forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			396 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			396 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// When profitable, replace GPR targeting i64 instructions with their
 | 
						|
// AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
 | 
						|
// as minimizing the number of cross-class register copies.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TODO: Graph based predicate heuristics.
 | 
						|
// Walking the instruction list linearly will get many, perhaps most, of
 | 
						|
// the cases, but to do a truly thorough job of this, we need a more
 | 
						|
// wholistic approach.
 | 
						|
//
 | 
						|
// This optimization is very similar in spirit to the register allocator's
 | 
						|
// spill placement, only here we're determining where to place cross-class
 | 
						|
// register copies rather than spills. As such, a similar approach is
 | 
						|
// called for.
 | 
						|
//
 | 
						|
// We want to build up a set of graphs of all instructions which are candidates
 | 
						|
// for transformation along with instructions which generate their inputs and
 | 
						|
// consume their outputs. For each edge in the graph, we assign a weight
 | 
						|
// based on whether there is a copy required there (weight zero if not) and
 | 
						|
// the block frequency of the block containing the defining or using
 | 
						|
// instruction, whichever is less. Our optimization is then a graph problem
 | 
						|
// to minimize the total weight of all the graphs, then transform instructions
 | 
						|
// and add or remove copy instructions as called for to implement the
 | 
						|
// solution.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AArch64.h"
 | 
						|
#include "AArch64InstrInfo.h"
 | 
						|
#include "AArch64RegisterInfo.h"
 | 
						|
#include "AArch64Subtarget.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "aarch64-simd-scalar"
 | 
						|
 | 
						|
// Allow forcing all i64 operations with equivalent SIMD instructions to use
 | 
						|
// them. For stress-testing the transformation function.
 | 
						|
static cl::opt<bool>
 | 
						|
TransformAll("aarch64-simd-scalar-force-all",
 | 
						|
             cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
 | 
						|
             cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
 | 
						|
STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
 | 
						|
STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
 | 
						|
 | 
						|
namespace {
 | 
						|
class AArch64AdvSIMDScalar : public MachineFunctionPass {
 | 
						|
  MachineRegisterInfo *MRI;
 | 
						|
  const AArch64InstrInfo *TII;
 | 
						|
 | 
						|
private:
 | 
						|
  // isProfitableToTransform - Predicate function to determine whether an
 | 
						|
  // instruction should be transformed to its equivalent AdvSIMD scalar
 | 
						|
  // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
 | 
						|
  bool isProfitableToTransform(const MachineInstr *MI) const;
 | 
						|
 | 
						|
  // transformInstruction - Perform the transformation of an instruction
 | 
						|
  // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
 | 
						|
  // to be the correct register class, minimizing cross-class copies.
 | 
						|
  void transformInstruction(MachineInstr *MI);
 | 
						|
 | 
						|
  // processMachineBasicBlock - Main optimzation loop.
 | 
						|
  bool processMachineBasicBlock(MachineBasicBlock *MBB);
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID; // Pass identification, replacement for typeid.
 | 
						|
  explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {}
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction &F) override;
 | 
						|
 | 
						|
  const char *getPassName() const override {
 | 
						|
    return "AdvSIMD Scalar Operation Optimization";
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
};
 | 
						|
char AArch64AdvSIMDScalar::ID = 0;
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static bool isGPR64(unsigned Reg, unsigned SubReg,
 | 
						|
                    const MachineRegisterInfo *MRI) {
 | 
						|
  if (SubReg)
 | 
						|
    return false;
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
    return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
 | 
						|
  return AArch64::GPR64RegClass.contains(Reg);
 | 
						|
}
 | 
						|
 | 
						|
static bool isFPR64(unsigned Reg, unsigned SubReg,
 | 
						|
                    const MachineRegisterInfo *MRI) {
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
    return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
 | 
						|
            SubReg == 0) ||
 | 
						|
           (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
 | 
						|
            SubReg == AArch64::dsub);
 | 
						|
  // Physical register references just check the register class directly.
 | 
						|
  return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
 | 
						|
         (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
 | 
						|
}
 | 
						|
 | 
						|
// getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
 | 
						|
// copy instruction. Return zero_reg if the instruction is not a copy.
 | 
						|
static unsigned getSrcFromCopy(const MachineInstr *MI,
 | 
						|
                               const MachineRegisterInfo *MRI,
 | 
						|
                               unsigned &SubReg) {
 | 
						|
  SubReg = 0;
 | 
						|
  // The "FMOV Xd, Dn" instruction is the typical form.
 | 
						|
  if (MI->getOpcode() == AArch64::FMOVDXr ||
 | 
						|
      MI->getOpcode() == AArch64::FMOVXDr)
 | 
						|
    return MI->getOperand(1).getReg();
 | 
						|
  // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
 | 
						|
  // these at this stage, but it's easy to check for.
 | 
						|
  if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
 | 
						|
    SubReg = AArch64::dsub;
 | 
						|
    return MI->getOperand(1).getReg();
 | 
						|
  }
 | 
						|
  // Or just a plain COPY instruction. This can be directly to/from FPR64,
 | 
						|
  // or it can be a dsub subreg reference to an FPR128.
 | 
						|
  if (MI->getOpcode() == AArch64::COPY) {
 | 
						|
    if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
 | 
						|
                MRI) &&
 | 
						|
        isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
 | 
						|
      return MI->getOperand(1).getReg();
 | 
						|
    if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
 | 
						|
                MRI) &&
 | 
						|
        isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
 | 
						|
                MRI)) {
 | 
						|
      SubReg = MI->getOperand(1).getSubReg();
 | 
						|
      return MI->getOperand(1).getReg();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is some other kind of instruction.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
 | 
						|
// that we're considering transforming to, return that AdvSIMD opcode. For all
 | 
						|
// others, return the original opcode.
 | 
						|
static int getTransformOpcode(unsigned Opc) {
 | 
						|
  switch (Opc) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  // FIXME: Lots more possibilities.
 | 
						|
  case AArch64::ADDXrr:
 | 
						|
    return AArch64::ADDv1i64;
 | 
						|
  case AArch64::SUBXrr:
 | 
						|
    return AArch64::SUBv1i64;
 | 
						|
  case AArch64::ANDXrr:
 | 
						|
    return AArch64::ANDv8i8;
 | 
						|
  case AArch64::EORXrr:
 | 
						|
    return AArch64::EORv8i8;
 | 
						|
  case AArch64::ORRXrr:
 | 
						|
    return AArch64::ORRv8i8;
 | 
						|
  }
 | 
						|
  // No AdvSIMD equivalent, so just return the original opcode.
 | 
						|
  return Opc;
 | 
						|
}
 | 
						|
 | 
						|
static bool isTransformable(const MachineInstr *MI) {
 | 
						|
  int Opc = MI->getOpcode();
 | 
						|
  return Opc != getTransformOpcode(Opc);
 | 
						|
}
 | 
						|
 | 
						|
// isProfitableToTransform - Predicate function to determine whether an
 | 
						|
// instruction should be transformed to its equivalent AdvSIMD scalar
 | 
						|
// instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
 | 
						|
bool
 | 
						|
AArch64AdvSIMDScalar::isProfitableToTransform(const MachineInstr *MI) const {
 | 
						|
  // If this instruction isn't eligible to be transformed (no SIMD equivalent),
 | 
						|
  // early exit since that's the common case.
 | 
						|
  if (!isTransformable(MI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Count the number of copies we'll need to add and approximate the number
 | 
						|
  // of copies that a transform will enable us to remove.
 | 
						|
  unsigned NumNewCopies = 3;
 | 
						|
  unsigned NumRemovableCopies = 0;
 | 
						|
 | 
						|
  unsigned OrigSrc0 = MI->getOperand(1).getReg();
 | 
						|
  unsigned OrigSrc1 = MI->getOperand(2).getReg();
 | 
						|
  unsigned Src0 = 0, SubReg0;
 | 
						|
  unsigned Src1 = 0, SubReg1;
 | 
						|
  if (!MRI->def_empty(OrigSrc0)) {
 | 
						|
    MachineRegisterInfo::def_instr_iterator Def =
 | 
						|
        MRI->def_instr_begin(OrigSrc0);
 | 
						|
    assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
 | 
						|
    Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
 | 
						|
    // If the source was from a copy, we don't need to insert a new copy.
 | 
						|
    if (Src0)
 | 
						|
      --NumNewCopies;
 | 
						|
    // If there are no other users of the original source, we can delete
 | 
						|
    // that instruction.
 | 
						|
    if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0))
 | 
						|
      ++NumRemovableCopies;
 | 
						|
  }
 | 
						|
  if (!MRI->def_empty(OrigSrc1)) {
 | 
						|
    MachineRegisterInfo::def_instr_iterator Def =
 | 
						|
        MRI->def_instr_begin(OrigSrc1);
 | 
						|
    assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
 | 
						|
    Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
 | 
						|
    if (Src1)
 | 
						|
      --NumNewCopies;
 | 
						|
    // If there are no other users of the original source, we can delete
 | 
						|
    // that instruction.
 | 
						|
    if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1))
 | 
						|
      ++NumRemovableCopies;
 | 
						|
  }
 | 
						|
 | 
						|
  // If any of the uses of the original instructions is a cross class copy,
 | 
						|
  // that's a copy that will be removable if we transform. Likewise, if
 | 
						|
  // any of the uses is a transformable instruction, it's likely the tranforms
 | 
						|
  // will chain, enabling us to save a copy there, too. This is an aggressive
 | 
						|
  // heuristic that approximates the graph based cost analysis described above.
 | 
						|
  unsigned Dst = MI->getOperand(0).getReg();
 | 
						|
  bool AllUsesAreCopies = true;
 | 
						|
  for (MachineRegisterInfo::use_instr_nodbg_iterator
 | 
						|
           Use = MRI->use_instr_nodbg_begin(Dst),
 | 
						|
           E = MRI->use_instr_nodbg_end();
 | 
						|
       Use != E; ++Use) {
 | 
						|
    unsigned SubReg;
 | 
						|
    if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(&*Use))
 | 
						|
      ++NumRemovableCopies;
 | 
						|
    // If the use is an INSERT_SUBREG, that's still something that can
 | 
						|
    // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
 | 
						|
    // preferable to have it use the FPR64 in most cases, as if the source
 | 
						|
    // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
 | 
						|
    // Ditto for a lane insert.
 | 
						|
    else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
 | 
						|
             Use->getOpcode() == AArch64::INSvi64gpr)
 | 
						|
      ;
 | 
						|
    else
 | 
						|
      AllUsesAreCopies = false;
 | 
						|
  }
 | 
						|
  // If all of the uses of the original destination register are copies to
 | 
						|
  // FPR64, then we won't end up having a new copy back to GPR64 either.
 | 
						|
  if (AllUsesAreCopies)
 | 
						|
    --NumNewCopies;
 | 
						|
 | 
						|
  // If a transform will not increase the number of cross-class copies required,
 | 
						|
  // return true.
 | 
						|
  if (NumNewCopies <= NumRemovableCopies)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Finally, even if we otherwise wouldn't transform, check if we're forcing
 | 
						|
  // transformation of everything.
 | 
						|
  return TransformAll;
 | 
						|
}
 | 
						|
 | 
						|
static MachineInstr *insertCopy(const AArch64InstrInfo *TII, MachineInstr *MI,
 | 
						|
                                unsigned Dst, unsigned Src, bool IsKill) {
 | 
						|
  MachineInstrBuilder MIB =
 | 
						|
      BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AArch64::COPY),
 | 
						|
              Dst)
 | 
						|
          .addReg(Src, getKillRegState(IsKill));
 | 
						|
  DEBUG(dbgs() << "    adding copy: " << *MIB);
 | 
						|
  ++NumCopiesInserted;
 | 
						|
  return MIB;
 | 
						|
}
 | 
						|
 | 
						|
// transformInstruction - Perform the transformation of an instruction
 | 
						|
// to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
 | 
						|
// to be the correct register class, minimizing cross-class copies.
 | 
						|
void AArch64AdvSIMDScalar::transformInstruction(MachineInstr *MI) {
 | 
						|
  DEBUG(dbgs() << "Scalar transform: " << *MI);
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  int OldOpc = MI->getOpcode();
 | 
						|
  int NewOpc = getTransformOpcode(OldOpc);
 | 
						|
  assert(OldOpc != NewOpc && "transform an instruction to itself?!");
 | 
						|
 | 
						|
  // Check if we need a copy for the source registers.
 | 
						|
  unsigned OrigSrc0 = MI->getOperand(1).getReg();
 | 
						|
  unsigned OrigSrc1 = MI->getOperand(2).getReg();
 | 
						|
  unsigned Src0 = 0, SubReg0;
 | 
						|
  unsigned Src1 = 0, SubReg1;
 | 
						|
  if (!MRI->def_empty(OrigSrc0)) {
 | 
						|
    MachineRegisterInfo::def_instr_iterator Def =
 | 
						|
        MRI->def_instr_begin(OrigSrc0);
 | 
						|
    assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
 | 
						|
    Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
 | 
						|
    // If there are no other users of the original source, we can delete
 | 
						|
    // that instruction.
 | 
						|
    if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) {
 | 
						|
      assert(Src0 && "Can't delete copy w/o a valid original source!");
 | 
						|
      Def->eraseFromParent();
 | 
						|
      ++NumCopiesDeleted;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!MRI->def_empty(OrigSrc1)) {
 | 
						|
    MachineRegisterInfo::def_instr_iterator Def =
 | 
						|
        MRI->def_instr_begin(OrigSrc1);
 | 
						|
    assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
 | 
						|
    Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
 | 
						|
    // If there are no other users of the original source, we can delete
 | 
						|
    // that instruction.
 | 
						|
    if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) {
 | 
						|
      assert(Src1 && "Can't delete copy w/o a valid original source!");
 | 
						|
      Def->eraseFromParent();
 | 
						|
      ++NumCopiesDeleted;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If we weren't able to reference the original source directly, create a
 | 
						|
  // copy.
 | 
						|
  if (!Src0) {
 | 
						|
    SubReg0 = 0;
 | 
						|
    Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
 | 
						|
    insertCopy(TII, MI, Src0, OrigSrc0, true);
 | 
						|
  }
 | 
						|
  if (!Src1) {
 | 
						|
    SubReg1 = 0;
 | 
						|
    Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
 | 
						|
    insertCopy(TII, MI, Src1, OrigSrc1, true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a vreg for the destination.
 | 
						|
  // FIXME: No need to do this if the ultimate user expects an FPR64.
 | 
						|
  // Check for that and avoid the copy if possible.
 | 
						|
  unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
 | 
						|
 | 
						|
  // For now, all of the new instructions have the same simple three-register
 | 
						|
  // form, so no need to special case based on what instruction we're
 | 
						|
  // building.
 | 
						|
  BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(NewOpc), Dst)
 | 
						|
      .addReg(Src0, getKillRegState(true), SubReg0)
 | 
						|
      .addReg(Src1, getKillRegState(true), SubReg1);
 | 
						|
 | 
						|
  // Now copy the result back out to a GPR.
 | 
						|
  // FIXME: Try to avoid this if all uses could actually just use the FPR64
 | 
						|
  // directly.
 | 
						|
  insertCopy(TII, MI, MI->getOperand(0).getReg(), Dst, true);
 | 
						|
 | 
						|
  // Erase the old instruction.
 | 
						|
  MI->eraseFromParent();
 | 
						|
 | 
						|
  ++NumScalarInsnsUsed;
 | 
						|
}
 | 
						|
 | 
						|
// processMachineBasicBlock - Main optimzation loop.
 | 
						|
bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
 | 
						|
    MachineInstr *MI = I;
 | 
						|
    ++I;
 | 
						|
    if (isProfitableToTransform(MI)) {
 | 
						|
      transformInstruction(MI);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// runOnMachineFunction - Pass entry point from PassManager.
 | 
						|
bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  bool Changed = false;
 | 
						|
  DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
 | 
						|
 | 
						|
  const TargetMachine &TM = mf.getTarget();
 | 
						|
  MRI = &mf.getRegInfo();
 | 
						|
  TII = static_cast<const AArch64InstrInfo *>(
 | 
						|
      TM.getSubtargetImpl()->getInstrInfo());
 | 
						|
 | 
						|
  // Just check things on a one-block-at-a-time basis.
 | 
						|
  for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
 | 
						|
    if (processMachineBasicBlock(I))
 | 
						|
      Changed = true;
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
 | 
						|
// to add the pass to the PassManager.
 | 
						|
FunctionPass *llvm::createAArch64AdvSIMDScalar() {
 | 
						|
  return new AArch64AdvSIMDScalar();
 | 
						|
}
 |