llvm-project/clang/lib/StaticAnalyzer/Checkers/UninitializedObject/UninitializedObject.h

284 lines
9.7 KiB
C++

//===----- UninitializedObject.h ---------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines helper classes for UninitializedObjectChecker and
// documentation about the logic of it.
//
// To read about command line options and a description what this checker does,
// refer to UninitializedObjectChecker.cpp.
//
// Some methods are implemented in UninitializedPointee.cpp, to reduce the
// complexity of the main checker file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_STATICANALYZER_UNINITIALIZEDOBJECT_H
#define LLVM_CLANG_STATICANALYZER_UNINITIALIZEDOBJECT_H
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
namespace clang {
namespace ento {
/// Represent a single field. This is only an interface to abstract away special
/// cases like pointers/references.
class FieldNode {
protected:
const FieldRegion *FR;
/* non-virtual */ ~FieldNode() = default;
public:
FieldNode(const FieldRegion *FR) : FR(FR) {}
FieldNode() = delete;
FieldNode(const FieldNode &) = delete;
FieldNode(FieldNode &&) = delete;
FieldNode &operator=(const FieldNode &) = delete;
FieldNode &operator=(const FieldNode &&) = delete;
/// Profile - Used to profile the contents of this object for inclusion in a
/// FoldingSet.
void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddPointer(this); }
// Helper method for uniqueing.
bool isSameRegion(const FieldRegion *OtherFR) const {
// Special FieldNode descendants may wrap nullpointers -- we wouldn't like
// to unique these objects.
if (FR == nullptr)
return false;
return FR == OtherFR;
}
const FieldRegion *getRegion() const { return FR; }
const FieldDecl *getDecl() const {
assert(FR);
return FR->getDecl();
}
// When a fieldchain is printed (a list of FieldNode objects), it will have
// the following format:
// <note message>'<prefix>this-><node><separator><node><separator>...<node>'
/// If this is the last element of the fieldchain, this method will be called.
/// The note message should state something like "uninitialized field" or
/// "uninitialized pointee" etc.
virtual void printNoteMsg(llvm::raw_ostream &Out) const = 0;
/// Print any prefixes before the fieldchain.
virtual void printPrefix(llvm::raw_ostream &Out) const = 0;
/// Print the node. Should contain the name of the field stored in getRegion.
virtual void printNode(llvm::raw_ostream &Out) const = 0;
/// Print the separator. For example, fields may be separated with '.' or
/// "->".
virtual void printSeparator(llvm::raw_ostream &Out) const = 0;
virtual bool isBase() const { return false; }
};
/// Returns with Field's name. This is a helper function to get the correct name
/// even if Field is a captured lambda variable.
StringRef getVariableName(const FieldDecl *Field);
/// Represents a field chain. A field chain is a vector of fields where the
/// first element of the chain is the object under checking (not stored), and
/// every other element is a field, and the element that precedes it is the
/// object that contains it.
///
/// Note that this class is immutable (essentially a wrapper around an
/// ImmutableList), and new elements can only be added by creating new
/// FieldChainInfo objects through add().
class FieldChainInfo {
public:
using FieldChainImpl = llvm::ImmutableListImpl<const FieldNode &>;
using FieldChain = llvm::ImmutableList<const FieldNode &>;
private:
FieldChain::Factory &ChainFactory;
FieldChain Chain;
FieldChainInfo(FieldChain::Factory &F, FieldChain NewChain)
: FieldChainInfo(F) {
Chain = NewChain;
}
public:
FieldChainInfo() = delete;
FieldChainInfo(FieldChain::Factory &F) : ChainFactory(F) {}
FieldChainInfo(const FieldChainInfo &Other) = default;
template <class FieldNodeT> FieldChainInfo add(const FieldNodeT &FN);
template <class FieldNodeT> FieldChainInfo replaceHead(const FieldNodeT &FN);
bool contains(const FieldRegion *FR) const;
bool isEmpty() const { return Chain.isEmpty(); }
const FieldRegion *getUninitRegion() const;
const FieldNode &getHead() { return Chain.getHead(); }
void printNoteMsg(llvm::raw_ostream &Out) const;
};
using UninitFieldMap = std::map<const FieldRegion *, llvm::SmallString<50>>;
/// Searches for and stores uninitialized fields in a non-union object.
class FindUninitializedFields {
ProgramStateRef State;
const TypedValueRegion *const ObjectR;
const bool CheckPointeeInitialization;
bool IsAnyFieldInitialized = false;
FieldChainInfo::FieldChain::Factory ChainFactory;
/// A map for assigning uninitialized regions to note messages. For example,
///
/// struct A {
/// int x;
/// };
///
/// A a;
///
/// After analyzing `a`, the map will contain a pair for `a.x`'s region and
/// the note message "uninitialized field 'this->x'.
UninitFieldMap UninitFields;
public:
/// Constructs the FindUninitializedField object, searches for and stores
/// uninitialized fields in R.
FindUninitializedFields(ProgramStateRef State,
const TypedValueRegion *const R,
bool CheckPointeeInitialization);
const UninitFieldMap &getUninitFields() { return UninitFields; }
/// Returns whether the analyzed region contains at least one initialized
/// field.
bool isAnyFieldInitialized() { return IsAnyFieldInitialized; }
private:
// For the purposes of this checker, we'll regard the object under checking as
// a directed tree, where
// * the root is the object under checking
// * every node is an object that is
// - a union
// - a non-union record
// - a pointer/reference
// - an array
// - of a primitive type, which we'll define later in a helper function.
// * the parent of each node is the object that contains it
// * every leaf is an array, a primitive object, a nullptr or an undefined
// pointer.
//
// Example:
//
// struct A {
// struct B {
// int x, y = 0;
// };
// B b;
// int *iptr = new int;
// B* bptr;
//
// A() {}
// };
//
// The directed tree:
//
// ->x
// /
// ->b--->y
// /
// A-->iptr->(int value)
// \
// ->bptr
//
// From this we'll construct a vector of fieldchains, where each fieldchain
// represents an uninitialized field. An uninitialized field may be a
// primitive object, a pointer, a pointee or a union without a single
// initialized field.
// In the above example, for the default constructor call we'll end up with
// these fieldchains:
//
// this->b.x
// this->iptr (pointee uninit)
// this->bptr (pointer uninit)
//
// We'll traverse each node of the above graph with the appropiate one of
// these methods:
/// This method checks a region of a union object, and returns true if no
/// field is initialized within the region.
bool isUnionUninit(const TypedValueRegion *R);
/// This method checks a region of a non-union object, and returns true if
/// an uninitialized field is found within the region.
bool isNonUnionUninit(const TypedValueRegion *R, FieldChainInfo LocalChain);
/// This method checks a region of a pointer or reference object, and returns
/// true if the ptr/ref object itself or any field within the pointee's region
/// is uninitialized.
bool isPointerOrReferenceUninit(const FieldRegion *FR,
FieldChainInfo LocalChain);
/// This method returns true if the value of a primitive object is
/// uninitialized.
bool isPrimitiveUninit(const SVal &V);
// Note that we don't have a method for arrays -- the elements of an array are
// often left uninitialized intentionally even when it is of a C++ record
// type, so we'll assume that an array is always initialized.
// TODO: Add a support for nonloc::LocAsInteger.
/// Processes LocalChain and attempts to insert it into UninitFields. Returns
/// true on success.
///
/// Since this class analyzes regions with recursion, we'll only store
/// references to temporary FieldNode objects created on the stack. This means
/// that after analyzing a leaf of the directed tree described above, the
/// elements LocalChain references will be destructed, so we can't store it
/// directly.
bool addFieldToUninits(FieldChainInfo LocalChain);
};
/// Returns true if T is a primitive type. We defined this type so that for
/// objects that we'd only like analyze as much as checking whether their
/// value is undefined or not, such as ints and doubles, can be analyzed with
/// ease. This also helps ensuring that every special field type is handled
/// correctly.
inline bool isPrimitiveType(const QualType &T) {
return T->isBuiltinType() || T->isEnumeralType() || T->isMemberPointerType();
}
// Template method definitions.
template <class FieldNodeT>
inline FieldChainInfo FieldChainInfo::add(const FieldNodeT &FN) {
assert(!contains(FN.getRegion()) &&
"Can't add a field that is already a part of the "
"fieldchain! Is this a cyclic reference?");
FieldChainInfo NewChain = *this;
NewChain.Chain = ChainFactory.add(FN, Chain);
return NewChain;
}
template <class FieldNodeT>
inline FieldChainInfo FieldChainInfo::replaceHead(const FieldNodeT &FN) {
FieldChainInfo NewChain(ChainFactory, Chain.getTail());
return NewChain.add(FN);
}
} // end of namespace ento
} // end of namespace clang
#endif // LLVM_CLANG_STATICANALYZER_UNINITIALIZEDOBJECT_H