forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2904 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2904 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the X86 implementation of TargetFrameLowering class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86FrameLowering.h"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86MachineFunctionInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/Analysis/EHPersonalities.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/WinEHFuncInfo.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <cstdlib>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
 | 
						|
                                   unsigned StackAlignOverride)
 | 
						|
    : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
 | 
						|
                          STI.is64Bit() ? -8 : -4),
 | 
						|
      STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
 | 
						|
  // Cache a bunch of frame-related predicates for this subtarget.
 | 
						|
  SlotSize = TRI->getSlotSize();
 | 
						|
  Is64Bit = STI.is64Bit();
 | 
						|
  IsLP64 = STI.isTarget64BitLP64();
 | 
						|
  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
 | 
						|
  Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
 | 
						|
  StackPtr = TRI->getStackRegister();
 | 
						|
}
 | 
						|
 | 
						|
bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
 | 
						|
  return !MF.getFrameInfo()->hasVarSizedObjects() &&
 | 
						|
         !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
 | 
						|
}
 | 
						|
 | 
						|
/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
 | 
						|
/// call frame pseudos can be simplified.  Having a FP, as in the default
 | 
						|
/// implementation, is not sufficient here since we can't always use it.
 | 
						|
/// Use a more nuanced condition.
 | 
						|
bool
 | 
						|
X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
 | 
						|
  return hasReservedCallFrame(MF) ||
 | 
						|
         (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
 | 
						|
         TRI->hasBasePointer(MF);
 | 
						|
}
 | 
						|
 | 
						|
// needsFrameIndexResolution - Do we need to perform FI resolution for
 | 
						|
// this function. Normally, this is required only when the function
 | 
						|
// has any stack objects. However, FI resolution actually has another job,
 | 
						|
// not apparent from the title - it resolves callframesetup/destroy 
 | 
						|
// that were not simplified earlier.
 | 
						|
// So, this is required for x86 functions that have push sequences even
 | 
						|
// when there are no stack objects.
 | 
						|
bool
 | 
						|
X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
 | 
						|
  return MF.getFrameInfo()->hasStackObjects() ||
 | 
						|
         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
 | 
						|
}
 | 
						|
 | 
						|
/// hasFP - Return true if the specified function should have a dedicated frame
 | 
						|
/// pointer register.  This is true if the function has variable sized allocas
 | 
						|
/// or if frame pointer elimination is disabled.
 | 
						|
bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  const MachineModuleInfo &MMI = MF.getMMI();
 | 
						|
 | 
						|
  return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
 | 
						|
          TRI->needsStackRealignment(MF) ||
 | 
						|
          MFI->hasVarSizedObjects() ||
 | 
						|
          MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() ||
 | 
						|
          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
 | 
						|
          MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
 | 
						|
          MFI->hasStackMap() || MFI->hasPatchPoint() ||
 | 
						|
          MFI->hasCopyImplyingStackAdjustment());
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
 | 
						|
  if (IsLP64) {
 | 
						|
    if (isInt<8>(Imm))
 | 
						|
      return X86::SUB64ri8;
 | 
						|
    return X86::SUB64ri32;
 | 
						|
  } else {
 | 
						|
    if (isInt<8>(Imm))
 | 
						|
      return X86::SUB32ri8;
 | 
						|
    return X86::SUB32ri;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
 | 
						|
  if (IsLP64) {
 | 
						|
    if (isInt<8>(Imm))
 | 
						|
      return X86::ADD64ri8;
 | 
						|
    return X86::ADD64ri32;
 | 
						|
  } else {
 | 
						|
    if (isInt<8>(Imm))
 | 
						|
      return X86::ADD32ri8;
 | 
						|
    return X86::ADD32ri;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getSUBrrOpcode(unsigned isLP64) {
 | 
						|
  return isLP64 ? X86::SUB64rr : X86::SUB32rr;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getADDrrOpcode(unsigned isLP64) {
 | 
						|
  return isLP64 ? X86::ADD64rr : X86::ADD32rr;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
 | 
						|
  if (IsLP64) {
 | 
						|
    if (isInt<8>(Imm))
 | 
						|
      return X86::AND64ri8;
 | 
						|
    return X86::AND64ri32;
 | 
						|
  }
 | 
						|
  if (isInt<8>(Imm))
 | 
						|
    return X86::AND32ri8;
 | 
						|
  return X86::AND32ri;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getLEArOpcode(unsigned IsLP64) {
 | 
						|
  return IsLP64 ? X86::LEA64r : X86::LEA32r;
 | 
						|
}
 | 
						|
 | 
						|
/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
 | 
						|
/// when it reaches the "return" instruction. We can then pop a stack object
 | 
						|
/// to this register without worry about clobbering it.
 | 
						|
static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
 | 
						|
                                       MachineBasicBlock::iterator &MBBI,
 | 
						|
                                       const X86RegisterInfo *TRI,
 | 
						|
                                       bool Is64Bit) {
 | 
						|
  const MachineFunction *MF = MBB.getParent();
 | 
						|
  const Function *F = MF->getFunction();
 | 
						|
  if (!F || MF->getMMI().callsEHReturn())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
 | 
						|
 | 
						|
  unsigned Opc = MBBI->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
  default: return 0;
 | 
						|
  case X86::RET:
 | 
						|
  case X86::RETL:
 | 
						|
  case X86::RETQ:
 | 
						|
  case X86::RETIL:
 | 
						|
  case X86::RETIQ:
 | 
						|
  case X86::TCRETURNdi:
 | 
						|
  case X86::TCRETURNri:
 | 
						|
  case X86::TCRETURNmi:
 | 
						|
  case X86::TCRETURNdi64:
 | 
						|
  case X86::TCRETURNri64:
 | 
						|
  case X86::TCRETURNmi64:
 | 
						|
  case X86::EH_RETURN:
 | 
						|
  case X86::EH_RETURN64: {
 | 
						|
    SmallSet<uint16_t, 8> Uses;
 | 
						|
    for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MBBI->getOperand(i);
 | 
						|
      if (!MO.isReg() || MO.isDef())
 | 
						|
        continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (!Reg)
 | 
						|
        continue;
 | 
						|
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
 | 
						|
        Uses.insert(*AI);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto CS : AvailableRegs)
 | 
						|
      if (!Uses.count(CS) && CS != X86::RIP)
 | 
						|
        return CS;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool isEAXLiveIn(MachineBasicBlock &MBB) {
 | 
						|
  for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
 | 
						|
    unsigned Reg = RegMask.PhysReg;
 | 
						|
 | 
						|
    if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
 | 
						|
        Reg == X86::AH || Reg == X86::AL)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the flags need to be preserved before the terminators.
 | 
						|
/// This would be the case, if the eflags is live-in of the region
 | 
						|
/// composed by the terminators or live-out of that region, without
 | 
						|
/// being defined by a terminator.
 | 
						|
static bool
 | 
						|
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
 | 
						|
  for (const MachineInstr &MI : MBB.terminators()) {
 | 
						|
    bool BreakNext = false;
 | 
						|
    for (const MachineOperand &MO : MI.operands()) {
 | 
						|
      if (!MO.isReg())
 | 
						|
        continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg != X86::EFLAGS)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // This terminator needs an eflags that is not defined
 | 
						|
      // by a previous another terminator:
 | 
						|
      // EFLAGS is live-in of the region composed by the terminators.
 | 
						|
      if (!MO.isDef())
 | 
						|
        return true;
 | 
						|
      // This terminator defines the eflags, i.e., we don't need to preserve it.
 | 
						|
      // However, we still need to check this specific terminator does not
 | 
						|
      // read a live-in value.
 | 
						|
      BreakNext = true;
 | 
						|
    }
 | 
						|
    // We found a definition of the eflags, no need to preserve them.
 | 
						|
    if (BreakNext)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // None of the terminators use or define the eflags.
 | 
						|
  // Check if they are live-out, that would imply we need to preserve them.
 | 
						|
  for (const MachineBasicBlock *Succ : MBB.successors())
 | 
						|
    if (Succ->isLiveIn(X86::EFLAGS))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
 | 
						|
/// stack pointer by a constant value.
 | 
						|
void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
 | 
						|
                                    MachineBasicBlock::iterator &MBBI,
 | 
						|
                                    int64_t NumBytes, bool InEpilogue) const {
 | 
						|
  bool isSub = NumBytes < 0;
 | 
						|
  uint64_t Offset = isSub ? -NumBytes : NumBytes;
 | 
						|
 | 
						|
  uint64_t Chunk = (1LL << 31) - 1;
 | 
						|
  DebugLoc DL = MBB.findDebugLoc(MBBI);
 | 
						|
 | 
						|
  while (Offset) {
 | 
						|
    if (Offset > Chunk) {
 | 
						|
      // Rather than emit a long series of instructions for large offsets,
 | 
						|
      // load the offset into a register and do one sub/add
 | 
						|
      unsigned Reg = 0;
 | 
						|
 | 
						|
      if (isSub && !isEAXLiveIn(MBB))
 | 
						|
        Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
 | 
						|
      else
 | 
						|
        Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
 | 
						|
 | 
						|
      if (Reg) {
 | 
						|
        unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
 | 
						|
        BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
 | 
						|
          .addImm(Offset);
 | 
						|
        Opc = isSub
 | 
						|
          ? getSUBrrOpcode(Is64Bit)
 | 
						|
          : getADDrrOpcode(Is64Bit);
 | 
						|
        MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
 | 
						|
          .addReg(StackPtr)
 | 
						|
          .addReg(Reg);
 | 
						|
        MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
 | 
						|
        Offset = 0;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    uint64_t ThisVal = std::min(Offset, Chunk);
 | 
						|
    if (ThisVal == (Is64Bit ? 8 : 4)) {
 | 
						|
      // Use push / pop instead.
 | 
						|
      unsigned Reg = isSub
 | 
						|
        ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
 | 
						|
        : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
 | 
						|
      if (Reg) {
 | 
						|
        unsigned Opc = isSub
 | 
						|
          ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
 | 
						|
          : (Is64Bit ? X86::POP64r  : X86::POP32r);
 | 
						|
        MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
 | 
						|
          .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
 | 
						|
        if (isSub)
 | 
						|
          MI->setFlag(MachineInstr::FrameSetup);
 | 
						|
        else
 | 
						|
          MI->setFlag(MachineInstr::FrameDestroy);
 | 
						|
        Offset -= ThisVal;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MachineInstrBuilder MI = BuildStackAdjustment(
 | 
						|
        MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
 | 
						|
    if (isSub)
 | 
						|
      MI.setMIFlag(MachineInstr::FrameSetup);
 | 
						|
    else
 | 
						|
      MI.setMIFlag(MachineInstr::FrameDestroy);
 | 
						|
 | 
						|
    Offset -= ThisVal;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
 | 
						|
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL,
 | 
						|
    int64_t Offset, bool InEpilogue) const {
 | 
						|
  assert(Offset != 0 && "zero offset stack adjustment requested");
 | 
						|
 | 
						|
  // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
 | 
						|
  // is tricky.
 | 
						|
  bool UseLEA;
 | 
						|
  if (!InEpilogue) {
 | 
						|
    // Check if inserting the prologue at the beginning
 | 
						|
    // of MBB would require to use LEA operations.
 | 
						|
    // We need to use LEA operations if EFLAGS is live in, because
 | 
						|
    // it means an instruction will read it before it gets defined.
 | 
						|
    UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
 | 
						|
  } else {
 | 
						|
    // If we can use LEA for SP but we shouldn't, check that none
 | 
						|
    // of the terminators uses the eflags. Otherwise we will insert
 | 
						|
    // a ADD that will redefine the eflags and break the condition.
 | 
						|
    // Alternatively, we could move the ADD, but this may not be possible
 | 
						|
    // and is an optimization anyway.
 | 
						|
    UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
 | 
						|
    if (UseLEA && !STI.useLeaForSP())
 | 
						|
      UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
 | 
						|
    // If that assert breaks, that means we do not do the right thing
 | 
						|
    // in canUseAsEpilogue.
 | 
						|
    assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
 | 
						|
           "We shouldn't have allowed this insertion point");
 | 
						|
  }
 | 
						|
 | 
						|
  MachineInstrBuilder MI;
 | 
						|
  if (UseLEA) {
 | 
						|
    MI = addRegOffset(BuildMI(MBB, MBBI, DL,
 | 
						|
                              TII.get(getLEArOpcode(Uses64BitFramePtr)),
 | 
						|
                              StackPtr),
 | 
						|
                      StackPtr, false, Offset);
 | 
						|
  } else {
 | 
						|
    bool IsSub = Offset < 0;
 | 
						|
    uint64_t AbsOffset = IsSub ? -Offset : Offset;
 | 
						|
    unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
 | 
						|
                         : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
 | 
						|
    MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
 | 
						|
             .addReg(StackPtr)
 | 
						|
             .addImm(AbsOffset);
 | 
						|
    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
 | 
						|
  }
 | 
						|
  return MI;
 | 
						|
}
 | 
						|
 | 
						|
int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
 | 
						|
                                     MachineBasicBlock::iterator &MBBI,
 | 
						|
                                     bool doMergeWithPrevious) const {
 | 
						|
  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
 | 
						|
      (!doMergeWithPrevious && MBBI == MBB.end()))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
 | 
						|
  MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
 | 
						|
                                                       : std::next(MBBI);
 | 
						|
  unsigned Opc = PI->getOpcode();
 | 
						|
  int Offset = 0;
 | 
						|
 | 
						|
  if (!doMergeWithPrevious && NI != MBB.end() &&
 | 
						|
      NI->getOpcode() == TargetOpcode::CFI_INSTRUCTION) {
 | 
						|
    // Don't merge with the next instruction if it has CFI.
 | 
						|
    return Offset;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
 | 
						|
       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
 | 
						|
      PI->getOperand(0).getReg() == StackPtr){
 | 
						|
    assert(PI->getOperand(1).getReg() == StackPtr);
 | 
						|
    Offset += PI->getOperand(2).getImm();
 | 
						|
    MBB.erase(PI);
 | 
						|
    if (!doMergeWithPrevious) MBBI = NI;
 | 
						|
  } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
 | 
						|
             PI->getOperand(0).getReg() == StackPtr &&
 | 
						|
             PI->getOperand(1).getReg() == StackPtr &&
 | 
						|
             PI->getOperand(2).getImm() == 1 &&
 | 
						|
             PI->getOperand(3).getReg() == X86::NoRegister &&
 | 
						|
             PI->getOperand(5).getReg() == X86::NoRegister) {
 | 
						|
    // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
 | 
						|
    Offset += PI->getOperand(4).getImm();
 | 
						|
    MBB.erase(PI);
 | 
						|
    if (!doMergeWithPrevious) MBBI = NI;
 | 
						|
  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
 | 
						|
              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
 | 
						|
             PI->getOperand(0).getReg() == StackPtr) {
 | 
						|
    assert(PI->getOperand(1).getReg() == StackPtr);
 | 
						|
    Offset -= PI->getOperand(2).getImm();
 | 
						|
    MBB.erase(PI);
 | 
						|
    if (!doMergeWithPrevious) MBBI = NI;
 | 
						|
  }
 | 
						|
 | 
						|
  return Offset;
 | 
						|
}
 | 
						|
 | 
						|
void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
 | 
						|
                                MachineBasicBlock::iterator MBBI, DebugLoc DL,
 | 
						|
                                MCCFIInstruction CFIInst) const {
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
 | 
						|
  BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
 | 
						|
      .addCFIIndex(CFIIndex);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
 | 
						|
                                            MachineBasicBlock::iterator MBBI,
 | 
						|
                                            DebugLoc DL) const {
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  MachineModuleInfo &MMI = MF.getMMI();
 | 
						|
  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
 | 
						|
 | 
						|
  // Add callee saved registers to move list.
 | 
						|
  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
 | 
						|
  if (CSI.empty()) return;
 | 
						|
 | 
						|
  // Calculate offsets.
 | 
						|
  for (std::vector<CalleeSavedInfo>::const_iterator
 | 
						|
         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
 | 
						|
    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
 | 
						|
    unsigned Reg = I->getReg();
 | 
						|
 | 
						|
    unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
 | 
						|
    BuildCFI(MBB, MBBI, DL,
 | 
						|
             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF,
 | 
						|
                                               MachineBasicBlock &MBB,
 | 
						|
                                               MachineBasicBlock::iterator MBBI,
 | 
						|
                                               DebugLoc DL,
 | 
						|
                                               bool InProlog) const {
 | 
						|
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
 | 
						|
  if (STI.isTargetWindowsCoreCLR()) {
 | 
						|
    if (InProlog) {
 | 
						|
      return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
 | 
						|
    } else {
 | 
						|
      return emitStackProbeInline(MF, MBB, MBBI, DL, false);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
 | 
						|
                                        MachineBasicBlock &PrologMBB) const {
 | 
						|
  const StringRef ChkStkStubSymbol = "__chkstk_stub";
 | 
						|
  MachineInstr *ChkStkStub = nullptr;
 | 
						|
 | 
						|
  for (MachineInstr &MI : PrologMBB) {
 | 
						|
    if (MI.isCall() && MI.getOperand(0).isSymbol() &&
 | 
						|
        ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
 | 
						|
      ChkStkStub = &MI;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ChkStkStub != nullptr) {
 | 
						|
    assert(!ChkStkStub->isBundled() &&
 | 
						|
           "Not expecting bundled instructions here");
 | 
						|
    MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
 | 
						|
    assert(std::prev(MBBI).operator==(ChkStkStub) &&
 | 
						|
      "MBBI expected after __chkstk_stub.");
 | 
						|
    DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
 | 
						|
    emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
 | 
						|
    ChkStkStub->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *X86FrameLowering::emitStackProbeInline(
 | 
						|
  MachineFunction &MF, MachineBasicBlock &MBB,
 | 
						|
  MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
 | 
						|
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
 | 
						|
  assert(STI.is64Bit() && "different expansion needed for 32 bit");
 | 
						|
  assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
 | 
						|
  const TargetInstrInfo &TII = *STI.getInstrInfo();
 | 
						|
  const BasicBlock *LLVM_BB = MBB.getBasicBlock();
 | 
						|
 | 
						|
  // RAX contains the number of bytes of desired stack adjustment.
 | 
						|
  // The handling here assumes this value has already been updated so as to
 | 
						|
  // maintain stack alignment.
 | 
						|
  //
 | 
						|
  // We need to exit with RSP modified by this amount and execute suitable
 | 
						|
  // page touches to notify the OS that we're growing the stack responsibly.
 | 
						|
  // All stack probing must be done without modifying RSP.
 | 
						|
  //
 | 
						|
  // MBB:
 | 
						|
  //    SizeReg = RAX;
 | 
						|
  //    ZeroReg = 0
 | 
						|
  //    CopyReg = RSP
 | 
						|
  //    Flags, TestReg = CopyReg - SizeReg
 | 
						|
  //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
 | 
						|
  //    LimitReg = gs magic thread env access
 | 
						|
  //    if FinalReg >= LimitReg goto ContinueMBB
 | 
						|
  // RoundBB:
 | 
						|
  //    RoundReg = page address of FinalReg
 | 
						|
  // LoopMBB:
 | 
						|
  //    LoopReg = PHI(LimitReg,ProbeReg)
 | 
						|
  //    ProbeReg = LoopReg - PageSize
 | 
						|
  //    [ProbeReg] = 0
 | 
						|
  //    if (ProbeReg > RoundReg) goto LoopMBB
 | 
						|
  // ContinueMBB:
 | 
						|
  //    RSP = RSP - RAX
 | 
						|
  //    [rest of original MBB]
 | 
						|
 | 
						|
  // Set up the new basic blocks
 | 
						|
  MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
 | 
						|
 | 
						|
  MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
 | 
						|
  MF.insert(MBBIter, RoundMBB);
 | 
						|
  MF.insert(MBBIter, LoopMBB);
 | 
						|
  MF.insert(MBBIter, ContinueMBB);
 | 
						|
 | 
						|
  // Split MBB and move the tail portion down to ContinueMBB.
 | 
						|
  MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
 | 
						|
  ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
 | 
						|
  ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
 | 
						|
 | 
						|
  // Some useful constants
 | 
						|
  const int64_t ThreadEnvironmentStackLimit = 0x10;
 | 
						|
  const int64_t PageSize = 0x1000;
 | 
						|
  const int64_t PageMask = ~(PageSize - 1);
 | 
						|
 | 
						|
  // Registers we need. For the normal case we use virtual
 | 
						|
  // registers. For the prolog expansion we use RAX, RCX and RDX.
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  const TargetRegisterClass *RegClass = &X86::GR64RegClass;
 | 
						|
  const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
 | 
						|
                                    : MRI.createVirtualRegister(RegClass),
 | 
						|
                 ZeroReg = InProlog ? (unsigned)X86::RCX
 | 
						|
                                    : MRI.createVirtualRegister(RegClass),
 | 
						|
                 CopyReg = InProlog ? (unsigned)X86::RDX
 | 
						|
                                    : MRI.createVirtualRegister(RegClass),
 | 
						|
                 TestReg = InProlog ? (unsigned)X86::RDX
 | 
						|
                                    : MRI.createVirtualRegister(RegClass),
 | 
						|
                 FinalReg = InProlog ? (unsigned)X86::RDX
 | 
						|
                                     : MRI.createVirtualRegister(RegClass),
 | 
						|
                 RoundedReg = InProlog ? (unsigned)X86::RDX
 | 
						|
                                       : MRI.createVirtualRegister(RegClass),
 | 
						|
                 LimitReg = InProlog ? (unsigned)X86::RCX
 | 
						|
                                     : MRI.createVirtualRegister(RegClass),
 | 
						|
                 JoinReg = InProlog ? (unsigned)X86::RCX
 | 
						|
                                    : MRI.createVirtualRegister(RegClass),
 | 
						|
                 ProbeReg = InProlog ? (unsigned)X86::RCX
 | 
						|
                                     : MRI.createVirtualRegister(RegClass);
 | 
						|
 | 
						|
  // SP-relative offsets where we can save RCX and RDX.
 | 
						|
  int64_t RCXShadowSlot = 0;
 | 
						|
  int64_t RDXShadowSlot = 0;
 | 
						|
 | 
						|
  // If inlining in the prolog, save RCX and RDX.     
 | 
						|
  // Future optimization: don't save or restore if not live in.
 | 
						|
  if (InProlog) {
 | 
						|
    // Compute the offsets. We need to account for things already
 | 
						|
    // pushed onto the stack at this point: return address, frame
 | 
						|
    // pointer (if used), and callee saves.
 | 
						|
    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
    const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
 | 
						|
    const bool HasFP = hasFP(MF);
 | 
						|
    RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
 | 
						|
    RDXShadowSlot = RCXShadowSlot + 8;
 | 
						|
    // Emit the saves.
 | 
						|
    addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
 | 
						|
                 RCXShadowSlot)
 | 
						|
        .addReg(X86::RCX);
 | 
						|
    addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
 | 
						|
                 RDXShadowSlot)
 | 
						|
        .addReg(X86::RDX);
 | 
						|
  } else {
 | 
						|
    // Not in the prolog. Copy RAX to a virtual reg.
 | 
						|
    BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add code to MBB to check for overflow and set the new target stack pointer
 | 
						|
  // to zero if so.
 | 
						|
  BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
 | 
						|
      .addReg(ZeroReg, RegState::Undef)
 | 
						|
      .addReg(ZeroReg, RegState::Undef);
 | 
						|
  BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
 | 
						|
  BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
 | 
						|
      .addReg(CopyReg)
 | 
						|
      .addReg(SizeReg);
 | 
						|
  BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
 | 
						|
      .addReg(TestReg)
 | 
						|
      .addReg(ZeroReg);
 | 
						|
 | 
						|
  // FinalReg now holds final stack pointer value, or zero if
 | 
						|
  // allocation would overflow. Compare against the current stack
 | 
						|
  // limit from the thread environment block. Note this limit is the
 | 
						|
  // lowest touched page on the stack, not the point at which the OS
 | 
						|
  // will cause an overflow exception, so this is just an optimization
 | 
						|
  // to avoid unnecessarily touching pages that are below the current
 | 
						|
  // SP but already commited to the stack by the OS.
 | 
						|
  BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
 | 
						|
      .addReg(0)
 | 
						|
      .addImm(1)
 | 
						|
      .addReg(0)
 | 
						|
      .addImm(ThreadEnvironmentStackLimit)
 | 
						|
      .addReg(X86::GS);
 | 
						|
  BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
 | 
						|
  // Jump if the desired stack pointer is at or above the stack limit.
 | 
						|
  BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
 | 
						|
 | 
						|
  // Add code to roundMBB to round the final stack pointer to a page boundary.
 | 
						|
  BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
 | 
						|
      .addReg(FinalReg)
 | 
						|
      .addImm(PageMask);
 | 
						|
  BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
 | 
						|
 | 
						|
  // LimitReg now holds the current stack limit, RoundedReg page-rounded
 | 
						|
  // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
 | 
						|
  // and probe until we reach RoundedReg.
 | 
						|
  if (!InProlog) {
 | 
						|
    BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
 | 
						|
        .addReg(LimitReg)
 | 
						|
        .addMBB(RoundMBB)
 | 
						|
        .addReg(ProbeReg)
 | 
						|
        .addMBB(LoopMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
 | 
						|
               false, -PageSize);
 | 
						|
 | 
						|
  // Probe by storing a byte onto the stack.
 | 
						|
  BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
 | 
						|
      .addReg(ProbeReg)
 | 
						|
      .addImm(1)
 | 
						|
      .addReg(0)
 | 
						|
      .addImm(0)
 | 
						|
      .addReg(0)
 | 
						|
      .addImm(0);
 | 
						|
  BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
 | 
						|
      .addReg(RoundedReg)
 | 
						|
      .addReg(ProbeReg);
 | 
						|
  BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
 | 
						|
 | 
						|
  MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
 | 
						|
 | 
						|
  // If in prolog, restore RDX and RCX.
 | 
						|
  if (InProlog) {
 | 
						|
    addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
 | 
						|
                         X86::RCX),
 | 
						|
                 X86::RSP, false, RCXShadowSlot);
 | 
						|
    addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
 | 
						|
                         X86::RDX),
 | 
						|
                 X86::RSP, false, RDXShadowSlot);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that the probing is done, add code to continueMBB to update
 | 
						|
  // the stack pointer for real.
 | 
						|
  BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
 | 
						|
      .addReg(X86::RSP)
 | 
						|
      .addReg(SizeReg);
 | 
						|
 | 
						|
  // Add the control flow edges we need.
 | 
						|
  MBB.addSuccessor(ContinueMBB);
 | 
						|
  MBB.addSuccessor(RoundMBB);
 | 
						|
  RoundMBB->addSuccessor(LoopMBB);
 | 
						|
  LoopMBB->addSuccessor(ContinueMBB);
 | 
						|
  LoopMBB->addSuccessor(LoopMBB);
 | 
						|
 | 
						|
  // Mark all the instructions added to the prolog as frame setup.
 | 
						|
  if (InProlog) {
 | 
						|
    for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
 | 
						|
      BeforeMBBI->setFlag(MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
    for (MachineInstr &MI : *RoundMBB) {
 | 
						|
      MI.setFlag(MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
    for (MachineInstr &MI : *LoopMBB) {
 | 
						|
      MI.setFlag(MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
    for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
 | 
						|
         CMBBI != ContinueMBBI; ++CMBBI) {
 | 
						|
      CMBBI->setFlag(MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Possible TODO: physreg liveness for InProlog case.
 | 
						|
 | 
						|
  return ContinueMBBI;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *X86FrameLowering::emitStackProbeCall(
 | 
						|
    MachineFunction &MF, MachineBasicBlock &MBB,
 | 
						|
    MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
 | 
						|
  bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
 | 
						|
 | 
						|
  unsigned CallOp;
 | 
						|
  if (Is64Bit)
 | 
						|
    CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
 | 
						|
  else
 | 
						|
    CallOp = X86::CALLpcrel32;
 | 
						|
 | 
						|
  const char *Symbol;
 | 
						|
  if (Is64Bit) {
 | 
						|
    if (STI.isTargetCygMing()) {
 | 
						|
      Symbol = "___chkstk_ms";
 | 
						|
    } else {
 | 
						|
      Symbol = "__chkstk";
 | 
						|
    }
 | 
						|
  } else if (STI.isTargetCygMing())
 | 
						|
    Symbol = "_alloca";
 | 
						|
  else
 | 
						|
    Symbol = "_chkstk";
 | 
						|
 | 
						|
  MachineInstrBuilder CI;
 | 
						|
  MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
 | 
						|
 | 
						|
  // All current stack probes take AX and SP as input, clobber flags, and
 | 
						|
  // preserve all registers. x86_64 probes leave RSP unmodified.
 | 
						|
  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
 | 
						|
    // For the large code model, we have to call through a register. Use R11,
 | 
						|
    // as it is scratch in all supported calling conventions.
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
 | 
						|
        .addExternalSymbol(Symbol);
 | 
						|
    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
 | 
						|
  } else {
 | 
						|
    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
 | 
						|
  unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
 | 
						|
  CI.addReg(AX, RegState::Implicit)
 | 
						|
      .addReg(SP, RegState::Implicit)
 | 
						|
      .addReg(AX, RegState::Define | RegState::Implicit)
 | 
						|
      .addReg(SP, RegState::Define | RegState::Implicit)
 | 
						|
      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
 | 
						|
 | 
						|
  if (Is64Bit) {
 | 
						|
    // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
 | 
						|
    // themselves. It also does not clobber %rax so we can reuse it when
 | 
						|
    // adjusting %rsp.
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
 | 
						|
        .addReg(X86::RSP)
 | 
						|
        .addReg(X86::RAX);
 | 
						|
  }
 | 
						|
 | 
						|
  if (InProlog) {
 | 
						|
    // Apply the frame setup flag to all inserted instrs.
 | 
						|
    for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
 | 
						|
      ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
 | 
						|
  }
 | 
						|
 | 
						|
  return MBBI;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
 | 
						|
    MachineFunction &MF, MachineBasicBlock &MBB,
 | 
						|
    MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
 | 
						|
 | 
						|
  assert(InProlog && "ChkStkStub called outside prolog!");
 | 
						|
 | 
						|
  BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
 | 
						|
      .addExternalSymbol("__chkstk_stub");
 | 
						|
 | 
						|
  return MBBI;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned calculateSetFPREG(uint64_t SPAdjust) {
 | 
						|
  // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
 | 
						|
  // and might require smaller successive adjustments.
 | 
						|
  const uint64_t Win64MaxSEHOffset = 128;
 | 
						|
  uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
 | 
						|
  // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
 | 
						|
  return SEHFrameOffset & -16;
 | 
						|
}
 | 
						|
 | 
						|
// If we're forcing a stack realignment we can't rely on just the frame
 | 
						|
// info, we need to know the ABI stack alignment as well in case we
 | 
						|
// have a call out.  Otherwise just make sure we have some alignment - we'll
 | 
						|
// go with the minimum SlotSize.
 | 
						|
uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
 | 
						|
  unsigned StackAlign = getStackAlignment();
 | 
						|
  if (MF.getFunction()->hasFnAttribute("stackrealign")) {
 | 
						|
    if (MFI->hasCalls())
 | 
						|
      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
 | 
						|
    else if (MaxAlign < SlotSize)
 | 
						|
      MaxAlign = SlotSize;
 | 
						|
  }
 | 
						|
  return MaxAlign;
 | 
						|
}
 | 
						|
 | 
						|
void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
 | 
						|
                                          MachineBasicBlock::iterator MBBI,
 | 
						|
                                          DebugLoc DL, unsigned Reg,
 | 
						|
                                          uint64_t MaxAlign) const {
 | 
						|
  uint64_t Val = -MaxAlign;
 | 
						|
  unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
 | 
						|
  MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
 | 
						|
                         .addReg(Reg)
 | 
						|
                         .addImm(Val)
 | 
						|
                         .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
 | 
						|
  // The EFLAGS implicit def is dead.
 | 
						|
  MI->getOperand(3).setIsDead();
 | 
						|
}
 | 
						|
 | 
						|
/// emitPrologue - Push callee-saved registers onto the stack, which
 | 
						|
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
 | 
						|
/// space for local variables. Also emit labels used by the exception handler to
 | 
						|
/// generate the exception handling frames.
 | 
						|
 | 
						|
/*
 | 
						|
  Here's a gist of what gets emitted:
 | 
						|
 | 
						|
  ; Establish frame pointer, if needed
 | 
						|
  [if needs FP]
 | 
						|
      push  %rbp
 | 
						|
      .cfi_def_cfa_offset 16
 | 
						|
      .cfi_offset %rbp, -16
 | 
						|
      .seh_pushreg %rpb
 | 
						|
      mov  %rsp, %rbp
 | 
						|
      .cfi_def_cfa_register %rbp
 | 
						|
 | 
						|
  ; Spill general-purpose registers
 | 
						|
  [for all callee-saved GPRs]
 | 
						|
      pushq %<reg>
 | 
						|
      [if not needs FP]
 | 
						|
         .cfi_def_cfa_offset (offset from RETADDR)
 | 
						|
      .seh_pushreg %<reg>
 | 
						|
 | 
						|
  ; If the required stack alignment > default stack alignment
 | 
						|
  ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
 | 
						|
  ; of unknown size in the stack frame.
 | 
						|
  [if stack needs re-alignment]
 | 
						|
      and  $MASK, %rsp
 | 
						|
 | 
						|
  ; Allocate space for locals
 | 
						|
  [if target is Windows and allocated space > 4096 bytes]
 | 
						|
      ; Windows needs special care for allocations larger
 | 
						|
      ; than one page.
 | 
						|
      mov $NNN, %rax
 | 
						|
      call ___chkstk_ms/___chkstk
 | 
						|
      sub  %rax, %rsp
 | 
						|
  [else]
 | 
						|
      sub  $NNN, %rsp
 | 
						|
 | 
						|
  [if needs FP]
 | 
						|
      .seh_stackalloc (size of XMM spill slots)
 | 
						|
      .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
 | 
						|
  [else]
 | 
						|
      .seh_stackalloc NNN
 | 
						|
 | 
						|
  ; Spill XMMs
 | 
						|
  ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
 | 
						|
  ; they may get spilled on any platform, if the current function
 | 
						|
  ; calls @llvm.eh.unwind.init
 | 
						|
  [if needs FP]
 | 
						|
      [for all callee-saved XMM registers]
 | 
						|
          movaps  %<xmm reg>, -MMM(%rbp)
 | 
						|
      [for all callee-saved XMM registers]
 | 
						|
          .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
 | 
						|
              ; i.e. the offset relative to (%rbp - SEHFrameOffset)
 | 
						|
  [else]
 | 
						|
      [for all callee-saved XMM registers]
 | 
						|
          movaps  %<xmm reg>, KKK(%rsp)
 | 
						|
      [for all callee-saved XMM registers]
 | 
						|
          .seh_savexmm %<xmm reg>, KKK
 | 
						|
 | 
						|
  .seh_endprologue
 | 
						|
 | 
						|
  [if needs base pointer]
 | 
						|
      mov  %rsp, %rbx
 | 
						|
      [if needs to restore base pointer]
 | 
						|
          mov %rsp, -MMM(%rbp)
 | 
						|
 | 
						|
  ; Emit CFI info
 | 
						|
  [if needs FP]
 | 
						|
      [for all callee-saved registers]
 | 
						|
          .cfi_offset %<reg>, (offset from %rbp)
 | 
						|
  [else]
 | 
						|
       .cfi_def_cfa_offset (offset from RETADDR)
 | 
						|
      [for all callee-saved registers]
 | 
						|
          .cfi_offset %<reg>, (offset from %rsp)
 | 
						|
 | 
						|
  Notes:
 | 
						|
  - .seh directives are emitted only for Windows 64 ABI
 | 
						|
  - .cfi directives are emitted for all other ABIs
 | 
						|
  - for 32-bit code, substitute %e?? registers for %r??
 | 
						|
*/
 | 
						|
 | 
						|
void X86FrameLowering::emitPrologue(MachineFunction &MF,
 | 
						|
                                    MachineBasicBlock &MBB) const {
 | 
						|
  assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
 | 
						|
         "MF used frame lowering for wrong subtarget");
 | 
						|
  MachineBasicBlock::iterator MBBI = MBB.begin();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  const Function *Fn = MF.getFunction();
 | 
						|
  MachineModuleInfo &MMI = MF.getMMI();
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
 | 
						|
  uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
 | 
						|
  bool IsFunclet = MBB.isEHFuncletEntry();
 | 
						|
  EHPersonality Personality = EHPersonality::Unknown;
 | 
						|
  if (Fn->hasPersonalityFn())
 | 
						|
    Personality = classifyEHPersonality(Fn->getPersonalityFn());
 | 
						|
  bool FnHasClrFunclet =
 | 
						|
      MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
 | 
						|
  bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
 | 
						|
  bool HasFP = hasFP(MF);
 | 
						|
  bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
 | 
						|
  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
 | 
						|
  bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
 | 
						|
  bool NeedsDwarfCFI =
 | 
						|
      !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
 | 
						|
  unsigned FramePtr = TRI->getFrameRegister(MF);
 | 
						|
  const unsigned MachineFramePtr =
 | 
						|
      STI.isTarget64BitILP32()
 | 
						|
          ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
 | 
						|
  unsigned BasePtr = TRI->getBaseRegister();
 | 
						|
  
 | 
						|
  // Debug location must be unknown since the first debug location is used
 | 
						|
  // to determine the end of the prologue.
 | 
						|
  DebugLoc DL;
 | 
						|
 | 
						|
  // Add RETADDR move area to callee saved frame size.
 | 
						|
  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
 | 
						|
  if (TailCallReturnAddrDelta && IsWin64Prologue)
 | 
						|
    report_fatal_error("Can't handle guaranteed tail call under win64 yet");
 | 
						|
 | 
						|
  if (TailCallReturnAddrDelta < 0)
 | 
						|
    X86FI->setCalleeSavedFrameSize(
 | 
						|
      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
 | 
						|
 | 
						|
  bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
 | 
						|
 | 
						|
  // The default stack probe size is 4096 if the function has no stackprobesize
 | 
						|
  // attribute.
 | 
						|
  unsigned StackProbeSize = 4096;
 | 
						|
  if (Fn->hasFnAttribute("stack-probe-size"))
 | 
						|
    Fn->getFnAttribute("stack-probe-size")
 | 
						|
        .getValueAsString()
 | 
						|
        .getAsInteger(0, StackProbeSize);
 | 
						|
 | 
						|
  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
 | 
						|
  // function, and use up to 128 bytes of stack space, don't have a frame
 | 
						|
  // pointer, calls, or dynamic alloca then we do not need to adjust the
 | 
						|
  // stack pointer (we fit in the Red Zone). We also check that we don't
 | 
						|
  // push and pop from the stack.
 | 
						|
  if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
 | 
						|
      !TRI->needsStackRealignment(MF) &&
 | 
						|
      !MFI->hasVarSizedObjects() &&             // No dynamic alloca.
 | 
						|
      !MFI->adjustsStack() &&                   // No calls.
 | 
						|
      !IsWin64CC &&                             // Win64 has no Red Zone
 | 
						|
      !MFI->hasCopyImplyingStackAdjustment() && // Don't push and pop.
 | 
						|
      !MF.shouldSplitStack()) {                 // Regular stack
 | 
						|
    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
 | 
						|
    if (HasFP) MinSize += SlotSize;
 | 
						|
    X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
 | 
						|
    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
 | 
						|
    MFI->setStackSize(StackSize);
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert stack pointer adjustment for later moving of return addr.  Only
 | 
						|
  // applies to tail call optimized functions where the callee argument stack
 | 
						|
  // size is bigger than the callers.
 | 
						|
  if (TailCallReturnAddrDelta < 0) {
 | 
						|
    BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
 | 
						|
                         /*InEpilogue=*/false)
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
  }
 | 
						|
 | 
						|
  // Mapping for machine moves:
 | 
						|
  //
 | 
						|
  //   DST: VirtualFP AND
 | 
						|
  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
 | 
						|
  //        ELSE                        => DW_CFA_def_cfa
 | 
						|
  //
 | 
						|
  //   SRC: VirtualFP AND
 | 
						|
  //        DST: Register               => DW_CFA_def_cfa_register
 | 
						|
  //
 | 
						|
  //   ELSE
 | 
						|
  //        OFFSET < 0                  => DW_CFA_offset_extended_sf
 | 
						|
  //        REG < 64                    => DW_CFA_offset + Reg
 | 
						|
  //        ELSE                        => DW_CFA_offset_extended
 | 
						|
 | 
						|
  uint64_t NumBytes = 0;
 | 
						|
  int stackGrowth = -SlotSize;
 | 
						|
 | 
						|
  // Find the funclet establisher parameter
 | 
						|
  unsigned Establisher = X86::NoRegister;
 | 
						|
  if (IsClrFunclet)
 | 
						|
    Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
 | 
						|
  else if (IsFunclet)
 | 
						|
    Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
 | 
						|
 | 
						|
  if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
 | 
						|
    // Immediately spill establisher into the home slot.
 | 
						|
    // The runtime cares about this.
 | 
						|
    // MOV64mr %rdx, 16(%rsp)
 | 
						|
    unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
 | 
						|
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
 | 
						|
        .addReg(Establisher)
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
    MBB.addLiveIn(Establisher);
 | 
						|
  }
 | 
						|
 | 
						|
  if (HasFP) {
 | 
						|
    // Calculate required stack adjustment.
 | 
						|
    uint64_t FrameSize = StackSize - SlotSize;
 | 
						|
    // If required, include space for extra hidden slot for stashing base pointer.
 | 
						|
    if (X86FI->getRestoreBasePointer())
 | 
						|
      FrameSize += SlotSize;
 | 
						|
 | 
						|
    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
 | 
						|
 | 
						|
    // Callee-saved registers are pushed on stack before the stack is realigned.
 | 
						|
    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
 | 
						|
      NumBytes = alignTo(NumBytes, MaxAlign);
 | 
						|
 | 
						|
    // Get the offset of the stack slot for the EBP register, which is
 | 
						|
    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
 | 
						|
    // Update the frame offset adjustment.
 | 
						|
    if (!IsFunclet)
 | 
						|
      MFI->setOffsetAdjustment(-NumBytes);
 | 
						|
    else
 | 
						|
      assert(MFI->getOffsetAdjustment() == -(int)NumBytes &&
 | 
						|
             "should calculate same local variable offset for funclets");
 | 
						|
 | 
						|
    // Save EBP/RBP into the appropriate stack slot.
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
 | 
						|
      .addReg(MachineFramePtr, RegState::Kill)
 | 
						|
      .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
 | 
						|
    if (NeedsDwarfCFI) {
 | 
						|
      // Mark the place where EBP/RBP was saved.
 | 
						|
      // Define the current CFA rule to use the provided offset.
 | 
						|
      assert(StackSize);
 | 
						|
      BuildCFI(MBB, MBBI, DL,
 | 
						|
               MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
 | 
						|
 | 
						|
      // Change the rule for the FramePtr to be an "offset" rule.
 | 
						|
      unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
 | 
						|
      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
 | 
						|
                                  nullptr, DwarfFramePtr, 2 * stackGrowth));
 | 
						|
    }
 | 
						|
 | 
						|
    if (NeedsWinCFI) {
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
 | 
						|
          .addImm(FramePtr)
 | 
						|
          .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IsWin64Prologue && !IsFunclet) {
 | 
						|
      // Update EBP with the new base value.
 | 
						|
      BuildMI(MBB, MBBI, DL,
 | 
						|
              TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
 | 
						|
              FramePtr)
 | 
						|
          .addReg(StackPtr)
 | 
						|
          .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
 | 
						|
      if (NeedsDwarfCFI) {
 | 
						|
        // Mark effective beginning of when frame pointer becomes valid.
 | 
						|
        // Define the current CFA to use the EBP/RBP register.
 | 
						|
        unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
 | 
						|
        BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
 | 
						|
                                    nullptr, DwarfFramePtr));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Mark the FramePtr as live-in in every block. Don't do this again for
 | 
						|
    // funclet prologues.
 | 
						|
    if (!IsFunclet) {
 | 
						|
      for (MachineBasicBlock &EveryMBB : MF)
 | 
						|
        EveryMBB.addLiveIn(MachineFramePtr);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(!IsFunclet && "funclets without FPs not yet implemented");
 | 
						|
    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
 | 
						|
  }
 | 
						|
 | 
						|
  // For EH funclets, only allocate enough space for outgoing calls. Save the
 | 
						|
  // NumBytes value that we would've used for the parent frame.
 | 
						|
  unsigned ParentFrameNumBytes = NumBytes;
 | 
						|
  if (IsFunclet)
 | 
						|
    NumBytes = getWinEHFuncletFrameSize(MF);
 | 
						|
 | 
						|
  // Skip the callee-saved push instructions.
 | 
						|
  bool PushedRegs = false;
 | 
						|
  int StackOffset = 2 * stackGrowth;
 | 
						|
 | 
						|
  while (MBBI != MBB.end() &&
 | 
						|
         MBBI->getFlag(MachineInstr::FrameSetup) &&
 | 
						|
         (MBBI->getOpcode() == X86::PUSH32r ||
 | 
						|
          MBBI->getOpcode() == X86::PUSH64r)) {
 | 
						|
    PushedRegs = true;
 | 
						|
    unsigned Reg = MBBI->getOperand(0).getReg();
 | 
						|
    ++MBBI;
 | 
						|
 | 
						|
    if (!HasFP && NeedsDwarfCFI) {
 | 
						|
      // Mark callee-saved push instruction.
 | 
						|
      // Define the current CFA rule to use the provided offset.
 | 
						|
      assert(StackSize);
 | 
						|
      BuildCFI(MBB, MBBI, DL,
 | 
						|
               MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
 | 
						|
      StackOffset += stackGrowth;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NeedsWinCFI) {
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
 | 
						|
          MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Realign stack after we pushed callee-saved registers (so that we'll be
 | 
						|
  // able to calculate their offsets from the frame pointer).
 | 
						|
  // Don't do this for Win64, it needs to realign the stack after the prologue.
 | 
						|
  if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
 | 
						|
    assert(HasFP && "There should be a frame pointer if stack is realigned.");
 | 
						|
    BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is an SUB32ri of ESP immediately before this instruction, merge
 | 
						|
  // the two. This can be the case when tail call elimination is enabled and
 | 
						|
  // the callee has more arguments then the caller.
 | 
						|
  NumBytes -= mergeSPUpdates(MBB, MBBI, true);
 | 
						|
 | 
						|
  // Adjust stack pointer: ESP -= numbytes.
 | 
						|
 | 
						|
  // Windows and cygwin/mingw require a prologue helper routine when allocating
 | 
						|
  // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
 | 
						|
  // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
 | 
						|
  // stack and adjust the stack pointer in one go.  The 64-bit version of
 | 
						|
  // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
 | 
						|
  // responsible for adjusting the stack pointer.  Touching the stack at 4K
 | 
						|
  // increments is necessary to ensure that the guard pages used by the OS
 | 
						|
  // virtual memory manager are allocated in correct sequence.
 | 
						|
  uint64_t AlignedNumBytes = NumBytes;
 | 
						|
  if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
 | 
						|
    AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
 | 
						|
  if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
 | 
						|
    // Check whether EAX is livein for this block.
 | 
						|
    bool isEAXAlive = isEAXLiveIn(MBB);
 | 
						|
 | 
						|
    if (isEAXAlive) {
 | 
						|
      // Sanity check that EAX is not livein for this function.
 | 
						|
      // It should not be, so throw an assert.
 | 
						|
      assert(!Is64Bit && "EAX is livein in x64 case!");
 | 
						|
 | 
						|
      // Save EAX
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
 | 
						|
        .addReg(X86::EAX, RegState::Kill)
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Is64Bit) {
 | 
						|
      // Handle the 64-bit Windows ABI case where we need to call __chkstk.
 | 
						|
      // Function prologue is responsible for adjusting the stack pointer.
 | 
						|
      if (isUInt<32>(NumBytes)) {
 | 
						|
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
 | 
						|
            .addImm(NumBytes)
 | 
						|
            .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
      } else if (isInt<32>(NumBytes)) {
 | 
						|
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
 | 
						|
            .addImm(NumBytes)
 | 
						|
            .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
      } else {
 | 
						|
        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
 | 
						|
            .addImm(NumBytes)
 | 
						|
            .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
 | 
						|
      // We'll also use 4 already allocated bytes for EAX.
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
 | 
						|
          .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
 | 
						|
          .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
 | 
						|
    // Call __chkstk, __chkstk_ms, or __alloca.
 | 
						|
    emitStackProbe(MF, MBB, MBBI, DL, true);
 | 
						|
 | 
						|
    if (isEAXAlive) {
 | 
						|
      // Restore EAX
 | 
						|
      MachineInstr *MI =
 | 
						|
          addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
 | 
						|
                       StackPtr, false, NumBytes - 4);
 | 
						|
      MI->setFlag(MachineInstr::FrameSetup);
 | 
						|
      MBB.insert(MBBI, MI);
 | 
						|
    }
 | 
						|
  } else if (NumBytes) {
 | 
						|
    emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (NeedsWinCFI && NumBytes)
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
 | 
						|
        .addImm(NumBytes)
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
 | 
						|
  int SEHFrameOffset = 0;
 | 
						|
  unsigned SPOrEstablisher;
 | 
						|
  if (IsFunclet) {
 | 
						|
    if (IsClrFunclet) {
 | 
						|
      // The establisher parameter passed to a CLR funclet is actually a pointer
 | 
						|
      // to the (mostly empty) frame of its nearest enclosing funclet; we have
 | 
						|
      // to find the root function establisher frame by loading the PSPSym from
 | 
						|
      // the intermediate frame.
 | 
						|
      unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
 | 
						|
      MachinePointerInfo NoInfo;
 | 
						|
      MBB.addLiveIn(Establisher);
 | 
						|
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
 | 
						|
                   Establisher, false, PSPSlotOffset)
 | 
						|
          .addMemOperand(MF.getMachineMemOperand(
 | 
						|
              NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
 | 
						|
      ;
 | 
						|
      // Save the root establisher back into the current funclet's (mostly
 | 
						|
      // empty) frame, in case a sub-funclet or the GC needs it.
 | 
						|
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
 | 
						|
                   false, PSPSlotOffset)
 | 
						|
          .addReg(Establisher)
 | 
						|
          .addMemOperand(
 | 
						|
              MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
 | 
						|
                                                  MachineMemOperand::MOVolatile,
 | 
						|
                                      SlotSize, SlotSize));
 | 
						|
    }
 | 
						|
    SPOrEstablisher = Establisher;
 | 
						|
  } else {
 | 
						|
    SPOrEstablisher = StackPtr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsWin64Prologue && HasFP) {
 | 
						|
    // Set RBP to a small fixed offset from RSP. In the funclet case, we base
 | 
						|
    // this calculation on the incoming establisher, which holds the value of
 | 
						|
    // RSP from the parent frame at the end of the prologue.
 | 
						|
    SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
 | 
						|
    if (SEHFrameOffset)
 | 
						|
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
 | 
						|
                   SPOrEstablisher, false, SEHFrameOffset);
 | 
						|
    else
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
 | 
						|
          .addReg(SPOrEstablisher);
 | 
						|
 | 
						|
    // If this is not a funclet, emit the CFI describing our frame pointer.
 | 
						|
    if (NeedsWinCFI && !IsFunclet) {
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
 | 
						|
          .addImm(FramePtr)
 | 
						|
          .addImm(SEHFrameOffset)
 | 
						|
          .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
      if (isAsynchronousEHPersonality(Personality))
 | 
						|
        MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
 | 
						|
    }
 | 
						|
  } else if (IsFunclet && STI.is32Bit()) {
 | 
						|
    // Reset EBP / ESI to something good for funclets.
 | 
						|
    MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
 | 
						|
    // If we're a catch funclet, we can be returned to via catchret. Save ESP
 | 
						|
    // into the registration node so that the runtime will restore it for us.
 | 
						|
    if (!MBB.isCleanupFuncletEntry()) {
 | 
						|
      assert(Personality == EHPersonality::MSVC_CXX);
 | 
						|
      unsigned FrameReg;
 | 
						|
      int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
 | 
						|
      int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
 | 
						|
      // ESP is the first field, so no extra displacement is needed.
 | 
						|
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
 | 
						|
                   false, EHRegOffset)
 | 
						|
          .addReg(X86::ESP);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
 | 
						|
    const MachineInstr *FrameInstr = &*MBBI;
 | 
						|
    ++MBBI;
 | 
						|
 | 
						|
    if (NeedsWinCFI) {
 | 
						|
      int FI;
 | 
						|
      if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
 | 
						|
        if (X86::FR64RegClass.contains(Reg)) {
 | 
						|
          unsigned IgnoredFrameReg;
 | 
						|
          int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
 | 
						|
          Offset += SEHFrameOffset;
 | 
						|
 | 
						|
          BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
 | 
						|
              .addImm(Reg)
 | 
						|
              .addImm(Offset)
 | 
						|
              .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (NeedsWinCFI)
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
 | 
						|
  if (FnHasClrFunclet && !IsFunclet) {
 | 
						|
    // Save the so-called Initial-SP (i.e. the value of the stack pointer
 | 
						|
    // immediately after the prolog)  into the PSPSlot so that funclets
 | 
						|
    // and the GC can recover it.
 | 
						|
    unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
 | 
						|
    auto PSPInfo = MachinePointerInfo::getFixedStack(
 | 
						|
        MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
 | 
						|
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
 | 
						|
                 PSPSlotOffset)
 | 
						|
        .addReg(StackPtr)
 | 
						|
        .addMemOperand(MF.getMachineMemOperand(
 | 
						|
            PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
 | 
						|
            SlotSize, SlotSize));
 | 
						|
  }
 | 
						|
 | 
						|
  // Realign stack after we spilled callee-saved registers (so that we'll be
 | 
						|
  // able to calculate their offsets from the frame pointer).
 | 
						|
  // Win64 requires aligning the stack after the prologue.
 | 
						|
  if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
 | 
						|
    assert(HasFP && "There should be a frame pointer if stack is realigned.");
 | 
						|
    BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
 | 
						|
  }
 | 
						|
 | 
						|
  // We already dealt with stack realignment and funclets above.
 | 
						|
  if (IsFunclet && STI.is32Bit())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we need a base pointer, set it up here. It's whatever the value
 | 
						|
  // of the stack pointer is at this point. Any variable size objects
 | 
						|
  // will be allocated after this, so we can still use the base pointer
 | 
						|
  // to reference locals.
 | 
						|
  if (TRI->hasBasePointer(MF)) {
 | 
						|
    // Update the base pointer with the current stack pointer.
 | 
						|
    unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
 | 
						|
      .addReg(SPOrEstablisher)
 | 
						|
      .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
    if (X86FI->getRestoreBasePointer()) {
 | 
						|
      // Stash value of base pointer.  Saving RSP instead of EBP shortens
 | 
						|
      // dependence chain. Used by SjLj EH.
 | 
						|
      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
 | 
						|
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
 | 
						|
                   FramePtr, true, X86FI->getRestoreBasePointerOffset())
 | 
						|
        .addReg(SPOrEstablisher)
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
 | 
						|
    if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
 | 
						|
      // Stash the value of the frame pointer relative to the base pointer for
 | 
						|
      // Win32 EH. This supports Win32 EH, which does the inverse of the above:
 | 
						|
      // it recovers the frame pointer from the base pointer rather than the
 | 
						|
      // other way around.
 | 
						|
      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
 | 
						|
      unsigned UsedReg;
 | 
						|
      int Offset =
 | 
						|
          getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
 | 
						|
      assert(UsedReg == BasePtr);
 | 
						|
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
 | 
						|
          .addReg(FramePtr)
 | 
						|
          .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
 | 
						|
    // Mark end of stack pointer adjustment.
 | 
						|
    if (!HasFP && NumBytes) {
 | 
						|
      // Define the current CFA rule to use the provided offset.
 | 
						|
      assert(StackSize);
 | 
						|
      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
 | 
						|
                                  nullptr, -StackSize + stackGrowth));
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit DWARF info specifying the offsets of the callee-saved registers.
 | 
						|
    if (PushedRegs)
 | 
						|
      emitCalleeSavedFrameMoves(MBB, MBBI, DL);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86FrameLowering::canUseLEAForSPInEpilogue(
 | 
						|
    const MachineFunction &MF) const {
 | 
						|
  // We can't use LEA instructions for adjusting the stack pointer if this is a
 | 
						|
  // leaf function in the Win64 ABI.  Only ADD instructions may be used to
 | 
						|
  // deallocate the stack.
 | 
						|
  // This means that we can use LEA for SP in two situations:
 | 
						|
  // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
 | 
						|
  // 2. We *have* a frame pointer which means we are permitted to use LEA.
 | 
						|
  return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
 | 
						|
}
 | 
						|
 | 
						|
static bool isFuncletReturnInstr(MachineInstr *MI) {
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  case X86::CATCHRET:
 | 
						|
  case X86::CLEANUPRET:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  llvm_unreachable("impossible");
 | 
						|
}
 | 
						|
 | 
						|
// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
 | 
						|
// stack. It holds a pointer to the bottom of the root function frame.  The
 | 
						|
// establisher frame pointer passed to a nested funclet may point to the
 | 
						|
// (mostly empty) frame of its parent funclet, but it will need to find
 | 
						|
// the frame of the root function to access locals.  To facilitate this,
 | 
						|
// every funclet copies the pointer to the bottom of the root function
 | 
						|
// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
 | 
						|
// same offset for the PSPSym in the root function frame that's used in the
 | 
						|
// funclets' frames allows each funclet to dynamically accept any ancestor
 | 
						|
// frame as its establisher argument (the runtime doesn't guarantee the
 | 
						|
// immediate parent for some reason lost to history), and also allows the GC,
 | 
						|
// which uses the PSPSym for some bookkeeping, to find it in any funclet's
 | 
						|
// frame with only a single offset reported for the entire method.
 | 
						|
unsigned
 | 
						|
X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
 | 
						|
  const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
 | 
						|
  // getFrameIndexReferenceFromSP has an out ref parameter for the stack
 | 
						|
  // pointer register; pass a dummy that we ignore
 | 
						|
  unsigned SPReg;
 | 
						|
  int Offset = getFrameIndexReferenceFromSP(MF, Info.PSPSymFrameIdx, SPReg);
 | 
						|
  assert(Offset >= 0);
 | 
						|
  return static_cast<unsigned>(Offset);
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
 | 
						|
  // This is the size of the pushed CSRs.
 | 
						|
  unsigned CSSize =
 | 
						|
      MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
 | 
						|
  // This is the amount of stack a funclet needs to allocate.
 | 
						|
  unsigned UsedSize;
 | 
						|
  EHPersonality Personality =
 | 
						|
      classifyEHPersonality(MF.getFunction()->getPersonalityFn());
 | 
						|
  if (Personality == EHPersonality::CoreCLR) {
 | 
						|
    // CLR funclets need to hold enough space to include the PSPSym, at the
 | 
						|
    // same offset from the stack pointer (immediately after the prolog) as it
 | 
						|
    // resides at in the main function.
 | 
						|
    UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
 | 
						|
  } else {
 | 
						|
    // Other funclets just need enough stack for outgoing call arguments.
 | 
						|
    UsedSize = MF.getFrameInfo()->getMaxCallFrameSize();
 | 
						|
  }
 | 
						|
  // RBP is not included in the callee saved register block. After pushing RBP,
 | 
						|
  // everything is 16 byte aligned. Everything we allocate before an outgoing
 | 
						|
  // call must also be 16 byte aligned.
 | 
						|
  unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
 | 
						|
  // Subtract out the size of the callee saved registers. This is how much stack
 | 
						|
  // each funclet will allocate.
 | 
						|
  return FrameSizeMinusRBP - CSSize;
 | 
						|
}
 | 
						|
 | 
						|
void X86FrameLowering::emitEpilogue(MachineFunction &MF,
 | 
						|
                                    MachineBasicBlock &MBB) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
 | 
						|
  DebugLoc DL;
 | 
						|
  if (MBBI != MBB.end())
 | 
						|
    DL = MBBI->getDebugLoc();
 | 
						|
  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
 | 
						|
  const bool Is64BitILP32 = STI.isTarget64BitILP32();
 | 
						|
  unsigned FramePtr = TRI->getFrameRegister(MF);
 | 
						|
  unsigned MachineFramePtr =
 | 
						|
      Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
 | 
						|
 | 
						|
  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
 | 
						|
  bool NeedsWinCFI =
 | 
						|
      IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
 | 
						|
  bool IsFunclet = isFuncletReturnInstr(MBBI);
 | 
						|
  MachineBasicBlock *TargetMBB = nullptr;
 | 
						|
 | 
						|
  // Get the number of bytes to allocate from the FrameInfo.
 | 
						|
  uint64_t StackSize = MFI->getStackSize();
 | 
						|
  uint64_t MaxAlign = calculateMaxStackAlign(MF);
 | 
						|
  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
 | 
						|
  uint64_t NumBytes = 0;
 | 
						|
 | 
						|
  if (MBBI->getOpcode() == X86::CATCHRET) {
 | 
						|
    // SEH shouldn't use catchret.
 | 
						|
    assert(!isAsynchronousEHPersonality(
 | 
						|
               classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
 | 
						|
           "SEH should not use CATCHRET");
 | 
						|
 | 
						|
    NumBytes = getWinEHFuncletFrameSize(MF);
 | 
						|
    assert(hasFP(MF) && "EH funclets without FP not yet implemented");
 | 
						|
    TargetMBB = MBBI->getOperand(0).getMBB();
 | 
						|
 | 
						|
    // Pop EBP.
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
 | 
						|
            MachineFramePtr)
 | 
						|
        .setMIFlag(MachineInstr::FrameDestroy);
 | 
						|
  } else if (MBBI->getOpcode() == X86::CLEANUPRET) {
 | 
						|
    NumBytes = getWinEHFuncletFrameSize(MF);
 | 
						|
    assert(hasFP(MF) && "EH funclets without FP not yet implemented");
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
 | 
						|
            MachineFramePtr)
 | 
						|
        .setMIFlag(MachineInstr::FrameDestroy);
 | 
						|
  } else if (hasFP(MF)) {
 | 
						|
    // Calculate required stack adjustment.
 | 
						|
    uint64_t FrameSize = StackSize - SlotSize;
 | 
						|
    NumBytes = FrameSize - CSSize;
 | 
						|
 | 
						|
    // Callee-saved registers were pushed on stack before the stack was
 | 
						|
    // realigned.
 | 
						|
    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
 | 
						|
      NumBytes = alignTo(FrameSize, MaxAlign);
 | 
						|
 | 
						|
    // Pop EBP.
 | 
						|
    BuildMI(MBB, MBBI, DL,
 | 
						|
            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
 | 
						|
        .setMIFlag(MachineInstr::FrameDestroy);
 | 
						|
  } else {
 | 
						|
    NumBytes = StackSize - CSSize;
 | 
						|
  }
 | 
						|
  uint64_t SEHStackAllocAmt = NumBytes;
 | 
						|
 | 
						|
  // Skip the callee-saved pop instructions.
 | 
						|
  while (MBBI != MBB.begin()) {
 | 
						|
    MachineBasicBlock::iterator PI = std::prev(MBBI);
 | 
						|
    unsigned Opc = PI->getOpcode();
 | 
						|
 | 
						|
    if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
 | 
						|
        (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
 | 
						|
        Opc != X86::DBG_VALUE && !PI->isTerminator())
 | 
						|
      break;
 | 
						|
 | 
						|
    --MBBI;
 | 
						|
  }
 | 
						|
  MachineBasicBlock::iterator FirstCSPop = MBBI;
 | 
						|
 | 
						|
  if (TargetMBB) {
 | 
						|
    // Fill EAX/RAX with the address of the target block.
 | 
						|
    unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
 | 
						|
    if (STI.is64Bit()) {
 | 
						|
      // LEA64r TargetMBB(%rip), %rax
 | 
						|
      BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
 | 
						|
          .addReg(X86::RIP)
 | 
						|
          .addImm(0)
 | 
						|
          .addReg(0)
 | 
						|
          .addMBB(TargetMBB)
 | 
						|
          .addReg(0);
 | 
						|
    } else {
 | 
						|
      // MOV32ri $TargetMBB, %eax
 | 
						|
      BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
 | 
						|
          .addMBB(TargetMBB);
 | 
						|
    }
 | 
						|
    // Record that we've taken the address of TargetMBB and no longer just
 | 
						|
    // reference it in a terminator.
 | 
						|
    TargetMBB->setHasAddressTaken();
 | 
						|
  }
 | 
						|
 | 
						|
  if (MBBI != MBB.end())
 | 
						|
    DL = MBBI->getDebugLoc();
 | 
						|
 | 
						|
  // If there is an ADD32ri or SUB32ri of ESP immediately before this
 | 
						|
  // instruction, merge the two instructions.
 | 
						|
  if (NumBytes || MFI->hasVarSizedObjects())
 | 
						|
    NumBytes += mergeSPUpdates(MBB, MBBI, true);
 | 
						|
 | 
						|
  // If dynamic alloca is used, then reset esp to point to the last callee-saved
 | 
						|
  // slot before popping them off! Same applies for the case, when stack was
 | 
						|
  // realigned. Don't do this if this was a funclet epilogue, since the funclets
 | 
						|
  // will not do realignment or dynamic stack allocation.
 | 
						|
  if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) &&
 | 
						|
      !IsFunclet) {
 | 
						|
    if (TRI->needsStackRealignment(MF))
 | 
						|
      MBBI = FirstCSPop;
 | 
						|
    unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
 | 
						|
    uint64_t LEAAmount =
 | 
						|
        IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
 | 
						|
 | 
						|
    // There are only two legal forms of epilogue:
 | 
						|
    // - add SEHAllocationSize, %rsp
 | 
						|
    // - lea SEHAllocationSize(%FramePtr), %rsp
 | 
						|
    //
 | 
						|
    // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
 | 
						|
    // However, we may use this sequence if we have a frame pointer because the
 | 
						|
    // effects of the prologue can safely be undone.
 | 
						|
    if (LEAAmount != 0) {
 | 
						|
      unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
 | 
						|
      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
 | 
						|
                   FramePtr, false, LEAAmount);
 | 
						|
      --MBBI;
 | 
						|
    } else {
 | 
						|
      unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
 | 
						|
      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
 | 
						|
        .addReg(FramePtr);
 | 
						|
      --MBBI;
 | 
						|
    }
 | 
						|
  } else if (NumBytes) {
 | 
						|
    // Adjust stack pointer back: ESP += numbytes.
 | 
						|
    emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
 | 
						|
    --MBBI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Windows unwinder will not invoke function's exception handler if IP is
 | 
						|
  // either in prologue or in epilogue.  This behavior causes a problem when a
 | 
						|
  // call immediately precedes an epilogue, because the return address points
 | 
						|
  // into the epilogue.  To cope with that, we insert an epilogue marker here,
 | 
						|
  // then replace it with a 'nop' if it ends up immediately after a CALL in the
 | 
						|
  // final emitted code.
 | 
						|
  if (NeedsWinCFI)
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
 | 
						|
 | 
						|
  // Add the return addr area delta back since we are not tail calling.
 | 
						|
  int Offset = -1 * X86FI->getTCReturnAddrDelta();
 | 
						|
  assert(Offset >= 0 && "TCDelta should never be positive");
 | 
						|
  if (Offset) {
 | 
						|
    MBBI = MBB.getFirstTerminator();
 | 
						|
 | 
						|
    // Check for possible merge with preceding ADD instruction.
 | 
						|
    Offset += mergeSPUpdates(MBB, MBBI, true);
 | 
						|
    emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// NOTE: this only has a subset of the full frame index logic. In
 | 
						|
// particular, the FI < 0 and AfterFPPop logic is handled in
 | 
						|
// X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
 | 
						|
// (probably?) it should be moved into here.
 | 
						|
int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
 | 
						|
                                             unsigned &FrameReg) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  // We can't calculate offset from frame pointer if the stack is realigned,
 | 
						|
  // so enforce usage of stack/base pointer.  The base pointer is used when we
 | 
						|
  // have dynamic allocas in addition to dynamic realignment.
 | 
						|
  if (TRI->hasBasePointer(MF))
 | 
						|
    FrameReg = TRI->getBaseRegister();
 | 
						|
  else if (TRI->needsStackRealignment(MF))
 | 
						|
    FrameReg = TRI->getStackRegister();
 | 
						|
  else
 | 
						|
    FrameReg = TRI->getFrameRegister(MF);
 | 
						|
 | 
						|
  // Offset will hold the offset from the stack pointer at function entry to the
 | 
						|
  // object.
 | 
						|
  // We need to factor in additional offsets applied during the prologue to the
 | 
						|
  // frame, base, and stack pointer depending on which is used.
 | 
						|
  int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
 | 
						|
  const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
 | 
						|
  uint64_t StackSize = MFI->getStackSize();
 | 
						|
  bool HasFP = hasFP(MF);
 | 
						|
  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
 | 
						|
  int64_t FPDelta = 0;
 | 
						|
 | 
						|
  if (IsWin64Prologue) {
 | 
						|
    assert(!MFI->hasCalls() || (StackSize % 16) == 8);
 | 
						|
 | 
						|
    // Calculate required stack adjustment.
 | 
						|
    uint64_t FrameSize = StackSize - SlotSize;
 | 
						|
    // If required, include space for extra hidden slot for stashing base pointer.
 | 
						|
    if (X86FI->getRestoreBasePointer())
 | 
						|
      FrameSize += SlotSize;
 | 
						|
    uint64_t NumBytes = FrameSize - CSSize;
 | 
						|
 | 
						|
    uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
 | 
						|
    if (FI && FI == X86FI->getFAIndex())
 | 
						|
      return -SEHFrameOffset;
 | 
						|
 | 
						|
    // FPDelta is the offset from the "traditional" FP location of the old base
 | 
						|
    // pointer followed by return address and the location required by the
 | 
						|
    // restricted Win64 prologue.
 | 
						|
    // Add FPDelta to all offsets below that go through the frame pointer.
 | 
						|
    FPDelta = FrameSize - SEHFrameOffset;
 | 
						|
    assert((!MFI->hasCalls() || (FPDelta % 16) == 0) &&
 | 
						|
           "FPDelta isn't aligned per the Win64 ABI!");
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (TRI->hasBasePointer(MF)) {
 | 
						|
    assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
 | 
						|
    if (FI < 0) {
 | 
						|
      // Skip the saved EBP.
 | 
						|
      return Offset + SlotSize + FPDelta;
 | 
						|
    } else {
 | 
						|
      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
 | 
						|
      return Offset + StackSize;
 | 
						|
    }
 | 
						|
  } else if (TRI->needsStackRealignment(MF)) {
 | 
						|
    if (FI < 0) {
 | 
						|
      // Skip the saved EBP.
 | 
						|
      return Offset + SlotSize + FPDelta;
 | 
						|
    } else {
 | 
						|
      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
 | 
						|
      return Offset + StackSize;
 | 
						|
    }
 | 
						|
    // FIXME: Support tail calls
 | 
						|
  } else {
 | 
						|
    if (!HasFP)
 | 
						|
      return Offset + StackSize;
 | 
						|
 | 
						|
    // Skip the saved EBP.
 | 
						|
    Offset += SlotSize;
 | 
						|
 | 
						|
    // Skip the RETADDR move area
 | 
						|
    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
 | 
						|
    if (TailCallReturnAddrDelta < 0)
 | 
						|
      Offset -= TailCallReturnAddrDelta;
 | 
						|
  }
 | 
						|
 | 
						|
  return Offset + FPDelta;
 | 
						|
}
 | 
						|
 | 
						|
// Simplified from getFrameIndexReference keeping only StackPointer cases
 | 
						|
int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF,
 | 
						|
                                                   int FI,
 | 
						|
                                                   unsigned &FrameReg) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  // Does not include any dynamic realign.
 | 
						|
  const uint64_t StackSize = MFI->getStackSize();
 | 
						|
  {
 | 
						|
#ifndef NDEBUG
 | 
						|
    // LLVM arranges the stack as follows:
 | 
						|
    //   ...
 | 
						|
    //   ARG2
 | 
						|
    //   ARG1
 | 
						|
    //   RETADDR
 | 
						|
    //   PUSH RBP   <-- RBP points here
 | 
						|
    //   PUSH CSRs
 | 
						|
    //   ~~~~~~~    <-- possible stack realignment (non-win64)
 | 
						|
    //   ...
 | 
						|
    //   STACK OBJECTS
 | 
						|
    //   ...        <-- RSP after prologue points here
 | 
						|
    //   ~~~~~~~    <-- possible stack realignment (win64)
 | 
						|
    //
 | 
						|
    // if (hasVarSizedObjects()):
 | 
						|
    //   ...        <-- "base pointer" (ESI/RBX) points here
 | 
						|
    //   DYNAMIC ALLOCAS
 | 
						|
    //   ...        <-- RSP points here
 | 
						|
    //
 | 
						|
    // Case 1: In the simple case of no stack realignment and no dynamic
 | 
						|
    // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
 | 
						|
    // with fixed offsets from RSP.
 | 
						|
    //
 | 
						|
    // Case 2: In the case of stack realignment with no dynamic allocas, fixed
 | 
						|
    // stack objects are addressed with RBP and regular stack objects with RSP.
 | 
						|
    //
 | 
						|
    // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
 | 
						|
    // to address stack arguments for outgoing calls and nothing else. The "base
 | 
						|
    // pointer" points to local variables, and RBP points to fixed objects.
 | 
						|
    //
 | 
						|
    // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
 | 
						|
    // answer we give is relative to the SP after the prologue, and not the
 | 
						|
    // SP in the middle of the function.
 | 
						|
 | 
						|
    assert((!MFI->isFixedObjectIndex(FI) || !TRI->needsStackRealignment(MF) ||
 | 
						|
            STI.isTargetWin64()) &&
 | 
						|
           "offset from fixed object to SP is not static");
 | 
						|
 | 
						|
    // We don't handle tail calls, and shouldn't be seeing them either.
 | 
						|
    int TailCallReturnAddrDelta =
 | 
						|
        MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta();
 | 
						|
    assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!");
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // Fill in FrameReg output argument.
 | 
						|
  FrameReg = TRI->getStackRegister();
 | 
						|
 | 
						|
  // This is how the math works out:
 | 
						|
  //
 | 
						|
  //  %rsp grows (i.e. gets lower) left to right. Each box below is
 | 
						|
  //  one word (eight bytes).  Obj0 is the stack slot we're trying to
 | 
						|
  //  get to.
 | 
						|
  //
 | 
						|
  //    ----------------------------------
 | 
						|
  //    | BP | Obj0 | Obj1 | ... | ObjN |
 | 
						|
  //    ----------------------------------
 | 
						|
  //    ^    ^      ^                   ^
 | 
						|
  //    A    B      C                   E
 | 
						|
  //
 | 
						|
  // A is the incoming stack pointer.
 | 
						|
  // (B - A) is the local area offset (-8 for x86-64) [1]
 | 
						|
  // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
 | 
						|
  //
 | 
						|
  // |(E - B)| is the StackSize (absolute value, positive).  For a
 | 
						|
  // stack that grown down, this works out to be (B - E). [3]
 | 
						|
  //
 | 
						|
  // E is also the value of %rsp after stack has been set up, and we
 | 
						|
  // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
 | 
						|
  // (C - E) == (C - A) - (B - A) + (B - E)
 | 
						|
  //            { Using [1], [2] and [3] above }
 | 
						|
  //         == getObjectOffset - LocalAreaOffset + StackSize
 | 
						|
  //
 | 
						|
 | 
						|
  // Get the Offset from the StackPointer
 | 
						|
  int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
 | 
						|
 | 
						|
  return Offset + StackSize;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FrameLowering::assignCalleeSavedSpillSlots(
 | 
						|
    MachineFunction &MF, const TargetRegisterInfo *TRI,
 | 
						|
    std::vector<CalleeSavedInfo> &CSI) const {
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
 | 
						|
  unsigned CalleeSavedFrameSize = 0;
 | 
						|
  int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
 | 
						|
 | 
						|
  if (hasFP(MF)) {
 | 
						|
    // emitPrologue always spills frame register the first thing.
 | 
						|
    SpillSlotOffset -= SlotSize;
 | 
						|
    MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
 | 
						|
 | 
						|
    // Since emitPrologue and emitEpilogue will handle spilling and restoring of
 | 
						|
    // the frame register, we can delete it from CSI list and not have to worry
 | 
						|
    // about avoiding it later.
 | 
						|
    unsigned FPReg = TRI->getFrameRegister(MF);
 | 
						|
    for (unsigned i = 0; i < CSI.size(); ++i) {
 | 
						|
      if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
 | 
						|
        CSI.erase(CSI.begin() + i);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Assign slots for GPRs. It increases frame size.
 | 
						|
  for (unsigned i = CSI.size(); i != 0; --i) {
 | 
						|
    unsigned Reg = CSI[i - 1].getReg();
 | 
						|
 | 
						|
    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SpillSlotOffset -= SlotSize;
 | 
						|
    CalleeSavedFrameSize += SlotSize;
 | 
						|
 | 
						|
    int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
 | 
						|
    CSI[i - 1].setFrameIdx(SlotIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
 | 
						|
 | 
						|
  // Assign slots for XMMs.
 | 
						|
  for (unsigned i = CSI.size(); i != 0; --i) {
 | 
						|
    unsigned Reg = CSI[i - 1].getReg();
 | 
						|
    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
 | 
						|
    // ensure alignment
 | 
						|
    SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
 | 
						|
    // spill into slot
 | 
						|
    SpillSlotOffset -= RC->getSize();
 | 
						|
    int SlotIndex =
 | 
						|
        MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
 | 
						|
    CSI[i - 1].setFrameIdx(SlotIndex);
 | 
						|
    MFI->ensureMaxAlignment(RC->getAlignment());
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FrameLowering::spillCalleeSavedRegisters(
 | 
						|
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | 
						|
    const std::vector<CalleeSavedInfo> &CSI,
 | 
						|
    const TargetRegisterInfo *TRI) const {
 | 
						|
  DebugLoc DL = MBB.findDebugLoc(MI);
 | 
						|
 | 
						|
  // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
 | 
						|
  // for us, and there are no XMM CSRs on Win32.
 | 
						|
  if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Push GPRs. It increases frame size.
 | 
						|
  unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
 | 
						|
  for (unsigned i = CSI.size(); i != 0; --i) {
 | 
						|
    unsigned Reg = CSI[i - 1].getReg();
 | 
						|
 | 
						|
    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
 | 
						|
      continue;
 | 
						|
    // Add the callee-saved register as live-in. It's killed at the spill.
 | 
						|
    MBB.addLiveIn(Reg);
 | 
						|
 | 
						|
    BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
 | 
						|
      .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
 | 
						|
  // It can be done by spilling XMMs to stack frame.
 | 
						|
  for (unsigned i = CSI.size(); i != 0; --i) {
 | 
						|
    unsigned Reg = CSI[i-1].getReg();
 | 
						|
    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
 | 
						|
      continue;
 | 
						|
    // Add the callee-saved register as live-in. It's killed at the spill.
 | 
						|
    MBB.addLiveIn(Reg);
 | 
						|
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
 | 
						|
 | 
						|
    TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
 | 
						|
                            TRI);
 | 
						|
    --MI;
 | 
						|
    MI->setFlag(MachineInstr::FrameSetup);
 | 
						|
    ++MI;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
 | 
						|
                                               MachineBasicBlock::iterator MI,
 | 
						|
                                        const std::vector<CalleeSavedInfo> &CSI,
 | 
						|
                                          const TargetRegisterInfo *TRI) const {
 | 
						|
  if (CSI.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isFuncletReturnInstr(MI) && STI.isOSWindows()) {
 | 
						|
    // Don't restore CSRs in 32-bit EH funclets. Matches
 | 
						|
    // spillCalleeSavedRegisters.
 | 
						|
    if (STI.is32Bit())
 | 
						|
      return true;
 | 
						|
    // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
 | 
						|
    // funclets. emitEpilogue transforms these to normal jumps.
 | 
						|
    if (MI->getOpcode() == X86::CATCHRET) {
 | 
						|
      const Function *Func = MBB.getParent()->getFunction();
 | 
						|
      bool IsSEH = isAsynchronousEHPersonality(
 | 
						|
          classifyEHPersonality(Func->getPersonalityFn()));
 | 
						|
      if (IsSEH)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DebugLoc DL = MBB.findDebugLoc(MI);
 | 
						|
 | 
						|
  // Reload XMMs from stack frame.
 | 
						|
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = CSI[i].getReg();
 | 
						|
    if (X86::GR64RegClass.contains(Reg) ||
 | 
						|
        X86::GR32RegClass.contains(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
 | 
						|
    TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
 | 
						|
  }
 | 
						|
 | 
						|
  // POP GPRs.
 | 
						|
  unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
 | 
						|
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = CSI[i].getReg();
 | 
						|
    if (!X86::GR64RegClass.contains(Reg) &&
 | 
						|
        !X86::GR32RegClass.contains(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
 | 
						|
        .setMIFlag(MachineInstr::FrameDestroy);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
 | 
						|
                                            BitVector &SavedRegs,
 | 
						|
                                            RegScavenger *RS) const {
 | 
						|
  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
 | 
						|
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
 | 
						|
 | 
						|
  if (TailCallReturnAddrDelta < 0) {
 | 
						|
    // create RETURNADDR area
 | 
						|
    //   arg
 | 
						|
    //   arg
 | 
						|
    //   RETADDR
 | 
						|
    //   { ...
 | 
						|
    //     RETADDR area
 | 
						|
    //     ...
 | 
						|
    //   }
 | 
						|
    //   [EBP]
 | 
						|
    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
 | 
						|
                           TailCallReturnAddrDelta - SlotSize, true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Spill the BasePtr if it's used.
 | 
						|
  if (TRI->hasBasePointer(MF)) {
 | 
						|
    SavedRegs.set(TRI->getBaseRegister());
 | 
						|
 | 
						|
    // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
 | 
						|
    if (MF.getMMI().hasEHFunclets()) {
 | 
						|
      int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize);
 | 
						|
      X86FI->setHasSEHFramePtrSave(true);
 | 
						|
      X86FI->setSEHFramePtrSaveIndex(FI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
HasNestArgument(const MachineFunction *MF) {
 | 
						|
  const Function *F = MF->getFunction();
 | 
						|
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
       I != E; I++) {
 | 
						|
    if (I->hasNestAttr())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// GetScratchRegister - Get a temp register for performing work in the
 | 
						|
/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
 | 
						|
/// and the properties of the function either one or two registers will be
 | 
						|
/// needed. Set primary to true for the first register, false for the second.
 | 
						|
static unsigned
 | 
						|
GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
 | 
						|
  CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
 | 
						|
 | 
						|
  // Erlang stuff.
 | 
						|
  if (CallingConvention == CallingConv::HiPE) {
 | 
						|
    if (Is64Bit)
 | 
						|
      return Primary ? X86::R14 : X86::R13;
 | 
						|
    else
 | 
						|
      return Primary ? X86::EBX : X86::EDI;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Is64Bit) {
 | 
						|
    if (IsLP64)
 | 
						|
      return Primary ? X86::R11 : X86::R12;
 | 
						|
    else
 | 
						|
      return Primary ? X86::R11D : X86::R12D;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsNested = HasNestArgument(&MF);
 | 
						|
 | 
						|
  if (CallingConvention == CallingConv::X86_FastCall ||
 | 
						|
      CallingConvention == CallingConv::Fast) {
 | 
						|
    if (IsNested)
 | 
						|
      report_fatal_error("Segmented stacks does not support fastcall with "
 | 
						|
                         "nested function.");
 | 
						|
    return Primary ? X86::EAX : X86::ECX;
 | 
						|
  }
 | 
						|
  if (IsNested)
 | 
						|
    return Primary ? X86::EDX : X86::EAX;
 | 
						|
  return Primary ? X86::ECX : X86::EAX;
 | 
						|
}
 | 
						|
 | 
						|
// The stack limit in the TCB is set to this many bytes above the actual stack
 | 
						|
// limit.
 | 
						|
static const uint64_t kSplitStackAvailable = 256;
 | 
						|
 | 
						|
void X86FrameLowering::adjustForSegmentedStacks(
 | 
						|
    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  uint64_t StackSize;
 | 
						|
  unsigned TlsReg, TlsOffset;
 | 
						|
  DebugLoc DL;
 | 
						|
 | 
						|
  // To support shrink-wrapping we would need to insert the new blocks
 | 
						|
  // at the right place and update the branches to PrologueMBB.
 | 
						|
  assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
 | 
						|
 | 
						|
  unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
 | 
						|
  assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
 | 
						|
         "Scratch register is live-in");
 | 
						|
 | 
						|
  if (MF.getFunction()->isVarArg())
 | 
						|
    report_fatal_error("Segmented stacks do not support vararg functions.");
 | 
						|
  if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
 | 
						|
      !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
 | 
						|
      !STI.isTargetDragonFly())
 | 
						|
    report_fatal_error("Segmented stacks not supported on this platform.");
 | 
						|
 | 
						|
  // Eventually StackSize will be calculated by a link-time pass; which will
 | 
						|
  // also decide whether checking code needs to be injected into this particular
 | 
						|
  // prologue.
 | 
						|
  StackSize = MFI->getStackSize();
 | 
						|
 | 
						|
  // Do not generate a prologue for functions with a stack of size zero
 | 
						|
  if (StackSize == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
 | 
						|
  MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  bool IsNested = false;
 | 
						|
 | 
						|
  // We need to know if the function has a nest argument only in 64 bit mode.
 | 
						|
  if (Is64Bit)
 | 
						|
    IsNested = HasNestArgument(&MF);
 | 
						|
 | 
						|
  // The MOV R10, RAX needs to be in a different block, since the RET we emit in
 | 
						|
  // allocMBB needs to be last (terminating) instruction.
 | 
						|
 | 
						|
  for (const auto &LI : PrologueMBB.liveins()) {
 | 
						|
    allocMBB->addLiveIn(LI);
 | 
						|
    checkMBB->addLiveIn(LI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsNested)
 | 
						|
    allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
 | 
						|
 | 
						|
  MF.push_front(allocMBB);
 | 
						|
  MF.push_front(checkMBB);
 | 
						|
 | 
						|
  // When the frame size is less than 256 we just compare the stack
 | 
						|
  // boundary directly to the value of the stack pointer, per gcc.
 | 
						|
  bool CompareStackPointer = StackSize < kSplitStackAvailable;
 | 
						|
 | 
						|
  // Read the limit off the current stacklet off the stack_guard location.
 | 
						|
  if (Is64Bit) {
 | 
						|
    if (STI.isTargetLinux()) {
 | 
						|
      TlsReg = X86::FS;
 | 
						|
      TlsOffset = IsLP64 ? 0x70 : 0x40;
 | 
						|
    } else if (STI.isTargetDarwin()) {
 | 
						|
      TlsReg = X86::GS;
 | 
						|
      TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
 | 
						|
    } else if (STI.isTargetWin64()) {
 | 
						|
      TlsReg = X86::GS;
 | 
						|
      TlsOffset = 0x28; // pvArbitrary, reserved for application use
 | 
						|
    } else if (STI.isTargetFreeBSD()) {
 | 
						|
      TlsReg = X86::FS;
 | 
						|
      TlsOffset = 0x18;
 | 
						|
    } else if (STI.isTargetDragonFly()) {
 | 
						|
      TlsReg = X86::FS;
 | 
						|
      TlsOffset = 0x20; // use tls_tcb.tcb_segstack
 | 
						|
    } else {
 | 
						|
      report_fatal_error("Segmented stacks not supported on this platform.");
 | 
						|
    }
 | 
						|
 | 
						|
    if (CompareStackPointer)
 | 
						|
      ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
 | 
						|
    else
 | 
						|
      BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
 | 
						|
        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
 | 
						|
 | 
						|
    BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
 | 
						|
      .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
 | 
						|
  } else {
 | 
						|
    if (STI.isTargetLinux()) {
 | 
						|
      TlsReg = X86::GS;
 | 
						|
      TlsOffset = 0x30;
 | 
						|
    } else if (STI.isTargetDarwin()) {
 | 
						|
      TlsReg = X86::GS;
 | 
						|
      TlsOffset = 0x48 + 90*4;
 | 
						|
    } else if (STI.isTargetWin32()) {
 | 
						|
      TlsReg = X86::FS;
 | 
						|
      TlsOffset = 0x14; // pvArbitrary, reserved for application use
 | 
						|
    } else if (STI.isTargetDragonFly()) {
 | 
						|
      TlsReg = X86::FS;
 | 
						|
      TlsOffset = 0x10; // use tls_tcb.tcb_segstack
 | 
						|
    } else if (STI.isTargetFreeBSD()) {
 | 
						|
      report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
 | 
						|
    } else {
 | 
						|
      report_fatal_error("Segmented stacks not supported on this platform.");
 | 
						|
    }
 | 
						|
 | 
						|
    if (CompareStackPointer)
 | 
						|
      ScratchReg = X86::ESP;
 | 
						|
    else
 | 
						|
      BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
 | 
						|
        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
 | 
						|
 | 
						|
    if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
 | 
						|
        STI.isTargetDragonFly()) {
 | 
						|
      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
 | 
						|
        .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
 | 
						|
    } else if (STI.isTargetDarwin()) {
 | 
						|
 | 
						|
      // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
 | 
						|
      unsigned ScratchReg2;
 | 
						|
      bool SaveScratch2;
 | 
						|
      if (CompareStackPointer) {
 | 
						|
        // The primary scratch register is available for holding the TLS offset.
 | 
						|
        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
 | 
						|
        SaveScratch2 = false;
 | 
						|
      } else {
 | 
						|
        // Need to use a second register to hold the TLS offset
 | 
						|
        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
 | 
						|
 | 
						|
        // Unfortunately, with fastcc the second scratch register may hold an
 | 
						|
        // argument.
 | 
						|
        SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
 | 
						|
      }
 | 
						|
 | 
						|
      // If Scratch2 is live-in then it needs to be saved.
 | 
						|
      assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
 | 
						|
             "Scratch register is live-in and not saved");
 | 
						|
 | 
						|
      if (SaveScratch2)
 | 
						|
        BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
 | 
						|
          .addReg(ScratchReg2, RegState::Kill);
 | 
						|
 | 
						|
      BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
 | 
						|
        .addImm(TlsOffset);
 | 
						|
      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
 | 
						|
        .addReg(ScratchReg)
 | 
						|
        .addReg(ScratchReg2).addImm(1).addReg(0)
 | 
						|
        .addImm(0)
 | 
						|
        .addReg(TlsReg);
 | 
						|
 | 
						|
      if (SaveScratch2)
 | 
						|
        BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
 | 
						|
  // It jumps to normal execution of the function body.
 | 
						|
  BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
 | 
						|
 | 
						|
  // On 32 bit we first push the arguments size and then the frame size. On 64
 | 
						|
  // bit, we pass the stack frame size in r10 and the argument size in r11.
 | 
						|
  if (Is64Bit) {
 | 
						|
    // Functions with nested arguments use R10, so it needs to be saved across
 | 
						|
    // the call to _morestack
 | 
						|
 | 
						|
    const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
 | 
						|
    const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
 | 
						|
    const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
 | 
						|
    const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
 | 
						|
    const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
 | 
						|
 | 
						|
    if (IsNested)
 | 
						|
      BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
 | 
						|
 | 
						|
    BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
 | 
						|
      .addImm(StackSize);
 | 
						|
    BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
 | 
						|
      .addImm(X86FI->getArgumentStackSize());
 | 
						|
  } else {
 | 
						|
    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
 | 
						|
      .addImm(X86FI->getArgumentStackSize());
 | 
						|
    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
 | 
						|
      .addImm(StackSize);
 | 
						|
  }
 | 
						|
 | 
						|
  // __morestack is in libgcc
 | 
						|
  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
 | 
						|
    // Under the large code model, we cannot assume that __morestack lives
 | 
						|
    // within 2^31 bytes of the call site, so we cannot use pc-relative
 | 
						|
    // addressing. We cannot perform the call via a temporary register,
 | 
						|
    // as the rax register may be used to store the static chain, and all
 | 
						|
    // other suitable registers may be either callee-save or used for
 | 
						|
    // parameter passing. We cannot use the stack at this point either
 | 
						|
    // because __morestack manipulates the stack directly.
 | 
						|
    //
 | 
						|
    // To avoid these issues, perform an indirect call via a read-only memory
 | 
						|
    // location containing the address.
 | 
						|
    //
 | 
						|
    // This solution is not perfect, as it assumes that the .rodata section
 | 
						|
    // is laid out within 2^31 bytes of each function body, but this seems
 | 
						|
    // to be sufficient for JIT.
 | 
						|
    BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
 | 
						|
        .addReg(X86::RIP)
 | 
						|
        .addImm(0)
 | 
						|
        .addReg(0)
 | 
						|
        .addExternalSymbol("__morestack_addr")
 | 
						|
        .addReg(0);
 | 
						|
    MF.getMMI().setUsesMorestackAddr(true);
 | 
						|
  } else {
 | 
						|
    if (Is64Bit)
 | 
						|
      BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
 | 
						|
        .addExternalSymbol("__morestack");
 | 
						|
    else
 | 
						|
      BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
 | 
						|
        .addExternalSymbol("__morestack");
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsNested)
 | 
						|
    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
 | 
						|
  else
 | 
						|
    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
 | 
						|
 | 
						|
  allocMBB->addSuccessor(&PrologueMBB);
 | 
						|
 | 
						|
  checkMBB->addSuccessor(allocMBB);
 | 
						|
  checkMBB->addSuccessor(&PrologueMBB);
 | 
						|
 | 
						|
#ifdef XDEBUG
 | 
						|
  MF.verify();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// Erlang programs may need a special prologue to handle the stack size they
 | 
						|
/// might need at runtime. That is because Erlang/OTP does not implement a C
 | 
						|
/// stack but uses a custom implementation of hybrid stack/heap architecture.
 | 
						|
/// (for more information see Eric Stenman's Ph.D. thesis:
 | 
						|
/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
 | 
						|
///
 | 
						|
/// CheckStack:
 | 
						|
///       temp0 = sp - MaxStack
 | 
						|
///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
 | 
						|
/// OldStart:
 | 
						|
///       ...
 | 
						|
/// IncStack:
 | 
						|
///       call inc_stack   # doubles the stack space
 | 
						|
///       temp0 = sp - MaxStack
 | 
						|
///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
 | 
						|
void X86FrameLowering::adjustForHiPEPrologue(
 | 
						|
    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  DebugLoc DL;
 | 
						|
 | 
						|
  // To support shrink-wrapping we would need to insert the new blocks
 | 
						|
  // at the right place and update the branches to PrologueMBB.
 | 
						|
  assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
 | 
						|
 | 
						|
  // HiPE-specific values
 | 
						|
  const unsigned HipeLeafWords = 24;
 | 
						|
  const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
 | 
						|
  const unsigned Guaranteed = HipeLeafWords * SlotSize;
 | 
						|
  unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
 | 
						|
                            MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
 | 
						|
  unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
 | 
						|
 | 
						|
  assert(STI.isTargetLinux() &&
 | 
						|
         "HiPE prologue is only supported on Linux operating systems.");
 | 
						|
 | 
						|
  // Compute the largest caller's frame that is needed to fit the callees'
 | 
						|
  // frames. This 'MaxStack' is computed from:
 | 
						|
  //
 | 
						|
  // a) the fixed frame size, which is the space needed for all spilled temps,
 | 
						|
  // b) outgoing on-stack parameter areas, and
 | 
						|
  // c) the minimum stack space this function needs to make available for the
 | 
						|
  //    functions it calls (a tunable ABI property).
 | 
						|
  if (MFI->hasCalls()) {
 | 
						|
    unsigned MoreStackForCalls = 0;
 | 
						|
 | 
						|
    for (auto &MBB : MF) {
 | 
						|
      for (auto &MI : MBB) {
 | 
						|
        if (!MI.isCall())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Get callee operand.
 | 
						|
        const MachineOperand &MO = MI.getOperand(0);
 | 
						|
 | 
						|
        // Only take account of global function calls (no closures etc.).
 | 
						|
        if (!MO.isGlobal())
 | 
						|
          continue;
 | 
						|
 | 
						|
        const Function *F = dyn_cast<Function>(MO.getGlobal());
 | 
						|
        if (!F)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Do not update 'MaxStack' for primitive and built-in functions
 | 
						|
        // (encoded with names either starting with "erlang."/"bif_" or not
 | 
						|
        // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
 | 
						|
        // "_", such as the BIF "suspend_0") as they are executed on another
 | 
						|
        // stack.
 | 
						|
        if (F->getName().find("erlang.") != StringRef::npos ||
 | 
						|
            F->getName().find("bif_") != StringRef::npos ||
 | 
						|
            F->getName().find_first_of("._") == StringRef::npos)
 | 
						|
          continue;
 | 
						|
 | 
						|
        unsigned CalleeStkArity =
 | 
						|
          F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
 | 
						|
        if (HipeLeafWords - 1 > CalleeStkArity)
 | 
						|
          MoreStackForCalls = std::max(MoreStackForCalls,
 | 
						|
                               (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    MaxStack += MoreStackForCalls;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the stack frame needed is larger than the guaranteed then runtime checks
 | 
						|
  // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
 | 
						|
  if (MaxStack > Guaranteed) {
 | 
						|
    MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
 | 
						|
    MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
 | 
						|
 | 
						|
    for (const auto &LI : PrologueMBB.liveins()) {
 | 
						|
      stackCheckMBB->addLiveIn(LI);
 | 
						|
      incStackMBB->addLiveIn(LI);
 | 
						|
    }
 | 
						|
 | 
						|
    MF.push_front(incStackMBB);
 | 
						|
    MF.push_front(stackCheckMBB);
 | 
						|
 | 
						|
    unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
 | 
						|
    unsigned LEAop, CMPop, CALLop;
 | 
						|
    if (Is64Bit) {
 | 
						|
      SPReg = X86::RSP;
 | 
						|
      PReg  = X86::RBP;
 | 
						|
      LEAop = X86::LEA64r;
 | 
						|
      CMPop = X86::CMP64rm;
 | 
						|
      CALLop = X86::CALL64pcrel32;
 | 
						|
      SPLimitOffset = 0x90;
 | 
						|
    } else {
 | 
						|
      SPReg = X86::ESP;
 | 
						|
      PReg  = X86::EBP;
 | 
						|
      LEAop = X86::LEA32r;
 | 
						|
      CMPop = X86::CMP32rm;
 | 
						|
      CALLop = X86::CALLpcrel32;
 | 
						|
      SPLimitOffset = 0x4c;
 | 
						|
    }
 | 
						|
 | 
						|
    ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
 | 
						|
    assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
 | 
						|
           "HiPE prologue scratch register is live-in");
 | 
						|
 | 
						|
    // Create new MBB for StackCheck:
 | 
						|
    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
 | 
						|
                 SPReg, false, -MaxStack);
 | 
						|
    // SPLimitOffset is in a fixed heap location (pointed by BP).
 | 
						|
    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
 | 
						|
                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
 | 
						|
    BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
 | 
						|
 | 
						|
    // Create new MBB for IncStack:
 | 
						|
    BuildMI(incStackMBB, DL, TII.get(CALLop)).
 | 
						|
      addExternalSymbol("inc_stack_0");
 | 
						|
    addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
 | 
						|
                 SPReg, false, -MaxStack);
 | 
						|
    addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
 | 
						|
                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
 | 
						|
    BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
 | 
						|
 | 
						|
    stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
 | 
						|
    stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
 | 
						|
    incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
 | 
						|
    incStackMBB->addSuccessor(incStackMBB, {1, 100});
 | 
						|
  }
 | 
						|
#ifdef XDEBUG
 | 
						|
  MF.verify();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
 | 
						|
    MachineBasicBlock::iterator MBBI, DebugLoc DL, int Offset) const {
 | 
						|
 | 
						|
  if (Offset <= 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Offset % SlotSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  int NumPops = Offset / SlotSize;
 | 
						|
  // This is only worth it if we have at most 2 pops.
 | 
						|
  if (NumPops != 1 && NumPops != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle only the trivial case where the adjustment directly follows
 | 
						|
  // a call. This is the most common one, anyway.
 | 
						|
  if (MBBI == MBB.begin())
 | 
						|
    return false;
 | 
						|
  MachineBasicBlock::iterator Prev = std::prev(MBBI);
 | 
						|
  if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Regs[2];
 | 
						|
  unsigned FoundRegs = 0;
 | 
						|
 | 
						|
  auto RegMask = Prev->getOperand(1);
 | 
						|
 | 
						|
  auto &RegClass =
 | 
						|
      Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
 | 
						|
  // Try to find up to NumPops free registers.
 | 
						|
  for (auto Candidate : RegClass) {
 | 
						|
 | 
						|
    // Poor man's liveness:
 | 
						|
    // Since we're immediately after a call, any register that is clobbered
 | 
						|
    // by the call and not defined by it can be considered dead.
 | 
						|
    if (!RegMask.clobbersPhysReg(Candidate))
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool IsDef = false;
 | 
						|
    for (const MachineOperand &MO : Prev->implicit_operands()) {
 | 
						|
      if (MO.isReg() && MO.isDef() &&
 | 
						|
          TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
 | 
						|
        IsDef = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsDef)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Regs[FoundRegs++] = Candidate;
 | 
						|
    if (FoundRegs == (unsigned)NumPops)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (FoundRegs == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we found only one free register, but need two, reuse the same one twice.
 | 
						|
  while (FoundRegs < (unsigned)NumPops)
 | 
						|
    Regs[FoundRegs++] = Regs[0];
 | 
						|
 | 
						|
  for (int i = 0; i < NumPops; ++i)
 | 
						|
    BuildMI(MBB, MBBI, DL, 
 | 
						|
            TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock::iterator X86FrameLowering::
 | 
						|
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
 | 
						|
                              MachineBasicBlock::iterator I) const {
 | 
						|
  bool reserveCallFrame = hasReservedCallFrame(MF);
 | 
						|
  unsigned Opcode = I->getOpcode();
 | 
						|
  bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
 | 
						|
  DebugLoc DL = I->getDebugLoc();
 | 
						|
  uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
 | 
						|
  uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
 | 
						|
  I = MBB.erase(I);
 | 
						|
 | 
						|
  if (!reserveCallFrame) {
 | 
						|
    // If the stack pointer can be changed after prologue, turn the
 | 
						|
    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
 | 
						|
    // adjcallstackdown instruction into 'add ESP, <amt>'
 | 
						|
 | 
						|
    // We need to keep the stack aligned properly.  To do this, we round the
 | 
						|
    // amount of space needed for the outgoing arguments up to the next
 | 
						|
    // alignment boundary.
 | 
						|
    unsigned StackAlign = getStackAlignment();
 | 
						|
    Amount = alignTo(Amount, StackAlign);
 | 
						|
 | 
						|
    MachineModuleInfo &MMI = MF.getMMI();
 | 
						|
    const Function *Fn = MF.getFunction();
 | 
						|
    bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
 | 
						|
    bool DwarfCFI = !WindowsCFI && 
 | 
						|
                    (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
 | 
						|
 | 
						|
    // If we have any exception handlers in this function, and we adjust
 | 
						|
    // the SP before calls, we may need to indicate this to the unwinder
 | 
						|
    // using GNU_ARGS_SIZE. Note that this may be necessary even when
 | 
						|
    // Amount == 0, because the preceding function may have set a non-0
 | 
						|
    // GNU_ARGS_SIZE.
 | 
						|
    // TODO: We don't need to reset this between subsequent functions,
 | 
						|
    // if it didn't change.
 | 
						|
    bool HasDwarfEHHandlers = !WindowsCFI &&
 | 
						|
                              !MF.getMMI().getLandingPads().empty();
 | 
						|
 | 
						|
    if (HasDwarfEHHandlers && !isDestroy &&
 | 
						|
        MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
 | 
						|
      BuildCFI(MBB, I, DL,
 | 
						|
               MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
 | 
						|
 | 
						|
    if (Amount == 0)
 | 
						|
      return I;
 | 
						|
 | 
						|
    // Factor out the amount that gets handled inside the sequence
 | 
						|
    // (Pushes of argument for frame setup, callee pops for frame destroy)
 | 
						|
    Amount -= InternalAmt;
 | 
						|
 | 
						|
    // TODO: This is needed only if we require precise CFA.
 | 
						|
    // If this is a callee-pop calling convention, emit a CFA adjust for
 | 
						|
    // the amount the callee popped.
 | 
						|
    if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
 | 
						|
      BuildCFI(MBB, I, DL, 
 | 
						|
               MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
 | 
						|
 | 
						|
    // Add Amount to SP to destroy a frame, or subtract to setup.
 | 
						|
    int64_t StackAdjustment = isDestroy ? Amount : -Amount;
 | 
						|
    int64_t CfaAdjustment = -StackAdjustment;
 | 
						|
 | 
						|
    if (StackAdjustment) {
 | 
						|
      // Merge with any previous or following adjustment instruction. Note: the
 | 
						|
      // instructions merged with here do not have CFI, so their stack
 | 
						|
      // adjustments do not feed into CfaAdjustment.
 | 
						|
      StackAdjustment += mergeSPUpdates(MBB, I, true);
 | 
						|
      StackAdjustment += mergeSPUpdates(MBB, I, false);
 | 
						|
 | 
						|
      if (StackAdjustment) {
 | 
						|
        if (!(Fn->optForMinSize() &&
 | 
						|
              adjustStackWithPops(MBB, I, DL, StackAdjustment)))
 | 
						|
          BuildStackAdjustment(MBB, I, DL, StackAdjustment,
 | 
						|
                               /*InEpilogue=*/false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (DwarfCFI && !hasFP(MF)) {
 | 
						|
      // If we don't have FP, but need to generate unwind information,
 | 
						|
      // we need to set the correct CFA offset after the stack adjustment.
 | 
						|
      // How much we adjust the CFA offset depends on whether we're emitting
 | 
						|
      // CFI only for EH purposes or for debugging. EH only requires the CFA
 | 
						|
      // offset to be correct at each call site, while for debugging we want
 | 
						|
      // it to be more precise.
 | 
						|
 | 
						|
      // TODO: When not using precise CFA, we also need to adjust for the
 | 
						|
      // InternalAmt here.
 | 
						|
      if (CfaAdjustment) {
 | 
						|
        BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(
 | 
						|
                                 nullptr, CfaAdjustment));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isDestroy && InternalAmt) {
 | 
						|
    // If we are performing frame pointer elimination and if the callee pops
 | 
						|
    // something off the stack pointer, add it back.  We do this until we have
 | 
						|
    // more advanced stack pointer tracking ability.
 | 
						|
    // We are not tracking the stack pointer adjustment by the callee, so make
 | 
						|
    // sure we restore the stack pointer immediately after the call, there may
 | 
						|
    // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
 | 
						|
    MachineBasicBlock::iterator CI = I;
 | 
						|
    MachineBasicBlock::iterator B = MBB.begin();
 | 
						|
    while (CI != B && !std::prev(CI)->isCall())
 | 
						|
      --CI;
 | 
						|
    BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
 | 
						|
  assert(MBB.getParent() && "Block is not attached to a function!");
 | 
						|
 | 
						|
  // Win64 has strict requirements in terms of epilogue and we are
 | 
						|
  // not taking a chance at messing with them.
 | 
						|
  // I.e., unless this block is already an exit block, we can't use
 | 
						|
  // it as an epilogue.
 | 
						|
  if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (canUseLEAForSPInEpilogue(*MBB.getParent()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we cannot use LEA to adjust SP, we may need to use ADD, which
 | 
						|
  // clobbers the EFLAGS. Check that we do not need to preserve it,
 | 
						|
  // otherwise, conservatively assume this is not
 | 
						|
  // safe to insert the epilogue here.
 | 
						|
  return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
 | 
						|
}
 | 
						|
 | 
						|
bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
 | 
						|
  // If we may need to emit frameless compact unwind information, give
 | 
						|
  // up as this is currently broken: PR25614.
 | 
						|
  return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
 | 
						|
         // The lowering of segmented stack and HiPE only support entry blocks
 | 
						|
         // as prologue blocks: PR26107.
 | 
						|
         // This limitation may be lifted if we fix:
 | 
						|
         // - adjustForSegmentedStacks
 | 
						|
         // - adjustForHiPEPrologue
 | 
						|
         MF.getFunction()->getCallingConv() != CallingConv::HiPE &&
 | 
						|
         !MF.shouldSplitStack();
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
 | 
						|
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
 | 
						|
    DebugLoc DL, bool RestoreSP) const {
 | 
						|
  assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
 | 
						|
  assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
 | 
						|
  assert(STI.is32Bit() && !Uses64BitFramePtr &&
 | 
						|
         "restoring EBP/ESI on non-32-bit target");
 | 
						|
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  unsigned FramePtr = TRI->getFrameRegister(MF);
 | 
						|
  unsigned BasePtr = TRI->getBaseRegister();
 | 
						|
  WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
 | 
						|
  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  // FIXME: Don't set FrameSetup flag in catchret case.
 | 
						|
 | 
						|
  int FI = FuncInfo.EHRegNodeFrameIndex;
 | 
						|
  int EHRegSize = MFI->getObjectSize(FI);
 | 
						|
 | 
						|
  if (RestoreSP) {
 | 
						|
    // MOV32rm -EHRegSize(%ebp), %esp
 | 
						|
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
 | 
						|
                 X86::EBP, true, -EHRegSize)
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned UsedReg;
 | 
						|
  int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
 | 
						|
  int EndOffset = -EHRegOffset - EHRegSize;
 | 
						|
  FuncInfo.EHRegNodeEndOffset = EndOffset;
 | 
						|
 | 
						|
  if (UsedReg == FramePtr) {
 | 
						|
    // ADD $offset, %ebp
 | 
						|
    unsigned ADDri = getADDriOpcode(false, EndOffset);
 | 
						|
    BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
 | 
						|
        .addReg(FramePtr)
 | 
						|
        .addImm(EndOffset)
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup)
 | 
						|
        ->getOperand(3)
 | 
						|
        .setIsDead();
 | 
						|
    assert(EndOffset >= 0 &&
 | 
						|
           "end of registration object above normal EBP position!");
 | 
						|
  } else if (UsedReg == BasePtr) {
 | 
						|
    // LEA offset(%ebp), %esi
 | 
						|
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
 | 
						|
                 FramePtr, false, EndOffset)
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
    // MOV32rm SavedEBPOffset(%esi), %ebp
 | 
						|
    assert(X86FI->getHasSEHFramePtrSave());
 | 
						|
    int Offset =
 | 
						|
        getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
 | 
						|
    assert(UsedReg == BasePtr);
 | 
						|
    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
 | 
						|
                 UsedReg, true, Offset)
 | 
						|
        .setMIFlag(MachineInstr::FrameSetup);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
 | 
						|
  }
 | 
						|
  return MBBI;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
// Struct used by orderFrameObjects to help sort the stack objects.
 | 
						|
struct X86FrameSortingObject {
 | 
						|
  bool IsValid = false;         // true if we care about this Object.
 | 
						|
  unsigned ObjectIndex = 0;     // Index of Object into MFI list.
 | 
						|
  unsigned ObjectSize = 0;      // Size of Object in bytes.
 | 
						|
  unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
 | 
						|
  unsigned ObjectNumUses = 0;   // Object static number of uses.
 | 
						|
};
 | 
						|
 | 
						|
// The comparison function we use for std::sort to order our local
 | 
						|
// stack symbols. The current algorithm is to use an estimated
 | 
						|
// "density". This takes into consideration the size and number of
 | 
						|
// uses each object has in order to roughly minimize code size.
 | 
						|
// So, for example, an object of size 16B that is referenced 5 times
 | 
						|
// will get higher priority than 4 4B objects referenced 1 time each.
 | 
						|
// It's not perfect and we may be able to squeeze a few more bytes out of
 | 
						|
// it (for example : 0(esp) requires fewer bytes, symbols allocated at the
 | 
						|
// fringe end can have special consideration, given their size is less
 | 
						|
// important, etc.), but the algorithmic complexity grows too much to be
 | 
						|
// worth the extra gains we get. This gets us pretty close.
 | 
						|
// The final order leaves us with objects with highest priority going
 | 
						|
// at the end of our list.
 | 
						|
struct X86FrameSortingComparator {
 | 
						|
  inline bool operator()(const X86FrameSortingObject &A,
 | 
						|
                         const X86FrameSortingObject &B) {
 | 
						|
    uint64_t DensityAScaled, DensityBScaled;
 | 
						|
 | 
						|
    // For consistency in our comparison, all invalid objects are placed
 | 
						|
    // at the end. This also allows us to stop walking when we hit the
 | 
						|
    // first invalid item after it's all sorted.
 | 
						|
    if (!A.IsValid)
 | 
						|
      return false;
 | 
						|
    if (!B.IsValid)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // The density is calculated by doing :
 | 
						|
    //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
 | 
						|
    //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
 | 
						|
    // Since this approach may cause inconsistencies in
 | 
						|
    // the floating point <, >, == comparisons, depending on the floating
 | 
						|
    // point model with which the compiler was built, we're going
 | 
						|
    // to scale both sides by multiplying with
 | 
						|
    // A.ObjectSize * B.ObjectSize. This ends up factoring away
 | 
						|
    // the division and, with it, the need for any floating point
 | 
						|
    // arithmetic.
 | 
						|
    DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
 | 
						|
      static_cast<uint64_t>(B.ObjectSize);
 | 
						|
    DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
 | 
						|
      static_cast<uint64_t>(A.ObjectSize);
 | 
						|
 | 
						|
    // If the two densities are equal, prioritize highest alignment
 | 
						|
    // objects. This allows for similar alignment objects
 | 
						|
    // to be packed together (given the same density).
 | 
						|
    // There's room for improvement here, also, since we can pack
 | 
						|
    // similar alignment (different density) objects next to each
 | 
						|
    // other to save padding. This will also require further
 | 
						|
    // complexity/iterations, and the overall gain isn't worth it,
 | 
						|
    // in general. Something to keep in mind, though.
 | 
						|
    if (DensityAScaled == DensityBScaled)
 | 
						|
      return A.ObjectAlignment < B.ObjectAlignment;
 | 
						|
    
 | 
						|
    return DensityAScaled < DensityBScaled;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
// Order the symbols in the local stack.
 | 
						|
// We want to place the local stack objects in some sort of sensible order.
 | 
						|
// The heuristic we use is to try and pack them according to static number
 | 
						|
// of uses and size of object in order to minimize code size.
 | 
						|
void X86FrameLowering::orderFrameObjects(
 | 
						|
    const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  // Don't waste time if there's nothing to do.
 | 
						|
  if (ObjectsToAllocate.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Create an array of all MFI objects. We won't need all of these
 | 
						|
  // objects, but we're going to create a full array of them to make
 | 
						|
  // it easier to index into when we're counting "uses" down below.
 | 
						|
  // We want to be able to easily/cheaply access an object by simply
 | 
						|
  // indexing into it, instead of having to search for it every time.
 | 
						|
  std::vector<X86FrameSortingObject> SortingObjects(MFI->getObjectIndexEnd());
 | 
						|
 | 
						|
  // Walk the objects we care about and mark them as such in our working
 | 
						|
  // struct.
 | 
						|
  for (auto &Obj : ObjectsToAllocate) {
 | 
						|
    SortingObjects[Obj].IsValid = true;
 | 
						|
    SortingObjects[Obj].ObjectIndex = Obj;
 | 
						|
    SortingObjects[Obj].ObjectAlignment = MFI->getObjectAlignment(Obj);
 | 
						|
    // Set the size.
 | 
						|
    int ObjectSize = MFI->getObjectSize(Obj);
 | 
						|
    if (ObjectSize == 0)
 | 
						|
      // Variable size. Just use 4.
 | 
						|
      SortingObjects[Obj].ObjectSize = 4;
 | 
						|
    else      
 | 
						|
      SortingObjects[Obj].ObjectSize = ObjectSize;
 | 
						|
  }
 | 
						|
 | 
						|
  // Count the number of uses for each object.
 | 
						|
  for (auto &MBB : MF) {
 | 
						|
    for (auto &MI : MBB) {
 | 
						|
      for (const MachineOperand &MO : MI.operands()) {
 | 
						|
        // Check to see if it's a local stack symbol.
 | 
						|
        if (!MO.isFI())
 | 
						|
          continue;
 | 
						|
        int Index = MO.getIndex();
 | 
						|
        // Check to see if it falls within our range, and is tagged
 | 
						|
        // to require ordering.
 | 
						|
        if (Index >= 0 && Index < MFI->getObjectIndexEnd() &&
 | 
						|
            SortingObjects[Index].IsValid)
 | 
						|
          SortingObjects[Index].ObjectNumUses++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Sort the objects using X86FrameSortingAlgorithm (see its comment for
 | 
						|
  // info).
 | 
						|
  std::stable_sort(SortingObjects.begin(), SortingObjects.end(),
 | 
						|
                   X86FrameSortingComparator());
 | 
						|
 | 
						|
  // Now modify the original list to represent the final order that
 | 
						|
  // we want. The order will depend on whether we're going to access them
 | 
						|
  // from the stack pointer or the frame pointer. For SP, the list should
 | 
						|
  // end up with the END containing objects that we want with smaller offsets.
 | 
						|
  // For FP, it should be flipped.
 | 
						|
  int i = 0;
 | 
						|
  for (auto &Obj : SortingObjects) {
 | 
						|
    // All invalid items are sorted at the end, so it's safe to stop.
 | 
						|
    if (!Obj.IsValid)
 | 
						|
      break;
 | 
						|
    ObjectsToAllocate[i++] = Obj.ObjectIndex;
 | 
						|
  }
 | 
						|
 | 
						|
  // Flip it if we're accessing off of the FP.
 | 
						|
  if (!TRI->needsStackRealignment(MF) && hasFP(MF))
 | 
						|
    std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
 | 
						|
  // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
 | 
						|
  unsigned Offset = 16;
 | 
						|
  // RBP is immediately pushed.
 | 
						|
  Offset += SlotSize;
 | 
						|
  // All callee-saved registers are then pushed.
 | 
						|
  Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
 | 
						|
  // Every funclet allocates enough stack space for the largest outgoing call.
 | 
						|
  Offset += getWinEHFuncletFrameSize(MF);
 | 
						|
  return Offset;
 | 
						|
}
 | 
						|
 | 
						|
void X86FrameLowering::processFunctionBeforeFrameFinalized(
 | 
						|
    MachineFunction &MF, RegScavenger *RS) const {
 | 
						|
  // If this function isn't doing Win64-style C++ EH, we don't need to do
 | 
						|
  // anything.
 | 
						|
  const Function *Fn = MF.getFunction();
 | 
						|
  if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
 | 
						|
      classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
 | 
						|
  // relative to RSP after the prologue.  Find the offset of the last fixed
 | 
						|
  // object, so that we can allocate a slot immediately following it. If there
 | 
						|
  // were no fixed objects, use offset -SlotSize, which is immediately after the
 | 
						|
  // return address. Fixed objects have negative frame indices.
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
 | 
						|
  int64_t MinFixedObjOffset = -SlotSize;
 | 
						|
  for (int I = MFI->getObjectIndexBegin(); I < 0; ++I)
 | 
						|
    MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I));
 | 
						|
 | 
						|
  for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
 | 
						|
    for (WinEHHandlerType &H : TBME.HandlerArray) {
 | 
						|
      int FrameIndex = H.CatchObj.FrameIndex;
 | 
						|
      if (FrameIndex != INT_MAX) {
 | 
						|
        // Ensure alignment.
 | 
						|
        unsigned Align = MFI->getObjectAlignment(FrameIndex);
 | 
						|
        MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
 | 
						|
        MinFixedObjOffset -= MFI->getObjectSize(FrameIndex);
 | 
						|
        MFI->setObjectOffset(FrameIndex, MinFixedObjOffset);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure alignment.
 | 
						|
  MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
 | 
						|
  int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
 | 
						|
  int UnwindHelpFI =
 | 
						|
      MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
 | 
						|
  EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
 | 
						|
 | 
						|
  // Store -2 into UnwindHelp on function entry. We have to scan forwards past
 | 
						|
  // other frame setup instructions.
 | 
						|
  MachineBasicBlock &MBB = MF.front();
 | 
						|
  auto MBBI = MBB.begin();
 | 
						|
  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
 | 
						|
    ++MBBI;
 | 
						|
 | 
						|
  DebugLoc DL = MBB.findDebugLoc(MBBI);
 | 
						|
  addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
 | 
						|
                    UnwindHelpFI)
 | 
						|
      .addImm(-2);
 | 
						|
}
 |