forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			875 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			875 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass tries to expand memcmp() calls into optimally-sized loads and
 | 
						|
// compares for the target.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetPassConfig.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/SizeOpts.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "expandmemcmp"
 | 
						|
 | 
						|
STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
 | 
						|
STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
 | 
						|
STATISTIC(NumMemCmpGreaterThanMax,
 | 
						|
          "Number of memcmp calls with size greater than max size");
 | 
						|
STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
 | 
						|
 | 
						|
static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
 | 
						|
    "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
 | 
						|
    cl::desc("The number of loads per basic block for inline expansion of "
 | 
						|
             "memcmp that is only being compared against zero."));
 | 
						|
 | 
						|
static cl::opt<unsigned> MaxLoadsPerMemcmp(
 | 
						|
    "max-loads-per-memcmp", cl::Hidden,
 | 
						|
    cl::desc("Set maximum number of loads used in expanded memcmp"));
 | 
						|
 | 
						|
static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
 | 
						|
    "max-loads-per-memcmp-opt-size", cl::Hidden,
 | 
						|
    cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
 | 
						|
// This class provides helper functions to expand a memcmp library call into an
 | 
						|
// inline expansion.
 | 
						|
class MemCmpExpansion {
 | 
						|
  struct ResultBlock {
 | 
						|
    BasicBlock *BB = nullptr;
 | 
						|
    PHINode *PhiSrc1 = nullptr;
 | 
						|
    PHINode *PhiSrc2 = nullptr;
 | 
						|
 | 
						|
    ResultBlock() = default;
 | 
						|
  };
 | 
						|
 | 
						|
  CallInst *const CI;
 | 
						|
  ResultBlock ResBlock;
 | 
						|
  const uint64_t Size;
 | 
						|
  unsigned MaxLoadSize;
 | 
						|
  uint64_t NumLoadsNonOneByte;
 | 
						|
  const uint64_t NumLoadsPerBlockForZeroCmp;
 | 
						|
  std::vector<BasicBlock *> LoadCmpBlocks;
 | 
						|
  BasicBlock *EndBlock;
 | 
						|
  PHINode *PhiRes;
 | 
						|
  const bool IsUsedForZeroCmp;
 | 
						|
  const DataLayout &DL;
 | 
						|
  IRBuilder<> Builder;
 | 
						|
  // Represents the decomposition in blocks of the expansion. For example,
 | 
						|
  // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
 | 
						|
  // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
 | 
						|
  struct LoadEntry {
 | 
						|
    LoadEntry(unsigned LoadSize, uint64_t Offset)
 | 
						|
        : LoadSize(LoadSize), Offset(Offset) {
 | 
						|
    }
 | 
						|
 | 
						|
    // The size of the load for this block, in bytes.
 | 
						|
    unsigned LoadSize;
 | 
						|
    // The offset of this load from the base pointer, in bytes.
 | 
						|
    uint64_t Offset;
 | 
						|
  };
 | 
						|
  using LoadEntryVector = SmallVector<LoadEntry, 8>;
 | 
						|
  LoadEntryVector LoadSequence;
 | 
						|
 | 
						|
  void createLoadCmpBlocks();
 | 
						|
  void createResultBlock();
 | 
						|
  void setupResultBlockPHINodes();
 | 
						|
  void setupEndBlockPHINodes();
 | 
						|
  Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
 | 
						|
  void emitLoadCompareBlock(unsigned BlockIndex);
 | 
						|
  void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
 | 
						|
                                         unsigned &LoadIndex);
 | 
						|
  void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
 | 
						|
  void emitMemCmpResultBlock();
 | 
						|
  Value *getMemCmpExpansionZeroCase();
 | 
						|
  Value *getMemCmpEqZeroOneBlock();
 | 
						|
  Value *getMemCmpOneBlock();
 | 
						|
  struct LoadPair {
 | 
						|
    Value *Lhs = nullptr;
 | 
						|
    Value *Rhs = nullptr;
 | 
						|
  };
 | 
						|
  LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType,
 | 
						|
                       unsigned OffsetBytes);
 | 
						|
 | 
						|
  static LoadEntryVector
 | 
						|
  computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
 | 
						|
                            unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
 | 
						|
  static LoadEntryVector
 | 
						|
  computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
 | 
						|
                                 unsigned MaxNumLoads,
 | 
						|
                                 unsigned &NumLoadsNonOneByte);
 | 
						|
 | 
						|
public:
 | 
						|
  MemCmpExpansion(CallInst *CI, uint64_t Size,
 | 
						|
                  const TargetTransformInfo::MemCmpExpansionOptions &Options,
 | 
						|
                  const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout);
 | 
						|
 | 
						|
  unsigned getNumBlocks();
 | 
						|
  uint64_t getNumLoads() const { return LoadSequence.size(); }
 | 
						|
 | 
						|
  Value *getMemCmpExpansion();
 | 
						|
};
 | 
						|
 | 
						|
MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
 | 
						|
    uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
 | 
						|
    const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
 | 
						|
  NumLoadsNonOneByte = 0;
 | 
						|
  LoadEntryVector LoadSequence;
 | 
						|
  uint64_t Offset = 0;
 | 
						|
  while (Size && !LoadSizes.empty()) {
 | 
						|
    const unsigned LoadSize = LoadSizes.front();
 | 
						|
    const uint64_t NumLoadsForThisSize = Size / LoadSize;
 | 
						|
    if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
 | 
						|
      // Do not expand if the total number of loads is larger than what the
 | 
						|
      // target allows. Note that it's important that we exit before completing
 | 
						|
      // the expansion to avoid using a ton of memory to store the expansion for
 | 
						|
      // large sizes.
 | 
						|
      return {};
 | 
						|
    }
 | 
						|
    if (NumLoadsForThisSize > 0) {
 | 
						|
      for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
 | 
						|
        LoadSequence.push_back({LoadSize, Offset});
 | 
						|
        Offset += LoadSize;
 | 
						|
      }
 | 
						|
      if (LoadSize > 1)
 | 
						|
        ++NumLoadsNonOneByte;
 | 
						|
      Size = Size % LoadSize;
 | 
						|
    }
 | 
						|
    LoadSizes = LoadSizes.drop_front();
 | 
						|
  }
 | 
						|
  return LoadSequence;
 | 
						|
}
 | 
						|
 | 
						|
MemCmpExpansion::LoadEntryVector
 | 
						|
MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
 | 
						|
                                                const unsigned MaxLoadSize,
 | 
						|
                                                const unsigned MaxNumLoads,
 | 
						|
                                                unsigned &NumLoadsNonOneByte) {
 | 
						|
  // These are already handled by the greedy approach.
 | 
						|
  if (Size < 2 || MaxLoadSize < 2)
 | 
						|
    return {};
 | 
						|
 | 
						|
  // We try to do as many non-overlapping loads as possible starting from the
 | 
						|
  // beginning.
 | 
						|
  const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
 | 
						|
  assert(NumNonOverlappingLoads && "there must be at least one load");
 | 
						|
  // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
 | 
						|
  // an overlapping load.
 | 
						|
  Size = Size - NumNonOverlappingLoads * MaxLoadSize;
 | 
						|
  // Bail if we do not need an overloapping store, this is already handled by
 | 
						|
  // the greedy approach.
 | 
						|
  if (Size == 0)
 | 
						|
    return {};
 | 
						|
  // Bail if the number of loads (non-overlapping + potential overlapping one)
 | 
						|
  // is larger than the max allowed.
 | 
						|
  if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
 | 
						|
    return {};
 | 
						|
 | 
						|
  // Add non-overlapping loads.
 | 
						|
  LoadEntryVector LoadSequence;
 | 
						|
  uint64_t Offset = 0;
 | 
						|
  for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
 | 
						|
    LoadSequence.push_back({MaxLoadSize, Offset});
 | 
						|
    Offset += MaxLoadSize;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the last overlapping load.
 | 
						|
  assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
 | 
						|
  LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
 | 
						|
  NumLoadsNonOneByte = 1;
 | 
						|
  return LoadSequence;
 | 
						|
}
 | 
						|
 | 
						|
// Initialize the basic block structure required for expansion of memcmp call
 | 
						|
// with given maximum load size and memcmp size parameter.
 | 
						|
// This structure includes:
 | 
						|
// 1. A list of load compare blocks - LoadCmpBlocks.
 | 
						|
// 2. An EndBlock, split from original instruction point, which is the block to
 | 
						|
// return from.
 | 
						|
// 3. ResultBlock, block to branch to for early exit when a
 | 
						|
// LoadCmpBlock finds a difference.
 | 
						|
MemCmpExpansion::MemCmpExpansion(
 | 
						|
    CallInst *const CI, uint64_t Size,
 | 
						|
    const TargetTransformInfo::MemCmpExpansionOptions &Options,
 | 
						|
    const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout)
 | 
						|
    : CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
 | 
						|
      NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
 | 
						|
      IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), Builder(CI) {
 | 
						|
  assert(Size > 0 && "zero blocks");
 | 
						|
  // Scale the max size down if the target can load more bytes than we need.
 | 
						|
  llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
 | 
						|
  while (!LoadSizes.empty() && LoadSizes.front() > Size) {
 | 
						|
    LoadSizes = LoadSizes.drop_front();
 | 
						|
  }
 | 
						|
  assert(!LoadSizes.empty() && "cannot load Size bytes");
 | 
						|
  MaxLoadSize = LoadSizes.front();
 | 
						|
  // Compute the decomposition.
 | 
						|
  unsigned GreedyNumLoadsNonOneByte = 0;
 | 
						|
  LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
 | 
						|
                                           GreedyNumLoadsNonOneByte);
 | 
						|
  NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
 | 
						|
  assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
 | 
						|
  // If we allow overlapping loads and the load sequence is not already optimal,
 | 
						|
  // use overlapping loads.
 | 
						|
  if (Options.AllowOverlappingLoads &&
 | 
						|
      (LoadSequence.empty() || LoadSequence.size() > 2)) {
 | 
						|
    unsigned OverlappingNumLoadsNonOneByte = 0;
 | 
						|
    auto OverlappingLoads = computeOverlappingLoadSequence(
 | 
						|
        Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
 | 
						|
    if (!OverlappingLoads.empty() &&
 | 
						|
        (LoadSequence.empty() ||
 | 
						|
         OverlappingLoads.size() < LoadSequence.size())) {
 | 
						|
      LoadSequence = OverlappingLoads;
 | 
						|
      NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
 | 
						|
}
 | 
						|
 | 
						|
unsigned MemCmpExpansion::getNumBlocks() {
 | 
						|
  if (IsUsedForZeroCmp)
 | 
						|
    return getNumLoads() / NumLoadsPerBlockForZeroCmp +
 | 
						|
           (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
 | 
						|
  return getNumLoads();
 | 
						|
}
 | 
						|
 | 
						|
void MemCmpExpansion::createLoadCmpBlocks() {
 | 
						|
  for (unsigned i = 0; i < getNumBlocks(); i++) {
 | 
						|
    BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
 | 
						|
                                        EndBlock->getParent(), EndBlock);
 | 
						|
    LoadCmpBlocks.push_back(BB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MemCmpExpansion::createResultBlock() {
 | 
						|
  ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
 | 
						|
                                   EndBlock->getParent(), EndBlock);
 | 
						|
}
 | 
						|
 | 
						|
MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
 | 
						|
                                                       bool NeedsBSwap,
 | 
						|
                                                       Type *CmpSizeType,
 | 
						|
                                                       unsigned OffsetBytes) {
 | 
						|
  // Get the memory source at offset `OffsetBytes`.
 | 
						|
  Value *LhsSource = CI->getArgOperand(0);
 | 
						|
  Value *RhsSource = CI->getArgOperand(1);
 | 
						|
  Align LhsAlign = LhsSource->getPointerAlignment(DL);
 | 
						|
  Align RhsAlign = RhsSource->getPointerAlignment(DL);
 | 
						|
  if (OffsetBytes > 0) {
 | 
						|
    auto *ByteType = Type::getInt8Ty(CI->getContext());
 | 
						|
    LhsSource = Builder.CreateConstGEP1_64(
 | 
						|
        ByteType, Builder.CreateBitCast(LhsSource, ByteType->getPointerTo()),
 | 
						|
        OffsetBytes);
 | 
						|
    RhsSource = Builder.CreateConstGEP1_64(
 | 
						|
        ByteType, Builder.CreateBitCast(RhsSource, ByteType->getPointerTo()),
 | 
						|
        OffsetBytes);
 | 
						|
    LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
 | 
						|
    RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
 | 
						|
  }
 | 
						|
  LhsSource = Builder.CreateBitCast(LhsSource, LoadSizeType->getPointerTo());
 | 
						|
  RhsSource = Builder.CreateBitCast(RhsSource, LoadSizeType->getPointerTo());
 | 
						|
 | 
						|
  // Create a constant or a load from the source.
 | 
						|
  Value *Lhs = nullptr;
 | 
						|
  if (auto *C = dyn_cast<Constant>(LhsSource))
 | 
						|
    Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
 | 
						|
  if (!Lhs)
 | 
						|
    Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
 | 
						|
 | 
						|
  Value *Rhs = nullptr;
 | 
						|
  if (auto *C = dyn_cast<Constant>(RhsSource))
 | 
						|
    Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
 | 
						|
  if (!Rhs)
 | 
						|
    Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
 | 
						|
 | 
						|
  // Swap bytes if required.
 | 
						|
  if (NeedsBSwap) {
 | 
						|
    Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
 | 
						|
                                                Intrinsic::bswap, LoadSizeType);
 | 
						|
    Lhs = Builder.CreateCall(Bswap, Lhs);
 | 
						|
    Rhs = Builder.CreateCall(Bswap, Rhs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Zero extend if required.
 | 
						|
  if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) {
 | 
						|
    Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
 | 
						|
    Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
 | 
						|
  }
 | 
						|
  return {Lhs, Rhs};
 | 
						|
}
 | 
						|
 | 
						|
// This function creates the IR instructions for loading and comparing 1 byte.
 | 
						|
// It loads 1 byte from each source of the memcmp parameters with the given
 | 
						|
// GEPIndex. It then subtracts the two loaded values and adds this result to the
 | 
						|
// final phi node for selecting the memcmp result.
 | 
						|
void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
 | 
						|
                                               unsigned OffsetBytes) {
 | 
						|
  Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
 | 
						|
  const LoadPair Loads =
 | 
						|
      getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false,
 | 
						|
                  Type::getInt32Ty(CI->getContext()), OffsetBytes);
 | 
						|
  Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
 | 
						|
 | 
						|
  PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
 | 
						|
 | 
						|
  if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
 | 
						|
    // Early exit branch if difference found to EndBlock. Otherwise, continue to
 | 
						|
    // next LoadCmpBlock,
 | 
						|
    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
 | 
						|
                                    ConstantInt::get(Diff->getType(), 0));
 | 
						|
    BranchInst *CmpBr =
 | 
						|
        BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
 | 
						|
    Builder.Insert(CmpBr);
 | 
						|
  } else {
 | 
						|
    // The last block has an unconditional branch to EndBlock.
 | 
						|
    BranchInst *CmpBr = BranchInst::Create(EndBlock);
 | 
						|
    Builder.Insert(CmpBr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Generate an equality comparison for one or more pairs of loaded values.
 | 
						|
/// This is used in the case where the memcmp() call is compared equal or not
 | 
						|
/// equal to zero.
 | 
						|
Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
 | 
						|
                                            unsigned &LoadIndex) {
 | 
						|
  assert(LoadIndex < getNumLoads() &&
 | 
						|
         "getCompareLoadPairs() called with no remaining loads");
 | 
						|
  std::vector<Value *> XorList, OrList;
 | 
						|
  Value *Diff = nullptr;
 | 
						|
 | 
						|
  const unsigned NumLoads =
 | 
						|
      std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
 | 
						|
 | 
						|
  // For a single-block expansion, start inserting before the memcmp call.
 | 
						|
  if (LoadCmpBlocks.empty())
 | 
						|
    Builder.SetInsertPoint(CI);
 | 
						|
  else
 | 
						|
    Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
 | 
						|
 | 
						|
  Value *Cmp = nullptr;
 | 
						|
  // If we have multiple loads per block, we need to generate a composite
 | 
						|
  // comparison using xor+or. The type for the combinations is the largest load
 | 
						|
  // type.
 | 
						|
  IntegerType *const MaxLoadType =
 | 
						|
      NumLoads == 1 ? nullptr
 | 
						|
                    : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
 | 
						|
  for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
 | 
						|
    const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
 | 
						|
    const LoadPair Loads = getLoadPair(
 | 
						|
        IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8),
 | 
						|
        /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset);
 | 
						|
 | 
						|
    if (NumLoads != 1) {
 | 
						|
      // If we have multiple loads per block, we need to generate a composite
 | 
						|
      // comparison using xor+or.
 | 
						|
      Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
 | 
						|
      Diff = Builder.CreateZExt(Diff, MaxLoadType);
 | 
						|
      XorList.push_back(Diff);
 | 
						|
    } else {
 | 
						|
      // If there's only one load per block, we just compare the loaded values.
 | 
						|
      Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
 | 
						|
    std::vector<Value *> OutList;
 | 
						|
    for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
 | 
						|
      Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
 | 
						|
      OutList.push_back(Or);
 | 
						|
    }
 | 
						|
    if (InList.size() % 2 != 0)
 | 
						|
      OutList.push_back(InList.back());
 | 
						|
    return OutList;
 | 
						|
  };
 | 
						|
 | 
						|
  if (!Cmp) {
 | 
						|
    // Pairwise OR the XOR results.
 | 
						|
    OrList = pairWiseOr(XorList);
 | 
						|
 | 
						|
    // Pairwise OR the OR results until one result left.
 | 
						|
    while (OrList.size() != 1) {
 | 
						|
      OrList = pairWiseOr(OrList);
 | 
						|
    }
 | 
						|
 | 
						|
    assert(Diff && "Failed to find comparison diff");
 | 
						|
    Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
 | 
						|
  }
 | 
						|
 | 
						|
  return Cmp;
 | 
						|
}
 | 
						|
 | 
						|
void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
 | 
						|
                                                        unsigned &LoadIndex) {
 | 
						|
  Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
 | 
						|
 | 
						|
  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
 | 
						|
                           ? EndBlock
 | 
						|
                           : LoadCmpBlocks[BlockIndex + 1];
 | 
						|
  // Early exit branch if difference found to ResultBlock. Otherwise,
 | 
						|
  // continue to next LoadCmpBlock or EndBlock.
 | 
						|
  BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
 | 
						|
  Builder.Insert(CmpBr);
 | 
						|
 | 
						|
  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
 | 
						|
  // since early exit to ResultBlock was not taken (no difference was found in
 | 
						|
  // any of the bytes).
 | 
						|
  if (BlockIndex == LoadCmpBlocks.size() - 1) {
 | 
						|
    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
 | 
						|
    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This function creates the IR intructions for loading and comparing using the
 | 
						|
// given LoadSize. It loads the number of bytes specified by LoadSize from each
 | 
						|
// source of the memcmp parameters. It then does a subtract to see if there was
 | 
						|
// a difference in the loaded values. If a difference is found, it branches
 | 
						|
// with an early exit to the ResultBlock for calculating which source was
 | 
						|
// larger. Otherwise, it falls through to the either the next LoadCmpBlock or
 | 
						|
// the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
 | 
						|
// a special case through emitLoadCompareByteBlock. The special handling can
 | 
						|
// simply subtract the loaded values and add it to the result phi node.
 | 
						|
void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
 | 
						|
  // There is one load per block in this case, BlockIndex == LoadIndex.
 | 
						|
  const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
 | 
						|
 | 
						|
  if (CurLoadEntry.LoadSize == 1) {
 | 
						|
    MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Type *LoadSizeType =
 | 
						|
      IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
 | 
						|
  Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
 | 
						|
  assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
 | 
						|
 | 
						|
  Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
 | 
						|
 | 
						|
  const LoadPair Loads =
 | 
						|
      getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType,
 | 
						|
                  CurLoadEntry.Offset);
 | 
						|
 | 
						|
  // Add the loaded values to the phi nodes for calculating memcmp result only
 | 
						|
  // if result is not used in a zero equality.
 | 
						|
  if (!IsUsedForZeroCmp) {
 | 
						|
    ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
 | 
						|
    ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
 | 
						|
  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
 | 
						|
                           ? EndBlock
 | 
						|
                           : LoadCmpBlocks[BlockIndex + 1];
 | 
						|
  // Early exit branch if difference found to ResultBlock. Otherwise, continue
 | 
						|
  // to next LoadCmpBlock or EndBlock.
 | 
						|
  BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
 | 
						|
  Builder.Insert(CmpBr);
 | 
						|
 | 
						|
  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
 | 
						|
  // since early exit to ResultBlock was not taken (no difference was found in
 | 
						|
  // any of the bytes).
 | 
						|
  if (BlockIndex == LoadCmpBlocks.size() - 1) {
 | 
						|
    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
 | 
						|
    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This function populates the ResultBlock with a sequence to calculate the
 | 
						|
// memcmp result. It compares the two loaded source values and returns -1 if
 | 
						|
// src1 < src2 and 1 if src1 > src2.
 | 
						|
void MemCmpExpansion::emitMemCmpResultBlock() {
 | 
						|
  // Special case: if memcmp result is used in a zero equality, result does not
 | 
						|
  // need to be calculated and can simply return 1.
 | 
						|
  if (IsUsedForZeroCmp) {
 | 
						|
    BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
 | 
						|
    Builder.SetInsertPoint(ResBlock.BB, InsertPt);
 | 
						|
    Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
 | 
						|
    PhiRes->addIncoming(Res, ResBlock.BB);
 | 
						|
    BranchInst *NewBr = BranchInst::Create(EndBlock);
 | 
						|
    Builder.Insert(NewBr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
 | 
						|
  Builder.SetInsertPoint(ResBlock.BB, InsertPt);
 | 
						|
 | 
						|
  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
 | 
						|
                                  ResBlock.PhiSrc2);
 | 
						|
 | 
						|
  Value *Res =
 | 
						|
      Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
 | 
						|
                           ConstantInt::get(Builder.getInt32Ty(), 1));
 | 
						|
 | 
						|
  BranchInst *NewBr = BranchInst::Create(EndBlock);
 | 
						|
  Builder.Insert(NewBr);
 | 
						|
  PhiRes->addIncoming(Res, ResBlock.BB);
 | 
						|
}
 | 
						|
 | 
						|
void MemCmpExpansion::setupResultBlockPHINodes() {
 | 
						|
  Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
 | 
						|
  Builder.SetInsertPoint(ResBlock.BB);
 | 
						|
  // Note: this assumes one load per block.
 | 
						|
  ResBlock.PhiSrc1 =
 | 
						|
      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
 | 
						|
  ResBlock.PhiSrc2 =
 | 
						|
      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
 | 
						|
}
 | 
						|
 | 
						|
void MemCmpExpansion::setupEndBlockPHINodes() {
 | 
						|
  Builder.SetInsertPoint(&EndBlock->front());
 | 
						|
  PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
 | 
						|
}
 | 
						|
 | 
						|
Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
 | 
						|
  unsigned LoadIndex = 0;
 | 
						|
  // This loop populates each of the LoadCmpBlocks with the IR sequence to
 | 
						|
  // handle multiple loads per block.
 | 
						|
  for (unsigned I = 0; I < getNumBlocks(); ++I) {
 | 
						|
    emitLoadCompareBlockMultipleLoads(I, LoadIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  emitMemCmpResultBlock();
 | 
						|
  return PhiRes;
 | 
						|
}
 | 
						|
 | 
						|
/// A memcmp expansion that compares equality with 0 and only has one block of
 | 
						|
/// load and compare can bypass the compare, branch, and phi IR that is required
 | 
						|
/// in the general case.
 | 
						|
Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
 | 
						|
  unsigned LoadIndex = 0;
 | 
						|
  Value *Cmp = getCompareLoadPairs(0, LoadIndex);
 | 
						|
  assert(LoadIndex == getNumLoads() && "some entries were not consumed");
 | 
						|
  return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
 | 
						|
}
 | 
						|
 | 
						|
/// A memcmp expansion that only has one block of load and compare can bypass
 | 
						|
/// the compare, branch, and phi IR that is required in the general case.
 | 
						|
Value *MemCmpExpansion::getMemCmpOneBlock() {
 | 
						|
  Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
 | 
						|
  bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
 | 
						|
 | 
						|
  // The i8 and i16 cases don't need compares. We zext the loaded values and
 | 
						|
  // subtract them to get the suitable negative, zero, or positive i32 result.
 | 
						|
  if (Size < 4) {
 | 
						|
    const LoadPair Loads =
 | 
						|
        getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(),
 | 
						|
                    /*Offset*/ 0);
 | 
						|
    return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
 | 
						|
  }
 | 
						|
 | 
						|
  const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType,
 | 
						|
                                     /*Offset*/ 0);
 | 
						|
  // The result of memcmp is negative, zero, or positive, so produce that by
 | 
						|
  // subtracting 2 extended compare bits: sub (ugt, ult).
 | 
						|
  // If a target prefers to use selects to get -1/0/1, they should be able
 | 
						|
  // to transform this later. The inverse transform (going from selects to math)
 | 
						|
  // may not be possible in the DAG because the selects got converted into
 | 
						|
  // branches before we got there.
 | 
						|
  Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
 | 
						|
  Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
 | 
						|
  Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
 | 
						|
  Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
 | 
						|
  return Builder.CreateSub(ZextUGT, ZextULT);
 | 
						|
}
 | 
						|
 | 
						|
// This function expands the memcmp call into an inline expansion and returns
 | 
						|
// the memcmp result.
 | 
						|
Value *MemCmpExpansion::getMemCmpExpansion() {
 | 
						|
  // Create the basic block framework for a multi-block expansion.
 | 
						|
  if (getNumBlocks() != 1) {
 | 
						|
    BasicBlock *StartBlock = CI->getParent();
 | 
						|
    EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
 | 
						|
    setupEndBlockPHINodes();
 | 
						|
    createResultBlock();
 | 
						|
 | 
						|
    // If return value of memcmp is not used in a zero equality, we need to
 | 
						|
    // calculate which source was larger. The calculation requires the
 | 
						|
    // two loaded source values of each load compare block.
 | 
						|
    // These will be saved in the phi nodes created by setupResultBlockPHINodes.
 | 
						|
    if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
 | 
						|
 | 
						|
    // Create the number of required load compare basic blocks.
 | 
						|
    createLoadCmpBlocks();
 | 
						|
 | 
						|
    // Update the terminator added by splitBasicBlock to branch to the first
 | 
						|
    // LoadCmpBlock.
 | 
						|
    StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
 | 
						|
 | 
						|
  if (IsUsedForZeroCmp)
 | 
						|
    return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
 | 
						|
                               : getMemCmpExpansionZeroCase();
 | 
						|
 | 
						|
  if (getNumBlocks() == 1)
 | 
						|
    return getMemCmpOneBlock();
 | 
						|
 | 
						|
  for (unsigned I = 0; I < getNumBlocks(); ++I) {
 | 
						|
    emitLoadCompareBlock(I);
 | 
						|
  }
 | 
						|
 | 
						|
  emitMemCmpResultBlock();
 | 
						|
  return PhiRes;
 | 
						|
}
 | 
						|
 | 
						|
// This function checks to see if an expansion of memcmp can be generated.
 | 
						|
// It checks for constant compare size that is less than the max inline size.
 | 
						|
// If an expansion cannot occur, returns false to leave as a library call.
 | 
						|
// Otherwise, the library call is replaced with a new IR instruction sequence.
 | 
						|
/// We want to transform:
 | 
						|
/// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
 | 
						|
/// To:
 | 
						|
/// loadbb:
 | 
						|
///  %0 = bitcast i32* %buffer2 to i8*
 | 
						|
///  %1 = bitcast i32* %buffer1 to i8*
 | 
						|
///  %2 = bitcast i8* %1 to i64*
 | 
						|
///  %3 = bitcast i8* %0 to i64*
 | 
						|
///  %4 = load i64, i64* %2
 | 
						|
///  %5 = load i64, i64* %3
 | 
						|
///  %6 = call i64 @llvm.bswap.i64(i64 %4)
 | 
						|
///  %7 = call i64 @llvm.bswap.i64(i64 %5)
 | 
						|
///  %8 = sub i64 %6, %7
 | 
						|
///  %9 = icmp ne i64 %8, 0
 | 
						|
///  br i1 %9, label %res_block, label %loadbb1
 | 
						|
/// res_block:                                        ; preds = %loadbb2,
 | 
						|
/// %loadbb1, %loadbb
 | 
						|
///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
 | 
						|
///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
 | 
						|
///  %10 = icmp ult i64 %phi.src1, %phi.src2
 | 
						|
///  %11 = select i1 %10, i32 -1, i32 1
 | 
						|
///  br label %endblock
 | 
						|
/// loadbb1:                                          ; preds = %loadbb
 | 
						|
///  %12 = bitcast i32* %buffer2 to i8*
 | 
						|
///  %13 = bitcast i32* %buffer1 to i8*
 | 
						|
///  %14 = bitcast i8* %13 to i32*
 | 
						|
///  %15 = bitcast i8* %12 to i32*
 | 
						|
///  %16 = getelementptr i32, i32* %14, i32 2
 | 
						|
///  %17 = getelementptr i32, i32* %15, i32 2
 | 
						|
///  %18 = load i32, i32* %16
 | 
						|
///  %19 = load i32, i32* %17
 | 
						|
///  %20 = call i32 @llvm.bswap.i32(i32 %18)
 | 
						|
///  %21 = call i32 @llvm.bswap.i32(i32 %19)
 | 
						|
///  %22 = zext i32 %20 to i64
 | 
						|
///  %23 = zext i32 %21 to i64
 | 
						|
///  %24 = sub i64 %22, %23
 | 
						|
///  %25 = icmp ne i64 %24, 0
 | 
						|
///  br i1 %25, label %res_block, label %loadbb2
 | 
						|
/// loadbb2:                                          ; preds = %loadbb1
 | 
						|
///  %26 = bitcast i32* %buffer2 to i8*
 | 
						|
///  %27 = bitcast i32* %buffer1 to i8*
 | 
						|
///  %28 = bitcast i8* %27 to i16*
 | 
						|
///  %29 = bitcast i8* %26 to i16*
 | 
						|
///  %30 = getelementptr i16, i16* %28, i16 6
 | 
						|
///  %31 = getelementptr i16, i16* %29, i16 6
 | 
						|
///  %32 = load i16, i16* %30
 | 
						|
///  %33 = load i16, i16* %31
 | 
						|
///  %34 = call i16 @llvm.bswap.i16(i16 %32)
 | 
						|
///  %35 = call i16 @llvm.bswap.i16(i16 %33)
 | 
						|
///  %36 = zext i16 %34 to i64
 | 
						|
///  %37 = zext i16 %35 to i64
 | 
						|
///  %38 = sub i64 %36, %37
 | 
						|
///  %39 = icmp ne i64 %38, 0
 | 
						|
///  br i1 %39, label %res_block, label %loadbb3
 | 
						|
/// loadbb3:                                          ; preds = %loadbb2
 | 
						|
///  %40 = bitcast i32* %buffer2 to i8*
 | 
						|
///  %41 = bitcast i32* %buffer1 to i8*
 | 
						|
///  %42 = getelementptr i8, i8* %41, i8 14
 | 
						|
///  %43 = getelementptr i8, i8* %40, i8 14
 | 
						|
///  %44 = load i8, i8* %42
 | 
						|
///  %45 = load i8, i8* %43
 | 
						|
///  %46 = zext i8 %44 to i32
 | 
						|
///  %47 = zext i8 %45 to i32
 | 
						|
///  %48 = sub i32 %46, %47
 | 
						|
///  br label %endblock
 | 
						|
/// endblock:                                         ; preds = %res_block,
 | 
						|
/// %loadbb3
 | 
						|
///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
 | 
						|
///  ret i32 %phi.res
 | 
						|
static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
 | 
						|
                         const TargetLowering *TLI, const DataLayout *DL,
 | 
						|
                         ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
 | 
						|
  NumMemCmpCalls++;
 | 
						|
 | 
						|
  // Early exit from expansion if -Oz.
 | 
						|
  if (CI->getFunction()->hasMinSize())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Early exit from expansion if size is not a constant.
 | 
						|
  ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | 
						|
  if (!SizeCast) {
 | 
						|
    NumMemCmpNotConstant++;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  const uint64_t SizeVal = SizeCast->getZExtValue();
 | 
						|
 | 
						|
  if (SizeVal == 0) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // TTI call to check if target would like to expand memcmp. Also, get the
 | 
						|
  // available load sizes.
 | 
						|
  const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
 | 
						|
  bool OptForSize = CI->getFunction()->hasOptSize() ||
 | 
						|
                    llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
 | 
						|
  auto Options = TTI->enableMemCmpExpansion(OptForSize,
 | 
						|
                                            IsUsedForZeroCmp);
 | 
						|
  if (!Options) return false;
 | 
						|
 | 
						|
  if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
 | 
						|
    Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
 | 
						|
 | 
						|
  if (OptForSize &&
 | 
						|
      MaxLoadsPerMemcmpOptSize.getNumOccurrences())
 | 
						|
    Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
 | 
						|
 | 
						|
  if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
 | 
						|
    Options.MaxNumLoads = MaxLoadsPerMemcmp;
 | 
						|
 | 
						|
  MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL);
 | 
						|
 | 
						|
  // Don't expand if this will require more loads than desired by the target.
 | 
						|
  if (Expansion.getNumLoads() == 0) {
 | 
						|
    NumMemCmpGreaterThanMax++;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  NumMemCmpInlined++;
 | 
						|
 | 
						|
  Value *Res = Expansion.getMemCmpExpansion();
 | 
						|
 | 
						|
  // Replace call with result of expansion and erase call.
 | 
						|
  CI->replaceAllUsesWith(Res);
 | 
						|
  CI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
class ExpandMemCmpPass : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  ExpandMemCmpPass() : FunctionPass(ID) {
 | 
						|
    initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipFunction(F)) return false;
 | 
						|
 | 
						|
    auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
 | 
						|
    if (!TPC) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    const TargetLowering* TL =
 | 
						|
        TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
 | 
						|
 | 
						|
    const TargetLibraryInfo *TLI =
 | 
						|
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | 
						|
    const TargetTransformInfo *TTI =
 | 
						|
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
    auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | 
						|
    auto *BFI = (PSI && PSI->hasProfileSummary()) ?
 | 
						|
           &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
 | 
						|
           nullptr;
 | 
						|
    auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI);
 | 
						|
    return !PA.areAllPreserved();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | 
						|
    LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
 | 
						|
    FunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
 | 
						|
                            const TargetTransformInfo *TTI,
 | 
						|
                            const TargetLowering* TL,
 | 
						|
                            ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI);
 | 
						|
  // Returns true if a change was made.
 | 
						|
  bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
 | 
						|
                  const TargetTransformInfo *TTI, const TargetLowering* TL,
 | 
						|
                  const DataLayout& DL, ProfileSummaryInfo *PSI,
 | 
						|
                  BlockFrequencyInfo *BFI);
 | 
						|
};
 | 
						|
 | 
						|
bool ExpandMemCmpPass::runOnBlock(
 | 
						|
    BasicBlock &BB, const TargetLibraryInfo *TLI,
 | 
						|
    const TargetTransformInfo *TTI, const TargetLowering* TL,
 | 
						|
    const DataLayout& DL, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
 | 
						|
  for (Instruction& I : BB) {
 | 
						|
    CallInst *CI = dyn_cast<CallInst>(&I);
 | 
						|
    if (!CI) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    LibFunc Func;
 | 
						|
    if (TLI->getLibFunc(*CI, Func) &&
 | 
						|
        (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
 | 
						|
        expandMemCmp(CI, TTI, TL, &DL, PSI, BFI)) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
PreservedAnalyses ExpandMemCmpPass::runImpl(
 | 
						|
    Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
 | 
						|
    const TargetLowering* TL, ProfileSummaryInfo *PSI,
 | 
						|
    BlockFrequencyInfo *BFI) {
 | 
						|
  const DataLayout& DL = F.getParent()->getDataLayout();
 | 
						|
  bool MadeChanges = false;
 | 
						|
  for (auto BBIt = F.begin(); BBIt != F.end();) {
 | 
						|
    if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI)) {
 | 
						|
      MadeChanges = true;
 | 
						|
      // If changes were made, restart the function from the beginning, since
 | 
						|
      // the structure of the function was changed.
 | 
						|
      BBIt = F.begin();
 | 
						|
    } else {
 | 
						|
      ++BBIt;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (MadeChanges)
 | 
						|
    for (BasicBlock &BB : F)
 | 
						|
      SimplifyInstructionsInBlock(&BB);
 | 
						|
  return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
char ExpandMemCmpPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
 | 
						|
                      "Expand memcmp() to load/stores", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
 | 
						|
                    "Expand memcmp() to load/stores", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createExpandMemCmpPass() {
 | 
						|
  return new ExpandMemCmpPass();
 | 
						|
}
 |