forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			277 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			277 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- X86EvexToVex.cpp ---------------------------------------------------===//
 | |
| // Compress EVEX instructions to VEX encoding when possible to reduce code size
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// This file defines the pass that goes over all AVX-512 instructions which
 | |
| /// are encoded using the EVEX prefix and if possible replaces them by their
 | |
| /// corresponding VEX encoding which is usually shorter by 2 bytes.
 | |
| /// EVEX instructions may be encoded via the VEX prefix when the AVX-512
 | |
| /// instruction has a corresponding AVX/AVX2 opcode, when vector length 
 | |
| /// accessed by instruction is less than 512 bits and when it does not use 
 | |
| //  the xmm or the mask registers or xmm/ymm registers with indexes higher than 15.
 | |
| /// The pass applies code reduction on the generated code for AVX-512 instrs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/X86BaseInfo.h"
 | |
| #include "MCTargetDesc/X86InstComments.h"
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // Including the generated EVEX2VEX tables.
 | |
| struct X86EvexToVexCompressTableEntry {
 | |
|   uint16_t EvexOpcode;
 | |
|   uint16_t VexOpcode;
 | |
| 
 | |
|   bool operator<(const X86EvexToVexCompressTableEntry &RHS) const {
 | |
|     return EvexOpcode < RHS.EvexOpcode;
 | |
|   }
 | |
| 
 | |
|   friend bool operator<(const X86EvexToVexCompressTableEntry &TE,
 | |
|                         unsigned Opc) {
 | |
|     return TE.EvexOpcode < Opc;
 | |
|   }
 | |
| };
 | |
| #include "X86GenEVEX2VEXTables.inc"
 | |
| 
 | |
| #define EVEX2VEX_DESC "Compressing EVEX instrs to VEX encoding when possible"
 | |
| #define EVEX2VEX_NAME "x86-evex-to-vex-compress"
 | |
| 
 | |
| #define DEBUG_TYPE EVEX2VEX_NAME
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class EvexToVexInstPass : public MachineFunctionPass {
 | |
| 
 | |
|   /// For EVEX instructions that can be encoded using VEX encoding, replace
 | |
|   /// them by the VEX encoding in order to reduce size.
 | |
|   bool CompressEvexToVexImpl(MachineInstr &MI) const;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   EvexToVexInstPass() : MachineFunctionPass(ID) { }
 | |
| 
 | |
|   StringRef getPassName() const override { return EVEX2VEX_DESC; }
 | |
| 
 | |
|   /// Loop over all of the basic blocks, replacing EVEX instructions
 | |
|   /// by equivalent VEX instructions when possible for reducing code size.
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   // This pass runs after regalloc and doesn't support VReg operands.
 | |
|   MachineFunctionProperties getRequiredProperties() const override {
 | |
|     return MachineFunctionProperties().set(
 | |
|         MachineFunctionProperties::Property::NoVRegs);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Machine instruction info used throughout the class.
 | |
|   const X86InstrInfo *TII = nullptr;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char EvexToVexInstPass::ID = 0;
 | |
| 
 | |
| bool EvexToVexInstPass::runOnMachineFunction(MachineFunction &MF) {
 | |
|   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
 | |
| 
 | |
|   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
 | |
|   if (!ST.hasAVX512())
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   /// Go over all basic blocks in function and replace
 | |
|   /// EVEX encoded instrs by VEX encoding when possible.
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
| 
 | |
|     // Traverse the basic block.
 | |
|     for (MachineInstr &MI : MBB)
 | |
|       Changed |= CompressEvexToVexImpl(MI);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| static bool usesExtendedRegister(const MachineInstr &MI) {
 | |
|   auto isHiRegIdx = [](unsigned Reg) {
 | |
|     // Check for XMM register with indexes between 16 - 31.
 | |
|     if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
 | |
|       return true;
 | |
| 
 | |
|     // Check for YMM register with indexes between 16 - 31.
 | |
|     if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // Check that operands are not ZMM regs or
 | |
|   // XMM/YMM regs with hi indexes between 16 - 31.
 | |
|   for (const MachineOperand &MO : MI.explicit_operands()) {
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
| 
 | |
|     Register Reg = MO.getReg();
 | |
| 
 | |
|     assert(!(Reg >= X86::ZMM0 && Reg <= X86::ZMM31) &&
 | |
|            "ZMM instructions should not be in the EVEX->VEX tables");
 | |
| 
 | |
|     if (isHiRegIdx(Reg))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Do any custom cleanup needed to finalize the conversion.
 | |
| static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
 | |
|   (void)NewOpc;
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   switch (Opc) {
 | |
|   case X86::VALIGNDZ128rri:
 | |
|   case X86::VALIGNDZ128rmi:
 | |
|   case X86::VALIGNQZ128rri:
 | |
|   case X86::VALIGNQZ128rmi: {
 | |
|     assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
 | |
|            "Unexpected new opcode!");
 | |
|     unsigned Scale = (Opc == X86::VALIGNQZ128rri ||
 | |
|                       Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
 | |
|     MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
 | |
|     Imm.setImm(Imm.getImm() * Scale);
 | |
|     break;
 | |
|   }
 | |
|   case X86::VSHUFF32X4Z256rmi:
 | |
|   case X86::VSHUFF32X4Z256rri:
 | |
|   case X86::VSHUFF64X2Z256rmi:
 | |
|   case X86::VSHUFF64X2Z256rri:
 | |
|   case X86::VSHUFI32X4Z256rmi:
 | |
|   case X86::VSHUFI32X4Z256rri:
 | |
|   case X86::VSHUFI64X2Z256rmi:
 | |
|   case X86::VSHUFI64X2Z256rri: {
 | |
|     assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr ||
 | |
|             NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) &&
 | |
|            "Unexpected new opcode!");
 | |
|     MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
 | |
|     int64_t ImmVal = Imm.getImm();
 | |
|     // Set bit 5, move bit 1 to bit 4, copy bit 0.
 | |
|     Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
 | |
|     break;
 | |
|   }
 | |
|   case X86::VRNDSCALEPDZ128rri:
 | |
|   case X86::VRNDSCALEPDZ128rmi:
 | |
|   case X86::VRNDSCALEPSZ128rri:
 | |
|   case X86::VRNDSCALEPSZ128rmi:
 | |
|   case X86::VRNDSCALEPDZ256rri:
 | |
|   case X86::VRNDSCALEPDZ256rmi:
 | |
|   case X86::VRNDSCALEPSZ256rri:
 | |
|   case X86::VRNDSCALEPSZ256rmi:
 | |
|   case X86::VRNDSCALESDZr:
 | |
|   case X86::VRNDSCALESDZm:
 | |
|   case X86::VRNDSCALESSZr:
 | |
|   case X86::VRNDSCALESSZm:
 | |
|   case X86::VRNDSCALESDZr_Int:
 | |
|   case X86::VRNDSCALESDZm_Int:
 | |
|   case X86::VRNDSCALESSZr_Int:
 | |
|   case X86::VRNDSCALESSZm_Int:
 | |
|     const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
 | |
|     int64_t ImmVal = Imm.getImm();
 | |
|     // Ensure that only bits 3:0 of the immediate are used.
 | |
|     if ((ImmVal & 0xf) != ImmVal)
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // For EVEX instructions that can be encoded using VEX encoding
 | |
| // replace them by the VEX encoding in order to reduce size.
 | |
| bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr &MI) const {
 | |
|   // VEX format.
 | |
|   // # of bytes: 0,2,3  1      1      0,1   0,1,2,4  0,1
 | |
|   //  [Prefixes] [VEX]  OPCODE ModR/M [SIB] [DISP]  [IMM]
 | |
|   //
 | |
|   // EVEX format.
 | |
|   //  # of bytes: 4    1      1      1      4       / 1         1
 | |
|   //  [Prefixes]  EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate]
 | |
| 
 | |
|   const MCInstrDesc &Desc = MI.getDesc();
 | |
| 
 | |
|   // Check for EVEX instructions only.
 | |
|   if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX)
 | |
|     return false;
 | |
| 
 | |
|   // Check for EVEX instructions with mask or broadcast as in these cases
 | |
|   // the EVEX prefix is needed in order to carry this information
 | |
|   // thus preventing the transformation to VEX encoding.
 | |
|   if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B))
 | |
|     return false;
 | |
| 
 | |
|   // Check for EVEX instructions with L2 set. These instructions are 512-bits
 | |
|   // and can't be converted to VEX.
 | |
|   if (Desc.TSFlags & X86II::EVEX_L2)
 | |
|     return false;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Make sure the tables are sorted.
 | |
|   static std::atomic<bool> TableChecked(false);
 | |
|   if (!TableChecked.load(std::memory_order_relaxed)) {
 | |
|     assert(std::is_sorted(std::begin(X86EvexToVex128CompressTable),
 | |
|                           std::end(X86EvexToVex128CompressTable)) &&
 | |
|            "X86EvexToVex128CompressTable is not sorted!");
 | |
|     assert(std::is_sorted(std::begin(X86EvexToVex256CompressTable),
 | |
|                           std::end(X86EvexToVex256CompressTable)) &&
 | |
|            "X86EvexToVex256CompressTable is not sorted!");
 | |
|     TableChecked.store(true, std::memory_order_relaxed);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Use the VEX.L bit to select the 128 or 256-bit table.
 | |
|   ArrayRef<X86EvexToVexCompressTableEntry> Table =
 | |
|     (Desc.TSFlags & X86II::VEX_L) ? makeArrayRef(X86EvexToVex256CompressTable)
 | |
|                                   : makeArrayRef(X86EvexToVex128CompressTable);
 | |
| 
 | |
|   auto I = llvm::lower_bound(Table, MI.getOpcode());
 | |
|   if (I == Table.end() || I->EvexOpcode != MI.getOpcode())
 | |
|     return false;
 | |
| 
 | |
|   unsigned NewOpc = I->VexOpcode;
 | |
| 
 | |
|   if (usesExtendedRegister(MI))
 | |
|     return false;
 | |
| 
 | |
|   if (!performCustomAdjustments(MI, NewOpc))
 | |
|     return false;
 | |
| 
 | |
|   MI.setDesc(TII->get(NewOpc));
 | |
|   MI.setAsmPrinterFlag(X86::AC_EVEX_2_VEX);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS(EvexToVexInstPass, EVEX2VEX_NAME, EVEX2VEX_DESC, false, false)
 | |
| 
 | |
| FunctionPass *llvm::createX86EvexToVexInsts() {
 | |
|   return new EvexToVexInstPass();
 | |
| }
 |