llvm-project/llvm/tools/llvm-exegesis/lib/BenchmarkRunner.cpp

236 lines
8.7 KiB
C++

//===-- BenchmarkRunner.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <array>
#include <string>
#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Program.h"
namespace exegesis {
BenchmarkFailure::BenchmarkFailure(const llvm::Twine &S)
: llvm::StringError(S, llvm::inconvertibleErrorCode()) {}
BenchmarkRunner::BenchmarkRunner(const LLVMState &State,
InstructionBenchmark::ModeE Mode)
: State(State), RATC(State.getRegInfo(),
getFunctionReservedRegs(State.getTargetMachine())),
Mode(Mode), Scratch(llvm::make_unique<ScratchSpace>()) {}
BenchmarkRunner::~BenchmarkRunner() = default;
llvm::Expected<std::vector<InstructionBenchmark>>
BenchmarkRunner::run(unsigned Opcode, unsigned NumRepetitions) {
const llvm::MCInstrDesc &InstrDesc = State.getInstrInfo().get(Opcode);
// Ignore instructions that we cannot run.
if (InstrDesc.isPseudo())
return llvm::make_error<BenchmarkFailure>("Unsupported opcode: isPseudo");
if (InstrDesc.isBranch() || InstrDesc.isIndirectBranch())
return llvm::make_error<BenchmarkFailure>(
"Unsupported opcode: isBranch/isIndirectBranch");
if (InstrDesc.isCall() || InstrDesc.isReturn())
return llvm::make_error<BenchmarkFailure>(
"Unsupported opcode: isCall/isReturn");
llvm::Expected<std::vector<BenchmarkCode>> ConfigurationOrError =
generateConfigurations(Opcode);
if (llvm::Error E = ConfigurationOrError.takeError())
return std::move(E);
std::vector<InstructionBenchmark> InstrBenchmarks;
for (const BenchmarkCode &Conf : ConfigurationOrError.get())
InstrBenchmarks.push_back(runConfiguration(Conf, Opcode, NumRepetitions));
return InstrBenchmarks;
}
// Repeat the snippet until there are at least NumInstructions in the resulting
// code.
static std::vector<llvm::MCInst>
GenerateInstructions(const BenchmarkCode &BC, const int MinInstructions) {
std::vector<llvm::MCInst> Code = BC.Instructions;
for (int I = 0; I < MinInstructions; ++I)
Code.push_back(BC.Instructions[I % BC.Instructions.size()]);
return Code;
}
InstructionBenchmark
BenchmarkRunner::runConfiguration(const BenchmarkCode &BC, unsigned Opcode,
unsigned NumRepetitions) const {
InstructionBenchmark InstrBenchmark;
InstrBenchmark.Mode = Mode;
InstrBenchmark.CpuName = State.getTargetMachine().getTargetCPU();
InstrBenchmark.LLVMTriple =
State.getTargetMachine().getTargetTriple().normalize();
InstrBenchmark.NumRepetitions = NumRepetitions;
InstrBenchmark.Info = BC.Info;
const std::vector<llvm::MCInst> &Instructions = BC.Instructions;
if (Instructions.empty()) {
InstrBenchmark.Error = "Empty snippet";
return InstrBenchmark;
}
InstrBenchmark.Key.Instructions = Instructions;
// Assemble at least kMinInstructionsForSnippet instructions by repeating the
// snippet for debug/analysis. This is so that the user clearly understands
// that the inside instructions are repeated.
constexpr const int kMinInstructionsForSnippet = 16;
{
auto ObjectFilePath = writeObjectFile(
BC, GenerateInstructions(BC, kMinInstructionsForSnippet));
if (llvm::Error E = ObjectFilePath.takeError()) {
InstrBenchmark.Error = llvm::toString(std::move(E));
return InstrBenchmark;
}
const ExecutableFunction EF(State.createTargetMachine(),
getObjectFromFile(*ObjectFilePath));
const auto FnBytes = EF.getFunctionBytes();
InstrBenchmark.AssembledSnippet.assign(FnBytes.begin(), FnBytes.end());
}
// Assemble NumRepetitions instructions repetitions of the snippet for
// measurements.
auto ObjectFilePath = writeObjectFile(
BC, GenerateInstructions(BC, InstrBenchmark.NumRepetitions));
if (llvm::Error E = ObjectFilePath.takeError()) {
InstrBenchmark.Error = llvm::toString(std::move(E));
return InstrBenchmark;
}
llvm::outs() << "Check generated assembly with: /usr/bin/objdump -d "
<< *ObjectFilePath << "\n";
const ExecutableFunction EF(State.createTargetMachine(),
getObjectFromFile(*ObjectFilePath));
InstrBenchmark.Measurements = runMeasurements(EF, *Scratch, NumRepetitions);
return InstrBenchmark;
}
llvm::Expected<std::vector<BenchmarkCode>>
BenchmarkRunner::generateConfigurations(unsigned Opcode) const {
if (auto E = generateCodeTemplate(Opcode)) {
CodeTemplate &CT = E.get();
std::vector<BenchmarkCode> Output;
// TODO: Generate as many BenchmarkCode as needed.
{
BenchmarkCode BC;
BC.Info = CT.Info;
for (InstructionBuilder &IB : CT.Instructions) {
IB.randomizeUnsetVariables(
CT.ScratchSpacePointerInReg
? RATC.getRegister(CT.ScratchSpacePointerInReg).aliasedBits()
: RATC.emptyRegisters());
BC.Instructions.push_back(IB.build());
}
if (CT.ScratchSpacePointerInReg)
BC.LiveIns.push_back(CT.ScratchSpacePointerInReg);
BC.RegsToDef = computeRegsToDef(CT.Instructions);
Output.push_back(std::move(BC));
}
return Output;
} else
return E.takeError();
}
std::vector<unsigned> BenchmarkRunner::computeRegsToDef(
const std::vector<InstructionBuilder> &Instructions) const {
// Collect all register uses and create an assignment for each of them.
// Ignore memory operands which are handled separately.
// Loop invariant: DefinedRegs[i] is true iif it has been set at least once
// before the current instruction.
llvm::BitVector DefinedRegs = RATC.emptyRegisters();
std::vector<unsigned> RegsToDef;
for (const InstructionBuilder &IB : Instructions) {
// Returns the register that this Operand sets or uses, or 0 if this is not
// a register.
const auto GetOpReg = [&IB](const Operand &Op) -> unsigned {
if (Op.IsMem)
return 0;
if (Op.ImplicitReg)
return *Op.ImplicitReg;
if (Op.IsExplicit && IB.getValueFor(Op).isReg())
return IB.getValueFor(Op).getReg();
return 0;
};
// Collect used registers that have never been def'ed.
for (const Operand &Op : IB.Instr.Operands) {
if (!Op.IsDef) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0 && !DefinedRegs.test(Reg)) {
RegsToDef.push_back(Reg);
DefinedRegs.set(Reg);
}
}
}
// Mark defs as having been def'ed.
for (const Operand &Op : IB.Instr.Operands) {
if (Op.IsDef) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0)
DefinedRegs.set(Reg);
}
}
}
return RegsToDef;
}
llvm::Expected<std::string>
BenchmarkRunner::writeObjectFile(const BenchmarkCode &BC,
llvm::ArrayRef<llvm::MCInst> Code) const {
int ResultFD = 0;
llvm::SmallString<256> ResultPath;
if (llvm::Error E = llvm::errorCodeToError(llvm::sys::fs::createTemporaryFile(
"snippet", "o", ResultFD, ResultPath)))
return std::move(E);
llvm::raw_fd_ostream OFS(ResultFD, true /*ShouldClose*/);
assembleToStream(State.getExegesisTarget(), State.createTargetMachine(),
BC.LiveIns, BC.RegsToDef, Code, OFS);
return ResultPath.str();
}
llvm::Expected<CodeTemplate> BenchmarkRunner::generateSelfAliasingCodeTemplate(
const Instruction &Instr) const {
const AliasingConfigurations SelfAliasing(Instr, Instr);
if (SelfAliasing.empty()) {
return llvm::make_error<BenchmarkFailure>("empty self aliasing");
}
CodeTemplate CT;
InstructionBuilder IB(Instr);
if (SelfAliasing.hasImplicitAliasing()) {
CT.Info = "implicit Self cycles, picking random values.";
} else {
CT.Info = "explicit self cycles, selecting one aliasing Conf.";
// This is a self aliasing instruction so defs and uses are from the same
// instance, hence twice IB in the following call.
setRandomAliasing(SelfAliasing, IB, IB);
}
CT.Instructions.push_back(std::move(IB));
return std::move(CT);
}
llvm::Expected<CodeTemplate>
BenchmarkRunner::generateUnconstrainedCodeTemplate(const Instruction &Instr,
llvm::StringRef Msg) const {
CodeTemplate CT;
CT.Info = llvm::formatv("{0}, repeating an unconstrained assignment", Msg);
CT.Instructions.emplace_back(Instr);
return std::move(CT);
}
} // namespace exegesis