forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			432 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			432 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass eliminates machine instruction PHI nodes by inserting copy
 | 
						|
// instructions.  This destroys SSA information, but is the desired input for
 | 
						|
// some register allocators.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "phielim"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumAtomic, "Number of atomic phis lowered");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
 | 
						|
    MachineRegisterInfo  *MRI; // Machine register information
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    PNE() : MachineFunctionPass(&ID) {}
 | 
						|
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &Fn);
 | 
						|
    
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addPreserved<LiveVariables>();
 | 
						|
      AU.addPreservedID(MachineLoopInfoID);
 | 
						|
      AU.addPreservedID(MachineDominatorsID);
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
 | 
						|
    /// in predecessor basic blocks.
 | 
						|
    ///
 | 
						|
    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
 | 
						|
    void LowerAtomicPHINode(MachineBasicBlock &MBB,
 | 
						|
                            MachineBasicBlock::iterator AfterPHIsIt);
 | 
						|
 | 
						|
    /// analyzePHINodes - Gather information about the PHI nodes in
 | 
						|
    /// here. In particular, we want to map the number of uses of a virtual
 | 
						|
    /// register which is used in a PHI node. We map that to the BB the
 | 
						|
    /// vreg is coming from. This is used later to determine when the vreg
 | 
						|
    /// is killed in the BB.
 | 
						|
    ///
 | 
						|
    void analyzePHINodes(const MachineFunction& Fn);
 | 
						|
 | 
						|
    // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from
 | 
						|
    // SrcReg.  This needs to be after any def or uses of SrcReg, but before
 | 
						|
    // any subsequent point where control flow might jump out of the basic
 | 
						|
    // block.
 | 
						|
    MachineBasicBlock::iterator FindCopyInsertPoint(MachineBasicBlock &MBB,
 | 
						|
                                                    unsigned SrcReg);
 | 
						|
 | 
						|
    // SkipPHIsAndLabels - Copies need to be inserted after phi nodes and
 | 
						|
    // also after any exception handling labels: in landing pads execution
 | 
						|
    // starts at the label, so any copies placed before it won't be executed!
 | 
						|
    MachineBasicBlock::iterator SkipPHIsAndLabels(MachineBasicBlock &MBB,
 | 
						|
                                                MachineBasicBlock::iterator I) {
 | 
						|
      // Rather than assuming that EH labels come before other kinds of labels,
 | 
						|
      // just skip all labels.
 | 
						|
      while (I != MBB.end() &&
 | 
						|
             (I->getOpcode() == TargetInstrInfo::PHI || I->isLabel()))
 | 
						|
        ++I;
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
 | 
						|
    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
 | 
						|
    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
 | 
						|
 | 
						|
    VRegPHIUse VRegPHIUseCount;
 | 
						|
 | 
						|
    // Defs of PHI sources which are implicit_def.
 | 
						|
    SmallPtrSet<MachineInstr*, 4> ImpDefs;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char PNE::ID = 0;
 | 
						|
static RegisterPass<PNE>
 | 
						|
X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
 | 
						|
 | 
						|
const PassInfo *const llvm::PHIEliminationID = &X;
 | 
						|
 | 
						|
bool PNE::runOnMachineFunction(MachineFunction &Fn) {
 | 
						|
  MRI = &Fn.getRegInfo();
 | 
						|
 | 
						|
  analyzePHINodes(Fn);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Eliminate PHI instructions by inserting copies into predecessor blocks.
 | 
						|
  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
    Changed |= EliminatePHINodes(Fn, *I);
 | 
						|
 | 
						|
  // Remove dead IMPLICIT_DEF instructions.
 | 
						|
  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
 | 
						|
         E = ImpDefs.end(); I != E; ++I) {
 | 
						|
    MachineInstr *DefMI = *I;
 | 
						|
    unsigned DefReg = DefMI->getOperand(0).getReg();
 | 
						|
    if (MRI->use_empty(DefReg))
 | 
						|
      DefMI->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  ImpDefs.clear();
 | 
						|
  VRegPHIUseCount.clear();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
 | 
						|
/// predecessor basic blocks.
 | 
						|
///
 | 
						|
bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
 | 
						|
  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
 | 
						|
    return false;   // Quick exit for basic blocks without PHIs.
 | 
						|
 | 
						|
  // Get an iterator to the first instruction after the last PHI node (this may
 | 
						|
  // also be the end of the basic block).
 | 
						|
  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
 | 
						|
 | 
						|
  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
 | 
						|
    LowerAtomicPHINode(MBB, AfterPHIsIt);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
 | 
						|
/// are implicit_def's.
 | 
						|
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
 | 
						|
                                         const MachineRegisterInfo *MRI) {
 | 
						|
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
 | 
						|
    unsigned SrcReg = MPhi->getOperand(i).getReg();
 | 
						|
    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | 
						|
    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg.
 | 
						|
// This needs to be after any def or uses of SrcReg, but before any subsequent
 | 
						|
// point where control flow might jump out of the basic block.
 | 
						|
MachineBasicBlock::iterator PNE::FindCopyInsertPoint(MachineBasicBlock &MBB,
 | 
						|
                                                     unsigned SrcReg) {
 | 
						|
  // Handle the trivial case trivially.
 | 
						|
  if (MBB.empty())
 | 
						|
    return MBB.begin();
 | 
						|
 | 
						|
  // If this basic block does not contain an invoke, then control flow always
 | 
						|
  // reaches the end of it, so place the copy there.  The logic below works in
 | 
						|
  // this case too, but is more expensive.
 | 
						|
  if (!isa<InvokeInst>(MBB.getBasicBlock()->getTerminator()))
 | 
						|
    return MBB.getFirstTerminator();
 | 
						|
 | 
						|
  // Discover any definition/uses in this basic block.
 | 
						|
  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
 | 
						|
  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
 | 
						|
       RE = MRI->reg_end(); RI != RE; ++RI) {
 | 
						|
    MachineInstr *DefUseMI = &*RI;
 | 
						|
    if (DefUseMI->getParent() == &MBB)
 | 
						|
      DefUsesInMBB.insert(DefUseMI);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock::iterator InsertPoint;
 | 
						|
  if (DefUsesInMBB.empty()) {
 | 
						|
    // No def/uses.  Insert the copy at the start of the basic block.
 | 
						|
    InsertPoint = MBB.begin();
 | 
						|
  } else if (DefUsesInMBB.size() == 1) {
 | 
						|
    // Insert the copy immediately after the definition/use.
 | 
						|
    InsertPoint = *DefUsesInMBB.begin();
 | 
						|
    ++InsertPoint;
 | 
						|
  } else {
 | 
						|
    // Insert the copy immediately after the last definition/use.
 | 
						|
    InsertPoint = MBB.end();
 | 
						|
    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
 | 
						|
    ++InsertPoint;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure the copy goes after any phi nodes however.
 | 
						|
  return SkipPHIsAndLabels(MBB, InsertPoint);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
 | 
						|
/// under the assuption that it needs to be lowered in a way that supports
 | 
						|
/// atomic execution of PHIs.  This lowering method is always correct all of the
 | 
						|
/// time.
 | 
						|
/// 
 | 
						|
void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
 | 
						|
                             MachineBasicBlock::iterator AfterPHIsIt) {
 | 
						|
  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
 | 
						|
  MachineInstr *MPhi = MBB.remove(MBB.begin());
 | 
						|
 | 
						|
  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
 | 
						|
  unsigned DestReg = MPhi->getOperand(0).getReg();
 | 
						|
  bool isDead = MPhi->getOperand(0).isDead();
 | 
						|
 | 
						|
  // Create a new register for the incoming PHI arguments.
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
 | 
						|
  unsigned IncomingReg = 0;
 | 
						|
 | 
						|
  // Insert a register to register copy at the top of the current block (but
 | 
						|
  // after any remaining phi nodes) which copies the new incoming register
 | 
						|
  // into the phi node destination.
 | 
						|
  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
 | 
						|
  if (isSourceDefinedByImplicitDef(MPhi, MRI))
 | 
						|
    // If all sources of a PHI node are implicit_def, just emit an
 | 
						|
    // implicit_def instead of a copy.
 | 
						|
    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
 | 
						|
            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
 | 
						|
  else {
 | 
						|
    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
 | 
						|
    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update live variable information if there is any.
 | 
						|
  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
 | 
						|
  if (LV) {
 | 
						|
    MachineInstr *PHICopy = prior(AfterPHIsIt);
 | 
						|
 | 
						|
    if (IncomingReg) {
 | 
						|
      // Increment use count of the newly created virtual register.
 | 
						|
      LV->getVarInfo(IncomingReg).NumUses++;
 | 
						|
 | 
						|
      // Add information to LiveVariables to know that the incoming value is
 | 
						|
      // killed.  Note that because the value is defined in several places (once
 | 
						|
      // each for each incoming block), the "def" block and instruction fields
 | 
						|
      // for the VarInfo is not filled in.
 | 
						|
      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
 | 
						|
    }
 | 
						|
 | 
						|
    // Since we are going to be deleting the PHI node, if it is the last use of
 | 
						|
    // any registers, or if the value itself is dead, we need to move this
 | 
						|
    // information over to the new copy we just inserted.
 | 
						|
    LV->removeVirtualRegistersKilled(MPhi);
 | 
						|
 | 
						|
    // If the result is dead, update LV.
 | 
						|
    if (isDead) {
 | 
						|
      LV->addVirtualRegisterDead(DestReg, PHICopy);
 | 
						|
      LV->removeVirtualRegisterDead(DestReg, MPhi);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
 | 
						|
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
 | 
						|
    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
 | 
						|
                                 MPhi->getOperand(i).getReg())];
 | 
						|
 | 
						|
  // Now loop over all of the incoming arguments, changing them to copy into the
 | 
						|
  // IncomingReg register in the corresponding predecessor basic block.
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
 | 
						|
  for (int i = NumSrcs - 1; i >= 0; --i) {
 | 
						|
    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | 
						|
           "Machine PHI Operands must all be virtual registers!");
 | 
						|
 | 
						|
    // If source is defined by an implicit def, there is no need to insert a
 | 
						|
    // copy.
 | 
						|
    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | 
						|
    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
 | 
						|
      ImpDefs.insert(DefMI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
 | 
						|
    // path the PHI.
 | 
						|
    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
 | 
						|
 | 
						|
    // Check to make sure we haven't already emitted the copy for this block.
 | 
						|
    // This can happen because PHI nodes may have multiple entries for the same
 | 
						|
    // basic block.
 | 
						|
    if (!MBBsInsertedInto.insert(&opBlock))
 | 
						|
      continue;  // If the copy has already been emitted, we're done.
 | 
						|
 
 | 
						|
    // Find a safe location to insert the copy, this may be the first terminator
 | 
						|
    // in the block (or end()).
 | 
						|
    MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, SrcReg);
 | 
						|
 | 
						|
    // Insert the copy.
 | 
						|
    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
 | 
						|
 | 
						|
    // Now update live variable information if we have it.  Otherwise we're done
 | 
						|
    if (!LV) continue;
 | 
						|
    
 | 
						|
    // We want to be able to insert a kill of the register if this PHI (aka, the
 | 
						|
    // copy we just inserted) is the last use of the source value.  Live
 | 
						|
    // variable analysis conservatively handles this by saying that the value is
 | 
						|
    // live until the end of the block the PHI entry lives in.  If the value
 | 
						|
    // really is dead at the PHI copy, there will be no successor blocks which
 | 
						|
    // have the value live-in.
 | 
						|
    //
 | 
						|
    // Check to see if the copy is the last use, and if so, update the live
 | 
						|
    // variables information so that it knows the copy source instruction kills
 | 
						|
    // the incoming value.
 | 
						|
    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
 | 
						|
 | 
						|
    // Loop over all of the successors of the basic block, checking to see if
 | 
						|
    // the value is either live in the block, or if it is killed in the block.
 | 
						|
    // Also check to see if this register is in use by another PHI node which
 | 
						|
    // has not yet been eliminated.  If so, it will be killed at an appropriate
 | 
						|
    // point later.
 | 
						|
 | 
						|
    // Is it used by any PHI instructions in this block?
 | 
						|
    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
 | 
						|
 | 
						|
    std::vector<MachineBasicBlock*> OpSuccBlocks;
 | 
						|
    
 | 
						|
    // Otherwise, scan successors, including the BB the PHI node lives in.
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
 | 
						|
           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
 | 
						|
      MachineBasicBlock *SuccMBB = *SI;
 | 
						|
 | 
						|
      // Is it alive in this successor?
 | 
						|
      unsigned SuccIdx = SuccMBB->getNumber();
 | 
						|
      if (InRegVI.AliveBlocks.test(SuccIdx)) {
 | 
						|
        ValueIsLive = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      OpSuccBlocks.push_back(SuccMBB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if this value is live because there is a use in a successor
 | 
						|
    // that kills it.
 | 
						|
    if (!ValueIsLive) {
 | 
						|
      switch (OpSuccBlocks.size()) {
 | 
						|
      case 1: {
 | 
						|
        MachineBasicBlock *MBB = OpSuccBlocks[0];
 | 
						|
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | 
						|
          if (InRegVI.Kills[i]->getParent() == MBB) {
 | 
						|
            ValueIsLive = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case 2: {
 | 
						|
        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
 | 
						|
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | 
						|
          if (InRegVI.Kills[i]->getParent() == MBB1 || 
 | 
						|
              InRegVI.Kills[i]->getParent() == MBB2) {
 | 
						|
            ValueIsLive = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        break;        
 | 
						|
      }
 | 
						|
      default:
 | 
						|
        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
 | 
						|
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | 
						|
          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
 | 
						|
                                 InRegVI.Kills[i]->getParent())) {
 | 
						|
            ValueIsLive = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }        
 | 
						|
 | 
						|
    // Okay, if we now know that the value is not live out of the block, we can
 | 
						|
    // add a kill marker in this block saying that it kills the incoming value!
 | 
						|
    if (!ValueIsLive) {
 | 
						|
      // In our final twist, we have to decide which instruction kills the
 | 
						|
      // register.  In most cases this is the copy, however, the first
 | 
						|
      // terminator instruction at the end of the block may also use the value.
 | 
						|
      // In this case, we should mark *it* as being the killing block, not the
 | 
						|
      // copy.
 | 
						|
      MachineBasicBlock::iterator KillInst = prior(InsertPos);
 | 
						|
      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
 | 
						|
      if (Term != opBlock.end()) {
 | 
						|
        if (Term->readsRegister(SrcReg))
 | 
						|
          KillInst = Term;
 | 
						|
      
 | 
						|
        // Check that no other terminators use values.
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
 | 
						|
             ++TI) {
 | 
						|
          assert(!TI->readsRegister(SrcReg) &&
 | 
						|
                 "Terminator instructions cannot use virtual registers unless"
 | 
						|
                 "they are the first terminator in a block!");
 | 
						|
        }
 | 
						|
#endif
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Finally, mark it killed.
 | 
						|
      LV->addVirtualRegisterKilled(SrcReg, KillInst);
 | 
						|
 | 
						|
      // This vreg no longer lives all of the way through opBlock.
 | 
						|
      unsigned opBlockNum = opBlock.getNumber();
 | 
						|
      InRegVI.AliveBlocks.reset(opBlockNum);
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Really delete the PHI instruction now!
 | 
						|
  MF.DeleteMachineInstr(MPhi);
 | 
						|
  ++NumAtomic;
 | 
						|
}
 | 
						|
 | 
						|
/// analyzePHINodes - Gather information about the PHI nodes in here. In
 | 
						|
/// particular, we want to map the number of uses of a virtual register which is
 | 
						|
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
 | 
						|
/// used later to determine when the vreg is killed in the BB.
 | 
						|
///
 | 
						|
void PNE::analyzePHINodes(const MachineFunction& Fn) {
 | 
						|
  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
 | 
						|
       I != E; ++I)
 | 
						|
    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
 | 
						|
         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
 | 
						|
      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
 | 
						|
        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
 | 
						|
                                     BBI->getOperand(i).getReg())];
 | 
						|
}
 |