will make the deduced A identical to A (after the type A 
 | 
						|
    //   is transformed as described above). [...]
 | 
						|
    for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
 | 
						|
      OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
 | 
						|
      unsigned ParamIdx = OriginalArg.ArgIdx;
 | 
						|
      
 | 
						|
      if (ParamIdx >= Specialization->getNumParams())
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
 | 
						|
      if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
 | 
						|
        return Sema::TDK_SubstitutionFailure;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we suppressed any diagnostics while performing template argument
 | 
						|
  // deduction, and if we haven't already instantiated this declaration,
 | 
						|
  // keep track of these diagnostics. They'll be emitted if this specialization
 | 
						|
  // is actually used.
 | 
						|
  if (Info.diag_begin() != Info.diag_end()) {
 | 
						|
    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
 | 
						|
      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
 | 
						|
    if (Pos == SuppressedDiagnostics.end())
 | 
						|
        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
 | 
						|
          .append(Info.diag_begin(), Info.diag_end());
 | 
						|
  }
 | 
						|
 | 
						|
  return TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// Gets the type of a function for template-argument-deducton
 | 
						|
/// purposes when it's considered as part of an overload set.
 | 
						|
static QualType GetTypeOfFunction(ASTContext &Context,
 | 
						|
                                  const OverloadExpr::FindResult &R,
 | 
						|
                                  FunctionDecl *Fn) {
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
 | 
						|
    if (Method->isInstance()) {
 | 
						|
      // An instance method that's referenced in a form that doesn't
 | 
						|
      // look like a member pointer is just invalid.
 | 
						|
      if (!R.HasFormOfMemberPointer) return QualType();
 | 
						|
 | 
						|
      return Context.getMemberPointerType(Fn->getType(),
 | 
						|
               Context.getTypeDeclType(Method->getParent()).getTypePtr());
 | 
						|
    }
 | 
						|
 | 
						|
  if (!R.IsAddressOfOperand) return Fn->getType();
 | 
						|
  return Context.getPointerType(Fn->getType());
 | 
						|
}
 | 
						|
 | 
						|
/// Apply the deduction rules for overload sets.
 | 
						|
///
 | 
						|
/// \return the null type if this argument should be treated as an
 | 
						|
/// undeduced context
 | 
						|
static QualType
 | 
						|
ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
 | 
						|
                            Expr *Arg, QualType ParamType,
 | 
						|
                            bool ParamWasReference) {
 | 
						|
 | 
						|
  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
 | 
						|
 | 
						|
  OverloadExpr *Ovl = R.Expression;
 | 
						|
 | 
						|
  // C++0x [temp.deduct.call]p4
 | 
						|
  unsigned TDF = 0;
 | 
						|
  if (ParamWasReference)
 | 
						|
    TDF |= TDF_ParamWithReferenceType;
 | 
						|
  if (R.IsAddressOfOperand)
 | 
						|
    TDF |= TDF_IgnoreQualifiers;
 | 
						|
 | 
						|
  // C++0x [temp.deduct.call]p6:
 | 
						|
  //   When P is a function type, pointer to function type, or pointer
 | 
						|
  //   to member function type:
 | 
						|
 | 
						|
  if (!ParamType->isFunctionType() &&
 | 
						|
      !ParamType->isFunctionPointerType() &&
 | 
						|
      !ParamType->isMemberFunctionPointerType()) {
 | 
						|
    if (Ovl->hasExplicitTemplateArgs()) {
 | 
						|
      // But we can still look for an explicit specialization.
 | 
						|
      if (FunctionDecl *ExplicitSpec
 | 
						|
            = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
 | 
						|
        return GetTypeOfFunction(S.Context, R, ExplicitSpec);
 | 
						|
    }
 | 
						|
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Gather the explicit template arguments, if any.
 | 
						|
  TemplateArgumentListInfo ExplicitTemplateArgs;
 | 
						|
  if (Ovl->hasExplicitTemplateArgs())
 | 
						|
    Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
 | 
						|
  QualType Match;
 | 
						|
  for (UnresolvedSetIterator I = Ovl->decls_begin(),
 | 
						|
         E = Ovl->decls_end(); I != E; ++I) {
 | 
						|
    NamedDecl *D = (*I)->getUnderlyingDecl();
 | 
						|
 | 
						|
    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
 | 
						|
      //   - If the argument is an overload set containing one or more
 | 
						|
      //     function templates, the parameter is treated as a
 | 
						|
      //     non-deduced context.
 | 
						|
      if (!Ovl->hasExplicitTemplateArgs())
 | 
						|
        return QualType();
 | 
						|
      
 | 
						|
      // Otherwise, see if we can resolve a function type 
 | 
						|
      FunctionDecl *Specialization = 0;
 | 
						|
      TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
 | 
						|
      if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
 | 
						|
                                    Specialization, Info))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      D = Specialization;
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionDecl *Fn = cast<FunctionDecl>(D);
 | 
						|
    QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
 | 
						|
    if (ArgType.isNull()) continue;
 | 
						|
 | 
						|
    // Function-to-pointer conversion.
 | 
						|
    if (!ParamWasReference && ParamType->isPointerType() &&
 | 
						|
        ArgType->isFunctionType())
 | 
						|
      ArgType = S.Context.getPointerType(ArgType);
 | 
						|
 | 
						|
    //   - If the argument is an overload set (not containing function
 | 
						|
    //     templates), trial argument deduction is attempted using each
 | 
						|
    //     of the members of the set. If deduction succeeds for only one
 | 
						|
    //     of the overload set members, that member is used as the
 | 
						|
    //     argument value for the deduction. If deduction succeeds for
 | 
						|
    //     more than one member of the overload set the parameter is
 | 
						|
    //     treated as a non-deduced context.
 | 
						|
 | 
						|
    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
 | 
						|
    //   Type deduction is done independently for each P/A pair, and
 | 
						|
    //   the deduced template argument values are then combined.
 | 
						|
    // So we do not reject deductions which were made elsewhere.
 | 
						|
    SmallVector<DeducedTemplateArgument, 8>
 | 
						|
      Deduced(TemplateParams->size());
 | 
						|
    TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
 | 
						|
    Sema::TemplateDeductionResult Result
 | 
						|
      = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
 | 
						|
                                           ArgType, Info, Deduced, TDF);
 | 
						|
    if (Result) continue;
 | 
						|
    if (!Match.isNull()) return QualType();
 | 
						|
    Match = ArgType;
 | 
						|
  }
 | 
						|
 | 
						|
  return Match;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform the adjustments to the parameter and argument types
 | 
						|
/// described in C++ [temp.deduct.call].
 | 
						|
///
 | 
						|
/// \returns true if the caller should not attempt to perform any template
 | 
						|
/// argument deduction based on this P/A pair.
 | 
						|
static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
 | 
						|
                                          TemplateParameterList *TemplateParams,
 | 
						|
                                                      QualType &ParamType,
 | 
						|
                                                      QualType &ArgType,
 | 
						|
                                                      Expr *Arg,
 | 
						|
                                                      unsigned &TDF) {
 | 
						|
  // C++0x [temp.deduct.call]p3:
 | 
						|
  //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
 | 
						|
  //   are ignored for type deduction.
 | 
						|
  if (ParamType.hasQualifiers())
 | 
						|
    ParamType = ParamType.getUnqualifiedType();
 | 
						|
  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
 | 
						|
  if (ParamRefType) {
 | 
						|
    QualType PointeeType = ParamRefType->getPointeeType();
 | 
						|
 | 
						|
    // If the argument has incomplete array type, try to complete it's type.
 | 
						|
    if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
 | 
						|
      ArgType = Arg->getType();
 | 
						|
 | 
						|
    //   [C++0x] If P is an rvalue reference to a cv-unqualified
 | 
						|
    //   template parameter and the argument is an lvalue, the type
 | 
						|
    //   "lvalue reference to A" is used in place of A for type
 | 
						|
    //   deduction.
 | 
						|
    if (isa<RValueReferenceType>(ParamType)) {
 | 
						|
      if (!PointeeType.getQualifiers() &&
 | 
						|
          isa<TemplateTypeParmType>(PointeeType) &&
 | 
						|
          Arg->Classify(S.Context).isLValue() &&
 | 
						|
          Arg->getType() != S.Context.OverloadTy &&
 | 
						|
          Arg->getType() != S.Context.BoundMemberTy)
 | 
						|
        ArgType = S.Context.getLValueReferenceType(ArgType);
 | 
						|
    }
 | 
						|
 | 
						|
    //   [...] If P is a reference type, the type referred to by P is used
 | 
						|
    //   for type deduction.
 | 
						|
    ParamType = PointeeType;
 | 
						|
  }
 | 
						|
 | 
						|
  // Overload sets usually make this parameter an undeduced
 | 
						|
  // context, but there are sometimes special circumstances.
 | 
						|
  if (ArgType == S.Context.OverloadTy) {
 | 
						|
    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
 | 
						|
                                          Arg, ParamType,
 | 
						|
                                          ParamRefType != 0);
 | 
						|
    if (ArgType.isNull())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ParamRefType) {
 | 
						|
    // C++0x [temp.deduct.call]p3:
 | 
						|
    //   [...] If P is of the form T&&, where T is a template parameter, and
 | 
						|
    //   the argument is an lvalue, the type A& is used in place of A for
 | 
						|
    //   type deduction.
 | 
						|
    if (ParamRefType->isRValueReferenceType() &&
 | 
						|
        ParamRefType->getAs<TemplateTypeParmType>() &&
 | 
						|
        Arg->isLValue())
 | 
						|
      ArgType = S.Context.getLValueReferenceType(ArgType);
 | 
						|
  } else {
 | 
						|
    // C++ [temp.deduct.call]p2:
 | 
						|
    //   If P is not a reference type:
 | 
						|
    //   - If A is an array type, the pointer type produced by the
 | 
						|
    //     array-to-pointer standard conversion (4.2) is used in place of
 | 
						|
    //     A for type deduction; otherwise,
 | 
						|
    if (ArgType->isArrayType())
 | 
						|
      ArgType = S.Context.getArrayDecayedType(ArgType);
 | 
						|
    //   - If A is a function type, the pointer type produced by the
 | 
						|
    //     function-to-pointer standard conversion (4.3) is used in place
 | 
						|
    //     of A for type deduction; otherwise,
 | 
						|
    else if (ArgType->isFunctionType())
 | 
						|
      ArgType = S.Context.getPointerType(ArgType);
 | 
						|
    else {
 | 
						|
      // - If A is a cv-qualified type, the top level cv-qualifiers of A's
 | 
						|
      //   type are ignored for type deduction.
 | 
						|
      ArgType = ArgType.getUnqualifiedType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.deduct.call]p4:
 | 
						|
  //   In general, the deduction process attempts to find template argument
 | 
						|
  //   values that will make the deduced A identical to A (after the type A
 | 
						|
  //   is transformed as described above). [...]
 | 
						|
  TDF = TDF_SkipNonDependent;
 | 
						|
 | 
						|
  //     - If the original P is a reference type, the deduced A (i.e., the
 | 
						|
  //       type referred to by the reference) can be more cv-qualified than
 | 
						|
  //       the transformed A.
 | 
						|
  if (ParamRefType)
 | 
						|
    TDF |= TDF_ParamWithReferenceType;
 | 
						|
  //     - The transformed A can be another pointer or pointer to member
 | 
						|
  //       type that can be converted to the deduced A via a qualification
 | 
						|
  //       conversion (4.4).
 | 
						|
  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
 | 
						|
      ArgType->isObjCObjectPointerType())
 | 
						|
    TDF |= TDF_IgnoreQualifiers;
 | 
						|
  //     - If P is a class and P has the form simple-template-id, then the
 | 
						|
  //       transformed A can be a derived class of the deduced A. Likewise,
 | 
						|
  //       if P is a pointer to a class of the form simple-template-id, the
 | 
						|
  //       transformed A can be a pointer to a derived class pointed to by
 | 
						|
  //       the deduced A.
 | 
						|
  if (isSimpleTemplateIdType(ParamType) ||
 | 
						|
      (isa<PointerType>(ParamType) &&
 | 
						|
       isSimpleTemplateIdType(
 | 
						|
                              ParamType->getAs<PointerType>()->getPointeeType())))
 | 
						|
    TDF |= TDF_DerivedClass;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasDeducibleTemplateParameters(Sema &S,
 | 
						|
                                           FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                                           QualType T);
 | 
						|
 | 
						|
/// \brief Perform template argument deduction by matching a parameter type
 | 
						|
///        against a single expression, where the expression is an element of
 | 
						|
///        an initializer list that was originally matched against the argument
 | 
						|
///        type.
 | 
						|
static Sema::TemplateDeductionResult
 | 
						|
DeduceTemplateArgumentByListElement(Sema &S,
 | 
						|
                                    TemplateParameterList *TemplateParams,
 | 
						|
                                    QualType ParamType, Expr *Arg,
 | 
						|
                                    TemplateDeductionInfo &Info,
 | 
						|
                              SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | 
						|
                                    unsigned TDF) {
 | 
						|
  // Handle the case where an init list contains another init list as the
 | 
						|
  // element.
 | 
						|
  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
 | 
						|
    QualType X;
 | 
						|
    if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
 | 
						|
      return Sema::TDK_Success; // Just ignore this expression.
 | 
						|
 | 
						|
    // Recurse down into the init list.
 | 
						|
    for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
 | 
						|
      if (Sema::TemplateDeductionResult Result =
 | 
						|
            DeduceTemplateArgumentByListElement(S, TemplateParams, X,
 | 
						|
                                                 ILE->getInit(i),
 | 
						|
                                                 Info, Deduced, TDF))
 | 
						|
        return Result;
 | 
						|
    }
 | 
						|
    return Sema::TDK_Success;
 | 
						|
  }
 | 
						|
 | 
						|
  // For all other cases, just match by type.
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
  if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType, 
 | 
						|
                                                ArgType, Arg, TDF))
 | 
						|
    return Sema::TDK_FailedOverloadResolution;
 | 
						|
  return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
 | 
						|
                                            ArgType, Info, Deduced, TDF);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform template argument deduction from a function call
 | 
						|
/// (C++ [temp.deduct.call]).
 | 
						|
///
 | 
						|
/// \param FunctionTemplate the function template for which we are performing
 | 
						|
/// template argument deduction.
 | 
						|
///
 | 
						|
/// \param ExplicitTemplateArgs the explicit template arguments provided
 | 
						|
/// for this call.
 | 
						|
///
 | 
						|
/// \param Args the function call arguments
 | 
						|
///
 | 
						|
/// \param Name the name of the function being called. This is only significant
 | 
						|
/// when the function template is a conversion function template, in which
 | 
						|
/// case this routine will also perform template argument deduction based on
 | 
						|
/// the function to which
 | 
						|
///
 | 
						|
/// \param Specialization if template argument deduction was successful,
 | 
						|
/// this will be set to the function template specialization produced by
 | 
						|
/// template argument deduction.
 | 
						|
///
 | 
						|
/// \param Info the argument will be updated to provide additional information
 | 
						|
/// about template argument deduction.
 | 
						|
///
 | 
						|
/// \returns the result of template argument deduction.
 | 
						|
Sema::TemplateDeductionResult
 | 
						|
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                              TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                              llvm::ArrayRef<Expr *> Args,
 | 
						|
                              FunctionDecl *&Specialization,
 | 
						|
                              TemplateDeductionInfo &Info) {
 | 
						|
  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
 | 
						|
 | 
						|
  // C++ [temp.deduct.call]p1:
 | 
						|
  //   Template argument deduction is done by comparing each function template
 | 
						|
  //   parameter type (call it P) with the type of the corresponding argument
 | 
						|
  //   of the call (call it A) as described below.
 | 
						|
  unsigned CheckArgs = Args.size();
 | 
						|
  if (Args.size() < Function->getMinRequiredArguments())
 | 
						|
    return TDK_TooFewArguments;
 | 
						|
  else if (Args.size() > Function->getNumParams()) {
 | 
						|
    const FunctionProtoType *Proto
 | 
						|
      = Function->getType()->getAs<FunctionProtoType>();
 | 
						|
    if (Proto->isTemplateVariadic())
 | 
						|
      /* Do nothing */;
 | 
						|
    else if (Proto->isVariadic())
 | 
						|
      CheckArgs = Function->getNumParams();
 | 
						|
    else
 | 
						|
      return TDK_TooManyArguments;
 | 
						|
  }
 | 
						|
 | 
						|
  // The types of the parameters from which we will perform template argument
 | 
						|
  // deduction.
 | 
						|
  LocalInstantiationScope InstScope(*this);
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = FunctionTemplate->getTemplateParameters();
 | 
						|
  SmallVector<DeducedTemplateArgument, 4> Deduced;
 | 
						|
  SmallVector<QualType, 4> ParamTypes;
 | 
						|
  unsigned NumExplicitlySpecified = 0;
 | 
						|
  if (ExplicitTemplateArgs) {
 | 
						|
    TemplateDeductionResult Result =
 | 
						|
      SubstituteExplicitTemplateArguments(FunctionTemplate,
 | 
						|
                                          *ExplicitTemplateArgs,
 | 
						|
                                          Deduced,
 | 
						|
                                          ParamTypes,
 | 
						|
                                          0,
 | 
						|
                                          Info);
 | 
						|
    if (Result)
 | 
						|
      return Result;
 | 
						|
 | 
						|
    NumExplicitlySpecified = Deduced.size();
 | 
						|
  } else {
 | 
						|
    // Just fill in the parameter types from the function declaration.
 | 
						|
    for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
 | 
						|
      ParamTypes.push_back(Function->getParamDecl(I)->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Deduce template arguments from the function parameters.
 | 
						|
  Deduced.resize(TemplateParams->size());
 | 
						|
  unsigned ArgIdx = 0;
 | 
						|
  SmallVector<OriginalCallArg, 4> OriginalCallArgs;
 | 
						|
  for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
 | 
						|
       ParamIdx != NumParams; ++ParamIdx) {
 | 
						|
    QualType OrigParamType = ParamTypes[ParamIdx];
 | 
						|
    QualType ParamType = OrigParamType;
 | 
						|
    
 | 
						|
    const PackExpansionType *ParamExpansion
 | 
						|
      = dyn_cast<PackExpansionType>(ParamType);
 | 
						|
    if (!ParamExpansion) {
 | 
						|
      // Simple case: matching a function parameter to a function argument.
 | 
						|
      if (ArgIdx >= CheckArgs)
 | 
						|
        break;
 | 
						|
 | 
						|
      Expr *Arg = Args[ArgIdx++];
 | 
						|
      QualType ArgType = Arg->getType();
 | 
						|
      
 | 
						|
      unsigned TDF = 0;
 | 
						|
      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
 | 
						|
                                                    ParamType, ArgType, Arg,
 | 
						|
                                                    TDF))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If we have nothing to deduce, we're done.
 | 
						|
      if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the argument is an initializer list ...
 | 
						|
      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
 | 
						|
        // ... then the parameter is an undeduced context, unless the parameter
 | 
						|
        // type is (reference to cv) std::initializer_list<P'>, in which case
 | 
						|
        // deduction is done for each element of the initializer list, and the
 | 
						|
        // result is the deduced type if it's the same for all elements.
 | 
						|
        QualType X;
 | 
						|
        // Removing references was already done.
 | 
						|
        if (!isStdInitializerList(ParamType, &X))
 | 
						|
          continue;
 | 
						|
 | 
						|
        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
 | 
						|
          if (TemplateDeductionResult Result =
 | 
						|
                DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
 | 
						|
                                                     ILE->getInit(i),
 | 
						|
                                                     Info, Deduced, TDF))
 | 
						|
            return Result;
 | 
						|
        }
 | 
						|
        // Don't track the argument type, since an initializer list has none.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Keep track of the argument type and corresponding parameter index,
 | 
						|
      // so we can check for compatibility between the deduced A and A.
 | 
						|
      OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1, 
 | 
						|
                                                 ArgType));
 | 
						|
 | 
						|
      if (TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
 | 
						|
                                                 ParamType, ArgType,
 | 
						|
                                                 Info, Deduced, TDF))
 | 
						|
        return Result;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [temp.deduct.call]p1:
 | 
						|
    //   For a function parameter pack that occurs at the end of the
 | 
						|
    //   parameter-declaration-list, the type A of each remaining argument of
 | 
						|
    //   the call is compared with the type P of the declarator-id of the
 | 
						|
    //   function parameter pack. Each comparison deduces template arguments
 | 
						|
    //   for subsequent positions in the template parameter packs expanded by
 | 
						|
    //   the function parameter pack. For a function parameter pack that does
 | 
						|
    //   not occur at the end of the parameter-declaration-list, the type of
 | 
						|
    //   the parameter pack is a non-deduced context.
 | 
						|
    if (ParamIdx + 1 < NumParams)
 | 
						|
      break;
 | 
						|
 | 
						|
    QualType ParamPattern = ParamExpansion->getPattern();
 | 
						|
    SmallVector<unsigned, 2> PackIndices;
 | 
						|
    {
 | 
						|
      llvm::SmallBitVector SawIndices(TemplateParams->size());
 | 
						|
      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | 
						|
      collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
 | 
						|
      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
 | 
						|
        unsigned Depth, Index;
 | 
						|
        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
 | 
						|
        if (Depth == 0 && !SawIndices[Index]) {
 | 
						|
          SawIndices[Index] = true;
 | 
						|
          PackIndices.push_back(Index);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
 | 
						|
 | 
						|
    // Keep track of the deduced template arguments for each parameter pack
 | 
						|
    // expanded by this pack expansion (the outer index) and for each
 | 
						|
    // template argument (the inner SmallVectors).
 | 
						|
    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
 | 
						|
      NewlyDeducedPacks(PackIndices.size());
 | 
						|
    SmallVector<DeducedTemplateArgument, 2>
 | 
						|
      SavedPacks(PackIndices.size());
 | 
						|
    PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
 | 
						|
                                 NewlyDeducedPacks);
 | 
						|
    bool HasAnyArguments = false;
 | 
						|
    for (; ArgIdx < Args.size(); ++ArgIdx) {
 | 
						|
      HasAnyArguments = true;
 | 
						|
 | 
						|
      QualType OrigParamType = ParamPattern;
 | 
						|
      ParamType = OrigParamType;
 | 
						|
      Expr *Arg = Args[ArgIdx];
 | 
						|
      QualType ArgType = Arg->getType();
 | 
						|
      
 | 
						|
      unsigned TDF = 0;
 | 
						|
      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
 | 
						|
                                                    ParamType, ArgType, Arg,
 | 
						|
                                                    TDF)) {
 | 
						|
        // We can't actually perform any deduction for this argument, so stop
 | 
						|
        // deduction at this point.
 | 
						|
        ++ArgIdx;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // As above, initializer lists need special handling.
 | 
						|
      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
 | 
						|
        QualType X;
 | 
						|
        if (!isStdInitializerList(ParamType, &X)) {
 | 
						|
          ++ArgIdx;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
 | 
						|
          if (TemplateDeductionResult Result =
 | 
						|
                DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
 | 
						|
                                                   ILE->getInit(i)->getType(),
 | 
						|
                                                   Info, Deduced, TDF))
 | 
						|
            return Result;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
 | 
						|
        // Keep track of the argument type and corresponding argument index,
 | 
						|
        // so we can check for compatibility between the deduced A and A.
 | 
						|
        if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
 | 
						|
          OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx, 
 | 
						|
                                                     ArgType));
 | 
						|
 | 
						|
        if (TemplateDeductionResult Result
 | 
						|
            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
 | 
						|
                                                 ParamType, ArgType, Info,
 | 
						|
                                                 Deduced, TDF))
 | 
						|
          return Result;
 | 
						|
      }
 | 
						|
 | 
						|
      // Capture the deduced template arguments for each parameter pack expanded
 | 
						|
      // by this pack expansion, add them to the list of arguments we've deduced
 | 
						|
      // for that pack, then clear out the deduced argument.
 | 
						|
      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | 
						|
        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
 | 
						|
        if (!DeducedArg.isNull()) {
 | 
						|
          NewlyDeducedPacks[I].push_back(DeducedArg);
 | 
						|
          DeducedArg = DeducedTemplateArgument();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Build argument packs for each of the parameter packs expanded by this
 | 
						|
    // pack expansion.
 | 
						|
    if (Sema::TemplateDeductionResult Result
 | 
						|
          = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
 | 
						|
                                        Deduced, PackIndices, SavedPacks,
 | 
						|
                                        NewlyDeducedPacks, Info))
 | 
						|
      return Result;
 | 
						|
 | 
						|
    // After we've matching against a parameter pack, we're done.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
 | 
						|
                                         NumExplicitlySpecified,
 | 
						|
                                         Specialization, Info, &OriginalCallArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce template arguments when taking the address of a function
 | 
						|
/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
 | 
						|
/// a template.
 | 
						|
///
 | 
						|
/// \param FunctionTemplate the function template for which we are performing
 | 
						|
/// template argument deduction.
 | 
						|
///
 | 
						|
/// \param ExplicitTemplateArgs the explicitly-specified template
 | 
						|
/// arguments.
 | 
						|
///
 | 
						|
/// \param ArgFunctionType the function type that will be used as the
 | 
						|
/// "argument" type (A) when performing template argument deduction from the
 | 
						|
/// function template's function type. This type may be NULL, if there is no
 | 
						|
/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
 | 
						|
///
 | 
						|
/// \param Specialization if template argument deduction was successful,
 | 
						|
/// this will be set to the function template specialization produced by
 | 
						|
/// template argument deduction.
 | 
						|
///
 | 
						|
/// \param Info the argument will be updated to provide additional information
 | 
						|
/// about template argument deduction.
 | 
						|
///
 | 
						|
/// \returns the result of template argument deduction.
 | 
						|
Sema::TemplateDeductionResult
 | 
						|
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                              TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                              QualType ArgFunctionType,
 | 
						|
                              FunctionDecl *&Specialization,
 | 
						|
                              TemplateDeductionInfo &Info) {
 | 
						|
  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = FunctionTemplate->getTemplateParameters();
 | 
						|
  QualType FunctionType = Function->getType();
 | 
						|
 | 
						|
  // Substitute any explicit template arguments.
 | 
						|
  LocalInstantiationScope InstScope(*this);
 | 
						|
  SmallVector<DeducedTemplateArgument, 4> Deduced;
 | 
						|
  unsigned NumExplicitlySpecified = 0;
 | 
						|
  SmallVector<QualType, 4> ParamTypes;
 | 
						|
  if (ExplicitTemplateArgs) {
 | 
						|
    if (TemplateDeductionResult Result
 | 
						|
          = SubstituteExplicitTemplateArguments(FunctionTemplate,
 | 
						|
                                                *ExplicitTemplateArgs,
 | 
						|
                                                Deduced, ParamTypes,
 | 
						|
                                                &FunctionType, Info))
 | 
						|
      return Result;
 | 
						|
 | 
						|
    NumExplicitlySpecified = Deduced.size();
 | 
						|
  }
 | 
						|
 | 
						|
  // Unevaluated SFINAE context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
  SFINAETrap Trap(*this);
 | 
						|
 | 
						|
  Deduced.resize(TemplateParams->size());
 | 
						|
 | 
						|
  if (!ArgFunctionType.isNull()) {
 | 
						|
    // Deduce template arguments from the function type.
 | 
						|
    if (TemplateDeductionResult Result
 | 
						|
          = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
 | 
						|
                                      FunctionType, ArgFunctionType, Info,
 | 
						|
                                      Deduced, TDF_TopLevelParameterTypeList))
 | 
						|
      return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TemplateDeductionResult Result
 | 
						|
        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
 | 
						|
                                          NumExplicitlySpecified,
 | 
						|
                                          Specialization, Info))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // If the requested function type does not match the actual type of the
 | 
						|
  // specialization, template argument deduction fails.
 | 
						|
  if (!ArgFunctionType.isNull() &&
 | 
						|
      !Context.hasSameType(ArgFunctionType, Specialization->getType()))
 | 
						|
    return TDK_NonDeducedMismatch;
 | 
						|
 | 
						|
  return TDK_Success;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce template arguments for a templated conversion
 | 
						|
/// function (C++ [temp.deduct.conv]) and, if successful, produce a
 | 
						|
/// conversion function template specialization.
 | 
						|
Sema::TemplateDeductionResult
 | 
						|
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                              QualType ToType,
 | 
						|
                              CXXConversionDecl *&Specialization,
 | 
						|
                              TemplateDeductionInfo &Info) {
 | 
						|
  CXXConversionDecl *Conv
 | 
						|
    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
 | 
						|
  QualType FromType = Conv->getConversionType();
 | 
						|
 | 
						|
  // Canonicalize the types for deduction.
 | 
						|
  QualType P = Context.getCanonicalType(FromType);
 | 
						|
  QualType A = Context.getCanonicalType(ToType);
 | 
						|
 | 
						|
  // C++0x [temp.deduct.conv]p2:
 | 
						|
  //   If P is a reference type, the type referred to by P is used for
 | 
						|
  //   type deduction.
 | 
						|
  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
 | 
						|
    P = PRef->getPointeeType();
 | 
						|
 | 
						|
  // C++0x [temp.deduct.conv]p4:
 | 
						|
  //   [...] If A is a reference type, the type referred to by A is used
 | 
						|
  //   for type deduction.
 | 
						|
  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
 | 
						|
    A = ARef->getPointeeType().getUnqualifiedType();
 | 
						|
  // C++ [temp.deduct.conv]p3:
 | 
						|
  //
 | 
						|
  //   If A is not a reference type:
 | 
						|
  else {
 | 
						|
    assert(!A->isReferenceType() && "Reference types were handled above");
 | 
						|
 | 
						|
    //   - If P is an array type, the pointer type produced by the
 | 
						|
    //     array-to-pointer standard conversion (4.2) is used in place
 | 
						|
    //     of P for type deduction; otherwise,
 | 
						|
    if (P->isArrayType())
 | 
						|
      P = Context.getArrayDecayedType(P);
 | 
						|
    //   - If P is a function type, the pointer type produced by the
 | 
						|
    //     function-to-pointer standard conversion (4.3) is used in
 | 
						|
    //     place of P for type deduction; otherwise,
 | 
						|
    else if (P->isFunctionType())
 | 
						|
      P = Context.getPointerType(P);
 | 
						|
    //   - If P is a cv-qualified type, the top level cv-qualifiers of
 | 
						|
    //     P's type are ignored for type deduction.
 | 
						|
    else
 | 
						|
      P = P.getUnqualifiedType();
 | 
						|
 | 
						|
    // C++0x [temp.deduct.conv]p4:
 | 
						|
    //   If A is a cv-qualified type, the top level cv-qualifiers of A's
 | 
						|
    //   type are ignored for type deduction. If A is a reference type, the type 
 | 
						|
    //   referred to by A is used for type deduction.
 | 
						|
    A = A.getUnqualifiedType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Unevaluated SFINAE context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
  SFINAETrap Trap(*this);
 | 
						|
 | 
						|
  // C++ [temp.deduct.conv]p1:
 | 
						|
  //   Template argument deduction is done by comparing the return
 | 
						|
  //   type of the template conversion function (call it P) with the
 | 
						|
  //   type that is required as the result of the conversion (call it
 | 
						|
  //   A) as described in 14.8.2.4.
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = FunctionTemplate->getTemplateParameters();
 | 
						|
  SmallVector<DeducedTemplateArgument, 4> Deduced;
 | 
						|
  Deduced.resize(TemplateParams->size());
 | 
						|
 | 
						|
  // C++0x [temp.deduct.conv]p4:
 | 
						|
  //   In general, the deduction process attempts to find template
 | 
						|
  //   argument values that will make the deduced A identical to
 | 
						|
  //   A. However, there are two cases that allow a difference:
 | 
						|
  unsigned TDF = 0;
 | 
						|
  //     - If the original A is a reference type, A can be more
 | 
						|
  //       cv-qualified than the deduced A (i.e., the type referred to
 | 
						|
  //       by the reference)
 | 
						|
  if (ToType->isReferenceType())
 | 
						|
    TDF |= TDF_ParamWithReferenceType;
 | 
						|
  //     - The deduced A can be another pointer or pointer to member
 | 
						|
  //       type that can be converted to A via a qualification
 | 
						|
  //       conversion.
 | 
						|
  //
 | 
						|
  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
 | 
						|
  // both P and A are pointers or member pointers. In this case, we
 | 
						|
  // just ignore cv-qualifiers completely).
 | 
						|
  if ((P->isPointerType() && A->isPointerType()) ||
 | 
						|
      (P->isMemberPointerType() && A->isMemberPointerType()))
 | 
						|
    TDF |= TDF_IgnoreQualifiers;
 | 
						|
  if (TemplateDeductionResult Result
 | 
						|
        = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
 | 
						|
                                             P, A, Info, Deduced, TDF))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Finish template argument deduction.
 | 
						|
  LocalInstantiationScope InstScope(*this);
 | 
						|
  FunctionDecl *Spec = 0;
 | 
						|
  TemplateDeductionResult Result
 | 
						|
    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
 | 
						|
                                      Info);
 | 
						|
  Specialization = cast_or_null<CXXConversionDecl>(Spec);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce template arguments for a function template when there is
 | 
						|
/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
 | 
						|
///
 | 
						|
/// \param FunctionTemplate the function template for which we are performing
 | 
						|
/// template argument deduction.
 | 
						|
///
 | 
						|
/// \param ExplicitTemplateArgs the explicitly-specified template
 | 
						|
/// arguments.
 | 
						|
///
 | 
						|
/// \param Specialization if template argument deduction was successful,
 | 
						|
/// this will be set to the function template specialization produced by
 | 
						|
/// template argument deduction.
 | 
						|
///
 | 
						|
/// \param Info the argument will be updated to provide additional information
 | 
						|
/// about template argument deduction.
 | 
						|
///
 | 
						|
/// \returns the result of template argument deduction.
 | 
						|
Sema::TemplateDeductionResult
 | 
						|
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                              TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                              FunctionDecl *&Specialization,
 | 
						|
                              TemplateDeductionInfo &Info) {
 | 
						|
  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
 | 
						|
                                 QualType(), Specialization, Info);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// Substitute the 'auto' type specifier within a type for a given replacement
 | 
						|
  /// type.
 | 
						|
  class SubstituteAutoTransform :
 | 
						|
    public TreeTransform<SubstituteAutoTransform> {
 | 
						|
    QualType Replacement;
 | 
						|
  public:
 | 
						|
    SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
 | 
						|
      TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
 | 
						|
    }
 | 
						|
    QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
 | 
						|
      // If we're building the type pattern to deduce against, don't wrap the
 | 
						|
      // substituted type in an AutoType. Certain template deduction rules
 | 
						|
      // apply only when a template type parameter appears directly (and not if
 | 
						|
      // the parameter is found through desugaring). For instance:
 | 
						|
      //   auto &&lref = lvalue;
 | 
						|
      // must transform into "rvalue reference to T" not "rvalue reference to
 | 
						|
      // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
 | 
						|
      if (isa<TemplateTypeParmType>(Replacement)) {
 | 
						|
        QualType Result = Replacement;
 | 
						|
        TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
 | 
						|
        NewTL.setNameLoc(TL.getNameLoc());
 | 
						|
        return Result;
 | 
						|
      } else {
 | 
						|
        QualType Result = RebuildAutoType(Replacement);
 | 
						|
        AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
 | 
						|
        NewTL.setNameLoc(TL.getNameLoc());
 | 
						|
        return Result;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult TransformLambdaExpr(LambdaExpr *E) {
 | 
						|
      // Lambdas never need to be transformed.
 | 
						|
      return E;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Determine whether the specified type (which contains an 'auto' type
 | 
						|
  /// specifier) is dependent. This is not trivial, because the 'auto' specifier
 | 
						|
  /// itself claims to be type-dependent.
 | 
						|
  bool isDependentAutoType(QualType Ty) {
 | 
						|
    while (1) {
 | 
						|
      QualType Pointee = Ty->getPointeeType();
 | 
						|
      if (!Pointee.isNull()) {
 | 
						|
        Ty = Pointee;
 | 
						|
      } else if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()){
 | 
						|
        if (MPT->getClass()->isDependentType())
 | 
						|
          return true;
 | 
						|
        Ty = MPT->getPointeeType();
 | 
						|
      } else if (const FunctionProtoType *FPT = Ty->getAs<FunctionProtoType>()){
 | 
						|
        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
 | 
						|
                                                  E = FPT->arg_type_end();
 | 
						|
             I != E; ++I)
 | 
						|
          if ((*I)->isDependentType())
 | 
						|
            return true;
 | 
						|
        Ty = FPT->getResultType();
 | 
						|
      } else if (Ty->isDependentSizedArrayType()) {
 | 
						|
        return true;
 | 
						|
      } else if (const ArrayType *AT = Ty->getAsArrayTypeUnsafe()) {
 | 
						|
        Ty = AT->getElementType();
 | 
						|
      } else if (Ty->getAs<DependentSizedExtVectorType>()) {
 | 
						|
        return true;
 | 
						|
      } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | 
						|
        Ty = VT->getElementType();
 | 
						|
      } else {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(Ty->getAs<AutoType>() && "didn't find 'auto' in auto type");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
 | 
						|
///
 | 
						|
/// \param Type the type pattern using the auto type-specifier.
 | 
						|
///
 | 
						|
/// \param Init the initializer for the variable whose type is to be deduced.
 | 
						|
///
 | 
						|
/// \param Result if type deduction was successful, this will be set to the
 | 
						|
/// deduced type. This may still contain undeduced autos if the type is
 | 
						|
/// dependent. This will be set to null if deduction succeeded, but auto
 | 
						|
/// substitution failed; the appropriate diagnostic will already have been
 | 
						|
/// produced in that case.
 | 
						|
Sema::DeduceAutoResult
 | 
						|
Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
 | 
						|
                     TypeSourceInfo *&Result) {
 | 
						|
  if (Init->getType()->isNonOverloadPlaceholderType()) {
 | 
						|
    ExprResult result = CheckPlaceholderExpr(Init);
 | 
						|
    if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
 | 
						|
    Init = result.take();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Init->isTypeDependent() || isDependentAutoType(Type->getType())) {
 | 
						|
    Result = Type;
 | 
						|
    return DAR_Succeeded;
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation Loc = Init->getExprLoc();
 | 
						|
 | 
						|
  LocalInstantiationScope InstScope(*this);
 | 
						|
 | 
						|
  // Build template<class TemplParam> void Func(FuncParam);
 | 
						|
  TemplateTypeParmDecl *TemplParam =
 | 
						|
    TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
 | 
						|
                                 false, false);
 | 
						|
  QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
 | 
						|
  NamedDecl *TemplParamPtr = TemplParam;
 | 
						|
  FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
 | 
						|
                                                   Loc);
 | 
						|
 | 
						|
  TypeSourceInfo *FuncParamInfo =
 | 
						|
    SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
 | 
						|
  assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
 | 
						|
  QualType FuncParam = FuncParamInfo->getType();
 | 
						|
 | 
						|
  // Deduce type of TemplParam in Func(Init)
 | 
						|
  SmallVector<DeducedTemplateArgument, 1> Deduced;
 | 
						|
  Deduced.resize(1);
 | 
						|
  QualType InitType = Init->getType();
 | 
						|
  unsigned TDF = 0;
 | 
						|
 | 
						|
  TemplateDeductionInfo Info(Context, Loc);
 | 
						|
 | 
						|
  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
 | 
						|
  if (InitList) {
 | 
						|
    for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
 | 
						|
      if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
 | 
						|
                                              TemplArg,
 | 
						|
                                              InitList->getInit(i),
 | 
						|
                                              Info, Deduced, TDF))
 | 
						|
        return DAR_Failed;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
 | 
						|
                                                  FuncParam, InitType, Init,
 | 
						|
                                                  TDF))
 | 
						|
      return DAR_Failed;
 | 
						|
 | 
						|
    if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
 | 
						|
                                           InitType, Info, Deduced, TDF))
 | 
						|
      return DAR_Failed;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType DeducedType = Deduced[0].getAsType();
 | 
						|
  if (DeducedType.isNull())
 | 
						|
    return DAR_Failed;
 | 
						|
 | 
						|
  if (InitList) {
 | 
						|
    DeducedType = BuildStdInitializerList(DeducedType, Loc);
 | 
						|
    if (DeducedType.isNull())
 | 
						|
      return DAR_FailedAlreadyDiagnosed;
 | 
						|
  }
 | 
						|
 | 
						|
  Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
 | 
						|
 | 
						|
  // Check that the deduced argument type is compatible with the original
 | 
						|
  // argument type per C++ [temp.deduct.call]p4.
 | 
						|
  if (!InitList && Result &&
 | 
						|
      CheckOriginalCallArgDeduction(*this, 
 | 
						|
                                    Sema::OriginalCallArg(FuncParam,0,InitType),
 | 
						|
                                    Result->getType())) {
 | 
						|
    Result = 0;
 | 
						|
    return DAR_Failed;
 | 
						|
  }
 | 
						|
 | 
						|
  return DAR_Succeeded;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
 | 
						|
  if (isa<InitListExpr>(Init))
 | 
						|
    Diag(VDecl->getLocation(),
 | 
						|
         diag::err_auto_var_deduction_failure_from_init_list)
 | 
						|
      << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
 | 
						|
  else
 | 
						|
    Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
 | 
						|
      << VDecl->getDeclName() << VDecl->getType() << Init->getType()
 | 
						|
      << Init->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
 | 
						|
                           bool OnlyDeduced,
 | 
						|
                           unsigned Level,
 | 
						|
                           llvm::SmallBitVector &Deduced);
 | 
						|
 | 
						|
/// \brief If this is a non-static member function,
 | 
						|
static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
 | 
						|
                                                CXXMethodDecl *Method,
 | 
						|
                                 SmallVectorImpl<QualType> &ArgTypes) {
 | 
						|
  if (Method->isStatic())
 | 
						|
    return;
 | 
						|
 | 
						|
  // C++ [over.match.funcs]p4:
 | 
						|
  //
 | 
						|
  //   For non-static member functions, the type of the implicit
 | 
						|
  //   object parameter is
 | 
						|
  //     - "lvalue reference to cv X" for functions declared without a
 | 
						|
  //       ref-qualifier or with the & ref-qualifier
 | 
						|
  //     - "rvalue reference to cv X" for functions declared with the
 | 
						|
  //       && ref-qualifier
 | 
						|
  //
 | 
						|
  // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
 | 
						|
  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
 | 
						|
  ArgTy = Context.getQualifiedType(ArgTy,
 | 
						|
                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
 | 
						|
  ArgTy = Context.getLValueReferenceType(ArgTy);
 | 
						|
  ArgTypes.push_back(ArgTy);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the function template \p FT1 is at least as
 | 
						|
/// specialized as \p FT2.
 | 
						|
static bool isAtLeastAsSpecializedAs(Sema &S,
 | 
						|
                                     SourceLocation Loc,
 | 
						|
                                     FunctionTemplateDecl *FT1,
 | 
						|
                                     FunctionTemplateDecl *FT2,
 | 
						|
                                     TemplatePartialOrderingContext TPOC,
 | 
						|
                                     unsigned NumCallArguments,
 | 
						|
    SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
 | 
						|
  FunctionDecl *FD1 = FT1->getTemplatedDecl();
 | 
						|
  FunctionDecl *FD2 = FT2->getTemplatedDecl();
 | 
						|
  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
 | 
						|
  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
 | 
						|
 | 
						|
  assert(Proto1 && Proto2 && "Function templates must have prototypes");
 | 
						|
  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
 | 
						|
  SmallVector<DeducedTemplateArgument, 4> Deduced;
 | 
						|
  Deduced.resize(TemplateParams->size());
 | 
						|
 | 
						|
  // C++0x [temp.deduct.partial]p3:
 | 
						|
  //   The types used to determine the ordering depend on the context in which
 | 
						|
  //   the partial ordering is done:
 | 
						|
  TemplateDeductionInfo Info(S.Context, Loc);
 | 
						|
  CXXMethodDecl *Method1 = 0;
 | 
						|
  CXXMethodDecl *Method2 = 0;
 | 
						|
  bool IsNonStatic2 = false;
 | 
						|
  bool IsNonStatic1 = false;
 | 
						|
  unsigned Skip2 = 0;
 | 
						|
  switch (TPOC) {
 | 
						|
  case TPOC_Call: {
 | 
						|
    //   - In the context of a function call, the function parameter types are
 | 
						|
    //     used.
 | 
						|
    Method1 = dyn_cast<CXXMethodDecl>(FD1);
 | 
						|
    Method2 = dyn_cast<CXXMethodDecl>(FD2);
 | 
						|
    IsNonStatic1 = Method1 && !Method1->isStatic();
 | 
						|
    IsNonStatic2 = Method2 && !Method2->isStatic();
 | 
						|
 | 
						|
    // C++0x [temp.func.order]p3:
 | 
						|
    //   [...] If only one of the function templates is a non-static
 | 
						|
    //   member, that function template is considered to have a new
 | 
						|
    //   first parameter inserted in its function parameter list. The
 | 
						|
    //   new parameter is of type "reference to cv A," where cv are
 | 
						|
    //   the cv-qualifiers of the function template (if any) and A is
 | 
						|
    //   the class of which the function template is a member.
 | 
						|
    //
 | 
						|
    // C++98/03 doesn't have this provision, so instead we drop the
 | 
						|
    // first argument of the free function or static member, which
 | 
						|
    // seems to match existing practice.
 | 
						|
    SmallVector<QualType, 4> Args1;
 | 
						|
    unsigned Skip1 = !S.getLangOpts().CPlusPlus0x &&
 | 
						|
      IsNonStatic2 && !IsNonStatic1;
 | 
						|
    if (S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
 | 
						|
      MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
 | 
						|
    Args1.insert(Args1.end(),
 | 
						|
                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
 | 
						|
 | 
						|
    SmallVector<QualType, 4> Args2;
 | 
						|
    Skip2 = !S.getLangOpts().CPlusPlus0x &&
 | 
						|
      IsNonStatic1 && !IsNonStatic2;
 | 
						|
    if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
 | 
						|
      MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
 | 
						|
    Args2.insert(Args2.end(),
 | 
						|
                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
 | 
						|
 | 
						|
    // C++ [temp.func.order]p5:
 | 
						|
    //   The presence of unused ellipsis and default arguments has no effect on
 | 
						|
    //   the partial ordering of function templates.
 | 
						|
    if (Args1.size() > NumCallArguments)
 | 
						|
      Args1.resize(NumCallArguments);
 | 
						|
    if (Args2.size() > NumCallArguments)
 | 
						|
      Args2.resize(NumCallArguments);
 | 
						|
    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
 | 
						|
                                Args1.data(), Args1.size(), Info, Deduced,
 | 
						|
                                TDF_None, /*PartialOrdering=*/true,
 | 
						|
                                RefParamComparisons))
 | 
						|
        return false;
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case TPOC_Conversion:
 | 
						|
    //   - In the context of a call to a conversion operator, the return types
 | 
						|
    //     of the conversion function templates are used.
 | 
						|
    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                           Proto2->getResultType(),
 | 
						|
                                           Proto1->getResultType(),
 | 
						|
                                           Info, Deduced, TDF_None,
 | 
						|
                                           /*PartialOrdering=*/true,
 | 
						|
                                           RefParamComparisons))
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
 | 
						|
  case TPOC_Other:
 | 
						|
    //   - In other contexts (14.6.6.2) the function template's function type
 | 
						|
    //     is used.
 | 
						|
    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | 
						|
                                           FD2->getType(), FD1->getType(),
 | 
						|
                                           Info, Deduced, TDF_None,
 | 
						|
                                           /*PartialOrdering=*/true,
 | 
						|
                                           RefParamComparisons))
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.deduct.partial]p11:
 | 
						|
  //   In most cases, all template parameters must have values in order for
 | 
						|
  //   deduction to succeed, but for partial ordering purposes a template
 | 
						|
  //   parameter may remain without a value provided it is not used in the
 | 
						|
  //   types being used for partial ordering. [ Note: a template parameter used
 | 
						|
  //   in a non-deduced context is considered used. -end note]
 | 
						|
  unsigned ArgIdx = 0, NumArgs = Deduced.size();
 | 
						|
  for (; ArgIdx != NumArgs; ++ArgIdx)
 | 
						|
    if (Deduced[ArgIdx].isNull())
 | 
						|
      break;
 | 
						|
 | 
						|
  if (ArgIdx == NumArgs) {
 | 
						|
    // All template arguments were deduced. FT1 is at least as specialized
 | 
						|
    // as FT2.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out which template parameters were used.
 | 
						|
  llvm::SmallBitVector UsedParameters(TemplateParams->size());
 | 
						|
  switch (TPOC) {
 | 
						|
  case TPOC_Call: {
 | 
						|
    unsigned NumParams = std::min(NumCallArguments,
 | 
						|
                                  std::min(Proto1->getNumArgs(),
 | 
						|
                                           Proto2->getNumArgs()));
 | 
						|
    if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
 | 
						|
      ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
 | 
						|
                                   false,
 | 
						|
                                   TemplateParams->getDepth(), UsedParameters);
 | 
						|
    for (unsigned I = Skip2; I < NumParams; ++I)
 | 
						|
      ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
 | 
						|
                                   TemplateParams->getDepth(),
 | 
						|
                                   UsedParameters);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case TPOC_Conversion:
 | 
						|
    ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
 | 
						|
                                 TemplateParams->getDepth(),
 | 
						|
                                 UsedParameters);
 | 
						|
    break;
 | 
						|
 | 
						|
  case TPOC_Other:
 | 
						|
    ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
 | 
						|
                                 TemplateParams->getDepth(),
 | 
						|
                                 UsedParameters);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  for (; ArgIdx != NumArgs; ++ArgIdx)
 | 
						|
    // If this argument had no value deduced but was used in one of the types
 | 
						|
    // used for partial ordering, then deduction fails.
 | 
						|
    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether this a function template whose parameter-type-list
 | 
						|
/// ends with a function parameter pack.
 | 
						|
static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
 | 
						|
  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
 | 
						|
  unsigned NumParams = Function->getNumParams();
 | 
						|
  if (NumParams == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
 | 
						|
  if (!Last->isParameterPack())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that no previous parameter is a parameter pack.
 | 
						|
  while (--NumParams > 0) {
 | 
						|
    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns the more specialized function template according
 | 
						|
/// to the rules of function template partial ordering (C++ [temp.func.order]).
 | 
						|
///
 | 
						|
/// \param FT1 the first function template
 | 
						|
///
 | 
						|
/// \param FT2 the second function template
 | 
						|
///
 | 
						|
/// \param TPOC the context in which we are performing partial ordering of
 | 
						|
/// function templates.
 | 
						|
///
 | 
						|
/// \param NumCallArguments The number of arguments in a call, used only
 | 
						|
/// when \c TPOC is \c TPOC_Call.
 | 
						|
///
 | 
						|
/// \returns the more specialized function template. If neither
 | 
						|
/// template is more specialized, returns NULL.
 | 
						|
FunctionTemplateDecl *
 | 
						|
Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
 | 
						|
                                 FunctionTemplateDecl *FT2,
 | 
						|
                                 SourceLocation Loc,
 | 
						|
                                 TemplatePartialOrderingContext TPOC,
 | 
						|
                                 unsigned NumCallArguments) {
 | 
						|
  SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
 | 
						|
  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
 | 
						|
                                          NumCallArguments, 0);
 | 
						|
  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
 | 
						|
                                          NumCallArguments,
 | 
						|
                                          &RefParamComparisons);
 | 
						|
 | 
						|
  if (Better1 != Better2) // We have a clear winner
 | 
						|
    return Better1? FT1 : FT2;
 | 
						|
 | 
						|
  if (!Better1 && !Better2) // Neither is better than the other
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // C++0x [temp.deduct.partial]p10:
 | 
						|
  //   If for each type being considered a given template is at least as
 | 
						|
  //   specialized for all types and more specialized for some set of types and
 | 
						|
  //   the other template is not more specialized for any types or is not at
 | 
						|
  //   least as specialized for any types, then the given template is more
 | 
						|
  //   specialized than the other template. Otherwise, neither template is more
 | 
						|
  //   specialized than the other.
 | 
						|
  Better1 = false;
 | 
						|
  Better2 = false;
 | 
						|
  for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
 | 
						|
    // C++0x [temp.deduct.partial]p9:
 | 
						|
    //   If, for a given type, deduction succeeds in both directions (i.e., the
 | 
						|
    //   types are identical after the transformations above) and both P and A
 | 
						|
    //   were reference types (before being replaced with the type referred to
 | 
						|
    //   above):
 | 
						|
 | 
						|
    //     -- if the type from the argument template was an lvalue reference
 | 
						|
    //        and the type from the parameter template was not, the argument
 | 
						|
    //        type is considered to be more specialized than the other;
 | 
						|
    //        otherwise,
 | 
						|
    if (!RefParamComparisons[I].ArgIsRvalueRef &&
 | 
						|
        RefParamComparisons[I].ParamIsRvalueRef) {
 | 
						|
      Better2 = true;
 | 
						|
      if (Better1)
 | 
						|
        return 0;
 | 
						|
      continue;
 | 
						|
    } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
 | 
						|
               RefParamComparisons[I].ArgIsRvalueRef) {
 | 
						|
      Better1 = true;
 | 
						|
      if (Better2)
 | 
						|
        return 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    //     -- if the type from the argument template is more cv-qualified than
 | 
						|
    //        the type from the parameter template (as described above), the
 | 
						|
    //        argument type is considered to be more specialized than the
 | 
						|
    //        other; otherwise,
 | 
						|
    switch (RefParamComparisons[I].Qualifiers) {
 | 
						|
    case NeitherMoreQualified:
 | 
						|
      break;
 | 
						|
 | 
						|
    case ParamMoreQualified:
 | 
						|
      Better1 = true;
 | 
						|
      if (Better2)
 | 
						|
        return 0;
 | 
						|
      continue;
 | 
						|
 | 
						|
    case ArgMoreQualified:
 | 
						|
      Better2 = true;
 | 
						|
      if (Better1)
 | 
						|
        return 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    //     -- neither type is more specialized than the other.
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
 | 
						|
  if (Better1)
 | 
						|
    return FT1;
 | 
						|
  else if (Better2)
 | 
						|
    return FT2;
 | 
						|
 | 
						|
  // FIXME: This mimics what GCC implements, but doesn't match up with the
 | 
						|
  // proposed resolution for core issue 692. This area needs to be sorted out,
 | 
						|
  // but for now we attempt to maintain compatibility.
 | 
						|
  bool Variadic1 = isVariadicFunctionTemplate(FT1);
 | 
						|
  bool Variadic2 = isVariadicFunctionTemplate(FT2);
 | 
						|
  if (Variadic1 != Variadic2)
 | 
						|
    return Variadic1? FT2 : FT1;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine if the two templates are equivalent.
 | 
						|
static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
 | 
						|
  if (T1 == T2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!T1 || !T2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve the most specialized of the given function template
 | 
						|
/// specializations.
 | 
						|
///
 | 
						|
/// \param SpecBegin the start iterator of the function template
 | 
						|
/// specializations that we will be comparing.
 | 
						|
///
 | 
						|
/// \param SpecEnd the end iterator of the function template
 | 
						|
/// specializations, paired with \p SpecBegin.
 | 
						|
///
 | 
						|
/// \param TPOC the partial ordering context to use to compare the function
 | 
						|
/// template specializations.
 | 
						|
///
 | 
						|
/// \param NumCallArguments The number of arguments in a call, used only
 | 
						|
/// when \c TPOC is \c TPOC_Call.
 | 
						|
///
 | 
						|
/// \param Loc the location where the ambiguity or no-specializations
 | 
						|
/// diagnostic should occur.
 | 
						|
///
 | 
						|
/// \param NoneDiag partial diagnostic used to diagnose cases where there are
 | 
						|
/// no matching candidates.
 | 
						|
///
 | 
						|
/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
 | 
						|
/// occurs.
 | 
						|
///
 | 
						|
/// \param CandidateDiag partial diagnostic used for each function template
 | 
						|
/// specialization that is a candidate in the ambiguous ordering. One parameter
 | 
						|
/// in this diagnostic should be unbound, which will correspond to the string
 | 
						|
/// describing the template arguments for the function template specialization.
 | 
						|
///
 | 
						|
/// \param Index if non-NULL and the result of this function is non-nULL,
 | 
						|
/// receives the index corresponding to the resulting function template
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \returns the most specialized function template specialization, if
 | 
						|
/// found. Otherwise, returns SpecEnd.
 | 
						|
///
 | 
						|
/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
 | 
						|
/// template argument deduction.
 | 
						|
UnresolvedSetIterator
 | 
						|
Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
 | 
						|
                        UnresolvedSetIterator SpecEnd,
 | 
						|
                         TemplatePartialOrderingContext TPOC,
 | 
						|
                         unsigned NumCallArguments,
 | 
						|
                         SourceLocation Loc,
 | 
						|
                         const PartialDiagnostic &NoneDiag,
 | 
						|
                         const PartialDiagnostic &AmbigDiag,
 | 
						|
                         const PartialDiagnostic &CandidateDiag,
 | 
						|
                         bool Complain,
 | 
						|
                         QualType TargetType) {
 | 
						|
  if (SpecBegin == SpecEnd) {
 | 
						|
    if (Complain)
 | 
						|
      Diag(Loc, NoneDiag);
 | 
						|
    return SpecEnd;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SpecBegin + 1 == SpecEnd)
 | 
						|
    return SpecBegin;
 | 
						|
 | 
						|
  // Find the function template that is better than all of the templates it
 | 
						|
  // has been compared to.
 | 
						|
  UnresolvedSetIterator Best = SpecBegin;
 | 
						|
  FunctionTemplateDecl *BestTemplate
 | 
						|
    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
 | 
						|
  assert(BestTemplate && "Not a function template specialization?");
 | 
						|
  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
 | 
						|
    FunctionTemplateDecl *Challenger
 | 
						|
      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
 | 
						|
    assert(Challenger && "Not a function template specialization?");
 | 
						|
    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
 | 
						|
                                                  Loc, TPOC, NumCallArguments),
 | 
						|
                       Challenger)) {
 | 
						|
      Best = I;
 | 
						|
      BestTemplate = Challenger;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that the "best" function template is more specialized than all
 | 
						|
  // of the others.
 | 
						|
  bool Ambiguous = false;
 | 
						|
  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
 | 
						|
    FunctionTemplateDecl *Challenger
 | 
						|
      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
 | 
						|
    if (I != Best &&
 | 
						|
        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
 | 
						|
                                                   Loc, TPOC, NumCallArguments),
 | 
						|
                        BestTemplate)) {
 | 
						|
      Ambiguous = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Ambiguous) {
 | 
						|
    // We found an answer. Return it.
 | 
						|
    return Best;
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose the ambiguity.
 | 
						|
  if (Complain)
 | 
						|
    Diag(Loc, AmbigDiag);
 | 
						|
 | 
						|
  if (Complain)
 | 
						|
  // FIXME: Can we order the candidates in some sane way?
 | 
						|
    for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
 | 
						|
      PartialDiagnostic PD = CandidateDiag;
 | 
						|
      PD << getTemplateArgumentBindingsText(
 | 
						|
          cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
 | 
						|
                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
 | 
						|
      if (!TargetType.isNull())
 | 
						|
        HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
 | 
						|
                                   TargetType);
 | 
						|
      Diag((*I)->getLocation(), PD);
 | 
						|
    }
 | 
						|
 | 
						|
  return SpecEnd;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns the more specialized class template partial specialization
 | 
						|
/// according to the rules of partial ordering of class template partial
 | 
						|
/// specializations (C++ [temp.class.order]).
 | 
						|
///
 | 
						|
/// \param PS1 the first class template partial specialization
 | 
						|
///
 | 
						|
/// \param PS2 the second class template partial specialization
 | 
						|
///
 | 
						|
/// \returns the more specialized class template partial specialization. If
 | 
						|
/// neither partial specialization is more specialized, returns NULL.
 | 
						|
ClassTemplatePartialSpecializationDecl *
 | 
						|
Sema::getMoreSpecializedPartialSpecialization(
 | 
						|
                                  ClassTemplatePartialSpecializationDecl *PS1,
 | 
						|
                                  ClassTemplatePartialSpecializationDecl *PS2,
 | 
						|
                                              SourceLocation Loc) {
 | 
						|
  // C++ [temp.class.order]p1:
 | 
						|
  //   For two class template partial specializations, the first is at least as
 | 
						|
  //   specialized as the second if, given the following rewrite to two
 | 
						|
  //   function templates, the first function template is at least as
 | 
						|
  //   specialized as the second according to the ordering rules for function
 | 
						|
  //   templates (14.6.6.2):
 | 
						|
  //     - the first function template has the same template parameters as the
 | 
						|
  //       first partial specialization and has a single function parameter
 | 
						|
  //       whose type is a class template specialization with the template
 | 
						|
  //       arguments of the first partial specialization, and
 | 
						|
  //     - the second function template has the same template parameters as the
 | 
						|
  //       second partial specialization and has a single function parameter
 | 
						|
  //       whose type is a class template specialization with the template
 | 
						|
  //       arguments of the second partial specialization.
 | 
						|
  //
 | 
						|
  // Rather than synthesize function templates, we merely perform the
 | 
						|
  // equivalent partial ordering by performing deduction directly on
 | 
						|
  // the template arguments of the class template partial
 | 
						|
  // specializations. This computation is slightly simpler than the
 | 
						|
  // general problem of function template partial ordering, because
 | 
						|
  // class template partial specializations are more constrained. We
 | 
						|
  // know that every template parameter is deducible from the class
 | 
						|
  // template partial specialization's template arguments, for
 | 
						|
  // example.
 | 
						|
  SmallVector<DeducedTemplateArgument, 4> Deduced;
 | 
						|
  TemplateDeductionInfo Info(Context, Loc);
 | 
						|
 | 
						|
  QualType PT1 = PS1->getInjectedSpecializationType();
 | 
						|
  QualType PT2 = PS2->getInjectedSpecializationType();
 | 
						|
 | 
						|
  // Determine whether PS1 is at least as specialized as PS2
 | 
						|
  Deduced.resize(PS2->getTemplateParameters()->size());
 | 
						|
  bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
 | 
						|
                                            PS2->getTemplateParameters(),
 | 
						|
                                            PT2, PT1, Info, Deduced, TDF_None,
 | 
						|
                                            /*PartialOrdering=*/true,
 | 
						|
                                            /*RefParamComparisons=*/0);
 | 
						|
  if (Better1) {
 | 
						|
    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
 | 
						|
    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
 | 
						|
                               DeducedArgs, Info);
 | 
						|
    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
 | 
						|
                                                 PS1->getTemplateArgs(),
 | 
						|
                                                 Deduced, Info);
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine whether PS2 is at least as specialized as PS1
 | 
						|
  Deduced.clear();
 | 
						|
  Deduced.resize(PS1->getTemplateParameters()->size());
 | 
						|
  bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
 | 
						|
                                            PS1->getTemplateParameters(),
 | 
						|
                                            PT1, PT2, Info, Deduced, TDF_None,
 | 
						|
                                            /*PartialOrdering=*/true,
 | 
						|
                                            /*RefParamComparisons=*/0);
 | 
						|
  if (Better2) {
 | 
						|
    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
 | 
						|
    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
 | 
						|
                               DeducedArgs, Info);
 | 
						|
    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
 | 
						|
                                                 PS2->getTemplateArgs(),
 | 
						|
                                                 Deduced, Info);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Better1 == Better2)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Better1? PS1 : PS2;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
MarkUsedTemplateParameters(ASTContext &Ctx,
 | 
						|
                           const TemplateArgument &TemplateArg,
 | 
						|
                           bool OnlyDeduced,
 | 
						|
                           unsigned Depth,
 | 
						|
                           llvm::SmallBitVector &Used);
 | 
						|
 | 
						|
/// \brief Mark the template parameters that are used by the given
 | 
						|
/// expression.
 | 
						|
static void
 | 
						|
MarkUsedTemplateParameters(ASTContext &Ctx,
 | 
						|
                           const Expr *E,
 | 
						|
                           bool OnlyDeduced,
 | 
						|
                           unsigned Depth,
 | 
						|
                           llvm::SmallBitVector &Used) {
 | 
						|
  // We can deduce from a pack expansion.
 | 
						|
  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
 | 
						|
    E = Expansion->getPattern();
 | 
						|
 | 
						|
  // Skip through any implicit casts we added while type-checking, and any
 | 
						|
  // substitutions performed by template alias expansion.
 | 
						|
  while (1) {
 | 
						|
    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
 | 
						|
      E = ICE->getSubExpr();
 | 
						|
    else if (const SubstNonTypeTemplateParmExpr *Subst =
 | 
						|
               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
 | 
						|
      E = Subst->getReplacement();
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
 | 
						|
  // find other occurrences of template parameters.
 | 
						|
  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
 | 
						|
  if (!DRE)
 | 
						|
    return;
 | 
						|
 | 
						|
  const NonTypeTemplateParmDecl *NTTP
 | 
						|
    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
 | 
						|
  if (!NTTP)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (NTTP->getDepth() == Depth)
 | 
						|
    Used[NTTP->getIndex()] = true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Mark the template parameters that are used by the given
 | 
						|
/// nested name specifier.
 | 
						|
static void
 | 
						|
MarkUsedTemplateParameters(ASTContext &Ctx,
 | 
						|
                           NestedNameSpecifier *NNS,
 | 
						|
                           bool OnlyDeduced,
 | 
						|
                           unsigned Depth,
 | 
						|
                           llvm::SmallBitVector &Used) {
 | 
						|
  if (!NNS)
 | 
						|
    return;
 | 
						|
 | 
						|
  MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
 | 
						|
                             Used);
 | 
						|
  MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
 | 
						|
                             OnlyDeduced, Depth, Used);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Mark the template parameters that are used by the given
 | 
						|
/// template name.
 | 
						|
static void
 | 
						|
MarkUsedTemplateParameters(ASTContext &Ctx,
 | 
						|
                           TemplateName Name,
 | 
						|
                           bool OnlyDeduced,
 | 
						|
                           unsigned Depth,
 | 
						|
                           llvm::SmallBitVector &Used) {
 | 
						|
  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
 | 
						|
    if (TemplateTemplateParmDecl *TTP
 | 
						|
          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
 | 
						|
      if (TTP->getDepth() == Depth)
 | 
						|
        Used[TTP->getIndex()] = true;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
 | 
						|
    MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
 | 
						|
                               Depth, Used);
 | 
						|
  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
 | 
						|
    MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
 | 
						|
                               Depth, Used);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Mark the template parameters that are used by the given
 | 
						|
/// type.
 | 
						|
static void
 | 
						|
MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
 | 
						|
                           bool OnlyDeduced,
 | 
						|
                           unsigned Depth,
 | 
						|
                           llvm::SmallBitVector &Used) {
 | 
						|
  if (T.isNull())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Non-dependent types have nothing deducible
 | 
						|
  if (!T->isDependentType())
 | 
						|
    return;
 | 
						|
 | 
						|
  T = Ctx.getCanonicalType(T);
 | 
						|
  switch (T->getTypeClass()) {
 | 
						|
  case Type::Pointer:
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               cast<PointerType>(T)->getPointeeType(),
 | 
						|
                               OnlyDeduced,
 | 
						|
                               Depth,
 | 
						|
                               Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::BlockPointer:
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               cast<BlockPointerType>(T)->getPointeeType(),
 | 
						|
                               OnlyDeduced,
 | 
						|
                               Depth,
 | 
						|
                               Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::LValueReference:
 | 
						|
  case Type::RValueReference:
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               cast<ReferenceType>(T)->getPointeeType(),
 | 
						|
                               OnlyDeduced,
 | 
						|
                               Depth,
 | 
						|
                               Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::MemberPointer: {
 | 
						|
    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
 | 
						|
    MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
 | 
						|
                               Depth, Used);
 | 
						|
    MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
 | 
						|
                               OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::DependentSizedArray:
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
 | 
						|
                               OnlyDeduced, Depth, Used);
 | 
						|
    // Fall through to check the element type
 | 
						|
 | 
						|
  case Type::ConstantArray:
 | 
						|
  case Type::IncompleteArray:
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               cast<ArrayType>(T)->getElementType(),
 | 
						|
                               OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Vector:
 | 
						|
  case Type::ExtVector:
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               cast<VectorType>(T)->getElementType(),
 | 
						|
                               OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::DependentSizedExtVector: {
 | 
						|
    const DependentSizedExtVectorType *VecType
 | 
						|
      = cast<DependentSizedExtVectorType>(T);
 | 
						|
    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
 | 
						|
                               Depth, Used);
 | 
						|
    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
 | 
						|
                               Depth, Used);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::FunctionProto: {
 | 
						|
    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
 | 
						|
    MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
 | 
						|
                               Depth, Used);
 | 
						|
    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
 | 
						|
      MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
 | 
						|
                                 Depth, Used);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::TemplateTypeParm: {
 | 
						|
    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
 | 
						|
    if (TTP->getDepth() == Depth)
 | 
						|
      Used[TTP->getIndex()] = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::SubstTemplateTypeParmPack: {
 | 
						|
    const SubstTemplateTypeParmPackType *Subst
 | 
						|
      = cast<SubstTemplateTypeParmPackType>(T);
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               QualType(Subst->getReplacedParameter(), 0),
 | 
						|
                               OnlyDeduced, Depth, Used);
 | 
						|
    MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
 | 
						|
                               OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::InjectedClassName:
 | 
						|
    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
 | 
						|
    // fall through
 | 
						|
 | 
						|
  case Type::TemplateSpecialization: {
 | 
						|
    const TemplateSpecializationType *Spec
 | 
						|
      = cast<TemplateSpecializationType>(T);
 | 
						|
    MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
 | 
						|
                               Depth, Used);
 | 
						|
 | 
						|
    // C++0x [temp.deduct.type]p9:
 | 
						|
    //   If the template argument list of P contains a pack expansion that is not
 | 
						|
    //   the last template argument, the entire template argument list is a
 | 
						|
    //   non-deduced context.
 | 
						|
    if (OnlyDeduced &&
 | 
						|
        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
 | 
						|
      break;
 | 
						|
 | 
						|
    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
 | 
						|
      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
 | 
						|
                                 Used);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::Complex:
 | 
						|
    if (!OnlyDeduced)
 | 
						|
      MarkUsedTemplateParameters(Ctx,
 | 
						|
                                 cast<ComplexType>(T)->getElementType(),
 | 
						|
                                 OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Atomic:
 | 
						|
    if (!OnlyDeduced)
 | 
						|
      MarkUsedTemplateParameters(Ctx,
 | 
						|
                                 cast<AtomicType>(T)->getValueType(),
 | 
						|
                                 OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::DependentName:
 | 
						|
    if (!OnlyDeduced)
 | 
						|
      MarkUsedTemplateParameters(Ctx,
 | 
						|
                                 cast<DependentNameType>(T)->getQualifier(),
 | 
						|
                                 OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::DependentTemplateSpecialization: {
 | 
						|
    const DependentTemplateSpecializationType *Spec
 | 
						|
      = cast<DependentTemplateSpecializationType>(T);
 | 
						|
    if (!OnlyDeduced)
 | 
						|
      MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
 | 
						|
                                 OnlyDeduced, Depth, Used);
 | 
						|
 | 
						|
    // C++0x [temp.deduct.type]p9:
 | 
						|
    //   If the template argument list of P contains a pack expansion that is not
 | 
						|
    //   the last template argument, the entire template argument list is a
 | 
						|
    //   non-deduced context.
 | 
						|
    if (OnlyDeduced &&
 | 
						|
        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
 | 
						|
      break;
 | 
						|
 | 
						|
    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
 | 
						|
      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
 | 
						|
                                 Used);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::TypeOf:
 | 
						|
    if (!OnlyDeduced)
 | 
						|
      MarkUsedTemplateParameters(Ctx,
 | 
						|
                                 cast<TypeOfType>(T)->getUnderlyingType(),
 | 
						|
                                 OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::TypeOfExpr:
 | 
						|
    if (!OnlyDeduced)
 | 
						|
      MarkUsedTemplateParameters(Ctx,
 | 
						|
                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
 | 
						|
                                 OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Decltype:
 | 
						|
    if (!OnlyDeduced)
 | 
						|
      MarkUsedTemplateParameters(Ctx,
 | 
						|
                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
 | 
						|
                                 OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::UnaryTransform:
 | 
						|
    if (!OnlyDeduced)
 | 
						|
      MarkUsedTemplateParameters(Ctx,
 | 
						|
                               cast<UnaryTransformType>(T)->getUnderlyingType(),
 | 
						|
                                 OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::PackExpansion:
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               cast<PackExpansionType>(T)->getPattern(),
 | 
						|
                               OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Auto:
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               cast<AutoType>(T)->getDeducedType(),
 | 
						|
                               OnlyDeduced, Depth, Used);
 | 
						|
 | 
						|
  // None of these types have any template parameters in them.
 | 
						|
  case Type::Builtin:
 | 
						|
  case Type::VariableArray:
 | 
						|
  case Type::FunctionNoProto:
 | 
						|
  case Type::Record:
 | 
						|
  case Type::Enum:
 | 
						|
  case Type::ObjCInterface:
 | 
						|
  case Type::ObjCObject:
 | 
						|
  case Type::ObjCObjectPointer:
 | 
						|
  case Type::UnresolvedUsing:
 | 
						|
#define TYPE(Class, Base)
 | 
						|
#define ABSTRACT_TYPE(Class, Base)
 | 
						|
#define DEPENDENT_TYPE(Class, Base)
 | 
						|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Mark the template parameters that are used by this
 | 
						|
/// template argument.
 | 
						|
static void
 | 
						|
MarkUsedTemplateParameters(ASTContext &Ctx,
 | 
						|
                           const TemplateArgument &TemplateArg,
 | 
						|
                           bool OnlyDeduced,
 | 
						|
                           unsigned Depth,
 | 
						|
                           llvm::SmallBitVector &Used) {
 | 
						|
  switch (TemplateArg.getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
  case TemplateArgument::Integral:
 | 
						|
  case TemplateArgument::Declaration:
 | 
						|
    break;
 | 
						|
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
 | 
						|
                               Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case TemplateArgument::Template:
 | 
						|
  case TemplateArgument::TemplateExpansion:
 | 
						|
    MarkUsedTemplateParameters(Ctx,
 | 
						|
                               TemplateArg.getAsTemplateOrTemplatePattern(),
 | 
						|
                               OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case TemplateArgument::Expression:
 | 
						|
    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
 | 
						|
                               Depth, Used);
 | 
						|
    break;
 | 
						|
 | 
						|
  case TemplateArgument::Pack:
 | 
						|
    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
 | 
						|
                                      PEnd = TemplateArg.pack_end();
 | 
						|
         P != PEnd; ++P)
 | 
						|
      MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Mark which template parameters can be deduced from a given
 | 
						|
/// template argument list.
 | 
						|
///
 | 
						|
/// \param TemplateArgs the template argument list from which template
 | 
						|
/// parameters will be deduced.
 | 
						|
///
 | 
						|
/// \param Used a bit vector whose elements will be set to \c true
 | 
						|
/// to indicate when the corresponding template parameter will be
 | 
						|
/// deduced.
 | 
						|
void
 | 
						|
Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
 | 
						|
                                 bool OnlyDeduced, unsigned Depth,
 | 
						|
                                 llvm::SmallBitVector &Used) {
 | 
						|
  // C++0x [temp.deduct.type]p9:
 | 
						|
  //   If the template argument list of P contains a pack expansion that is not
 | 
						|
  //   the last template argument, the entire template argument list is a
 | 
						|
  //   non-deduced context.
 | 
						|
  if (OnlyDeduced &&
 | 
						|
      hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
    ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
 | 
						|
                                 Depth, Used);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Marks all of the template parameters that will be deduced by a
 | 
						|
/// call to the given function template.
 | 
						|
void
 | 
						|
Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
 | 
						|
                                    FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                                    llvm::SmallBitVector &Deduced) {
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = FunctionTemplate->getTemplateParameters();
 | 
						|
  Deduced.clear();
 | 
						|
  Deduced.resize(TemplateParams->size());
 | 
						|
 | 
						|
  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
 | 
						|
  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
 | 
						|
    ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
 | 
						|
                                 true, TemplateParams->getDepth(), Deduced);
 | 
						|
}
 | 
						|
 | 
						|
bool hasDeducibleTemplateParameters(Sema &S,
 | 
						|
                                    FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                                    QualType T) {
 | 
						|
  if (!T->isDependentType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  TemplateParameterList *TemplateParams
 | 
						|
    = FunctionTemplate->getTemplateParameters();
 | 
						|
  llvm::SmallBitVector Deduced(TemplateParams->size());
 | 
						|
  ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 
 | 
						|
                               Deduced);
 | 
						|
 | 
						|
  return Deduced.any();
 | 
						|
}
 |