forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			987 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			987 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
| //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| ///
 | |
| /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
 | |
| /// flag bits.
 | |
| ///
 | |
| /// We have to do this by carefully analyzing and rewriting the usage of the
 | |
| /// copied EFLAGS register because there is no general way to rematerialize the
 | |
| /// entire EFLAGS register safely and efficiently. Using `popf` both forces
 | |
| /// dynamic stack adjustment and can create correctness issues due to IF, TF,
 | |
| /// and other non-status flags being overwritten. Using sequences involving
 | |
| /// SAHF don't work on all x86 processors and are often quite slow compared to
 | |
| /// directly testing a single status preserved in its own GPR.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/ScopeExit.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/SparseBitVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/MachineSSAUpdater.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/MC/MCSchedule.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define PASS_KEY "x86-flags-copy-lowering"
 | |
| #define DEBUG_TYPE PASS_KEY
 | |
| 
 | |
| STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
 | |
| STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
 | |
| STATISTIC(NumTestsInserted, "Number of test instructions inserted");
 | |
| STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Convenient array type for storing registers associated with each condition.
 | |
| using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
 | |
| 
 | |
| class X86FlagsCopyLoweringPass : public MachineFunctionPass {
 | |
| public:
 | |
|   X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }
 | |
| 
 | |
|   StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   /// Pass identification, replacement for typeid.
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   MachineRegisterInfo *MRI = nullptr;
 | |
|   const X86Subtarget *Subtarget = nullptr;
 | |
|   const X86InstrInfo *TII = nullptr;
 | |
|   const TargetRegisterInfo *TRI = nullptr;
 | |
|   const TargetRegisterClass *PromoteRC = nullptr;
 | |
|   MachineDominatorTree *MDT = nullptr;
 | |
| 
 | |
|   CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
 | |
|                                   MachineBasicBlock::iterator CopyDefI);
 | |
| 
 | |
|   unsigned promoteCondToReg(MachineBasicBlock &MBB,
 | |
|                             MachineBasicBlock::iterator TestPos,
 | |
|                             DebugLoc TestLoc, X86::CondCode Cond);
 | |
|   std::pair<unsigned, bool>
 | |
|   getCondOrInverseInReg(MachineBasicBlock &TestMBB,
 | |
|                         MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
 | |
|                         X86::CondCode Cond, CondRegArray &CondRegs);
 | |
|   void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
 | |
|                   DebugLoc Loc, unsigned Reg);
 | |
| 
 | |
|   void rewriteArithmetic(MachineBasicBlock &TestMBB,
 | |
|                          MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
 | |
|                          MachineInstr &MI, MachineOperand &FlagUse,
 | |
|                          CondRegArray &CondRegs);
 | |
|   void rewriteCMov(MachineBasicBlock &TestMBB,
 | |
|                    MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
 | |
|                    MachineInstr &CMovI, MachineOperand &FlagUse,
 | |
|                    CondRegArray &CondRegs);
 | |
|   void rewriteFCMov(MachineBasicBlock &TestMBB,
 | |
|                     MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
 | |
|                     MachineInstr &CMovI, MachineOperand &FlagUse,
 | |
|                     CondRegArray &CondRegs);
 | |
|   void rewriteCondJmp(MachineBasicBlock &TestMBB,
 | |
|                       MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
 | |
|                       MachineInstr &JmpI, CondRegArray &CondRegs);
 | |
|   void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
 | |
|                    MachineInstr &CopyDefI);
 | |
|   void rewriteSetCC(MachineBasicBlock &TestMBB,
 | |
|                     MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
 | |
|                     MachineInstr &SetCCI, MachineOperand &FlagUse,
 | |
|                     CondRegArray &CondRegs);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
 | |
|                       "X86 EFLAGS copy lowering", false, false)
 | |
| INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
 | |
|                     "X86 EFLAGS copy lowering", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
 | |
|   return new X86FlagsCopyLoweringPass();
 | |
| }
 | |
| 
 | |
| char X86FlagsCopyLoweringPass::ID = 0;
 | |
| 
 | |
| void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<MachineDominatorTree>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// An enumeration of the arithmetic instruction mnemonics which have
 | |
| /// interesting flag semantics.
 | |
| ///
 | |
| /// We can map instruction opcodes into these mnemonics to make it easy to
 | |
| /// dispatch with specific functionality.
 | |
| enum class FlagArithMnemonic {
 | |
|   ADC,
 | |
|   ADCX,
 | |
|   ADOX,
 | |
|   RCL,
 | |
|   RCR,
 | |
|   SBB,
 | |
|   SETB,
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     report_fatal_error("No support for lowering a copy into EFLAGS when used "
 | |
|                        "by this instruction!");
 | |
| 
 | |
| #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX)                              \
 | |
|   case X86::MNEMONIC##8##SUFFIX:                                               \
 | |
|   case X86::MNEMONIC##16##SUFFIX:                                              \
 | |
|   case X86::MNEMONIC##32##SUFFIX:                                              \
 | |
|   case X86::MNEMONIC##64##SUFFIX:
 | |
| 
 | |
| #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC)                                    \
 | |
|   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr)                                        \
 | |
|   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV)                                    \
 | |
|   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm)                                        \
 | |
|   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr)                                        \
 | |
|   case X86::MNEMONIC##8ri:                                                     \
 | |
|   case X86::MNEMONIC##16ri8:                                                   \
 | |
|   case X86::MNEMONIC##32ri8:                                                   \
 | |
|   case X86::MNEMONIC##64ri8:                                                   \
 | |
|   case X86::MNEMONIC##16ri:                                                    \
 | |
|   case X86::MNEMONIC##32ri:                                                    \
 | |
|   case X86::MNEMONIC##64ri32:                                                  \
 | |
|   case X86::MNEMONIC##8mi:                                                     \
 | |
|   case X86::MNEMONIC##16mi8:                                                   \
 | |
|   case X86::MNEMONIC##32mi8:                                                   \
 | |
|   case X86::MNEMONIC##64mi8:                                                   \
 | |
|   case X86::MNEMONIC##16mi:                                                    \
 | |
|   case X86::MNEMONIC##32mi:                                                    \
 | |
|   case X86::MNEMONIC##64mi32:                                                  \
 | |
|   case X86::MNEMONIC##8i8:                                                     \
 | |
|   case X86::MNEMONIC##16i16:                                                   \
 | |
|   case X86::MNEMONIC##32i32:                                                   \
 | |
|   case X86::MNEMONIC##64i32:
 | |
| 
 | |
|     LLVM_EXPAND_ADC_SBB_INSTR(ADC)
 | |
|     return FlagArithMnemonic::ADC;
 | |
| 
 | |
|     LLVM_EXPAND_ADC_SBB_INSTR(SBB)
 | |
|     return FlagArithMnemonic::SBB;
 | |
| 
 | |
| #undef LLVM_EXPAND_ADC_SBB_INSTR
 | |
| 
 | |
|     LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
 | |
|     LLVM_EXPAND_INSTR_SIZES(RCL, r1)
 | |
|     LLVM_EXPAND_INSTR_SIZES(RCL, ri)
 | |
|     return FlagArithMnemonic::RCL;
 | |
| 
 | |
|     LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
 | |
|     LLVM_EXPAND_INSTR_SIZES(RCR, r1)
 | |
|     LLVM_EXPAND_INSTR_SIZES(RCR, ri)
 | |
|     return FlagArithMnemonic::RCR;
 | |
| 
 | |
| #undef LLVM_EXPAND_INSTR_SIZES
 | |
| 
 | |
|   case X86::ADCX32rr:
 | |
|   case X86::ADCX64rr:
 | |
|   case X86::ADCX32rm:
 | |
|   case X86::ADCX64rm:
 | |
|     return FlagArithMnemonic::ADCX;
 | |
| 
 | |
|   case X86::ADOX32rr:
 | |
|   case X86::ADOX64rr:
 | |
|   case X86::ADOX32rm:
 | |
|   case X86::ADOX64rm:
 | |
|     return FlagArithMnemonic::ADOX;
 | |
| 
 | |
|   case X86::SETB_C32r:
 | |
|   case X86::SETB_C64r:
 | |
|     return FlagArithMnemonic::SETB;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
 | |
|                                      MachineInstr &SplitI,
 | |
|                                      const X86InstrInfo &TII) {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
| 
 | |
|   assert(SplitI.getParent() == &MBB &&
 | |
|          "Split instruction must be in the split block!");
 | |
|   assert(SplitI.isBranch() &&
 | |
|          "Only designed to split a tail of branch instructions!");
 | |
|   assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
 | |
|          "Must split on an actual jCC instruction!");
 | |
| 
 | |
|   // Dig out the previous instruction to the split point.
 | |
|   MachineInstr &PrevI = *std::prev(SplitI.getIterator());
 | |
|   assert(PrevI.isBranch() && "Must split after a branch!");
 | |
|   assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
 | |
|          "Must split after an actual jCC instruction!");
 | |
|   assert(!std::prev(PrevI.getIterator())->isTerminator() &&
 | |
|          "Must only have this one terminator prior to the split!");
 | |
| 
 | |
|   // Grab the one successor edge that will stay in `MBB`.
 | |
|   MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
 | |
| 
 | |
|   // Analyze the original block to see if we are actually splitting an edge
 | |
|   // into two edges. This can happen when we have multiple conditional jumps to
 | |
|   // the same successor.
 | |
|   bool IsEdgeSplit =
 | |
|       std::any_of(SplitI.getIterator(), MBB.instr_end(),
 | |
|                   [&](MachineInstr &MI) {
 | |
|                     assert(MI.isTerminator() &&
 | |
|                            "Should only have spliced terminators!");
 | |
|                     return llvm::any_of(
 | |
|                         MI.operands(), [&](MachineOperand &MOp) {
 | |
|                           return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
 | |
|                         });
 | |
|                   }) ||
 | |
|       MBB.getFallThrough() == &UnsplitSucc;
 | |
| 
 | |
|   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
 | |
| 
 | |
|   // Insert the new block immediately after the current one. Any existing
 | |
|   // fallthrough will be sunk into this new block anyways.
 | |
|   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
 | |
| 
 | |
|   // Splice the tail of instructions into the new block.
 | |
|   NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
 | |
| 
 | |
|   // Copy the necessary succesors (and their probability info) into the new
 | |
|   // block.
 | |
|   for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
 | |
|     if (IsEdgeSplit || *SI != &UnsplitSucc)
 | |
|       NewMBB.copySuccessor(&MBB, SI);
 | |
|   // Normalize the probabilities if we didn't end up splitting the edge.
 | |
|   if (!IsEdgeSplit)
 | |
|     NewMBB.normalizeSuccProbs();
 | |
| 
 | |
|   // Now replace all of the moved successors in the original block with the new
 | |
|   // block. This will merge their probabilities.
 | |
|   for (MachineBasicBlock *Succ : NewMBB.successors())
 | |
|     if (Succ != &UnsplitSucc)
 | |
|       MBB.replaceSuccessor(Succ, &NewMBB);
 | |
| 
 | |
|   // We should always end up replacing at least one successor.
 | |
|   assert(MBB.isSuccessor(&NewMBB) &&
 | |
|          "Failed to make the new block a successor!");
 | |
| 
 | |
|   // Now update all the PHIs.
 | |
|   for (MachineBasicBlock *Succ : NewMBB.successors()) {
 | |
|     for (MachineInstr &MI : *Succ) {
 | |
|       if (!MI.isPHI())
 | |
|         break;
 | |
| 
 | |
|       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
 | |
|            OpIdx += 2) {
 | |
|         MachineOperand &OpV = MI.getOperand(OpIdx);
 | |
|         MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
 | |
|         assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
 | |
|         if (OpMBB.getMBB() != &MBB)
 | |
|           continue;
 | |
| 
 | |
|         // Replace the operand for unsplit successors
 | |
|         if (!IsEdgeSplit || Succ != &UnsplitSucc) {
 | |
|           OpMBB.setMBB(&NewMBB);
 | |
| 
 | |
|           // We have to continue scanning as there may be multiple entries in
 | |
|           // the PHI.
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // When we have split the edge append a new successor.
 | |
|         MI.addOperand(MF, OpV);
 | |
|         MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NewMBB;
 | |
| }
 | |
| 
 | |
| static X86::CondCode getCondFromFCMOV(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: return X86::COND_INVALID;
 | |
|   case X86::CMOVBE_Fp32:  case X86::CMOVBE_Fp64:  case X86::CMOVBE_Fp80:
 | |
|     return X86::COND_BE;
 | |
|   case X86::CMOVB_Fp32:   case X86::CMOVB_Fp64:   case X86::CMOVB_Fp80:
 | |
|     return X86::COND_B;
 | |
|   case X86::CMOVE_Fp32:   case X86::CMOVE_Fp64:   case X86::CMOVE_Fp80:
 | |
|     return X86::COND_E;
 | |
|   case X86::CMOVNBE_Fp32: case X86::CMOVNBE_Fp64: case X86::CMOVNBE_Fp80:
 | |
|     return X86::COND_A;
 | |
|   case X86::CMOVNB_Fp32:  case X86::CMOVNB_Fp64:  case X86::CMOVNB_Fp80:
 | |
|     return X86::COND_AE;
 | |
|   case X86::CMOVNE_Fp32:  case X86::CMOVNE_Fp64:  case X86::CMOVNE_Fp80:
 | |
|     return X86::COND_NE;
 | |
|   case X86::CMOVNP_Fp32:  case X86::CMOVNP_Fp64:  case X86::CMOVNP_Fp80:
 | |
|     return X86::COND_NP;
 | |
|   case X86::CMOVP_Fp32:   case X86::CMOVP_Fp64:   case X86::CMOVP_Fp80:
 | |
|     return X86::COND_P;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
 | |
|   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
 | |
|                     << " **********\n");
 | |
| 
 | |
|   Subtarget = &MF.getSubtarget<X86Subtarget>();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TII = Subtarget->getInstrInfo();
 | |
|   TRI = Subtarget->getRegisterInfo();
 | |
|   MDT = &getAnalysis<MachineDominatorTree>();
 | |
|   PromoteRC = &X86::GR8RegClass;
 | |
| 
 | |
|   if (MF.begin() == MF.end())
 | |
|     // Nothing to do for a degenerate empty function...
 | |
|     return false;
 | |
| 
 | |
|   // Collect the copies in RPO so that when there are chains where a copy is in
 | |
|   // turn copied again we visit the first one first. This ensures we can find
 | |
|   // viable locations for testing the original EFLAGS that dominate all the
 | |
|   // uses across complex CFGs.
 | |
|   SmallVector<MachineInstr *, 4> Copies;
 | |
|   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
 | |
|   for (MachineBasicBlock *MBB : RPOT)
 | |
|     for (MachineInstr &MI : *MBB)
 | |
|       if (MI.getOpcode() == TargetOpcode::COPY &&
 | |
|           MI.getOperand(0).getReg() == X86::EFLAGS)
 | |
|         Copies.push_back(&MI);
 | |
| 
 | |
|   for (MachineInstr *CopyI : Copies) {
 | |
|     MachineBasicBlock &MBB = *CopyI->getParent();
 | |
| 
 | |
|     MachineOperand &VOp = CopyI->getOperand(1);
 | |
|     assert(VOp.isReg() &&
 | |
|            "The input to the copy for EFLAGS should always be a register!");
 | |
|     MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
 | |
|     if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
 | |
|       // FIXME: The big likely candidate here are PHI nodes. We could in theory
 | |
|       // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
 | |
|       // enough that it is probably better to change every other part of LLVM
 | |
|       // to avoid creating them. The issue is that once we have PHIs we won't
 | |
|       // know which original EFLAGS value we need to capture with our setCCs
 | |
|       // below. The end result will be computing a complete set of setCCs that
 | |
|       // we *might* want, computing them in every place where we copy *out* of
 | |
|       // EFLAGS and then doing SSA formation on all of them to insert necessary
 | |
|       // PHI nodes and consume those here. Then hoping that somehow we DCE the
 | |
|       // unnecessary ones. This DCE seems very unlikely to be successful and so
 | |
|       // we will almost certainly end up with a glut of dead setCC
 | |
|       // instructions. Until we have a motivating test case and fail to avoid
 | |
|       // it by changing other parts of LLVM's lowering, we refuse to handle
 | |
|       // this complex case here.
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
 | |
|           CopyDefI.dump());
 | |
|       report_fatal_error(
 | |
|           "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
 | |
|     }
 | |
| 
 | |
|     auto Cleanup = make_scope_exit([&] {
 | |
|       // All uses of the EFLAGS copy are now rewritten, kill the copy into
 | |
|       // eflags and if dead the copy from.
 | |
|       CopyI->eraseFromParent();
 | |
|       if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
 | |
|         CopyDefI.eraseFromParent();
 | |
|       ++NumCopiesEliminated;
 | |
|     });
 | |
| 
 | |
|     MachineOperand &DOp = CopyI->getOperand(0);
 | |
|     assert(DOp.isDef() && "Expected register def!");
 | |
|     assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
 | |
|     if (DOp.isDead())
 | |
|       continue;
 | |
| 
 | |
|     MachineBasicBlock *TestMBB = CopyDefI.getParent();
 | |
|     auto TestPos = CopyDefI.getIterator();
 | |
|     DebugLoc TestLoc = CopyDefI.getDebugLoc();
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
 | |
| 
 | |
|     // Walk up across live-in EFLAGS to find where they were actually def'ed.
 | |
|     //
 | |
|     // This copy's def may just be part of a region of blocks covered by
 | |
|     // a single def of EFLAGS and we want to find the top of that region where
 | |
|     // possible.
 | |
|     //
 | |
|     // This is essentially a search for a *candidate* reaching definition
 | |
|     // location. We don't need to ever find the actual reaching definition here,
 | |
|     // but we want to walk up the dominator tree to find the highest point which
 | |
|     // would be viable for such a definition.
 | |
|     auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
 | |
|                                 MachineBasicBlock::iterator End) {
 | |
|       // Scan backwards as we expect these to be relatively short and often find
 | |
|       // a clobber near the end.
 | |
|       return llvm::any_of(
 | |
|           llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
 | |
|             // Flag any instruction (other than the copy we are
 | |
|             // currently rewriting) that defs EFLAGS.
 | |
|             return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
 | |
|           });
 | |
|     };
 | |
|     auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
 | |
|                                     MachineBasicBlock *EndMBB) {
 | |
|       assert(MDT->dominates(BeginMBB, EndMBB) &&
 | |
|              "Only support paths down the dominator tree!");
 | |
|       SmallPtrSet<MachineBasicBlock *, 4> Visited;
 | |
|       SmallVector<MachineBasicBlock *, 4> Worklist;
 | |
|       // We terminate at the beginning. No need to scan it.
 | |
|       Visited.insert(BeginMBB);
 | |
|       Worklist.push_back(EndMBB);
 | |
|       do {
 | |
|         auto *MBB = Worklist.pop_back_val();
 | |
|         for (auto *PredMBB : MBB->predecessors()) {
 | |
|           if (!Visited.insert(PredMBB).second)
 | |
|             continue;
 | |
|           if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
 | |
|             return true;
 | |
|           // Enqueue this block to walk its predecessors.
 | |
|           Worklist.push_back(PredMBB);
 | |
|         }
 | |
|       } while (!Worklist.empty());
 | |
|       // No clobber found along a path from the begin to end.
 | |
|       return false;
 | |
|     };
 | |
|     while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
 | |
|            !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
 | |
|       // Find the nearest common dominator of the predecessors, as
 | |
|       // that will be the best candidate to hoist into.
 | |
|       MachineBasicBlock *HoistMBB =
 | |
|           std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
 | |
|                           *TestMBB->pred_begin(),
 | |
|                           [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
 | |
|                             return MDT->findNearestCommonDominator(LHS, RHS);
 | |
|                           });
 | |
| 
 | |
|       // Now we need to scan all predecessors that may be reached along paths to
 | |
|       // the hoist block. A clobber anywhere in any of these blocks the hoist.
 | |
|       // Note that this even handles loops because we require *no* clobbers.
 | |
|       if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
 | |
|         break;
 | |
| 
 | |
|       // We also need the terminators to not sneakily clobber flags.
 | |
|       if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
 | |
|                            HoistMBB->instr_end()))
 | |
|         break;
 | |
| 
 | |
|       // We found a viable location, hoist our test position to it.
 | |
|       TestMBB = HoistMBB;
 | |
|       TestPos = TestMBB->getFirstTerminator()->getIterator();
 | |
|       // Clear the debug location as it would just be confusing after hoisting.
 | |
|       TestLoc = DebugLoc();
 | |
|     }
 | |
|     LLVM_DEBUG({
 | |
|       auto DefIt = llvm::find_if(
 | |
|           llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
 | |
|           [&](MachineInstr &MI) {
 | |
|             return MI.findRegisterDefOperand(X86::EFLAGS);
 | |
|           });
 | |
|       if (DefIt.base() != TestMBB->instr_begin()) {
 | |
|         dbgs() << "  Using EFLAGS defined by: ";
 | |
|         DefIt->dump();
 | |
|       } else {
 | |
|         dbgs() << "  Using live-in flags for BB:\n";
 | |
|         TestMBB->dump();
 | |
|       }
 | |
|     });
 | |
| 
 | |
|     // While rewriting uses, we buffer jumps and rewrite them in a second pass
 | |
|     // because doing so will perturb the CFG that we are walking to find the
 | |
|     // uses in the first place.
 | |
|     SmallVector<MachineInstr *, 4> JmpIs;
 | |
| 
 | |
|     // Gather the condition flags that have already been preserved in
 | |
|     // registers. We do this from scratch each time as we expect there to be
 | |
|     // very few of them and we expect to not revisit the same copy definition
 | |
|     // many times. If either of those change sufficiently we could build a map
 | |
|     // of these up front instead.
 | |
|     CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
 | |
| 
 | |
|     // Collect the basic blocks we need to scan. Typically this will just be
 | |
|     // a single basic block but we may have to scan multiple blocks if the
 | |
|     // EFLAGS copy lives into successors.
 | |
|     SmallVector<MachineBasicBlock *, 2> Blocks;
 | |
|     SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
 | |
|     Blocks.push_back(&MBB);
 | |
| 
 | |
|     do {
 | |
|       MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
 | |
| 
 | |
|       // Track when if/when we find a kill of the flags in this block.
 | |
|       bool FlagsKilled = false;
 | |
| 
 | |
|       // In most cases, we walk from the beginning to the end of the block. But
 | |
|       // when the block is the same block as the copy is from, we will visit it
 | |
|       // twice. The first time we start from the copy and go to the end. The
 | |
|       // second time we start from the beginning and go to the copy. This lets
 | |
|       // us handle copies inside of cycles.
 | |
|       // FIXME: This loop is *super* confusing. This is at least in part
 | |
|       // a symptom of all of this routine needing to be refactored into
 | |
|       // documentable components. Once done, there may be a better way to write
 | |
|       // this loop.
 | |
|       for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
 | |
|                           ? std::next(CopyI->getIterator())
 | |
|                           : UseMBB.instr_begin(),
 | |
|                 MIE = UseMBB.instr_end();
 | |
|            MII != MIE;) {
 | |
|         MachineInstr &MI = *MII++;
 | |
|         // If we are in the original copy block and encounter either the copy
 | |
|         // def or the copy itself, break so that we don't re-process any part of
 | |
|         // the block or process the instructions in the range that was copied
 | |
|         // over.
 | |
|         if (&MI == CopyI || &MI == &CopyDefI) {
 | |
|           assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
 | |
|                  "Should only encounter these on the second pass over the "
 | |
|                  "original block.");
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
 | |
|         if (!FlagUse) {
 | |
|           if (MI.findRegisterDefOperand(X86::EFLAGS)) {
 | |
|             // If EFLAGS are defined, it's as-if they were killed. We can stop
 | |
|             // scanning here.
 | |
|             //
 | |
|             // NB!!! Many instructions only modify some flags. LLVM currently
 | |
|             // models this as clobbering all flags, but if that ever changes
 | |
|             // this will need to be carefully updated to handle that more
 | |
|             // complex logic.
 | |
|             FlagsKilled = true;
 | |
|             break;
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         LLVM_DEBUG(dbgs() << "  Rewriting use: "; MI.dump());
 | |
| 
 | |
|         // Check the kill flag before we rewrite as that may change it.
 | |
|         if (FlagUse->isKill())
 | |
|           FlagsKilled = true;
 | |
| 
 | |
|         // Once we encounter a branch, the rest of the instructions must also be
 | |
|         // branches. We can't rewrite in place here, so we handle them below.
 | |
|         //
 | |
|         // Note that we don't have to handle tail calls here, even conditional
 | |
|         // tail calls, as those are not introduced into the X86 MI until post-RA
 | |
|         // branch folding or black placement. As a consequence, we get to deal
 | |
|         // with the simpler formulation of conditional branches followed by tail
 | |
|         // calls.
 | |
|         if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
 | |
|           auto JmpIt = MI.getIterator();
 | |
|           do {
 | |
|             JmpIs.push_back(&*JmpIt);
 | |
|             ++JmpIt;
 | |
|           } while (JmpIt != UseMBB.instr_end() &&
 | |
|                    X86::getCondFromBranch(*JmpIt) !=
 | |
|                        X86::COND_INVALID);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // Otherwise we can just rewrite in-place.
 | |
|         if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
 | |
|           rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
 | |
|         } else if (getCondFromFCMOV(MI.getOpcode()) != X86::COND_INVALID) {
 | |
|           rewriteFCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
 | |
|         } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
 | |
|           rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
 | |
|         } else if (MI.getOpcode() == TargetOpcode::COPY) {
 | |
|           rewriteCopy(MI, *FlagUse, CopyDefI);
 | |
|         } else {
 | |
|           // We assume all other instructions that use flags also def them.
 | |
|           assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
 | |
|                  "Expected a def of EFLAGS for this instruction!");
 | |
| 
 | |
|           // NB!!! Several arithmetic instructions only *partially* update
 | |
|           // flags. Theoretically, we could generate MI code sequences that
 | |
|           // would rely on this fact and observe different flags independently.
 | |
|           // But currently LLVM models all of these instructions as clobbering
 | |
|           // all the flags in an undef way. We rely on that to simplify the
 | |
|           // logic.
 | |
|           FlagsKilled = true;
 | |
| 
 | |
|           // Generically handle remaining uses as arithmetic instructions.
 | |
|           rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
 | |
|                             CondRegs);
 | |
|         }
 | |
| 
 | |
|         // If this was the last use of the flags, we're done.
 | |
|         if (FlagsKilled)
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       // If the flags were killed, we're done with this block.
 | |
|       if (FlagsKilled)
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise we need to scan successors for ones where the flags live-in
 | |
|       // and queue those up for processing.
 | |
|       for (MachineBasicBlock *SuccMBB : UseMBB.successors())
 | |
|         if (SuccMBB->isLiveIn(X86::EFLAGS) &&
 | |
|             VisitedBlocks.insert(SuccMBB).second) {
 | |
|           // We currently don't do any PHI insertion and so we require that the
 | |
|           // test basic block dominates all of the use basic blocks. Further, we
 | |
|           // can't have a cycle from the test block back to itself as that would
 | |
|           // create a cycle requiring a PHI to break it.
 | |
|           //
 | |
|           // We could in theory do PHI insertion here if it becomes useful by
 | |
|           // just taking undef values in along every edge that we don't trace
 | |
|           // this EFLAGS copy along. This isn't as bad as fully general PHI
 | |
|           // insertion, but still seems like a great deal of complexity.
 | |
|           //
 | |
|           // Because it is theoretically possible that some earlier MI pass or
 | |
|           // other lowering transformation could induce this to happen, we do
 | |
|           // a hard check even in non-debug builds here.
 | |
|           if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
 | |
|             LLVM_DEBUG({
 | |
|               dbgs()
 | |
|                   << "ERROR: Encountered use that is not dominated by our test "
 | |
|                      "basic block! Rewriting this would require inserting PHI "
 | |
|                      "nodes to track the flag state across the CFG.\n\nTest "
 | |
|                      "block:\n";
 | |
|               TestMBB->dump();
 | |
|               dbgs() << "Use block:\n";
 | |
|               SuccMBB->dump();
 | |
|             });
 | |
|             report_fatal_error(
 | |
|                 "Cannot lower EFLAGS copy when original copy def "
 | |
|                 "does not dominate all uses.");
 | |
|           }
 | |
| 
 | |
|           Blocks.push_back(SuccMBB);
 | |
| 
 | |
|           // After this, EFLAGS will be recreated before each use.
 | |
|           SuccMBB->removeLiveIn(X86::EFLAGS);
 | |
|         }
 | |
|     } while (!Blocks.empty());
 | |
| 
 | |
|     // Now rewrite the jumps that use the flags. These we handle specially
 | |
|     // because if there are multiple jumps in a single basic block we'll have
 | |
|     // to do surgery on the CFG.
 | |
|     MachineBasicBlock *LastJmpMBB = nullptr;
 | |
|     for (MachineInstr *JmpI : JmpIs) {
 | |
|       // Past the first jump within a basic block we need to split the blocks
 | |
|       // apart.
 | |
|       if (JmpI->getParent() == LastJmpMBB)
 | |
|         splitBlock(*JmpI->getParent(), *JmpI, *TII);
 | |
|       else
 | |
|         LastJmpMBB = JmpI->getParent();
 | |
| 
 | |
|       rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
 | |
|     }
 | |
| 
 | |
|     // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
 | |
|     // the copy's def operand is itself a kill.
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (MachineBasicBlock &MBB : MF)
 | |
|     for (MachineInstr &MI : MBB)
 | |
|       if (MI.getOpcode() == TargetOpcode::COPY &&
 | |
|           (MI.getOperand(0).getReg() == X86::EFLAGS ||
 | |
|            MI.getOperand(1).getReg() == X86::EFLAGS)) {
 | |
|         LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
 | |
|                    MI.dump());
 | |
|         llvm_unreachable("Unlowered EFLAGS copy!");
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Collect any conditions that have already been set in registers so that we
 | |
| /// can re-use them rather than adding duplicates.
 | |
| CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
 | |
|   CondRegArray CondRegs = {};
 | |
| 
 | |
|   // Scan backwards across the range of instructions with live EFLAGS.
 | |
|   for (MachineInstr &MI :
 | |
|        llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
 | |
|     X86::CondCode Cond = X86::getCondFromSETCC(MI);
 | |
|     if (Cond != X86::COND_INVALID && !MI.mayStore() &&
 | |
|         MI.getOperand(0).isReg() &&
 | |
|         Register::isVirtualRegister(MI.getOperand(0).getReg())) {
 | |
|       assert(MI.getOperand(0).isDef() &&
 | |
|              "A non-storing SETcc should always define a register!");
 | |
|       CondRegs[Cond] = MI.getOperand(0).getReg();
 | |
|     }
 | |
| 
 | |
|     // Stop scanning when we see the first definition of the EFLAGS as prior to
 | |
|     // this we would potentially capture the wrong flag state.
 | |
|     if (MI.findRegisterDefOperand(X86::EFLAGS))
 | |
|       break;
 | |
|   }
 | |
|   return CondRegs;
 | |
| }
 | |
| 
 | |
| unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
 | |
|     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
 | |
|     DebugLoc TestLoc, X86::CondCode Cond) {
 | |
|   Register Reg = MRI->createVirtualRegister(PromoteRC);
 | |
|   auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
 | |
|                       TII->get(X86::SETCCr), Reg).addImm(Cond);
 | |
|   (void)SetI;
 | |
|   LLVM_DEBUG(dbgs() << "    save cond: "; SetI->dump());
 | |
|   ++NumSetCCsInserted;
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
 | |
|     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
 | |
|     DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
 | |
|   unsigned &CondReg = CondRegs[Cond];
 | |
|   unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
 | |
|   if (!CondReg && !InvCondReg)
 | |
|     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
 | |
| 
 | |
|   if (CondReg)
 | |
|     return {CondReg, false};
 | |
|   else
 | |
|     return {InvCondReg, true};
 | |
| }
 | |
| 
 | |
| void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
 | |
|                                           MachineBasicBlock::iterator Pos,
 | |
|                                           DebugLoc Loc, unsigned Reg) {
 | |
|   auto TestI =
 | |
|       BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
 | |
|   (void)TestI;
 | |
|   LLVM_DEBUG(dbgs() << "    test cond: "; TestI->dump());
 | |
|   ++NumTestsInserted;
 | |
| }
 | |
| 
 | |
| void X86FlagsCopyLoweringPass::rewriteArithmetic(
 | |
|     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
 | |
|     DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
 | |
|     CondRegArray &CondRegs) {
 | |
|   // Arithmetic is either reading CF or OF. Figure out which condition we need
 | |
|   // to preserve in a register.
 | |
|   X86::CondCode Cond = X86::COND_INVALID;
 | |
| 
 | |
|   // The addend to use to reset CF or OF when added to the flag value.
 | |
|   int Addend = 0;
 | |
| 
 | |
|   switch (getMnemonicFromOpcode(MI.getOpcode())) {
 | |
|   case FlagArithMnemonic::ADC:
 | |
|   case FlagArithMnemonic::ADCX:
 | |
|   case FlagArithMnemonic::RCL:
 | |
|   case FlagArithMnemonic::RCR:
 | |
|   case FlagArithMnemonic::SBB:
 | |
|   case FlagArithMnemonic::SETB:
 | |
|     Cond = X86::COND_B; // CF == 1
 | |
|     // Set up an addend that when one is added will need a carry due to not
 | |
|     // having a higher bit available.
 | |
|     Addend = 255;
 | |
|     break;
 | |
| 
 | |
|   case FlagArithMnemonic::ADOX:
 | |
|     Cond = X86::COND_O; // OF == 1
 | |
|     // Set up an addend that when one is added will turn from positive to
 | |
|     // negative and thus overflow in the signed domain.
 | |
|     Addend = 127;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Now get a register that contains the value of the flag input to the
 | |
|   // arithmetic. We require exactly this flag to simplify the arithmetic
 | |
|   // required to materialize it back into the flag.
 | |
|   unsigned &CondReg = CondRegs[Cond];
 | |
|   if (!CondReg)
 | |
|     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
 | |
| 
 | |
|   MachineBasicBlock &MBB = *MI.getParent();
 | |
| 
 | |
|   // Insert an instruction that will set the flag back to the desired value.
 | |
|   Register TmpReg = MRI->createVirtualRegister(PromoteRC);
 | |
|   auto AddI =
 | |
|       BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
 | |
|           .addDef(TmpReg, RegState::Dead)
 | |
|           .addReg(CondReg)
 | |
|           .addImm(Addend);
 | |
|   (void)AddI;
 | |
|   LLVM_DEBUG(dbgs() << "    add cond: "; AddI->dump());
 | |
|   ++NumAddsInserted;
 | |
|   FlagUse.setIsKill(true);
 | |
| }
 | |
| 
 | |
| void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
 | |
|                                            MachineBasicBlock::iterator TestPos,
 | |
|                                            DebugLoc TestLoc,
 | |
|                                            MachineInstr &CMovI,
 | |
|                                            MachineOperand &FlagUse,
 | |
|                                            CondRegArray &CondRegs) {
 | |
|   // First get the register containing this specific condition.
 | |
|   X86::CondCode Cond = X86::getCondFromCMov(CMovI);
 | |
|   unsigned CondReg;
 | |
|   bool Inverted;
 | |
|   std::tie(CondReg, Inverted) =
 | |
|       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
 | |
| 
 | |
|   MachineBasicBlock &MBB = *CMovI.getParent();
 | |
| 
 | |
|   // Insert a direct test of the saved register.
 | |
|   insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
 | |
| 
 | |
|   // Rewrite the CMov to use the !ZF flag from the test, and then kill its use
 | |
|   // of the flags afterward.
 | |
|   CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
 | |
|       .setImm(Inverted ? X86::COND_E : X86::COND_NE);
 | |
|   FlagUse.setIsKill(true);
 | |
|   LLVM_DEBUG(dbgs() << "    fixed cmov: "; CMovI.dump());
 | |
| }
 | |
| 
 | |
| void X86FlagsCopyLoweringPass::rewriteFCMov(MachineBasicBlock &TestMBB,
 | |
|                                             MachineBasicBlock::iterator TestPos,
 | |
|                                             DebugLoc TestLoc,
 | |
|                                             MachineInstr &CMovI,
 | |
|                                             MachineOperand &FlagUse,
 | |
|                                             CondRegArray &CondRegs) {
 | |
|   // First get the register containing this specific condition.
 | |
|   X86::CondCode Cond = getCondFromFCMOV(CMovI.getOpcode());
 | |
|   unsigned CondReg;
 | |
|   bool Inverted;
 | |
|   std::tie(CondReg, Inverted) =
 | |
|       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
 | |
| 
 | |
|   MachineBasicBlock &MBB = *CMovI.getParent();
 | |
| 
 | |
|   // Insert a direct test of the saved register.
 | |
|   insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
 | |
| 
 | |
|   auto getFCMOVOpcode = [](unsigned Opcode, bool Inverted) {
 | |
|     switch (Opcode) {
 | |
|     default: llvm_unreachable("Unexpected opcode!");
 | |
|     case X86::CMOVBE_Fp32: case X86::CMOVNBE_Fp32:
 | |
|     case X86::CMOVB_Fp32:  case X86::CMOVNB_Fp32:
 | |
|     case X86::CMOVE_Fp32:  case X86::CMOVNE_Fp32:
 | |
|     case X86::CMOVP_Fp32:  case X86::CMOVNP_Fp32:
 | |
|       return Inverted ? X86::CMOVE_Fp32 : X86::CMOVNE_Fp32;
 | |
|     case X86::CMOVBE_Fp64: case X86::CMOVNBE_Fp64:
 | |
|     case X86::CMOVB_Fp64:  case X86::CMOVNB_Fp64:
 | |
|     case X86::CMOVE_Fp64:  case X86::CMOVNE_Fp64:
 | |
|     case X86::CMOVP_Fp64:  case X86::CMOVNP_Fp64:
 | |
|       return Inverted ? X86::CMOVE_Fp64 : X86::CMOVNE_Fp64;
 | |
|     case X86::CMOVBE_Fp80: case X86::CMOVNBE_Fp80:
 | |
|     case X86::CMOVB_Fp80:  case X86::CMOVNB_Fp80:
 | |
|     case X86::CMOVE_Fp80:  case X86::CMOVNE_Fp80:
 | |
|     case X86::CMOVP_Fp80:  case X86::CMOVNP_Fp80:
 | |
|       return Inverted ? X86::CMOVE_Fp80 : X86::CMOVNE_Fp80;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Rewrite the CMov to use the !ZF flag from the test.
 | |
|   CMovI.setDesc(TII->get(getFCMOVOpcode(CMovI.getOpcode(), Inverted)));
 | |
|   FlagUse.setIsKill(true);
 | |
|   LLVM_DEBUG(dbgs() << "    fixed fcmov: "; CMovI.dump());
 | |
| }
 | |
| 
 | |
| void X86FlagsCopyLoweringPass::rewriteCondJmp(
 | |
|     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
 | |
|     DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
 | |
|   // First get the register containing this specific condition.
 | |
|   X86::CondCode Cond = X86::getCondFromBranch(JmpI);
 | |
|   unsigned CondReg;
 | |
|   bool Inverted;
 | |
|   std::tie(CondReg, Inverted) =
 | |
|       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
 | |
| 
 | |
|   MachineBasicBlock &JmpMBB = *JmpI.getParent();
 | |
| 
 | |
|   // Insert a direct test of the saved register.
 | |
|   insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
 | |
| 
 | |
|   // Rewrite the jump to use the !ZF flag from the test, and kill its use of
 | |
|   // flags afterward.
 | |
|   JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
 | |
|   JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
 | |
|   LLVM_DEBUG(dbgs() << "    fixed jCC: "; JmpI.dump());
 | |
| }
 | |
| 
 | |
| void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
 | |
|                                            MachineOperand &FlagUse,
 | |
|                                            MachineInstr &CopyDefI) {
 | |
|   // Just replace this copy with the original copy def.
 | |
|   MRI->replaceRegWith(MI.getOperand(0).getReg(),
 | |
|                       CopyDefI.getOperand(0).getReg());
 | |
|   MI.eraseFromParent();
 | |
| }
 | |
| 
 | |
| void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
 | |
|                                             MachineBasicBlock::iterator TestPos,
 | |
|                                             DebugLoc TestLoc,
 | |
|                                             MachineInstr &SetCCI,
 | |
|                                             MachineOperand &FlagUse,
 | |
|                                             CondRegArray &CondRegs) {
 | |
|   X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
 | |
|   // Note that we can't usefully rewrite this to the inverse without complex
 | |
|   // analysis of the users of the setCC. Largely we rely on duplicates which
 | |
|   // could have been avoided already being avoided here.
 | |
|   unsigned &CondReg = CondRegs[Cond];
 | |
|   if (!CondReg)
 | |
|     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
 | |
| 
 | |
|   // Rewriting a register def is trivial: we just replace the register and
 | |
|   // remove the setcc.
 | |
|   if (!SetCCI.mayStore()) {
 | |
|     assert(SetCCI.getOperand(0).isReg() &&
 | |
|            "Cannot have a non-register defined operand to SETcc!");
 | |
|     MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
 | |
|     SetCCI.eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we need to emit a store.
 | |
|   auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
 | |
|                      SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
 | |
|   // Copy the address operands.
 | |
|   for (int i = 0; i < X86::AddrNumOperands; ++i)
 | |
|     MIB.add(SetCCI.getOperand(i));
 | |
| 
 | |
|   MIB.addReg(CondReg);
 | |
| 
 | |
|   MIB.setMemRefs(SetCCI.memoperands());
 | |
| 
 | |
|   SetCCI.eraseFromParent();
 | |
|   return;
 | |
| }
 |