forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1977 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1977 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// \file LiveDebugValues.cpp
 | 
						|
///
 | 
						|
/// LiveDebugValues is an optimistic "available expressions" dataflow
 | 
						|
/// algorithm. The set of expressions is the set of machine locations
 | 
						|
/// (registers, spill slots, constants) that a variable fragment might be
 | 
						|
/// located, qualified by a DIExpression and indirect-ness flag, while each
 | 
						|
/// variable is identified by a DebugVariable object. The availability of an
 | 
						|
/// expression begins when a DBG_VALUE instruction specifies the location of a
 | 
						|
/// DebugVariable, and continues until that location is clobbered or
 | 
						|
/// re-specified by a different DBG_VALUE for the same DebugVariable.
 | 
						|
///
 | 
						|
/// The cannonical "available expressions" problem doesn't have expression
 | 
						|
/// clobbering, instead when a variable is re-assigned, any expressions using
 | 
						|
/// that variable get invalidated. LiveDebugValues can map onto "available
 | 
						|
/// expressions" by having every register represented by a variable, which is
 | 
						|
/// used in an expression that becomes available at a DBG_VALUE instruction.
 | 
						|
/// When the register is clobbered, its variable is effectively reassigned, and
 | 
						|
/// expressions computed from it become unavailable. A similar construct is
 | 
						|
/// needed when a DebugVariable has its location re-specified, to invalidate
 | 
						|
/// all other locations for that DebugVariable.
 | 
						|
///
 | 
						|
/// Using the dataflow analysis to compute the available expressions, we create
 | 
						|
/// a DBG_VALUE at the beginning of each block where the expression is
 | 
						|
/// live-in. This propagates variable locations into every basic block where
 | 
						|
/// the location can be determined, rather than only having DBG_VALUEs in blocks
 | 
						|
/// where locations are specified due to an assignment or some optimization.
 | 
						|
/// Movements of values between registers and spill slots are annotated with
 | 
						|
/// DBG_VALUEs too to track variable values bewteen locations. All this allows
 | 
						|
/// DbgEntityHistoryCalculator to focus on only the locations within individual
 | 
						|
/// blocks, facilitating testing and improving modularity.
 | 
						|
///
 | 
						|
/// We follow an optimisic dataflow approach, with this lattice:
 | 
						|
///
 | 
						|
/// \verbatim
 | 
						|
///                    ┬ "Unknown"
 | 
						|
///                          |
 | 
						|
///                          v
 | 
						|
///                         True
 | 
						|
///                          |
 | 
						|
///                          v
 | 
						|
///                      ⊥ False
 | 
						|
/// \endverbatim With "True" signifying that the expression is available (and
 | 
						|
/// thus a DebugVariable's location is the corresponding register), while
 | 
						|
/// "False" signifies that the expression is unavailable. "Unknown"s never
 | 
						|
/// survive to the end of the analysis (see below).
 | 
						|
///
 | 
						|
/// Formally, all DebugVariable locations that are live-out of a block are
 | 
						|
/// initialized to \top.  A blocks live-in values take the meet of the lattice
 | 
						|
/// value for every predecessors live-outs, except for the entry block, where
 | 
						|
/// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
 | 
						|
/// function for a block assigns an expression for a DebugVariable to be "True"
 | 
						|
/// if a DBG_VALUE in the block specifies it; "False" if the location is
 | 
						|
/// clobbered; or the live-in value if it is unaffected by the block. We
 | 
						|
/// visit each block in reverse post order until a fixedpoint is reached. The
 | 
						|
/// solution produced is maximal.
 | 
						|
///
 | 
						|
/// Intuitively, we start by assuming that every expression / variable location
 | 
						|
/// is at least "True", and then propagate "False" from the entry block and any
 | 
						|
/// clobbers until there are no more changes to make. This gives us an accurate
 | 
						|
/// solution because all incorrect locations will have a "False" propagated into
 | 
						|
/// them. It also gives us a solution that copes well with loops by assuming
 | 
						|
/// that variable locations are live-through every loop, and then removing those
 | 
						|
/// that are not through dataflow.
 | 
						|
///
 | 
						|
/// Within LiveDebugValues: each variable location is represented by a
 | 
						|
/// VarLoc object that identifies the source variable, its current
 | 
						|
/// machine-location, and the DBG_VALUE inst that specifies the location. Each
 | 
						|
/// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a
 | 
						|
/// unique index. Rather than operate directly on machine locations, the
 | 
						|
/// dataflow analysis in this pass identifies locations by their index in the
 | 
						|
/// VarLocMap, meaning all the variable locations in a block can be described
 | 
						|
/// by a sparse vector of VarLocMap indicies.
 | 
						|
///
 | 
						|
/// All the storage for the dataflow analysis is local to the ExtendRanges
 | 
						|
/// method and passed down to helper methods. "OutLocs" and "InLocs" record the
 | 
						|
/// in and out lattice values for each block. "OpenRanges" maintains a list of
 | 
						|
/// variable locations and, with the "process" method, evaluates the transfer
 | 
						|
/// function of each block. "flushPendingLocs" installs DBG_VALUEs for each
 | 
						|
/// live-in location at the start of blocks, while "Transfers" records
 | 
						|
/// transfers of values between machine-locations.
 | 
						|
///
 | 
						|
/// We avoid explicitly representing the "Unknown" (\top) lattice value in the
 | 
						|
/// implementation. Instead, unvisited blocks implicitly have all lattice
 | 
						|
/// values set as "Unknown". After being visited, there will be path back to
 | 
						|
/// the entry block where the lattice value is "False", and as the transfer
 | 
						|
/// function cannot make new "Unknown" locations, there are no scenarios where
 | 
						|
/// a block can have an "Unknown" location after being visited. Similarly, we
 | 
						|
/// don't enumerate all possible variable locations before exploring the
 | 
						|
/// function: when a new location is discovered, all blocks previously explored
 | 
						|
/// were implicitly "False" but unrecorded, and become explicitly "False" when
 | 
						|
/// a new VarLoc is created with its bit not set in predecessor InLocs or
 | 
						|
/// OutLocs.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/CoalescingBitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/UniqueVector.h"
 | 
						|
#include "llvm/CodeGen/LexicalScopes.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/RegisterScavenging.h"
 | 
						|
#include "llvm/CodeGen/TargetFrameLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetPassConfig.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <functional>
 | 
						|
#include <queue>
 | 
						|
#include <tuple>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "livedebugvalues"
 | 
						|
 | 
						|
STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
 | 
						|
 | 
						|
// Options to prevent pathological compile-time behavior. If InputBBLimit and
 | 
						|
// InputDbgValueLimit are both exceeded, range extension is disabled.
 | 
						|
static cl::opt<unsigned> InputBBLimit(
 | 
						|
    "livedebugvalues-input-bb-limit",
 | 
						|
    cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"),
 | 
						|
    cl::init(10000), cl::Hidden);
 | 
						|
static cl::opt<unsigned> InputDbgValueLimit(
 | 
						|
    "livedebugvalues-input-dbg-value-limit",
 | 
						|
    cl::desc(
 | 
						|
        "Maximum input DBG_VALUE insts supported by debug range extension"),
 | 
						|
    cl::init(50000), cl::Hidden);
 | 
						|
 | 
						|
// If @MI is a DBG_VALUE with debug value described by a defined
 | 
						|
// register, returns the number of this register. In the other case, returns 0.
 | 
						|
static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
 | 
						|
  assert(MI.isDebugValue() && "expected a DBG_VALUE");
 | 
						|
  assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
 | 
						|
  // If location of variable is described using a register (directly
 | 
						|
  // or indirectly), this register is always a first operand.
 | 
						|
  return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg()
 | 
						|
                                       : Register();
 | 
						|
}
 | 
						|
 | 
						|
/// If \p Op is a stack or frame register return true, otherwise return false.
 | 
						|
/// This is used to avoid basing the debug entry values on the registers, since
 | 
						|
/// we do not support it at the moment.
 | 
						|
static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
 | 
						|
                                  const MachineInstr &MI,
 | 
						|
                                  const TargetRegisterInfo *TRI) {
 | 
						|
  if (!Op.isReg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
 | 
						|
  Register SP = TLI->getStackPointerRegisterToSaveRestore();
 | 
						|
  Register FP = TRI->getFrameRegister(*MF);
 | 
						|
  Register Reg = Op.getReg();
 | 
						|
 | 
						|
  return Reg && Reg != SP && Reg != FP;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Max out the number of statically allocated elements in DefinedRegsSet, as
 | 
						|
// this prevents fallback to std::set::count() operations.
 | 
						|
using DefinedRegsSet = SmallSet<Register, 32>;
 | 
						|
 | 
						|
using VarLocSet = CoalescingBitVector<uint64_t>;
 | 
						|
 | 
						|
/// A type-checked pair of {Register Location (or 0), Index}, used to index
 | 
						|
/// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
 | 
						|
/// for insertion into a \ref VarLocSet, and efficiently converted back. The
 | 
						|
/// type-checker helps ensure that the conversions aren't lossy.
 | 
						|
///
 | 
						|
/// Why encode a location /into/ the VarLocMap index? This makes it possible
 | 
						|
/// to find the open VarLocs killed by a register def very quickly. This is a
 | 
						|
/// performance-critical operation for LiveDebugValues.
 | 
						|
struct LocIndex {
 | 
						|
  using u32_location_t = uint32_t;
 | 
						|
  using u32_index_t = uint32_t;
 | 
						|
 | 
						|
  u32_location_t Location; // Physical registers live in the range [1;2^30) (see
 | 
						|
                           // \ref MCRegister), so we have plenty of range left
 | 
						|
                           // here to encode non-register locations.
 | 
						|
  u32_index_t Index;
 | 
						|
 | 
						|
  /// The first location greater than 0 that is not reserved for VarLocs of
 | 
						|
  /// kind RegisterKind.
 | 
						|
  static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
 | 
						|
 | 
						|
  /// A special location reserved for VarLocs of kind SpillLocKind.
 | 
						|
  static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
 | 
						|
 | 
						|
  /// A special location reserved for VarLocs of kind EntryValueBackupKind and
 | 
						|
  /// EntryValueCopyBackupKind.
 | 
						|
  static constexpr u32_location_t kEntryValueBackupLocation =
 | 
						|
      kFirstInvalidRegLocation + 1;
 | 
						|
 | 
						|
  LocIndex(u32_location_t Location, u32_index_t Index)
 | 
						|
      : Location(Location), Index(Index) {}
 | 
						|
 | 
						|
  uint64_t getAsRawInteger() const {
 | 
						|
    return (static_cast<uint64_t>(Location) << 32) | Index;
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
 | 
						|
    static_assert(std::is_unsigned<IntT>::value &&
 | 
						|
                      sizeof(ID) == sizeof(uint64_t),
 | 
						|
                  "Cannot convert raw integer to LocIndex");
 | 
						|
    return {static_cast<u32_location_t>(ID >> 32),
 | 
						|
            static_cast<u32_index_t>(ID)};
 | 
						|
  }
 | 
						|
 | 
						|
  /// Get the start of the interval reserved for VarLocs of kind RegisterKind
 | 
						|
  /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
 | 
						|
  static uint64_t rawIndexForReg(uint32_t Reg) {
 | 
						|
    return LocIndex(Reg, 0).getAsRawInteger();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return a range covering all set indices in the interval reserved for
 | 
						|
  /// \p Location in \p Set.
 | 
						|
  static auto indexRangeForLocation(const VarLocSet &Set,
 | 
						|
                                    u32_location_t Location) {
 | 
						|
    uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
 | 
						|
    uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
 | 
						|
    return Set.half_open_range(Start, End);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class LiveDebugValues : public MachineFunctionPass {
 | 
						|
private:
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
  const TargetFrameLowering *TFI;
 | 
						|
  BitVector CalleeSavedRegs;
 | 
						|
  LexicalScopes LS;
 | 
						|
  VarLocSet::Allocator Alloc;
 | 
						|
 | 
						|
  enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
 | 
						|
 | 
						|
  using FragmentInfo = DIExpression::FragmentInfo;
 | 
						|
  using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
 | 
						|
 | 
						|
  /// A pair of debug variable and value location.
 | 
						|
  struct VarLoc {
 | 
						|
    // The location at which a spilled variable resides. It consists of a
 | 
						|
    // register and an offset.
 | 
						|
    struct SpillLoc {
 | 
						|
      unsigned SpillBase;
 | 
						|
      int SpillOffset;
 | 
						|
      bool operator==(const SpillLoc &Other) const {
 | 
						|
        return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
 | 
						|
      }
 | 
						|
      bool operator!=(const SpillLoc &Other) const {
 | 
						|
        return !(*this == Other);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    /// Identity of the variable at this location.
 | 
						|
    const DebugVariable Var;
 | 
						|
 | 
						|
    /// The expression applied to this location.
 | 
						|
    const DIExpression *Expr;
 | 
						|
 | 
						|
    /// DBG_VALUE to clone var/expr information from if this location
 | 
						|
    /// is moved.
 | 
						|
    const MachineInstr &MI;
 | 
						|
 | 
						|
    enum VarLocKind {
 | 
						|
      InvalidKind = 0,
 | 
						|
      RegisterKind,
 | 
						|
      SpillLocKind,
 | 
						|
      ImmediateKind,
 | 
						|
      EntryValueKind,
 | 
						|
      EntryValueBackupKind,
 | 
						|
      EntryValueCopyBackupKind
 | 
						|
    } Kind = InvalidKind;
 | 
						|
 | 
						|
    /// The value location. Stored separately to avoid repeatedly
 | 
						|
    /// extracting it from MI.
 | 
						|
    union {
 | 
						|
      uint64_t RegNo;
 | 
						|
      SpillLoc SpillLocation;
 | 
						|
      uint64_t Hash;
 | 
						|
      int64_t Immediate;
 | 
						|
      const ConstantFP *FPImm;
 | 
						|
      const ConstantInt *CImm;
 | 
						|
    } Loc;
 | 
						|
 | 
						|
    VarLoc(const MachineInstr &MI, LexicalScopes &LS)
 | 
						|
        : Var(MI.getDebugVariable(), MI.getDebugExpression(),
 | 
						|
              MI.getDebugLoc()->getInlinedAt()),
 | 
						|
          Expr(MI.getDebugExpression()), MI(MI) {
 | 
						|
      static_assert((sizeof(Loc) == sizeof(uint64_t)),
 | 
						|
                    "hash does not cover all members of Loc");
 | 
						|
      assert(MI.isDebugValue() && "not a DBG_VALUE");
 | 
						|
      assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
 | 
						|
      if (int RegNo = isDbgValueDescribedByReg(MI)) {
 | 
						|
        Kind = RegisterKind;
 | 
						|
        Loc.RegNo = RegNo;
 | 
						|
      } else if (MI.getDebugOperand(0).isImm()) {
 | 
						|
        Kind = ImmediateKind;
 | 
						|
        Loc.Immediate = MI.getDebugOperand(0).getImm();
 | 
						|
      } else if (MI.getDebugOperand(0).isFPImm()) {
 | 
						|
        Kind = ImmediateKind;
 | 
						|
        Loc.FPImm = MI.getDebugOperand(0).getFPImm();
 | 
						|
      } else if (MI.getDebugOperand(0).isCImm()) {
 | 
						|
        Kind = ImmediateKind;
 | 
						|
        Loc.CImm = MI.getDebugOperand(0).getCImm();
 | 
						|
      }
 | 
						|
 | 
						|
      // We create the debug entry values from the factory functions rather than
 | 
						|
      // from this ctor.
 | 
						|
      assert(Kind != EntryValueKind && !isEntryBackupLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    /// Take the variable and machine-location in DBG_VALUE MI, and build an
 | 
						|
    /// entry location using the given expression.
 | 
						|
    static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
 | 
						|
                                 const DIExpression *EntryExpr, Register Reg) {
 | 
						|
      VarLoc VL(MI, LS);
 | 
						|
      assert(VL.Kind == RegisterKind);
 | 
						|
      VL.Kind = EntryValueKind;
 | 
						|
      VL.Expr = EntryExpr;
 | 
						|
      VL.Loc.RegNo = Reg;
 | 
						|
      return VL;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Take the variable and machine-location from the DBG_VALUE (from the
 | 
						|
    /// function entry), and build an entry value backup location. The backup
 | 
						|
    /// location will turn into the normal location if the backup is valid at
 | 
						|
    /// the time of the primary location clobbering.
 | 
						|
    static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
 | 
						|
                                       LexicalScopes &LS,
 | 
						|
                                       const DIExpression *EntryExpr) {
 | 
						|
      VarLoc VL(MI, LS);
 | 
						|
      assert(VL.Kind == RegisterKind);
 | 
						|
      VL.Kind = EntryValueBackupKind;
 | 
						|
      VL.Expr = EntryExpr;
 | 
						|
      return VL;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Take the variable and machine-location from the DBG_VALUE (from the
 | 
						|
    /// function entry), and build a copy of an entry value backup location by
 | 
						|
    /// setting the register location to NewReg.
 | 
						|
    static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
 | 
						|
                                           LexicalScopes &LS,
 | 
						|
                                           const DIExpression *EntryExpr,
 | 
						|
                                           Register NewReg) {
 | 
						|
      VarLoc VL(MI, LS);
 | 
						|
      assert(VL.Kind == RegisterKind);
 | 
						|
      VL.Kind = EntryValueCopyBackupKind;
 | 
						|
      VL.Expr = EntryExpr;
 | 
						|
      VL.Loc.RegNo = NewReg;
 | 
						|
      return VL;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Copy the register location in DBG_VALUE MI, updating the register to
 | 
						|
    /// be NewReg.
 | 
						|
    static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS,
 | 
						|
                                Register NewReg) {
 | 
						|
      VarLoc VL(MI, LS);
 | 
						|
      assert(VL.Kind == RegisterKind);
 | 
						|
      VL.Loc.RegNo = NewReg;
 | 
						|
      return VL;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Take the variable described by DBG_VALUE MI, and create a VarLoc
 | 
						|
    /// locating it in the specified spill location.
 | 
						|
    static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase,
 | 
						|
                                 int SpillOffset, LexicalScopes &LS) {
 | 
						|
      VarLoc VL(MI, LS);
 | 
						|
      assert(VL.Kind == RegisterKind);
 | 
						|
      VL.Kind = SpillLocKind;
 | 
						|
      VL.Loc.SpillLocation = {SpillBase, SpillOffset};
 | 
						|
      return VL;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Create a DBG_VALUE representing this VarLoc in the given function.
 | 
						|
    /// Copies variable-specific information such as DILocalVariable and
 | 
						|
    /// inlining information from the original DBG_VALUE instruction, which may
 | 
						|
    /// have been several transfers ago.
 | 
						|
    MachineInstr *BuildDbgValue(MachineFunction &MF) const {
 | 
						|
      const DebugLoc &DbgLoc = MI.getDebugLoc();
 | 
						|
      bool Indirect = MI.isIndirectDebugValue();
 | 
						|
      const auto &IID = MI.getDesc();
 | 
						|
      const DILocalVariable *Var = MI.getDebugVariable();
 | 
						|
      const DIExpression *DIExpr = MI.getDebugExpression();
 | 
						|
      NumInserted++;
 | 
						|
 | 
						|
      switch (Kind) {
 | 
						|
      case EntryValueKind:
 | 
						|
        // An entry value is a register location -- but with an updated
 | 
						|
        // expression. The register location of such DBG_VALUE is always the one
 | 
						|
        // from the entry DBG_VALUE, it does not matter if the entry value was
 | 
						|
        // copied in to another register due to some optimizations.
 | 
						|
        return BuildMI(MF, DbgLoc, IID, Indirect,
 | 
						|
                       MI.getDebugOperand(0).getReg(), Var, Expr);
 | 
						|
      case RegisterKind:
 | 
						|
        // Register locations are like the source DBG_VALUE, but with the
 | 
						|
        // register number from this VarLoc.
 | 
						|
        return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr);
 | 
						|
      case SpillLocKind: {
 | 
						|
        // Spills are indirect DBG_VALUEs, with a base register and offset.
 | 
						|
        // Use the original DBG_VALUEs expression to build the spilt location
 | 
						|
        // on top of. FIXME: spill locations created before this pass runs
 | 
						|
        // are not recognized, and not handled here.
 | 
						|
        auto *SpillExpr = DIExpression::prepend(
 | 
						|
            DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset);
 | 
						|
        unsigned Base = Loc.SpillLocation.SpillBase;
 | 
						|
        return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr);
 | 
						|
      }
 | 
						|
      case ImmediateKind: {
 | 
						|
        MachineOperand MO = MI.getDebugOperand(0);
 | 
						|
        return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr);
 | 
						|
      }
 | 
						|
      case EntryValueBackupKind:
 | 
						|
      case EntryValueCopyBackupKind:
 | 
						|
      case InvalidKind:
 | 
						|
        llvm_unreachable(
 | 
						|
            "Tried to produce DBG_VALUE for invalid or backup VarLoc");
 | 
						|
      }
 | 
						|
      llvm_unreachable("Unrecognized LiveDebugValues.VarLoc.Kind enum");
 | 
						|
    }
 | 
						|
 | 
						|
    /// Is the Loc field a constant or constant object?
 | 
						|
    bool isConstant() const { return Kind == ImmediateKind; }
 | 
						|
 | 
						|
    /// Check if the Loc field is an entry backup location.
 | 
						|
    bool isEntryBackupLoc() const {
 | 
						|
      return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind;
 | 
						|
    }
 | 
						|
 | 
						|
    /// If this variable is described by a register holding the entry value,
 | 
						|
    /// return it, otherwise return 0.
 | 
						|
    unsigned getEntryValueBackupReg() const {
 | 
						|
      if (Kind == EntryValueBackupKind)
 | 
						|
        return Loc.RegNo;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /// If this variable is described by a register holding the copy of the
 | 
						|
    /// entry value, return it, otherwise return 0.
 | 
						|
    unsigned getEntryValueCopyBackupReg() const {
 | 
						|
      if (Kind == EntryValueCopyBackupKind)
 | 
						|
        return Loc.RegNo;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /// If this variable is described by a register, return it,
 | 
						|
    /// otherwise return 0.
 | 
						|
    unsigned isDescribedByReg() const {
 | 
						|
      if (Kind == RegisterKind)
 | 
						|
        return Loc.RegNo;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Determine whether the lexical scope of this value's debug location
 | 
						|
    /// dominates MBB.
 | 
						|
    bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
 | 
						|
      return LS.dominates(MI.getDebugLoc().get(), &MBB);
 | 
						|
    }
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
    // TRI can be null.
 | 
						|
    void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
 | 
						|
      Out << "VarLoc(";
 | 
						|
      switch (Kind) {
 | 
						|
      case RegisterKind:
 | 
						|
      case EntryValueKind:
 | 
						|
      case EntryValueBackupKind:
 | 
						|
      case EntryValueCopyBackupKind:
 | 
						|
        Out << printReg(Loc.RegNo, TRI);
 | 
						|
        break;
 | 
						|
      case SpillLocKind:
 | 
						|
        Out << printReg(Loc.SpillLocation.SpillBase, TRI);
 | 
						|
        Out << "[" << Loc.SpillLocation.SpillOffset << "]";
 | 
						|
        break;
 | 
						|
      case ImmediateKind:
 | 
						|
        Out << Loc.Immediate;
 | 
						|
        break;
 | 
						|
      case InvalidKind:
 | 
						|
        llvm_unreachable("Invalid VarLoc in dump method");
 | 
						|
      }
 | 
						|
 | 
						|
      Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
 | 
						|
      if (Var.getInlinedAt())
 | 
						|
        Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
 | 
						|
      else
 | 
						|
        Out << "(null))";
 | 
						|
 | 
						|
      if (isEntryBackupLoc())
 | 
						|
        Out << " (backup loc)\n";
 | 
						|
      else
 | 
						|
        Out << "\n";
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    bool operator==(const VarLoc &Other) const {
 | 
						|
      return Kind == Other.Kind && Var == Other.Var &&
 | 
						|
             Loc.Hash == Other.Loc.Hash && Expr == Other.Expr;
 | 
						|
    }
 | 
						|
 | 
						|
    /// This operator guarantees that VarLocs are sorted by Variable first.
 | 
						|
    bool operator<(const VarLoc &Other) const {
 | 
						|
      return std::tie(Var, Kind, Loc.Hash, Expr) <
 | 
						|
             std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// VarLocMap is used for two things:
 | 
						|
  /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to
 | 
						|
  ///    virtually insert a VarLoc into a VarLocSet.
 | 
						|
  /// 2) Given a LocIndex, look up the unique associated VarLoc.
 | 
						|
  class VarLocMap {
 | 
						|
    /// Map a VarLoc to an index within the vector reserved for its location
 | 
						|
    /// within Loc2Vars.
 | 
						|
    std::map<VarLoc, LocIndex::u32_index_t> Var2Index;
 | 
						|
 | 
						|
    /// Map a location to a vector which holds VarLocs which live in that
 | 
						|
    /// location.
 | 
						|
    SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
 | 
						|
 | 
						|
    /// Determine the 32-bit location reserved for \p VL, based on its kind.
 | 
						|
    static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) {
 | 
						|
      switch (VL.Kind) {
 | 
						|
      case VarLoc::RegisterKind:
 | 
						|
        assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) &&
 | 
						|
               "Physreg out of range?");
 | 
						|
        return VL.Loc.RegNo;
 | 
						|
      case VarLoc::SpillLocKind:
 | 
						|
        return LocIndex::kSpillLocation;
 | 
						|
      case VarLoc::EntryValueBackupKind:
 | 
						|
      case VarLoc::EntryValueCopyBackupKind:
 | 
						|
        return LocIndex::kEntryValueBackupLocation;
 | 
						|
      default:
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  public:
 | 
						|
    /// Retrieve a unique LocIndex for \p VL.
 | 
						|
    LocIndex insert(const VarLoc &VL) {
 | 
						|
      LocIndex::u32_location_t Location = getLocationForVar(VL);
 | 
						|
      LocIndex::u32_index_t &Index = Var2Index[VL];
 | 
						|
      if (!Index) {
 | 
						|
        auto &Vars = Loc2Vars[Location];
 | 
						|
        Vars.push_back(VL);
 | 
						|
        Index = Vars.size();
 | 
						|
      }
 | 
						|
      return {Location, Index - 1};
 | 
						|
    }
 | 
						|
 | 
						|
    /// Retrieve the unique VarLoc associated with \p ID.
 | 
						|
    const VarLoc &operator[](LocIndex ID) const {
 | 
						|
      auto LocIt = Loc2Vars.find(ID.Location);
 | 
						|
      assert(LocIt != Loc2Vars.end() && "Location not tracked");
 | 
						|
      return LocIt->second[ID.Index];
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  using VarLocInMBB =
 | 
						|
      SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
 | 
						|
  struct TransferDebugPair {
 | 
						|
    MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
 | 
						|
    LocIndex LocationID;        ///< Location number for the transfer dest.
 | 
						|
  };
 | 
						|
  using TransferMap = SmallVector<TransferDebugPair, 4>;
 | 
						|
 | 
						|
  // Types for recording sets of variable fragments that overlap. For a given
 | 
						|
  // local variable, we record all other fragments of that variable that could
 | 
						|
  // overlap it, to reduce search time.
 | 
						|
  using FragmentOfVar =
 | 
						|
      std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
 | 
						|
  using OverlapMap =
 | 
						|
      DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
 | 
						|
 | 
						|
  // Helper while building OverlapMap, a map of all fragments seen for a given
 | 
						|
  // DILocalVariable.
 | 
						|
  using VarToFragments =
 | 
						|
      DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
 | 
						|
 | 
						|
  /// This holds the working set of currently open ranges. For fast
 | 
						|
  /// access, this is done both as a set of VarLocIDs, and a map of
 | 
						|
  /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
 | 
						|
  /// previous open ranges for the same variable. In addition, we keep
 | 
						|
  /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
 | 
						|
  /// methods act differently depending on whether a VarLoc is primary
 | 
						|
  /// location or backup one. In the case the VarLoc is backup location
 | 
						|
  /// we will erase/insert from the EntryValuesBackupVars map, otherwise
 | 
						|
  /// we perform the operation on the Vars.
 | 
						|
  class OpenRangesSet {
 | 
						|
    VarLocSet VarLocs;
 | 
						|
    // Map the DebugVariable to recent primary location ID.
 | 
						|
    SmallDenseMap<DebugVariable, LocIndex, 8> Vars;
 | 
						|
    // Map the DebugVariable to recent backup location ID.
 | 
						|
    SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars;
 | 
						|
    OverlapMap &OverlappingFragments;
 | 
						|
 | 
						|
  public:
 | 
						|
    OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
 | 
						|
        : VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
 | 
						|
 | 
						|
    const VarLocSet &getVarLocs() const { return VarLocs; }
 | 
						|
 | 
						|
    /// Terminate all open ranges for VL.Var by removing it from the set.
 | 
						|
    void erase(const VarLoc &VL);
 | 
						|
 | 
						|
    /// Terminate all open ranges listed in \c KillSet by removing
 | 
						|
    /// them from the set.
 | 
						|
    void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs);
 | 
						|
 | 
						|
    /// Insert a new range into the set.
 | 
						|
    void insert(LocIndex VarLocID, const VarLoc &VL);
 | 
						|
 | 
						|
    /// Insert a set of ranges.
 | 
						|
    void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) {
 | 
						|
      for (uint64_t ID : ToLoad) {
 | 
						|
        LocIndex Idx = LocIndex::fromRawInteger(ID);
 | 
						|
        const VarLoc &VarL = Map[Idx];
 | 
						|
        insert(Idx, VarL);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var);
 | 
						|
 | 
						|
    /// Empty the set.
 | 
						|
    void clear() {
 | 
						|
      VarLocs.clear();
 | 
						|
      Vars.clear();
 | 
						|
      EntryValuesBackupVars.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Return whether the set is empty or not.
 | 
						|
    bool empty() const {
 | 
						|
      assert(Vars.empty() == EntryValuesBackupVars.empty() &&
 | 
						|
             Vars.empty() == VarLocs.empty() &&
 | 
						|
             "open ranges are inconsistent");
 | 
						|
      return VarLocs.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Get an empty range of VarLoc IDs.
 | 
						|
    auto getEmptyVarLocRange() const {
 | 
						|
      return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
 | 
						|
                                                       getVarLocs().end());
 | 
						|
    }
 | 
						|
 | 
						|
    /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg.
 | 
						|
    auto getRegisterVarLocs(Register Reg) const {
 | 
						|
      return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Get all set IDs for VarLocs of kind SpillLocKind.
 | 
						|
    auto getSpillVarLocs() const {
 | 
						|
      return LocIndex::indexRangeForLocation(getVarLocs(),
 | 
						|
                                             LocIndex::kSpillLocation);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Get all set IDs for VarLocs of kind EntryValueBackupKind or
 | 
						|
    /// EntryValueCopyBackupKind.
 | 
						|
    auto getEntryValueBackupVarLocs() const {
 | 
						|
      return LocIndex::indexRangeForLocation(
 | 
						|
          getVarLocs(), LocIndex::kEntryValueBackupLocation);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind
 | 
						|
  /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs
 | 
						|
  /// into \p Collected.
 | 
						|
  void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs,
 | 
						|
                         const VarLocSet &CollectFrom) const;
 | 
						|
 | 
						|
  /// Get the registers which are used by VarLocs of kind RegisterKind tracked
 | 
						|
  /// by \p CollectFrom.
 | 
						|
  void getUsedRegs(const VarLocSet &CollectFrom,
 | 
						|
                   SmallVectorImpl<uint32_t> &UsedRegs) const;
 | 
						|
 | 
						|
  VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
 | 
						|
    std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
 | 
						|
    if (!VLS)
 | 
						|
      VLS = std::make_unique<VarLocSet>(Alloc);
 | 
						|
    return *VLS.get();
 | 
						|
  }
 | 
						|
 | 
						|
  const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
 | 
						|
                                   const VarLocInMBB &Locs) const {
 | 
						|
    auto It = Locs.find(MBB);
 | 
						|
    assert(It != Locs.end() && "MBB not in map");
 | 
						|
    return *It->second.get();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Tests whether this instruction is a spill to a stack location.
 | 
						|
  bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
 | 
						|
 | 
						|
  /// Decide if @MI is a spill instruction and return true if it is. We use 2
 | 
						|
  /// criteria to make this decision:
 | 
						|
  /// - Is this instruction a store to a spill slot?
 | 
						|
  /// - Is there a register operand that is both used and killed?
 | 
						|
  /// TODO: Store optimization can fold spills into other stores (including
 | 
						|
  /// other spills). We do not handle this yet (more than one memory operand).
 | 
						|
  bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
 | 
						|
                       Register &Reg);
 | 
						|
 | 
						|
  /// Returns true if the given machine instruction is a debug value which we
 | 
						|
  /// can emit entry values for.
 | 
						|
  ///
 | 
						|
  /// Currently, we generate debug entry values only for parameters that are
 | 
						|
  /// unmodified throughout the function and located in a register.
 | 
						|
  bool isEntryValueCandidate(const MachineInstr &MI,
 | 
						|
                             const DefinedRegsSet &Regs) const;
 | 
						|
 | 
						|
  /// If a given instruction is identified as a spill, return the spill location
 | 
						|
  /// and set \p Reg to the spilled register.
 | 
						|
  Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
 | 
						|
                                                  MachineFunction *MF,
 | 
						|
                                                  Register &Reg);
 | 
						|
  /// Given a spill instruction, extract the register and offset used to
 | 
						|
  /// address the spill location in a target independent way.
 | 
						|
  VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
 | 
						|
  void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                               TransferMap &Transfers, VarLocMap &VarLocIDs,
 | 
						|
                               LocIndex OldVarID, TransferKind Kind,
 | 
						|
                               Register NewReg = Register());
 | 
						|
 | 
						|
  void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                          VarLocMap &VarLocIDs);
 | 
						|
  void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                                  VarLocMap &VarLocIDs, TransferMap &Transfers);
 | 
						|
  bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                        VarLocMap &VarLocIDs, const VarLoc &EntryVL);
 | 
						|
  void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                       VarLocMap &VarLocIDs, TransferMap &Transfers,
 | 
						|
                       VarLocSet &KillSet);
 | 
						|
  void recordEntryValue(const MachineInstr &MI,
 | 
						|
                        const DefinedRegsSet &DefinedRegs,
 | 
						|
                        OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
 | 
						|
  void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                            VarLocMap &VarLocIDs, TransferMap &Transfers);
 | 
						|
  void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                           VarLocMap &VarLocIDs, TransferMap &Transfers);
 | 
						|
  bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
 | 
						|
                          VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
 | 
						|
 | 
						|
  void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
               VarLocMap &VarLocIDs, TransferMap &Transfers);
 | 
						|
 | 
						|
  void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
 | 
						|
                             OverlapMap &OLapMap);
 | 
						|
 | 
						|
  bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
 | 
						|
            const VarLocMap &VarLocIDs,
 | 
						|
            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
 | 
						|
            SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
 | 
						|
 | 
						|
  /// Create DBG_VALUE insts for inlocs that have been propagated but
 | 
						|
  /// had their instruction creation deferred.
 | 
						|
  void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
 | 
						|
 | 
						|
  bool ExtendRanges(MachineFunction &MF);
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  /// Default construct and initialize the pass.
 | 
						|
  LiveDebugValues();
 | 
						|
 | 
						|
  /// Tell the pass manager which passes we depend on and what
 | 
						|
  /// information we preserve.
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
 | 
						|
  MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
    return MachineFunctionProperties().set(
 | 
						|
        MachineFunctionProperties::Property::NoVRegs);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Print to ostream with a message.
 | 
						|
  void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
 | 
						|
                        const VarLocMap &VarLocIDs, const char *msg,
 | 
						|
                        raw_ostream &Out) const;
 | 
						|
 | 
						|
  /// Calculate the liveness information for the given machine function.
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//            Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
char LiveDebugValues::ID = 0;
 | 
						|
 | 
						|
char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
 | 
						|
                false, false)
 | 
						|
 | 
						|
/// Default construct and initialize the pass.
 | 
						|
LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
 | 
						|
  initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
/// Tell the pass manager which passes we depend on and what information we
 | 
						|
/// preserve.
 | 
						|
void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
/// Erase a variable from the set of open ranges, and additionally erase any
 | 
						|
/// fragments that may overlap it. If the VarLoc is a buckup location, erase
 | 
						|
/// the variable from the EntryValuesBackupVars set, indicating we should stop
 | 
						|
/// tracking its backup entry location. Otherwise, if the VarLoc is primary
 | 
						|
/// location, erase the variable from the Vars set.
 | 
						|
void LiveDebugValues::OpenRangesSet::erase(const VarLoc &VL) {
 | 
						|
  // Erasure helper.
 | 
						|
  auto DoErase = [VL, this](DebugVariable VarToErase) {
 | 
						|
    auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
 | 
						|
    auto It = EraseFrom->find(VarToErase);
 | 
						|
    if (It != EraseFrom->end()) {
 | 
						|
      LocIndex ID = It->second;
 | 
						|
      VarLocs.reset(ID.getAsRawInteger());
 | 
						|
      EraseFrom->erase(It);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  DebugVariable Var = VL.Var;
 | 
						|
 | 
						|
  // Erase the variable/fragment that ends here.
 | 
						|
  DoErase(Var);
 | 
						|
 | 
						|
  // Extract the fragment. Interpret an empty fragment as one that covers all
 | 
						|
  // possible bits.
 | 
						|
  FragmentInfo ThisFragment = Var.getFragmentOrDefault();
 | 
						|
 | 
						|
  // There may be fragments that overlap the designated fragment. Look them up
 | 
						|
  // in the pre-computed overlap map, and erase them too.
 | 
						|
  auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
 | 
						|
  if (MapIt != OverlappingFragments.end()) {
 | 
						|
    for (auto Fragment : MapIt->second) {
 | 
						|
      LiveDebugValues::OptFragmentInfo FragmentHolder;
 | 
						|
      if (!DebugVariable::isDefaultFragment(Fragment))
 | 
						|
        FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment);
 | 
						|
      DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveDebugValues::OpenRangesSet::erase(const VarLocSet &KillSet,
 | 
						|
                                           const VarLocMap &VarLocIDs) {
 | 
						|
  VarLocs.intersectWithComplement(KillSet);
 | 
						|
  for (uint64_t ID : KillSet) {
 | 
						|
    const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)];
 | 
						|
    auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
 | 
						|
    EraseFrom->erase(VL->Var);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveDebugValues::OpenRangesSet::insert(LocIndex VarLocID,
 | 
						|
                                            const VarLoc &VL) {
 | 
						|
  auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
 | 
						|
  VarLocs.set(VarLocID.getAsRawInteger());
 | 
						|
  InsertInto->insert({VL.Var, VarLocID});
 | 
						|
}
 | 
						|
 | 
						|
/// Return the Loc ID of an entry value backup location, if it exists for the
 | 
						|
/// variable.
 | 
						|
llvm::Optional<LocIndex>
 | 
						|
LiveDebugValues::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
 | 
						|
  auto It = EntryValuesBackupVars.find(Var);
 | 
						|
  if (It != EntryValuesBackupVars.end())
 | 
						|
    return It->second;
 | 
						|
 | 
						|
  return llvm::None;
 | 
						|
}
 | 
						|
 | 
						|
void LiveDebugValues::collectIDsForRegs(VarLocSet &Collected,
 | 
						|
                                        const DefinedRegsSet &Regs,
 | 
						|
                                        const VarLocSet &CollectFrom) const {
 | 
						|
  assert(!Regs.empty() && "Nothing to collect");
 | 
						|
  SmallVector<uint32_t, 32> SortedRegs;
 | 
						|
  for (Register Reg : Regs)
 | 
						|
    SortedRegs.push_back(Reg);
 | 
						|
  array_pod_sort(SortedRegs.begin(), SortedRegs.end());
 | 
						|
  auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
 | 
						|
  auto End = CollectFrom.end();
 | 
						|
  for (uint32_t Reg : SortedRegs) {
 | 
						|
    // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
 | 
						|
    // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg.
 | 
						|
    uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
 | 
						|
    uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
 | 
						|
    It.advanceToLowerBound(FirstIndexForReg);
 | 
						|
 | 
						|
    // Iterate through that half-open interval and collect all the set IDs.
 | 
						|
    for (; It != End && *It < FirstInvalidIndex; ++It)
 | 
						|
      Collected.set(*It);
 | 
						|
 | 
						|
    if (It == End)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveDebugValues::getUsedRegs(const VarLocSet &CollectFrom,
 | 
						|
                                  SmallVectorImpl<uint32_t> &UsedRegs) const {
 | 
						|
  // All register-based VarLocs are assigned indices greater than or equal to
 | 
						|
  // FirstRegIndex.
 | 
						|
  uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1);
 | 
						|
  uint64_t FirstInvalidIndex =
 | 
						|
      LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
 | 
						|
  for (auto It = CollectFrom.find(FirstRegIndex),
 | 
						|
            End = CollectFrom.find(FirstInvalidIndex);
 | 
						|
       It != End;) {
 | 
						|
    // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
 | 
						|
    // which register and add it to UsedRegs.
 | 
						|
    uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
 | 
						|
    assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
 | 
						|
           "Duplicate used reg");
 | 
						|
    UsedRegs.push_back(FoundReg);
 | 
						|
 | 
						|
    // Skip to the next /set/ register. Note that this finds a lower bound, so
 | 
						|
    // even if there aren't any VarLocs living in `FoundReg+1`, we're still
 | 
						|
    // guaranteed to move on to the next register (or to end()).
 | 
						|
    uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
 | 
						|
    It.advanceToLowerBound(NextRegIndex);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//            Debug Range Extension Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
 | 
						|
                                       const VarLocInMBB &V,
 | 
						|
                                       const VarLocMap &VarLocIDs,
 | 
						|
                                       const char *msg,
 | 
						|
                                       raw_ostream &Out) const {
 | 
						|
  Out << '\n' << msg << '\n';
 | 
						|
  for (const MachineBasicBlock &BB : MF) {
 | 
						|
    if (!V.count(&BB))
 | 
						|
      continue;
 | 
						|
    const VarLocSet &L = getVarLocsInMBB(&BB, V);
 | 
						|
    if (L.empty())
 | 
						|
      continue;
 | 
						|
    Out << "MBB: " << BB.getNumber() << ":\n";
 | 
						|
    for (uint64_t VLL : L) {
 | 
						|
      const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)];
 | 
						|
      Out << " Var: " << VL.Var.getVariable()->getName();
 | 
						|
      Out << " MI: ";
 | 
						|
      VL.dump(TRI, Out);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
LiveDebugValues::VarLoc::SpillLoc
 | 
						|
LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
 | 
						|
  assert(MI.hasOneMemOperand() &&
 | 
						|
         "Spill instruction does not have exactly one memory operand?");
 | 
						|
  auto MMOI = MI.memoperands_begin();
 | 
						|
  const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
 | 
						|
  assert(PVal->kind() == PseudoSourceValue::FixedStack &&
 | 
						|
         "Inconsistent memory operand in spill instruction");
 | 
						|
  int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
 | 
						|
  const MachineBasicBlock *MBB = MI.getParent();
 | 
						|
  Register Reg;
 | 
						|
  int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
 | 
						|
  return {Reg, Offset};
 | 
						|
}
 | 
						|
 | 
						|
/// Try to salvage the debug entry value if we encounter a new debug value
 | 
						|
/// describing the same parameter, otherwise stop tracking the value. Return
 | 
						|
/// true if we should stop tracking the entry value, otherwise return false.
 | 
						|
bool LiveDebugValues::removeEntryValue(const MachineInstr &MI,
 | 
						|
                                       OpenRangesSet &OpenRanges,
 | 
						|
                                       VarLocMap &VarLocIDs,
 | 
						|
                                       const VarLoc &EntryVL) {
 | 
						|
  // Skip the DBG_VALUE which is the debug entry value itself.
 | 
						|
  if (MI.isIdenticalTo(EntryVL.MI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the parameter's location is not register location, we can not track
 | 
						|
  // the entry value any more. In addition, if the debug expression from the
 | 
						|
  // DBG_VALUE is not empty, we can assume the parameter's value has changed
 | 
						|
  // indicating that we should stop tracking its entry value as well.
 | 
						|
  if (!MI.getDebugOperand(0).isReg() ||
 | 
						|
      MI.getDebugExpression()->getNumElements() != 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the DBG_VALUE comes from a copy instruction that copies the entry value,
 | 
						|
  // it means the parameter's value has not changed and we should be able to use
 | 
						|
  // its entry value.
 | 
						|
  bool TrySalvageEntryValue = false;
 | 
						|
  Register Reg = MI.getDebugOperand(0).getReg();
 | 
						|
  auto I = std::next(MI.getReverseIterator());
 | 
						|
  const MachineOperand *SrcRegOp, *DestRegOp;
 | 
						|
  if (I != MI.getParent()->rend()) {
 | 
						|
    // TODO: Try to keep tracking of an entry value if we encounter a propagated
 | 
						|
    // DBG_VALUE describing the copy of the entry value. (Propagated entry value
 | 
						|
    // does not indicate the parameter modification.)
 | 
						|
    auto DestSrc = TII->isCopyInstr(*I);
 | 
						|
    if (!DestSrc)
 | 
						|
      return true;
 | 
						|
 | 
						|
    SrcRegOp = DestSrc->Source;
 | 
						|
    DestRegOp = DestSrc->Destination;
 | 
						|
    if (Reg != DestRegOp->getReg())
 | 
						|
      return true;
 | 
						|
    TrySalvageEntryValue = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TrySalvageEntryValue) {
 | 
						|
    for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
 | 
						|
      const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
 | 
						|
      if (VL.getEntryValueCopyBackupReg() == Reg &&
 | 
						|
          VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// End all previous ranges related to @MI and start a new range from @MI
 | 
						|
/// if it is a DBG_VALUE instr.
 | 
						|
void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
 | 
						|
                                         OpenRangesSet &OpenRanges,
 | 
						|
                                         VarLocMap &VarLocIDs) {
 | 
						|
  if (!MI.isDebugValue())
 | 
						|
    return;
 | 
						|
  const DILocalVariable *Var = MI.getDebugVariable();
 | 
						|
  const DIExpression *Expr = MI.getDebugExpression();
 | 
						|
  const DILocation *DebugLoc = MI.getDebugLoc();
 | 
						|
  const DILocation *InlinedAt = DebugLoc->getInlinedAt();
 | 
						|
  assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
 | 
						|
         "Expected inlined-at fields to agree");
 | 
						|
 | 
						|
  DebugVariable V(Var, Expr, InlinedAt);
 | 
						|
 | 
						|
  // Check if this DBG_VALUE indicates a parameter's value changing.
 | 
						|
  // If that is the case, we should stop tracking its entry value.
 | 
						|
  auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
 | 
						|
  if (Var->isParameter() && EntryValBackupID) {
 | 
						|
    const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
 | 
						|
    if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
 | 
						|
                 MI.print(dbgs(), /*IsStandalone*/ false,
 | 
						|
                          /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
 | 
						|
                          /*AddNewLine*/ true, TII));
 | 
						|
      OpenRanges.erase(EntryVL);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() ||
 | 
						|
      MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) {
 | 
						|
    // Use normal VarLoc constructor for registers and immediates.
 | 
						|
    VarLoc VL(MI, LS);
 | 
						|
    // End all previous ranges of VL.Var.
 | 
						|
    OpenRanges.erase(VL);
 | 
						|
 | 
						|
    LocIndex ID = VarLocIDs.insert(VL);
 | 
						|
    // Add the VarLoc to OpenRanges from this DBG_VALUE.
 | 
						|
    OpenRanges.insert(ID, VL);
 | 
						|
  } else if (MI.hasOneMemOperand()) {
 | 
						|
    llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
 | 
						|
  } else {
 | 
						|
    // This must be an undefined location. If it has an open range, erase it.
 | 
						|
    assert(MI.getDebugOperand(0).isReg() &&
 | 
						|
           MI.getDebugOperand(0).getReg() == 0 &&
 | 
						|
           "Unexpected non-undef DBG_VALUE encountered");
 | 
						|
    VarLoc VL(MI, LS);
 | 
						|
    OpenRanges.erase(VL);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Turn the entry value backup locations into primary locations.
 | 
						|
void LiveDebugValues::emitEntryValues(MachineInstr &MI,
 | 
						|
                                      OpenRangesSet &OpenRanges,
 | 
						|
                                      VarLocMap &VarLocIDs,
 | 
						|
                                      TransferMap &Transfers,
 | 
						|
                                      VarLocSet &KillSet) {
 | 
						|
  // Do not insert entry value locations after a terminator.
 | 
						|
  if (MI.isTerminator())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (uint64_t ID : KillSet) {
 | 
						|
    LocIndex Idx = LocIndex::fromRawInteger(ID);
 | 
						|
    const VarLoc &VL = VarLocIDs[Idx];
 | 
						|
    if (!VL.Var.getVariable()->isParameter())
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto DebugVar = VL.Var;
 | 
						|
    Optional<LocIndex> EntryValBackupID =
 | 
						|
        OpenRanges.getEntryValueBackup(DebugVar);
 | 
						|
 | 
						|
    // If the parameter has the entry value backup, it means we should
 | 
						|
    // be able to use its entry value.
 | 
						|
    if (!EntryValBackupID)
 | 
						|
      continue;
 | 
						|
 | 
						|
    const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
 | 
						|
    VarLoc EntryLoc =
 | 
						|
        VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo);
 | 
						|
    LocIndex EntryValueID = VarLocIDs.insert(EntryLoc);
 | 
						|
    Transfers.push_back({&MI, EntryValueID});
 | 
						|
    OpenRanges.insert(EntryValueID, EntryLoc);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
 | 
						|
/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
 | 
						|
/// new VarLoc. If \p NewReg is different than default zero value then the
 | 
						|
/// new location will be register location created by the copy like instruction,
 | 
						|
/// otherwise it is variable's location on the stack.
 | 
						|
void LiveDebugValues::insertTransferDebugPair(
 | 
						|
    MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
 | 
						|
    VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
 | 
						|
    Register NewReg) {
 | 
						|
  const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
 | 
						|
 | 
						|
  auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
 | 
						|
    LocIndex LocId = VarLocIDs.insert(VL);
 | 
						|
 | 
						|
    // Close this variable's previous location range.
 | 
						|
    OpenRanges.erase(VL);
 | 
						|
 | 
						|
    // Record the new location as an open range, and a postponed transfer
 | 
						|
    // inserting a DBG_VALUE for this location.
 | 
						|
    OpenRanges.insert(LocId, VL);
 | 
						|
    assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
 | 
						|
    TransferDebugPair MIP = {&MI, LocId};
 | 
						|
    Transfers.push_back(MIP);
 | 
						|
  };
 | 
						|
 | 
						|
  // End all previous ranges of VL.Var.
 | 
						|
  OpenRanges.erase(VarLocIDs[OldVarID]);
 | 
						|
  switch (Kind) {
 | 
						|
  case TransferKind::TransferCopy: {
 | 
						|
    assert(NewReg &&
 | 
						|
           "No register supplied when handling a copy of a debug value");
 | 
						|
    // Create a DBG_VALUE instruction to describe the Var in its new
 | 
						|
    // register location.
 | 
						|
    VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
 | 
						|
    ProcessVarLoc(VL);
 | 
						|
    LLVM_DEBUG({
 | 
						|
      dbgs() << "Creating VarLoc for register copy:";
 | 
						|
      VL.dump(TRI);
 | 
						|
    });
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case TransferKind::TransferSpill: {
 | 
						|
    // Create a DBG_VALUE instruction to describe the Var in its spilled
 | 
						|
    // location.
 | 
						|
    VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
 | 
						|
    VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase,
 | 
						|
                                       SpillLocation.SpillOffset, LS);
 | 
						|
    ProcessVarLoc(VL);
 | 
						|
    LLVM_DEBUG({
 | 
						|
      dbgs() << "Creating VarLoc for spill:";
 | 
						|
      VL.dump(TRI);
 | 
						|
    });
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case TransferKind::TransferRestore: {
 | 
						|
    assert(NewReg &&
 | 
						|
           "No register supplied when handling a restore of a debug value");
 | 
						|
    // DebugInstr refers to the pre-spill location, therefore we can reuse
 | 
						|
    // its expression.
 | 
						|
    VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
 | 
						|
    ProcessVarLoc(VL);
 | 
						|
    LLVM_DEBUG({
 | 
						|
      dbgs() << "Creating VarLoc for restore:";
 | 
						|
      VL.dump(TRI);
 | 
						|
    });
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid transfer kind");
 | 
						|
}
 | 
						|
 | 
						|
/// A definition of a register may mark the end of a range.
 | 
						|
void LiveDebugValues::transferRegisterDef(
 | 
						|
    MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
 | 
						|
    TransferMap &Transfers) {
 | 
						|
 | 
						|
  // Meta Instructions do not affect the debug liveness of any register they
 | 
						|
  // define.
 | 
						|
  if (MI.isMetaInstruction())
 | 
						|
    return;
 | 
						|
 | 
						|
  MachineFunction *MF = MI.getMF();
 | 
						|
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
 | 
						|
  Register SP = TLI->getStackPointerRegisterToSaveRestore();
 | 
						|
 | 
						|
  // Find the regs killed by MI, and find regmasks of preserved regs.
 | 
						|
  DefinedRegsSet DeadRegs;
 | 
						|
  SmallVector<const uint32_t *, 4> RegMasks;
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    // Determine whether the operand is a register def.
 | 
						|
    if (MO.isReg() && MO.isDef() && MO.getReg() &&
 | 
						|
        Register::isPhysicalRegister(MO.getReg()) &&
 | 
						|
        !(MI.isCall() && MO.getReg() == SP)) {
 | 
						|
      // Remove ranges of all aliased registers.
 | 
						|
      for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
 | 
						|
        // FIXME: Can we break out of this loop early if no insertion occurs?
 | 
						|
        DeadRegs.insert(*RAI);
 | 
						|
    } else if (MO.isRegMask()) {
 | 
						|
      RegMasks.push_back(MO.getRegMask());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Erase VarLocs which reside in one of the dead registers. For performance
 | 
						|
  // reasons, it's critical to not iterate over the full set of open VarLocs.
 | 
						|
  // Iterate over the set of dying/used regs instead.
 | 
						|
  if (!RegMasks.empty()) {
 | 
						|
    SmallVector<uint32_t, 32> UsedRegs;
 | 
						|
    getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
 | 
						|
    for (uint32_t Reg : UsedRegs) {
 | 
						|
      // Remove ranges of all clobbered registers. Register masks don't usually
 | 
						|
      // list SP as preserved. Assume that call instructions never clobber SP,
 | 
						|
      // because some backends (e.g., AArch64) never list SP in the regmask.
 | 
						|
      // While the debug info may be off for an instruction or two around
 | 
						|
      // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
 | 
						|
      // still a better user experience.
 | 
						|
      if (Reg == SP)
 | 
						|
        continue;
 | 
						|
      bool AnyRegMaskKillsReg =
 | 
						|
          any_of(RegMasks, [Reg](const uint32_t *RegMask) {
 | 
						|
            return MachineOperand::clobbersPhysReg(RegMask, Reg);
 | 
						|
          });
 | 
						|
      if (AnyRegMaskKillsReg)
 | 
						|
        DeadRegs.insert(Reg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeadRegs.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  VarLocSet KillSet(Alloc);
 | 
						|
  collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs());
 | 
						|
  OpenRanges.erase(KillSet, VarLocIDs);
 | 
						|
 | 
						|
  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
 | 
						|
    auto &TM = TPC->getTM<TargetMachine>();
 | 
						|
    if (TM.Options.ShouldEmitDebugEntryValues())
 | 
						|
      emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
 | 
						|
                                         MachineFunction *MF) {
 | 
						|
  // TODO: Handle multiple stores folded into one.
 | 
						|
  if (!MI.hasOneMemOperand())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
 | 
						|
    return false; // This is not a spill instruction, since no valid size was
 | 
						|
                  // returned from either function.
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveDebugValues::isLocationSpill(const MachineInstr &MI,
 | 
						|
                                      MachineFunction *MF, Register &Reg) {
 | 
						|
  if (!isSpillInstruction(MI, MF))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
 | 
						|
    if (!MO.isReg() || !MO.isUse()) {
 | 
						|
      Reg = 0;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Reg = MO.getReg();
 | 
						|
    return MO.isKill();
 | 
						|
  };
 | 
						|
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    // In a spill instruction generated by the InlineSpiller the spilled
 | 
						|
    // register has its kill flag set.
 | 
						|
    if (isKilledReg(MO, Reg))
 | 
						|
      return true;
 | 
						|
    if (Reg != 0) {
 | 
						|
      // Check whether next instruction kills the spilled register.
 | 
						|
      // FIXME: Current solution does not cover search for killed register in
 | 
						|
      // bundles and instructions further down the chain.
 | 
						|
      auto NextI = std::next(MI.getIterator());
 | 
						|
      // Skip next instruction that points to basic block end iterator.
 | 
						|
      if (MI.getParent()->end() == NextI)
 | 
						|
        continue;
 | 
						|
      Register RegNext;
 | 
						|
      for (const MachineOperand &MONext : NextI->operands()) {
 | 
						|
        // Return true if we came across the register from the
 | 
						|
        // previous spill instruction that is killed in NextI.
 | 
						|
        if (isKilledReg(MONext, RegNext) && RegNext == Reg)
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Return false if we didn't find spilled register.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Optional<LiveDebugValues::VarLoc::SpillLoc>
 | 
						|
LiveDebugValues::isRestoreInstruction(const MachineInstr &MI,
 | 
						|
                                      MachineFunction *MF, Register &Reg) {
 | 
						|
  if (!MI.hasOneMemOperand())
 | 
						|
    return None;
 | 
						|
 | 
						|
  // FIXME: Handle folded restore instructions with more than one memory
 | 
						|
  // operand.
 | 
						|
  if (MI.getRestoreSize(TII)) {
 | 
						|
    Reg = MI.getOperand(0).getReg();
 | 
						|
    return extractSpillBaseRegAndOffset(MI);
 | 
						|
  }
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
/// A spilled register may indicate that we have to end the current range of
 | 
						|
/// a variable and create a new one for the spill location.
 | 
						|
/// A restored register may indicate the reverse situation.
 | 
						|
/// We don't want to insert any instructions in process(), so we just create
 | 
						|
/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
 | 
						|
/// It will be inserted into the BB when we're done iterating over the
 | 
						|
/// instructions.
 | 
						|
void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI,
 | 
						|
                                                 OpenRangesSet &OpenRanges,
 | 
						|
                                                 VarLocMap &VarLocIDs,
 | 
						|
                                                 TransferMap &Transfers) {
 | 
						|
  MachineFunction *MF = MI.getMF();
 | 
						|
  TransferKind TKind;
 | 
						|
  Register Reg;
 | 
						|
  Optional<VarLoc::SpillLoc> Loc;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
 | 
						|
 | 
						|
  // First, if there are any DBG_VALUEs pointing at a spill slot that is
 | 
						|
  // written to, then close the variable location. The value in memory
 | 
						|
  // will have changed.
 | 
						|
  VarLocSet KillSet(Alloc);
 | 
						|
  if (isSpillInstruction(MI, MF)) {
 | 
						|
    Loc = extractSpillBaseRegAndOffset(MI);
 | 
						|
    for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
 | 
						|
      LocIndex Idx = LocIndex::fromRawInteger(ID);
 | 
						|
      const VarLoc &VL = VarLocIDs[Idx];
 | 
						|
      assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
 | 
						|
      if (VL.Loc.SpillLocation == *Loc) {
 | 
						|
        // This location is overwritten by the current instruction -- terminate
 | 
						|
        // the open range, and insert an explicit DBG_VALUE $noreg.
 | 
						|
        //
 | 
						|
        // Doing this at a later stage would require re-interpreting all
 | 
						|
        // DBG_VALUes and DIExpressions to identify whether they point at
 | 
						|
        // memory, and then analysing all memory writes to see if they
 | 
						|
        // overwrite that memory, which is expensive.
 | 
						|
        //
 | 
						|
        // At this stage, we already know which DBG_VALUEs are for spills and
 | 
						|
        // where they are located; it's best to fix handle overwrites now.
 | 
						|
        KillSet.set(ID);
 | 
						|
        VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0);
 | 
						|
        LocIndex UndefLocID = VarLocIDs.insert(UndefVL);
 | 
						|
        Transfers.push_back({&MI, UndefLocID});
 | 
						|
      }
 | 
						|
    }
 | 
						|
    OpenRanges.erase(KillSet, VarLocIDs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to recognise spill and restore instructions that may create a new
 | 
						|
  // variable location.
 | 
						|
  if (isLocationSpill(MI, MF, Reg)) {
 | 
						|
    TKind = TransferKind::TransferSpill;
 | 
						|
    LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
 | 
						|
    LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
 | 
						|
                      << "\n");
 | 
						|
  } else {
 | 
						|
    if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
 | 
						|
      return;
 | 
						|
    TKind = TransferKind::TransferRestore;
 | 
						|
    LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
 | 
						|
    LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
 | 
						|
                      << "\n");
 | 
						|
  }
 | 
						|
  // Check if the register or spill location is the location of a debug value.
 | 
						|
  auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
 | 
						|
  if (TKind == TransferKind::TransferSpill)
 | 
						|
    TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
 | 
						|
  else if (TKind == TransferKind::TransferRestore)
 | 
						|
    TransferCandidates = OpenRanges.getSpillVarLocs();
 | 
						|
  for (uint64_t ID : TransferCandidates) {
 | 
						|
    LocIndex Idx = LocIndex::fromRawInteger(ID);
 | 
						|
    const VarLoc &VL = VarLocIDs[Idx];
 | 
						|
    if (TKind == TransferKind::TransferSpill) {
 | 
						|
      assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?");
 | 
						|
      LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
 | 
						|
                        << VL.Var.getVariable()->getName() << ")\n");
 | 
						|
    } else {
 | 
						|
      assert(TKind == TransferKind::TransferRestore &&
 | 
						|
             VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
 | 
						|
      if (VL.Loc.SpillLocation != *Loc)
 | 
						|
        // The spill location is not the location of a debug value.
 | 
						|
        continue;
 | 
						|
      LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
 | 
						|
                        << VL.Var.getVariable()->getName() << ")\n");
 | 
						|
    }
 | 
						|
    insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
 | 
						|
                            Reg);
 | 
						|
    // FIXME: A comment should explain why it's correct to return early here,
 | 
						|
    // if that is in fact correct.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If \p MI is a register copy instruction, that copies a previously tracked
 | 
						|
/// value from one register to another register that is callee saved, we
 | 
						|
/// create new DBG_VALUE instruction  described with copy destination register.
 | 
						|
void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
 | 
						|
                                           OpenRangesSet &OpenRanges,
 | 
						|
                                           VarLocMap &VarLocIDs,
 | 
						|
                                           TransferMap &Transfers) {
 | 
						|
  auto DestSrc = TII->isCopyInstr(MI);
 | 
						|
  if (!DestSrc)
 | 
						|
    return;
 | 
						|
 | 
						|
  const MachineOperand *DestRegOp = DestSrc->Destination;
 | 
						|
  const MachineOperand *SrcRegOp = DestSrc->Source;
 | 
						|
 | 
						|
  if (!DestRegOp->isDef())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto isCalleeSavedReg = [&](Register Reg) {
 | 
						|
    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
 | 
						|
      if (CalleeSavedRegs.test(*RAI))
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  Register SrcReg = SrcRegOp->getReg();
 | 
						|
  Register DestReg = DestRegOp->getReg();
 | 
						|
 | 
						|
  // We want to recognize instructions where destination register is callee
 | 
						|
  // saved register. If register that could be clobbered by the call is
 | 
						|
  // included, there would be a great chance that it is going to be clobbered
 | 
						|
  // soon. It is more likely that previous register location, which is callee
 | 
						|
  // saved, is going to stay unclobbered longer, even if it is killed.
 | 
						|
  if (!isCalleeSavedReg(DestReg))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Remember an entry value movement. If we encounter a new debug value of
 | 
						|
  // a parameter describing only a moving of the value around, rather then
 | 
						|
  // modifying it, we are still able to use the entry value if needed.
 | 
						|
  if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
 | 
						|
    for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
 | 
						|
      LocIndex Idx = LocIndex::fromRawInteger(ID);
 | 
						|
      const VarLoc &VL = VarLocIDs[Idx];
 | 
						|
      if (VL.getEntryValueBackupReg() == SrcReg) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
 | 
						|
        VarLoc EntryValLocCopyBackup =
 | 
						|
            VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
 | 
						|
 | 
						|
        // Stop tracking the original entry value.
 | 
						|
        OpenRanges.erase(VL);
 | 
						|
 | 
						|
        // Start tracking the entry value copy.
 | 
						|
        LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup);
 | 
						|
        OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SrcRegOp->isKill())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
 | 
						|
    LocIndex Idx = LocIndex::fromRawInteger(ID);
 | 
						|
    assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?");
 | 
						|
    insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
 | 
						|
                            TransferKind::TransferCopy, DestReg);
 | 
						|
    // FIXME: A comment should explain why it's correct to return early here,
 | 
						|
    // if that is in fact correct.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Terminate all open ranges at the end of the current basic block.
 | 
						|
bool LiveDebugValues::transferTerminator(MachineBasicBlock *CurMBB,
 | 
						|
                                         OpenRangesSet &OpenRanges,
 | 
						|
                                         VarLocInMBB &OutLocs,
 | 
						|
                                         const VarLocMap &VarLocIDs) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  LLVM_DEBUG(for (uint64_t ID
 | 
						|
                  : OpenRanges.getVarLocs()) {
 | 
						|
    // Copy OpenRanges to OutLocs, if not already present.
 | 
						|
    dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
 | 
						|
    VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI);
 | 
						|
  });
 | 
						|
  VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
 | 
						|
  Changed = VLS != OpenRanges.getVarLocs();
 | 
						|
  // New OutLocs set may be different due to spill, restore or register
 | 
						|
  // copy instruction processing.
 | 
						|
  if (Changed)
 | 
						|
    VLS = OpenRanges.getVarLocs();
 | 
						|
  OpenRanges.clear();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Accumulate a mapping between each DILocalVariable fragment and other
 | 
						|
/// fragments of that DILocalVariable which overlap. This reduces work during
 | 
						|
/// the data-flow stage from "Find any overlapping fragments" to "Check if the
 | 
						|
/// known-to-overlap fragments are present".
 | 
						|
/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
 | 
						|
///           fragment usage.
 | 
						|
/// \param SeenFragments Map from DILocalVariable to all fragments of that
 | 
						|
///           Variable which are known to exist.
 | 
						|
/// \param OverlappingFragments The overlap map being constructed, from one
 | 
						|
///           Var/Fragment pair to a vector of fragments known to overlap.
 | 
						|
void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI,
 | 
						|
                                            VarToFragments &SeenFragments,
 | 
						|
                                            OverlapMap &OverlappingFragments) {
 | 
						|
  DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
 | 
						|
                      MI.getDebugLoc()->getInlinedAt());
 | 
						|
  FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
 | 
						|
 | 
						|
  // If this is the first sighting of this variable, then we are guaranteed
 | 
						|
  // there are currently no overlapping fragments either. Initialize the set
 | 
						|
  // of seen fragments, record no overlaps for the current one, and return.
 | 
						|
  auto SeenIt = SeenFragments.find(MIVar.getVariable());
 | 
						|
  if (SeenIt == SeenFragments.end()) {
 | 
						|
    SmallSet<FragmentInfo, 4> OneFragment;
 | 
						|
    OneFragment.insert(ThisFragment);
 | 
						|
    SeenFragments.insert({MIVar.getVariable(), OneFragment});
 | 
						|
 | 
						|
    OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this particular Variable/Fragment pair already exists in the overlap
 | 
						|
  // map, it has already been accounted for.
 | 
						|
  auto IsInOLapMap =
 | 
						|
      OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
 | 
						|
  if (!IsInOLapMap.second)
 | 
						|
    return;
 | 
						|
 | 
						|
  auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
 | 
						|
  auto &AllSeenFragments = SeenIt->second;
 | 
						|
 | 
						|
  // Otherwise, examine all other seen fragments for this variable, with "this"
 | 
						|
  // fragment being a previously unseen fragment. Record any pair of
 | 
						|
  // overlapping fragments.
 | 
						|
  for (auto &ASeenFragment : AllSeenFragments) {
 | 
						|
    // Does this previously seen fragment overlap?
 | 
						|
    if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
 | 
						|
      // Yes: Mark the current fragment as being overlapped.
 | 
						|
      ThisFragmentsOverlaps.push_back(ASeenFragment);
 | 
						|
      // Mark the previously seen fragment as being overlapped by the current
 | 
						|
      // one.
 | 
						|
      auto ASeenFragmentsOverlaps =
 | 
						|
          OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
 | 
						|
      assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
 | 
						|
             "Previously seen var fragment has no vector of overlaps");
 | 
						|
      ASeenFragmentsOverlaps->second.push_back(ThisFragment);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AllSeenFragments.insert(ThisFragment);
 | 
						|
}
 | 
						|
 | 
						|
/// This routine creates OpenRanges.
 | 
						|
void LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
 | 
						|
                              VarLocMap &VarLocIDs, TransferMap &Transfers) {
 | 
						|
  transferDebugValue(MI, OpenRanges, VarLocIDs);
 | 
						|
  transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers);
 | 
						|
  transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
 | 
						|
  transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
 | 
						|
}
 | 
						|
 | 
						|
/// This routine joins the analysis results of all incoming edges in @MBB by
 | 
						|
/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
 | 
						|
/// source variable in all the predecessors of @MBB reside in the same location.
 | 
						|
bool LiveDebugValues::join(
 | 
						|
    MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
 | 
						|
    const VarLocMap &VarLocIDs,
 | 
						|
    SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
 | 
						|
    SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
 | 
						|
  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
 | 
						|
 | 
						|
  VarLocSet InLocsT(Alloc); // Temporary incoming locations.
 | 
						|
 | 
						|
  // For all predecessors of this MBB, find the set of VarLocs that
 | 
						|
  // can be joined.
 | 
						|
  int NumVisited = 0;
 | 
						|
  for (auto p : MBB.predecessors()) {
 | 
						|
    // Ignore backedges if we have not visited the predecessor yet. As the
 | 
						|
    // predecessor hasn't yet had locations propagated into it, most locations
 | 
						|
    // will not yet be valid, so treat them as all being uninitialized and
 | 
						|
    // potentially valid. If a location guessed to be correct here is
 | 
						|
    // invalidated later, we will remove it when we revisit this block.
 | 
						|
    if (!Visited.count(p)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
 | 
						|
                        << "\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    auto OL = OutLocs.find(p);
 | 
						|
    // Join is null in case of empty OutLocs from any of the pred.
 | 
						|
    if (OL == OutLocs.end())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Just copy over the Out locs to incoming locs for the first visited
 | 
						|
    // predecessor, and for all other predecessors join the Out locs.
 | 
						|
    VarLocSet &OutLocVLS = *OL->second.get();
 | 
						|
    if (!NumVisited)
 | 
						|
      InLocsT = OutLocVLS;
 | 
						|
    else
 | 
						|
      InLocsT &= OutLocVLS;
 | 
						|
 | 
						|
    LLVM_DEBUG({
 | 
						|
      if (!InLocsT.empty()) {
 | 
						|
        for (uint64_t ID : InLocsT)
 | 
						|
          dbgs() << "  gathered candidate incoming var: "
 | 
						|
                 << VarLocIDs[LocIndex::fromRawInteger(ID)]
 | 
						|
                        .Var.getVariable()
 | 
						|
                        ->getName()
 | 
						|
                 << "\n";
 | 
						|
      }
 | 
						|
    });
 | 
						|
 | 
						|
    NumVisited++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Filter out DBG_VALUES that are out of scope.
 | 
						|
  VarLocSet KillSet(Alloc);
 | 
						|
  bool IsArtificial = ArtificialBlocks.count(&MBB);
 | 
						|
  if (!IsArtificial) {
 | 
						|
    for (uint64_t ID : InLocsT) {
 | 
						|
      LocIndex Idx = LocIndex::fromRawInteger(ID);
 | 
						|
      if (!VarLocIDs[Idx].dominates(LS, MBB)) {
 | 
						|
        KillSet.set(ID);
 | 
						|
        LLVM_DEBUG({
 | 
						|
          auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
 | 
						|
          dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
 | 
						|
        });
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  InLocsT.intersectWithComplement(KillSet);
 | 
						|
 | 
						|
  // As we are processing blocks in reverse post-order we
 | 
						|
  // should have processed at least one predecessor, unless it
 | 
						|
  // is the entry block which has no predecessor.
 | 
						|
  assert((NumVisited || MBB.pred_empty()) &&
 | 
						|
         "Should have processed at least one predecessor");
 | 
						|
 | 
						|
  VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
 | 
						|
  bool Changed = false;
 | 
						|
  if (ILS != InLocsT) {
 | 
						|
    ILS = InLocsT;
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void LiveDebugValues::flushPendingLocs(VarLocInMBB &PendingInLocs,
 | 
						|
                                       VarLocMap &VarLocIDs) {
 | 
						|
  // PendingInLocs records all locations propagated into blocks, which have
 | 
						|
  // not had DBG_VALUE insts created. Go through and create those insts now.
 | 
						|
  for (auto &Iter : PendingInLocs) {
 | 
						|
    // Map is keyed on a constant pointer, unwrap it so we can insert insts.
 | 
						|
    auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
 | 
						|
    VarLocSet &Pending = *Iter.second.get();
 | 
						|
 | 
						|
    for (uint64_t ID : Pending) {
 | 
						|
      // The ID location is live-in to MBB -- work out what kind of machine
 | 
						|
      // location it is and create a DBG_VALUE.
 | 
						|
      const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)];
 | 
						|
      if (DiffIt.isEntryBackupLoc())
 | 
						|
        continue;
 | 
						|
      MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
 | 
						|
      MBB.insert(MBB.instr_begin(), MI);
 | 
						|
 | 
						|
      (void)MI;
 | 
						|
      LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LiveDebugValues::isEntryValueCandidate(
 | 
						|
    const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
 | 
						|
  assert(MI.isDebugValue() && "This must be DBG_VALUE.");
 | 
						|
 | 
						|
  // TODO: Add support for local variables that are expressed in terms of
 | 
						|
  // parameters entry values.
 | 
						|
  // TODO: Add support for modified arguments that can be expressed
 | 
						|
  // by using its entry value.
 | 
						|
  auto *DIVar = MI.getDebugVariable();
 | 
						|
  if (!DIVar->isParameter())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not consider parameters that belong to an inlined function.
 | 
						|
  if (MI.getDebugLoc()->getInlinedAt())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only consider parameters that are described using registers. Parameters
 | 
						|
  // that are passed on the stack are not yet supported, so ignore debug
 | 
						|
  // values that are described by the frame or stack pointer.
 | 
						|
  if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If a parameter's value has been propagated from the caller, then the
 | 
						|
  // parameter's DBG_VALUE may be described using a register defined by some
 | 
						|
  // instruction in the entry block, in which case we shouldn't create an
 | 
						|
  // entry value.
 | 
						|
  if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: Add support for parameters that have a pre-existing debug expressions
 | 
						|
  // (e.g. fragments).
 | 
						|
  if (MI.getDebugExpression()->getNumElements() > 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Collect all register defines (including aliases) for the given instruction.
 | 
						|
static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
 | 
						|
                           const TargetRegisterInfo *TRI) {
 | 
						|
  for (const MachineOperand &MO : MI.operands())
 | 
						|
    if (MO.isReg() && MO.isDef() && MO.getReg())
 | 
						|
      for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
 | 
						|
        Regs.insert(*AI);
 | 
						|
}
 | 
						|
 | 
						|
/// This routine records the entry values of function parameters. The values
 | 
						|
/// could be used as backup values. If we loose the track of some unmodified
 | 
						|
/// parameters, the backup values will be used as a primary locations.
 | 
						|
void LiveDebugValues::recordEntryValue(const MachineInstr &MI,
 | 
						|
                                       const DefinedRegsSet &DefinedRegs,
 | 
						|
                                       OpenRangesSet &OpenRanges,
 | 
						|
                                       VarLocMap &VarLocIDs) {
 | 
						|
  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
 | 
						|
    auto &TM = TPC->getTM<TargetMachine>();
 | 
						|
    if (!TM.Options.ShouldEmitDebugEntryValues())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
 | 
						|
                  MI.getDebugLoc()->getInlinedAt());
 | 
						|
 | 
						|
  if (!isEntryValueCandidate(MI, DefinedRegs) ||
 | 
						|
      OpenRanges.getEntryValueBackup(V))
 | 
						|
    return;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
 | 
						|
 | 
						|
  // Create the entry value and use it as a backup location until it is
 | 
						|
  // valid. It is valid until a parameter is not changed.
 | 
						|
  DIExpression *NewExpr =
 | 
						|
      DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
 | 
						|
  VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
 | 
						|
  LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup);
 | 
						|
  OpenRanges.insert(EntryValLocID, EntryValLocAsBackup);
 | 
						|
}
 | 
						|
 | 
						|
/// Calculate the liveness information for the given machine function and
 | 
						|
/// extend ranges across basic blocks.
 | 
						|
bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
 | 
						|
  LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  bool OLChanged = false;
 | 
						|
  bool MBBJoined = false;
 | 
						|
 | 
						|
  VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
 | 
						|
  OverlapMap OverlapFragments; // Map of overlapping variable fragments.
 | 
						|
  OpenRangesSet OpenRanges(Alloc, OverlapFragments);
 | 
						|
                              // Ranges that are open until end of bb.
 | 
						|
  VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
 | 
						|
  VarLocInMBB InLocs;         // Ranges that are incoming after joining.
 | 
						|
  TransferMap Transfers;      // DBG_VALUEs associated with transfers (such as
 | 
						|
                              // spills, copies and restores).
 | 
						|
 | 
						|
  VarToFragments SeenFragments;
 | 
						|
 | 
						|
  // Blocks which are artificial, i.e. blocks which exclusively contain
 | 
						|
  // instructions without locations, or with line 0 locations.
 | 
						|
  SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
 | 
						|
 | 
						|
  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
 | 
						|
  DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
 | 
						|
  std::priority_queue<unsigned int, std::vector<unsigned int>,
 | 
						|
                      std::greater<unsigned int>>
 | 
						|
      Worklist;
 | 
						|
  std::priority_queue<unsigned int, std::vector<unsigned int>,
 | 
						|
                      std::greater<unsigned int>>
 | 
						|
      Pending;
 | 
						|
 | 
						|
  // Set of register defines that are seen when traversing the entry block
 | 
						|
  // looking for debug entry value candidates.
 | 
						|
  DefinedRegsSet DefinedRegs;
 | 
						|
 | 
						|
  // Only in the case of entry MBB collect DBG_VALUEs representing
 | 
						|
  // function parameters in order to generate debug entry values for them.
 | 
						|
  MachineBasicBlock &First_MBB = *(MF.begin());
 | 
						|
  for (auto &MI : First_MBB) {
 | 
						|
    collectRegDefs(MI, DefinedRegs, TRI);
 | 
						|
      if (MI.isDebugValue())
 | 
						|
        recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize per-block structures and scan for fragment overlaps.
 | 
						|
  for (auto &MBB : MF)
 | 
						|
    for (auto &MI : MBB)
 | 
						|
      if (MI.isDebugValue())
 | 
						|
        accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
 | 
						|
 | 
						|
  auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
 | 
						|
    if (const DebugLoc &DL = MI.getDebugLoc())
 | 
						|
      return DL.getLine() != 0;
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
  for (auto &MBB : MF)
 | 
						|
    if (none_of(MBB.instrs(), hasNonArtificialLocation))
 | 
						|
      ArtificialBlocks.insert(&MBB);
 | 
						|
 | 
						|
  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
 | 
						|
                              "OutLocs after initialization", dbgs()));
 | 
						|
 | 
						|
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
 | 
						|
  unsigned int RPONumber = 0;
 | 
						|
  for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
 | 
						|
    OrderToBB[RPONumber] = *RI;
 | 
						|
    BBToOrder[*RI] = RPONumber;
 | 
						|
    Worklist.push(RPONumber);
 | 
						|
    ++RPONumber;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RPONumber > InputBBLimit) {
 | 
						|
    unsigned NumInputDbgValues = 0;
 | 
						|
    for (auto &MBB : MF)
 | 
						|
      for (auto &MI : MBB)
 | 
						|
        if (MI.isDebugValue())
 | 
						|
          ++NumInputDbgValues;
 | 
						|
    if (NumInputDbgValues > InputDbgValueLimit) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Disabling LiveDebugValues: " << MF.getName()
 | 
						|
                        << " has " << RPONumber << " basic blocks and "
 | 
						|
                        << NumInputDbgValues
 | 
						|
                        << " input DBG_VALUEs, exceeding limits.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a standard "union of predecessor outs" dataflow problem.
 | 
						|
  // To solve it, we perform join() and process() using the two worklist method
 | 
						|
  // until the ranges converge.
 | 
						|
  // Ranges have converged when both worklists are empty.
 | 
						|
  SmallPtrSet<const MachineBasicBlock *, 16> Visited;
 | 
						|
  while (!Worklist.empty() || !Pending.empty()) {
 | 
						|
    // We track what is on the pending worklist to avoid inserting the same
 | 
						|
    // thing twice.  We could avoid this with a custom priority queue, but this
 | 
						|
    // is probably not worth it.
 | 
						|
    SmallPtrSet<MachineBasicBlock *, 16> OnPending;
 | 
						|
    LLVM_DEBUG(dbgs() << "Processing Worklist\n");
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
 | 
						|
      Worklist.pop();
 | 
						|
      MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
 | 
						|
                       ArtificialBlocks);
 | 
						|
      MBBJoined |= Visited.insert(MBB).second;
 | 
						|
      if (MBBJoined) {
 | 
						|
        MBBJoined = false;
 | 
						|
        Changed = true;
 | 
						|
        // Now that we have started to extend ranges across BBs we need to
 | 
						|
        // examine spill, copy and restore instructions to see whether they
 | 
						|
        // operate with registers that correspond to user variables.
 | 
						|
        // First load any pending inlocs.
 | 
						|
        OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
 | 
						|
        for (auto &MI : *MBB)
 | 
						|
          process(MI, OpenRanges, VarLocIDs, Transfers);
 | 
						|
        OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
 | 
						|
 | 
						|
        LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
 | 
						|
                                    "OutLocs after propagating", dbgs()));
 | 
						|
        LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
 | 
						|
                                    "InLocs after propagating", dbgs()));
 | 
						|
 | 
						|
        if (OLChanged) {
 | 
						|
          OLChanged = false;
 | 
						|
          for (auto s : MBB->successors())
 | 
						|
            if (OnPending.insert(s).second) {
 | 
						|
              Pending.push(BBToOrder[s]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Worklist.swap(Pending);
 | 
						|
    // At this point, pending must be empty, since it was just the empty
 | 
						|
    // worklist
 | 
						|
    assert(Pending.empty() && "Pending should be empty");
 | 
						|
  }
 | 
						|
 | 
						|
  // Add any DBG_VALUE instructions created by location transfers.
 | 
						|
  for (auto &TR : Transfers) {
 | 
						|
    assert(!TR.TransferInst->isTerminator() &&
 | 
						|
           "Cannot insert DBG_VALUE after terminator");
 | 
						|
    MachineBasicBlock *MBB = TR.TransferInst->getParent();
 | 
						|
    const VarLoc &VL = VarLocIDs[TR.LocationID];
 | 
						|
    MachineInstr *MI = VL.BuildDbgValue(MF);
 | 
						|
    MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
 | 
						|
  }
 | 
						|
  Transfers.clear();
 | 
						|
 | 
						|
  // Deferred inlocs will not have had any DBG_VALUE insts created; do
 | 
						|
  // that now.
 | 
						|
  flushPendingLocs(InLocs, VarLocIDs);
 | 
						|
 | 
						|
  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
 | 
						|
  LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (!MF.getFunction().getSubprogram())
 | 
						|
    // LiveDebugValues will already have removed all DBG_VALUEs.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Skip functions from NoDebug compilation units.
 | 
						|
  if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
 | 
						|
      DICompileUnit::NoDebug)
 | 
						|
    return false;
 | 
						|
 | 
						|
  TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  TFI = MF.getSubtarget().getFrameLowering();
 | 
						|
  TFI->getCalleeSaves(MF, CalleeSavedRegs);
 | 
						|
  LS.initialize(MF);
 | 
						|
 | 
						|
  bool Changed = ExtendRanges(MF);
 | 
						|
  return Changed;
 | 
						|
}
 |