forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2690 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2690 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Sema/SemaDiagnostic.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Support/CrashRecoveryContext.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
 | |
| /// For a class hierarchy like
 | |
| ///
 | |
| /// class A { };
 | |
| /// class B : A { };
 | |
| /// class C : A, B { };
 | |
| ///
 | |
| /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
 | |
| /// instances, one for B and two for A.
 | |
| ///
 | |
| /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
 | |
| struct BaseSubobjectInfo {
 | |
|   /// Class - The class for this base info.
 | |
|   const CXXRecordDecl *Class;
 | |
| 
 | |
|   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
 | |
|   bool IsVirtual;
 | |
| 
 | |
|   /// Bases - Information about the base subobjects.
 | |
|   SmallVector<BaseSubobjectInfo*, 4> Bases;
 | |
| 
 | |
|   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
 | |
|   /// of this base info (if one exists).
 | |
|   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
 | |
| 
 | |
|   // FIXME: Document.
 | |
|   const BaseSubobjectInfo *Derived;
 | |
| };
 | |
| 
 | |
| /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
 | |
| /// offsets while laying out a C++ class.
 | |
| class EmptySubobjectMap {
 | |
|   const ASTContext &Context;
 | |
|   uint64_t CharWidth;
 | |
|   
 | |
|   /// Class - The class whose empty entries we're keeping track of.
 | |
|   const CXXRecordDecl *Class;
 | |
| 
 | |
|   /// EmptyClassOffsets - A map from offsets to empty record decls.
 | |
|   typedef SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
 | |
|   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
 | |
|   EmptyClassOffsetsMapTy EmptyClassOffsets;
 | |
|   
 | |
|   /// MaxEmptyClassOffset - The highest offset known to contain an empty
 | |
|   /// base subobject.
 | |
|   CharUnits MaxEmptyClassOffset;
 | |
|   
 | |
|   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
 | |
|   /// member subobject that is empty.
 | |
|   void ComputeEmptySubobjectSizes();
 | |
|   
 | |
|   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
 | |
|   
 | |
|   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
 | |
|                                  CharUnits Offset, bool PlacingEmptyBase);
 | |
|   
 | |
|   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 
 | |
|                                   const CXXRecordDecl *Class,
 | |
|                                   CharUnits Offset);
 | |
|   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
 | |
|   
 | |
|   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
 | |
|   /// subobjects beyond the given offset.
 | |
|   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
 | |
|     return Offset <= MaxEmptyClassOffset;
 | |
|   }
 | |
| 
 | |
|   CharUnits 
 | |
|   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
 | |
|     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
 | |
|     assert(FieldOffset % CharWidth == 0 && 
 | |
|            "Field offset not at char boundary!");
 | |
| 
 | |
|     return Context.toCharUnitsFromBits(FieldOffset);
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
 | |
|                                  CharUnits Offset) const;
 | |
| 
 | |
|   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
 | |
|                                      CharUnits Offset);
 | |
| 
 | |
|   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 
 | |
|                                       const CXXRecordDecl *Class,
 | |
|                                       CharUnits Offset) const;
 | |
|   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
 | |
|                                       CharUnits Offset) const;
 | |
| 
 | |
| public:
 | |
|   /// This holds the size of the largest empty subobject (either a base
 | |
|   /// or a member). Will be zero if the record being built doesn't contain
 | |
|   /// any empty classes.
 | |
|   CharUnits SizeOfLargestEmptySubobject;
 | |
| 
 | |
|   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
 | |
|   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
 | |
|       ComputeEmptySubobjectSizes();
 | |
|   }
 | |
| 
 | |
|   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
 | |
|   /// at the given offset.
 | |
|   /// Returns false if placing the record will result in two components
 | |
|   /// (direct or indirect) of the same type having the same offset.
 | |
|   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
 | |
|                             CharUnits Offset);
 | |
| 
 | |
|   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
 | |
|   /// offset.
 | |
|   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
 | |
| };
 | |
| 
 | |
| void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
 | |
|   // Check the bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
 | |
|        E = Class->bases_end(); I != E; ++I) {
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits EmptySize;
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
 | |
|     if (BaseDecl->isEmpty()) {
 | |
|       // If the class decl is empty, get its size.
 | |
|       EmptySize = Layout.getSize();
 | |
|     } else {
 | |
|       // Otherwise, we get the largest empty subobject for the decl.
 | |
|       EmptySize = Layout.getSizeOfLargestEmptySubobject();
 | |
|     }
 | |
| 
 | |
|     if (EmptySize > SizeOfLargestEmptySubobject)
 | |
|       SizeOfLargestEmptySubobject = EmptySize;
 | |
|   }
 | |
| 
 | |
|   // Check the fields.
 | |
|   for (CXXRecordDecl::field_iterator I = Class->field_begin(),
 | |
|        E = Class->field_end(); I != E; ++I) {
 | |
| 
 | |
|     const RecordType *RT =
 | |
|       Context.getBaseElementType(I->getType())->getAs<RecordType>();
 | |
| 
 | |
|     // We only care about record types.
 | |
|     if (!RT)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits EmptySize;
 | |
|     const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
 | |
|     if (MemberDecl->isEmpty()) {
 | |
|       // If the class decl is empty, get its size.
 | |
|       EmptySize = Layout.getSize();
 | |
|     } else {
 | |
|       // Otherwise, we get the largest empty subobject for the decl.
 | |
|       EmptySize = Layout.getSizeOfLargestEmptySubobject();
 | |
|     }
 | |
| 
 | |
|     if (EmptySize > SizeOfLargestEmptySubobject)
 | |
|       SizeOfLargestEmptySubobject = EmptySize;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 
 | |
|                                              CharUnits Offset) const {
 | |
|   // We only need to check empty bases.
 | |
|   if (!RD->isEmpty())
 | |
|     return true;
 | |
| 
 | |
|   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
 | |
|   if (I == EmptyClassOffsets.end())
 | |
|     return true;
 | |
|   
 | |
|   const ClassVectorTy& Classes = I->second;
 | |
|   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
 | |
|     return true;
 | |
| 
 | |
|   // There is already an empty class of the same type at this offset.
 | |
|   return false;
 | |
| }
 | |
|   
 | |
| void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, 
 | |
|                                              CharUnits Offset) {
 | |
|   // We only care about empty bases.
 | |
|   if (!RD->isEmpty())
 | |
|     return;
 | |
| 
 | |
|   // If we have empty structures inside a union, we can assign both
 | |
|   // the same offset. Just avoid pushing them twice in the list.
 | |
|   ClassVectorTy& Classes = EmptyClassOffsets[Offset];
 | |
|   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
 | |
|     return;
 | |
|   
 | |
|   Classes.push_back(RD);
 | |
|   
 | |
|   // Update the empty class offset.
 | |
|   if (Offset > MaxEmptyClassOffset)
 | |
|     MaxEmptyClassOffset = Offset;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
 | |
|                                                  CharUnits Offset) {
 | |
|   // We don't have to keep looking past the maximum offset that's known to
 | |
|   // contain an empty class.
 | |
|   if (!AnyEmptySubobjectsBeyondOffset(Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
 | |
|     return false;
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
 | |
|   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
 | |
|     BaseSubobjectInfo* Base = Info->Bases[I];
 | |
|     if (Base->IsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
 | |
| 
 | |
|     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (Info->PrimaryVirtualBaseInfo) {
 | |
|     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
 | |
| 
 | |
|     if (Info == PrimaryVirtualBaseInfo->Derived) {
 | |
|       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 
 | |
|        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
 | |
|     if (I->isBitField())
 | |
|       continue;
 | |
|   
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
|     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 
 | |
|                                                   CharUnits Offset,
 | |
|                                                   bool PlacingEmptyBase) {
 | |
|   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
 | |
|     // We know that the only empty subobjects that can conflict with empty
 | |
|     // subobject of non-empty bases, are empty bases that can be placed at
 | |
|     // offset zero. Because of this, we only need to keep track of empty base 
 | |
|     // subobjects with offsets less than the size of the largest empty
 | |
|     // subobject for our class.    
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   AddSubobjectAtOffset(Info->Class, Offset);
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
 | |
|   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
 | |
|     BaseSubobjectInfo* Base = Info->Bases[I];
 | |
|     if (Base->IsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
 | |
|     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
 | |
|   }
 | |
| 
 | |
|   if (Info->PrimaryVirtualBaseInfo) {
 | |
|     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
 | |
|     
 | |
|     if (Info == PrimaryVirtualBaseInfo->Derived)
 | |
|       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
 | |
|                                 PlacingEmptyBase);
 | |
|   }
 | |
| 
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 
 | |
|        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
 | |
|     if (I->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
|     UpdateEmptyFieldSubobjects(*I, FieldOffset);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
 | |
|                                              CharUnits Offset) {
 | |
|   // If we know this class doesn't have any empty subobjects we don't need to
 | |
|   // bother checking.
 | |
|   if (SizeOfLargestEmptySubobject.isZero())
 | |
|     return true;
 | |
| 
 | |
|   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
 | |
|     return false;
 | |
| 
 | |
|   // We are able to place the base at this offset. Make sure to update the
 | |
|   // empty base subobject map.
 | |
|   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 
 | |
|                                                   const CXXRecordDecl *Class,
 | |
|                                                   CharUnits Offset) const {
 | |
|   // We don't have to keep looking past the maximum offset that's known to
 | |
|   // contain an empty class.
 | |
|   if (!AnyEmptySubobjectsBeyondOffset(Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (!CanPlaceSubobjectAtOffset(RD, Offset))
 | |
|     return false;
 | |
|   
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     if (I->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
 | |
|     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (RD == Class) {
 | |
|     // This is the most derived class, traverse virtual bases as well.
 | |
|     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|          E = RD->vbases_end(); I != E; ++I) {
 | |
|       const CXXRecordDecl *VBaseDecl =
 | |
|         cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
|       
 | |
|       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
 | |
|       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | |
|        I != E; ++I, ++FieldNo) {
 | |
|     if (I->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
|     
 | |
|     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
 | |
|                                                   CharUnits Offset) const {
 | |
|   // We don't have to keep looking past the maximum offset that's known to
 | |
|   // contain an empty class.
 | |
|   if (!AnyEmptySubobjectsBeyondOffset(Offset))
 | |
|     return true;
 | |
|   
 | |
|   QualType T = FD->getType();
 | |
|   if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
 | |
|   }
 | |
| 
 | |
|   // If we have an array type we need to look at every element.
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
 | |
|     QualType ElemTy = Context.getBaseElementType(AT);
 | |
|     const RecordType *RT = ElemTy->getAs<RecordType>();
 | |
|     if (!RT)
 | |
|       return true;
 | |
|   
 | |
|     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
 | |
|     CharUnits ElementOffset = Offset;
 | |
|     for (uint64_t I = 0; I != NumElements; ++I) {
 | |
|       // We don't have to keep looking past the maximum offset that's known to
 | |
|       // contain an empty class.
 | |
|       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
 | |
|         return true;
 | |
|       
 | |
|       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
 | |
|         return false;
 | |
| 
 | |
|       ElementOffset += Layout.getSize();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, 
 | |
|                                          CharUnits Offset) {
 | |
|   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
 | |
|     return false;
 | |
|   
 | |
|   // We are able to place the member variable at this offset.
 | |
|   // Make sure to update the empty base subobject map.
 | |
|   UpdateEmptyFieldSubobjects(FD, Offset);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 
 | |
|                                                    const CXXRecordDecl *Class,
 | |
|                                                    CharUnits Offset) {
 | |
|   // We know that the only empty subobjects that can conflict with empty
 | |
|   // field subobjects are subobjects of empty bases that can be placed at offset
 | |
|   // zero. Because of this, we only need to keep track of empty field 
 | |
|   // subobjects with offsets less than the size of the largest empty
 | |
|   // subobject for our class.
 | |
|   if (Offset >= SizeOfLargestEmptySubobject)
 | |
|     return;
 | |
| 
 | |
|   AddSubobjectAtOffset(RD, Offset);
 | |
| 
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     if (I->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
 | |
|     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
 | |
|   }
 | |
| 
 | |
|   if (RD == Class) {
 | |
|     // This is the most derived class, traverse virtual bases as well.
 | |
|     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|          E = RD->vbases_end(); I != E; ++I) {
 | |
|       const CXXRecordDecl *VBaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
|       
 | |
|       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
 | |
|       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | |
|        I != E; ++I, ++FieldNo) {
 | |
|     if (I->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
| 
 | |
|     UpdateEmptyFieldSubobjects(*I, FieldOffset);
 | |
|   }
 | |
| }
 | |
|   
 | |
| void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
 | |
|                                                    CharUnits Offset) {
 | |
|   QualType T = FD->getType();
 | |
|   if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     UpdateEmptyFieldSubobjects(RD, RD, Offset);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we have an array type we need to update every element.
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
 | |
|     QualType ElemTy = Context.getBaseElementType(AT);
 | |
|     const RecordType *RT = ElemTy->getAs<RecordType>();
 | |
|     if (!RT)
 | |
|       return;
 | |
|     
 | |
|     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     
 | |
|     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
 | |
|     CharUnits ElementOffset = Offset;
 | |
|     
 | |
|     for (uint64_t I = 0; I != NumElements; ++I) {
 | |
|       // We know that the only empty subobjects that can conflict with empty
 | |
|       // field subobjects are subobjects of empty bases that can be placed at 
 | |
|       // offset zero. Because of this, we only need to keep track of empty field
 | |
|       // subobjects with offsets less than the size of the largest empty
 | |
|       // subobject for our class.
 | |
|       if (ElementOffset >= SizeOfLargestEmptySubobject)
 | |
|         return;
 | |
| 
 | |
|       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
 | |
|       ElementOffset += Layout.getSize();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
 | |
| 
 | |
| class RecordLayoutBuilder {
 | |
| protected:
 | |
|   // FIXME: Remove this and make the appropriate fields public.
 | |
|   friend class clang::ASTContext;
 | |
| 
 | |
|   const ASTContext &Context;
 | |
| 
 | |
|   EmptySubobjectMap *EmptySubobjects;
 | |
| 
 | |
|   /// Size - The current size of the record layout.
 | |
|   uint64_t Size;
 | |
| 
 | |
|   /// Alignment - The current alignment of the record layout.
 | |
|   CharUnits Alignment;
 | |
| 
 | |
|   /// \brief The alignment if attribute packed is not used.
 | |
|   CharUnits UnpackedAlignment;
 | |
| 
 | |
|   SmallVector<uint64_t, 16> FieldOffsets;
 | |
| 
 | |
|   /// \brief Whether the external AST source has provided a layout for this
 | |
|   /// record.
 | |
|   unsigned ExternalLayout : 1;
 | |
| 
 | |
|   /// \brief Whether we need to infer alignment, even when we have an 
 | |
|   /// externally-provided layout.
 | |
|   unsigned InferAlignment : 1;
 | |
|   
 | |
|   /// Packed - Whether the record is packed or not.
 | |
|   unsigned Packed : 1;
 | |
| 
 | |
|   unsigned IsUnion : 1;
 | |
| 
 | |
|   unsigned IsMac68kAlign : 1;
 | |
|   
 | |
|   unsigned IsMsStruct : 1;
 | |
| 
 | |
|   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
 | |
|   /// this contains the number of bits in the last unit that can be used for
 | |
|   /// an adjacent bitfield if necessary.  The unit in question is usually
 | |
|   /// a byte, but larger units are used if IsMsStruct.
 | |
|   unsigned char UnfilledBitsInLastUnit;
 | |
|   /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
 | |
|   /// of the previous field if it was a bitfield.
 | |
|   unsigned char LastBitfieldTypeSize;
 | |
| 
 | |
|   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
 | |
|   /// #pragma pack.
 | |
|   CharUnits MaxFieldAlignment;
 | |
| 
 | |
|   /// DataSize - The data size of the record being laid out.
 | |
|   uint64_t DataSize;
 | |
| 
 | |
|   CharUnits NonVirtualSize;
 | |
|   CharUnits NonVirtualAlignment;
 | |
| 
 | |
|   /// PrimaryBase - the primary base class (if one exists) of the class
 | |
|   /// we're laying out.
 | |
|   const CXXRecordDecl *PrimaryBase;
 | |
| 
 | |
|   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
 | |
|   /// out is virtual.
 | |
|   bool PrimaryBaseIsVirtual;
 | |
| 
 | |
|   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
 | |
|   /// pointer, as opposed to inheriting one from a primary base class.
 | |
|   bool HasOwnVFPtr;
 | |
| 
 | |
|   /// VBPtrOffset - Virtual base table offset. Only for MS layout.
 | |
|   CharUnits VBPtrOffset;
 | |
| 
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
 | |
| 
 | |
|   /// Bases - base classes and their offsets in the record.
 | |
|   BaseOffsetsMapTy Bases;
 | |
| 
 | |
|   // VBases - virtual base classes and their offsets in the record.
 | |
|   ASTRecordLayout::VBaseOffsetsMapTy VBases;
 | |
| 
 | |
|   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
 | |
|   /// primary base classes for some other direct or indirect base class.
 | |
|   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
 | |
| 
 | |
|   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
 | |
|   /// inheritance graph order. Used for determining the primary base class.
 | |
|   const CXXRecordDecl *FirstNearlyEmptyVBase;
 | |
| 
 | |
|   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
 | |
|   /// avoid visiting virtual bases more than once.
 | |
|   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
 | |
| 
 | |
|   /// \brief Externally-provided size.
 | |
|   uint64_t ExternalSize;
 | |
|   
 | |
|   /// \brief Externally-provided alignment.
 | |
|   uint64_t ExternalAlign;
 | |
|   
 | |
|   /// \brief Externally-provided field offsets.
 | |
|   llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
 | |
| 
 | |
|   /// \brief Externally-provided direct, non-virtual base offsets.
 | |
|   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
 | |
| 
 | |
|   /// \brief Externally-provided virtual base offsets.
 | |
|   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
 | |
| 
 | |
|   RecordLayoutBuilder(const ASTContext &Context,
 | |
|                       EmptySubobjectMap *EmptySubobjects)
 | |
|     : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), 
 | |
|       Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
 | |
|       ExternalLayout(false), InferAlignment(false), 
 | |
|       Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
 | |
|       UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
 | |
|       MaxFieldAlignment(CharUnits::Zero()), 
 | |
|       DataSize(0), NonVirtualSize(CharUnits::Zero()), 
 | |
|       NonVirtualAlignment(CharUnits::One()), 
 | |
|       PrimaryBase(0), PrimaryBaseIsVirtual(false),
 | |
|       HasOwnVFPtr(false),
 | |
|       VBPtrOffset(CharUnits::fromQuantity(-1)),
 | |
|       FirstNearlyEmptyVBase(0) { }
 | |
| 
 | |
|   /// Reset this RecordLayoutBuilder to a fresh state, using the given
 | |
|   /// alignment as the initial alignment.  This is used for the
 | |
|   /// correct layout of vb-table pointers in MSVC.
 | |
|   void resetWithTargetAlignment(CharUnits TargetAlignment) {
 | |
|     const ASTContext &Context = this->Context;
 | |
|     EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
 | |
|     this->~RecordLayoutBuilder();
 | |
|     new (this) RecordLayoutBuilder(Context, EmptySubobjects);
 | |
|     Alignment = UnpackedAlignment = TargetAlignment;
 | |
|   }
 | |
| 
 | |
|   void Layout(const RecordDecl *D);
 | |
|   void Layout(const CXXRecordDecl *D);
 | |
|   void Layout(const ObjCInterfaceDecl *D);
 | |
| 
 | |
|   void LayoutFields(const RecordDecl *D);
 | |
|   void LayoutField(const FieldDecl *D);
 | |
|   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
 | |
|                           bool FieldPacked, const FieldDecl *D);
 | |
|   void LayoutBitField(const FieldDecl *D);
 | |
| 
 | |
|   TargetCXXABI getCXXABI() const {
 | |
|     return Context.getTargetInfo().getCXXABI();
 | |
|   }
 | |
| 
 | |
|   bool isMicrosoftCXXABI() const {
 | |
|     return getCXXABI().isMicrosoft();
 | |
|   }
 | |
| 
 | |
|   void MSLayoutVirtualBases(const CXXRecordDecl *RD);
 | |
| 
 | |
|   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
 | |
|   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
 | |
|   
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
 | |
|     BaseSubobjectInfoMapTy;
 | |
| 
 | |
|   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
 | |
|   /// of the class we're laying out to their base subobject info.
 | |
|   BaseSubobjectInfoMapTy VirtualBaseInfo;
 | |
|   
 | |
|   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
 | |
|   /// class we're laying out to their base subobject info.
 | |
|   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
 | |
| 
 | |
|   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
 | |
|   /// bases of the given class.
 | |
|   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
 | |
| 
 | |
|   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
 | |
|   /// single class and all of its base classes.
 | |
|   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 
 | |
|                                               bool IsVirtual,
 | |
|                                               BaseSubobjectInfo *Derived);
 | |
| 
 | |
|   /// DeterminePrimaryBase - Determine the primary base of the given class.
 | |
|   void DeterminePrimaryBase(const CXXRecordDecl *RD);
 | |
| 
 | |
|   void SelectPrimaryVBase(const CXXRecordDecl *RD);
 | |
| 
 | |
|   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
 | |
| 
 | |
|   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
 | |
|   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
 | |
|   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
 | |
| 
 | |
|   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
 | |
|   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
 | |
| 
 | |
|   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
 | |
|                                     CharUnits Offset);
 | |
| 
 | |
|   bool needsVFTable(const CXXRecordDecl *RD) const;
 | |
|   bool hasNewVirtualFunction(const CXXRecordDecl *RD,
 | |
|                              bool IgnoreDestructor = false) const;
 | |
|   bool isPossiblePrimaryBase(const CXXRecordDecl *Base) const;
 | |
| 
 | |
|   void computeVtordisps(const CXXRecordDecl *RD, 
 | |
|                         ClassSetTy &VtordispVBases);
 | |
| 
 | |
|   /// LayoutVirtualBases - Lays out all the virtual bases.
 | |
|   void LayoutVirtualBases(const CXXRecordDecl *RD,
 | |
|                           const CXXRecordDecl *MostDerivedClass);
 | |
| 
 | |
|   /// LayoutVirtualBase - Lays out a single virtual base.
 | |
|   void LayoutVirtualBase(const BaseSubobjectInfo *Base, 
 | |
|                          bool IsVtordispNeed = false);
 | |
| 
 | |
|   /// LayoutBase - Will lay out a base and return the offset where it was
 | |
|   /// placed, in chars.
 | |
|   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
 | |
| 
 | |
|   /// InitializeLayout - Initialize record layout for the given record decl.
 | |
|   void InitializeLayout(const Decl *D);
 | |
| 
 | |
|   /// FinishLayout - Finalize record layout. Adjust record size based on the
 | |
|   /// alignment.
 | |
|   void FinishLayout(const NamedDecl *D);
 | |
| 
 | |
|   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
 | |
|   void UpdateAlignment(CharUnits NewAlignment) {
 | |
|     UpdateAlignment(NewAlignment, NewAlignment);
 | |
|   }
 | |
| 
 | |
|   /// \brief Retrieve the externally-supplied field offset for the given
 | |
|   /// field.
 | |
|   ///
 | |
|   /// \param Field The field whose offset is being queried.
 | |
|   /// \param ComputedOffset The offset that we've computed for this field.
 | |
|   uint64_t updateExternalFieldOffset(const FieldDecl *Field, 
 | |
|                                      uint64_t ComputedOffset);
 | |
|   
 | |
|   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
 | |
|                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
 | |
|                           bool isPacked, const FieldDecl *D);
 | |
| 
 | |
|   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
 | |
| 
 | |
|   CharUnits getSize() const { 
 | |
|     assert(Size % Context.getCharWidth() == 0);
 | |
|     return Context.toCharUnitsFromBits(Size); 
 | |
|   }
 | |
|   uint64_t getSizeInBits() const { return Size; }
 | |
| 
 | |
|   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
 | |
|   void setSize(uint64_t NewSize) { Size = NewSize; }
 | |
| 
 | |
|   CharUnits getAligment() const { return Alignment; }
 | |
| 
 | |
|   CharUnits getDataSize() const { 
 | |
|     assert(DataSize % Context.getCharWidth() == 0);
 | |
|     return Context.toCharUnitsFromBits(DataSize); 
 | |
|   }
 | |
|   uint64_t getDataSizeInBits() const { return DataSize; }
 | |
| 
 | |
|   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
 | |
|   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
 | |
| 
 | |
|   RecordLayoutBuilder(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
 | |
|   void operator=(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void
 | |
| RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|          E = RD->bases_end(); I != E; ++I) {
 | |
|     assert(!I->getType()->isDependentType() &&
 | |
|            "Cannot layout class with dependent bases.");
 | |
| 
 | |
|     const CXXRecordDecl *Base =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     // Check if this is a nearly empty virtual base.
 | |
|     if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
 | |
|       // If it's not an indirect primary base, then we've found our primary
 | |
|       // base.
 | |
|       if (!IndirectPrimaryBases.count(Base)) {
 | |
|         PrimaryBase = Base;
 | |
|         PrimaryBaseIsVirtual = true;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Is this the first nearly empty virtual base?
 | |
|       if (!FirstNearlyEmptyVBase)
 | |
|         FirstNearlyEmptyVBase = Base;
 | |
|     }
 | |
| 
 | |
|     SelectPrimaryVBase(Base);
 | |
|     if (PrimaryBase)
 | |
|       return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DeterminePrimaryBase - Determine the primary base of the given class.
 | |
| void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
 | |
|   // If the class isn't dynamic, it won't have a primary base.
 | |
|   if (!RD->isDynamicClass())
 | |
|     return;
 | |
| 
 | |
|   // Compute all the primary virtual bases for all of our direct and
 | |
|   // indirect bases, and record all their primary virtual base classes.
 | |
|   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
 | |
| 
 | |
|   // If the record has a dynamic base class, attempt to choose a primary base
 | |
|   // class. It is the first (in direct base class order) non-virtual dynamic
 | |
|   // base class, if one exists.
 | |
|   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
 | |
|          e = RD->bases_end(); i != e; ++i) {
 | |
|     // Ignore virtual bases.
 | |
|     if (i->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *Base =
 | |
|       cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     if (isPossiblePrimaryBase(Base)) {
 | |
|       // We found it.
 | |
|       PrimaryBase = Base;
 | |
|       PrimaryBaseIsVirtual = false;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The Microsoft ABI doesn't have primary virtual bases.
 | |
|   if (isMicrosoftCXXABI()) {
 | |
|     assert(!PrimaryBase && "Should not get here with a primary base!");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Under the Itanium ABI, if there is no non-virtual primary base class,
 | |
|   // try to compute the primary virtual base.  The primary virtual base is
 | |
|   // the first nearly empty virtual base that is not an indirect primary
 | |
|   // virtual base class, if one exists.
 | |
|   if (RD->getNumVBases() != 0) {
 | |
|     SelectPrimaryVBase(RD);
 | |
|     if (PrimaryBase)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it is the first indirect primary base class, if one exists.
 | |
|   if (FirstNearlyEmptyVBase) {
 | |
|     PrimaryBase = FirstNearlyEmptyVBase;
 | |
|     PrimaryBaseIsVirtual = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(!PrimaryBase && "Should not get here with a primary base!");
 | |
| }
 | |
| 
 | |
| BaseSubobjectInfo *
 | |
| RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 
 | |
|                                               bool IsVirtual,
 | |
|                                               BaseSubobjectInfo *Derived) {
 | |
|   BaseSubobjectInfo *Info;
 | |
|   
 | |
|   if (IsVirtual) {
 | |
|     // Check if we already have info about this virtual base.
 | |
|     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
 | |
|     if (InfoSlot) {
 | |
|       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
 | |
|       return InfoSlot;
 | |
|     }
 | |
| 
 | |
|     // We don't, create it.
 | |
|     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
 | |
|     Info = InfoSlot;
 | |
|   } else {
 | |
|     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
 | |
|   }
 | |
|   
 | |
|   Info->Class = RD;
 | |
|   Info->IsVirtual = IsVirtual;
 | |
|   Info->Derived = 0;
 | |
|   Info->PrimaryVirtualBaseInfo = 0;
 | |
|   
 | |
|   const CXXRecordDecl *PrimaryVirtualBase = 0;
 | |
|   BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
 | |
| 
 | |
|   // Check if this base has a primary virtual base.
 | |
|   if (RD->getNumVBases()) {
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     if (Layout.isPrimaryBaseVirtual()) {
 | |
|       // This base does have a primary virtual base.
 | |
|       PrimaryVirtualBase = Layout.getPrimaryBase();
 | |
|       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
 | |
|       
 | |
|       // Now check if we have base subobject info about this primary base.
 | |
|       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
 | |
|       
 | |
|       if (PrimaryVirtualBaseInfo) {
 | |
|         if (PrimaryVirtualBaseInfo->Derived) {
 | |
|           // We did have info about this primary base, and it turns out that it
 | |
|           // has already been claimed as a primary virtual base for another
 | |
|           // base. 
 | |
|           PrimaryVirtualBase = 0;        
 | |
|         } else {
 | |
|           // We can claim this base as our primary base.
 | |
|           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
 | |
|           PrimaryVirtualBaseInfo->Derived = Info;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now go through all direct bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     bool IsVirtual = I->isVirtual();
 | |
|     
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
|     
 | |
|     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
 | |
|   }
 | |
|   
 | |
|   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
 | |
|     // Traversing the bases must have created the base info for our primary
 | |
|     // virtual base.
 | |
|     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
 | |
|     assert(PrimaryVirtualBaseInfo &&
 | |
|            "Did not create a primary virtual base!");
 | |
|       
 | |
|     // Claim the primary virtual base as our primary virtual base.
 | |
|     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
 | |
|     PrimaryVirtualBaseInfo->Derived = Info;
 | |
|   }
 | |
|   
 | |
|   return Info;
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     bool IsVirtual = I->isVirtual();
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
|     
 | |
|     // Compute the base subobject info for this base.
 | |
|     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
 | |
| 
 | |
|     if (IsVirtual) {
 | |
|       // ComputeBaseInfo has already added this base for us.
 | |
|       assert(VirtualBaseInfo.count(BaseDecl) &&
 | |
|              "Did not add virtual base!");
 | |
|     } else {
 | |
|       // Add the base info to the map of non-virtual bases.
 | |
|       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
 | |
|              "Non-virtual base already exists!");
 | |
|       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
 | |
|   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
 | |
| 
 | |
|   // The maximum field alignment overrides base align.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
 | |
|     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   // Round up the current record size to pointer alignment.
 | |
|   setSize(getSize().RoundUpToAlignment(BaseAlign));
 | |
|   setDataSize(getSize());
 | |
| 
 | |
|   // Update the alignment.
 | |
|   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
 | |
| }
 | |
| 
 | |
| void
 | |
| RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
 | |
|   // Then, determine the primary base class.
 | |
|   DeterminePrimaryBase(RD);
 | |
| 
 | |
|   // Compute base subobject info.
 | |
|   ComputeBaseSubobjectInfo(RD);
 | |
|   
 | |
|   // If we have a primary base class, lay it out.
 | |
|   if (PrimaryBase) {
 | |
|     if (PrimaryBaseIsVirtual) {
 | |
|       // If the primary virtual base was a primary virtual base of some other
 | |
|       // base class we'll have to steal it.
 | |
|       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
 | |
|       PrimaryBaseInfo->Derived = 0;
 | |
|       
 | |
|       // We have a virtual primary base, insert it as an indirect primary base.
 | |
|       IndirectPrimaryBases.insert(PrimaryBase);
 | |
| 
 | |
|       assert(!VisitedVirtualBases.count(PrimaryBase) &&
 | |
|              "vbase already visited!");
 | |
|       VisitedVirtualBases.insert(PrimaryBase);
 | |
| 
 | |
|       LayoutVirtualBase(PrimaryBaseInfo);
 | |
|     } else {
 | |
|       BaseSubobjectInfo *PrimaryBaseInfo = 
 | |
|         NonVirtualBaseInfo.lookup(PrimaryBase);
 | |
|       assert(PrimaryBaseInfo && 
 | |
|              "Did not find base info for non-virtual primary base!");
 | |
| 
 | |
|       LayoutNonVirtualBase(PrimaryBaseInfo);
 | |
|     }
 | |
| 
 | |
|   // If this class needs a vtable/vf-table and didn't get one from a
 | |
|   // primary base, add it in now.
 | |
|   } else if (needsVFTable(RD)) {
 | |
|     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
 | |
|     CharUnits PtrWidth = 
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
 | |
|     CharUnits PtrAlign = 
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
 | |
|     EnsureVTablePointerAlignment(PtrAlign);
 | |
|     HasOwnVFPtr = true;
 | |
|     setSize(getSize() + PtrWidth);
 | |
|     setDataSize(getSize());
 | |
|   }
 | |
| 
 | |
|   bool HasDirectVirtualBases = false;
 | |
|   bool HasNonVirtualBaseWithVBTable = false;
 | |
| 
 | |
|   // Now lay out the non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|          E = RD->bases_end(); I != E; ++I) {
 | |
| 
 | |
|     // Ignore virtual bases, but remember that we saw one.
 | |
|     if (I->isVirtual()) {
 | |
|       HasDirectVirtualBases = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|     // Remember if this base has virtual bases itself.
 | |
|     if (BaseDecl->getNumVBases())
 | |
|       HasNonVirtualBaseWithVBTable = true;
 | |
| 
 | |
|     // Skip the primary base, because we've already laid it out.  The
 | |
|     // !PrimaryBaseIsVirtual check is required because we might have a
 | |
|     // non-virtual base of the same type as a primary virtual base.
 | |
|     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     // Lay out the base.
 | |
|     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
 | |
|     assert(BaseInfo && "Did not find base info for non-virtual base!");
 | |
| 
 | |
|     LayoutNonVirtualBase(BaseInfo);
 | |
|   }
 | |
| 
 | |
|   // In the MS ABI, add the vb-table pointer if we need one, which is
 | |
|   // whenever we have a virtual base and we can't re-use a vb-table
 | |
|   // pointer from a non-virtual base.
 | |
|   if (isMicrosoftCXXABI() &&
 | |
|       HasDirectVirtualBases && !HasNonVirtualBaseWithVBTable) {
 | |
|     CharUnits PtrWidth = 
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
 | |
|     CharUnits PtrAlign = 
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
 | |
| 
 | |
|     // MSVC potentially over-aligns the vb-table pointer by giving it
 | |
|     // the max alignment of all the non-virtual objects in the class.
 | |
|     // This is completely unnecessary, but we're not here to pass
 | |
|     // judgment.
 | |
|     //
 | |
|     // Note that we've only laid out the non-virtual bases, so on the
 | |
|     // first pass Alignment won't be set correctly here, but if the
 | |
|     // vb-table doesn't end up aligned correctly we'll come through
 | |
|     // and redo the layout from scratch with the right alignment.
 | |
|     //
 | |
|     // TODO: Instead of doing this, just lay out the fields as if the
 | |
|     // vb-table were at offset zero, then retroactively bump the field
 | |
|     // offsets up.
 | |
|     PtrAlign = std::max(PtrAlign, Alignment);
 | |
| 
 | |
|     EnsureVTablePointerAlignment(PtrAlign);
 | |
|     VBPtrOffset = getSize();
 | |
|     setSize(getSize() + PtrWidth);
 | |
|     setDataSize(getSize());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
 | |
|   // Layout the base.
 | |
|   CharUnits Offset = LayoutBase(Base);
 | |
| 
 | |
|   // Add its base class offset.
 | |
|   assert(!Bases.count(Base->Class) && "base offset already exists!");
 | |
|   Bases.insert(std::make_pair(Base->Class, Offset));
 | |
| 
 | |
|   AddPrimaryVirtualBaseOffsets(Base, Offset);
 | |
| }
 | |
| 
 | |
| void
 | |
| RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, 
 | |
|                                                   CharUnits Offset) {
 | |
|   // This base isn't interesting, it has no virtual bases.
 | |
|   if (!Info->Class->getNumVBases())
 | |
|     return;
 | |
|   
 | |
|   // First, check if we have a virtual primary base to add offsets for.
 | |
|   if (Info->PrimaryVirtualBaseInfo) {
 | |
|     assert(Info->PrimaryVirtualBaseInfo->IsVirtual && 
 | |
|            "Primary virtual base is not virtual!");
 | |
|     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
 | |
|       // Add the offset.
 | |
|       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && 
 | |
|              "primary vbase offset already exists!");
 | |
|       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
 | |
|                                    ASTRecordLayout::VBaseInfo(Offset, false)));
 | |
| 
 | |
|       // Traverse the primary virtual base.
 | |
|       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now go through all direct non-virtual bases.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
 | |
|   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
 | |
|     const BaseSubobjectInfo *Base = Info->Bases[I];
 | |
|     if (Base->IsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
 | |
|     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// needsVFTable - Return true if this class needs a vtable or vf-table
 | |
| /// when laid out as a base class.  These are treated the same because
 | |
| /// they're both always laid out at offset zero.
 | |
| ///
 | |
| /// This function assumes that the class has no primary base.
 | |
| bool RecordLayoutBuilder::needsVFTable(const CXXRecordDecl *RD) const {
 | |
|   assert(!PrimaryBase);
 | |
| 
 | |
|   // In the Itanium ABI, every dynamic class needs a vtable: even if
 | |
|   // this class has no virtual functions as a base class (i.e. it's
 | |
|   // non-polymorphic or only has virtual functions from virtual
 | |
|   // bases),x it still needs a vtable to locate its virtual bases.
 | |
|   if (!isMicrosoftCXXABI())
 | |
|     return RD->isDynamicClass();
 | |
| 
 | |
|   // In the MS ABI, we need a vfptr if the class has virtual functions
 | |
|   // other than those declared by its virtual bases.  The AST doesn't
 | |
|   // tell us that directly, and checking manually for virtual
 | |
|   // functions that aren't overrides is expensive, but there are
 | |
|   // some important shortcuts:
 | |
| 
 | |
|   //  - Non-polymorphic classes have no virtual functions at all.
 | |
|   if (!RD->isPolymorphic()) return false;
 | |
| 
 | |
|   //  - Polymorphic classes with no virtual bases must either declare
 | |
|   //    virtual functions directly or inherit them, but in the latter
 | |
|   //    case we would have a primary base.
 | |
|   if (RD->getNumVBases() == 0) return true;
 | |
| 
 | |
|   return hasNewVirtualFunction(RD);
 | |
| }
 | |
| 
 | |
| /// Does the given class inherit non-virtually from any of the classes
 | |
| /// in the given set?
 | |
| static bool hasNonVirtualBaseInSet(const CXXRecordDecl *RD, 
 | |
|                                    const ClassSetTy &set) {
 | |
|   for (CXXRecordDecl::base_class_const_iterator
 | |
|          I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
 | |
|     // Ignore virtual links.
 | |
|     if (I->isVirtual()) continue;
 | |
| 
 | |
|     // Check whether the set contains the base.
 | |
|     const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
 | |
|     if (set.count(base))
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise, recurse and propagate.
 | |
|     if (hasNonVirtualBaseInSet(base, set))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Does the given method (B::foo()) already override a method (A::foo())
 | |
| /// such that A requires a vtordisp in B?  If so, we don't need to add a
 | |
| /// new vtordisp for B in a yet-more-derived class C providing C::foo().
 | |
| static bool overridesMethodRequiringVtorDisp(const ASTContext &Context,
 | |
|                                              const CXXMethodDecl *M) {
 | |
|   CXXMethodDecl::method_iterator
 | |
|     I = M->begin_overridden_methods(), E = M->end_overridden_methods();
 | |
|   if (I == E) return false;
 | |
| 
 | |
|   const ASTRecordLayout::VBaseOffsetsMapTy &offsets =
 | |
|     Context.getASTRecordLayout(M->getParent()).getVBaseOffsetsMap();
 | |
|   do {
 | |
|     const CXXMethodDecl *overridden = *I;
 | |
| 
 | |
|     // If the overridden method's class isn't recognized as a virtual
 | |
|     // base in the derived class, ignore it.
 | |
|     ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
 | |
|       it = offsets.find(overridden->getParent());
 | |
|     if (it == offsets.end()) continue;
 | |
| 
 | |
|     // Otherwise, check if the overridden method's class needs a vtordisp.
 | |
|     if (it->second.hasVtorDisp()) return true;
 | |
| 
 | |
|   } while (++I != E);
 | |
|   return false;
 | |
| }                                             
 | |
| 
 | |
| /// In the Microsoft ABI, decide which of the virtual bases require a
 | |
| /// vtordisp field.
 | |
| void RecordLayoutBuilder::computeVtordisps(const CXXRecordDecl *RD,
 | |
|                                            ClassSetTy &vtordispVBases) {
 | |
|   // Bail out if we have no virtual bases.
 | |
|   assert(RD->getNumVBases());
 | |
| 
 | |
|   // Build up the set of virtual bases that we haven't decided yet.
 | |
|   ClassSetTy undecidedVBases;
 | |
|   for (CXXRecordDecl::base_class_const_iterator
 | |
|          I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
 | |
|     const CXXRecordDecl *vbase = I->getType()->getAsCXXRecordDecl();
 | |
|     undecidedVBases.insert(vbase);
 | |
|   }
 | |
|   assert(!undecidedVBases.empty());
 | |
| 
 | |
|   // A virtual base requires a vtordisp field in a derived class if it
 | |
|   // requires a vtordisp field in a base class.  Walk all the direct
 | |
|   // bases and collect this information.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
 | |
|     const ASTRecordLayout &baseLayout = Context.getASTRecordLayout(base);
 | |
| 
 | |
|     // Iterate over the set of virtual bases provided by this class.
 | |
|     for (ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
 | |
|            VI = baseLayout.getVBaseOffsetsMap().begin(),
 | |
|            VE = baseLayout.getVBaseOffsetsMap().end(); VI != VE; ++VI) {
 | |
|       // If it doesn't need a vtordisp in this base, ignore it.
 | |
|       if (!VI->second.hasVtorDisp()) continue;
 | |
| 
 | |
|       // If we've already seen it and decided it needs a vtordisp, ignore it.
 | |
|       if (!undecidedVBases.erase(VI->first)) 
 | |
|         continue;
 | |
| 
 | |
|       // Add it.
 | |
|       vtordispVBases.insert(VI->first);
 | |
| 
 | |
|       // Quit as soon as we've decided everything.
 | |
|       if (undecidedVBases.empty()) 
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, we have virtual bases that we haven't yet decided about.  A
 | |
|   // virtual base requires a vtordisp if any the non-destructor
 | |
|   // virtual methods declared in this class directly override a method
 | |
|   // provided by that virtual base.  (If so, we need to emit a thunk
 | |
|   // for that method, to be used in the construction vftable, which
 | |
|   // applies an additional 'vtordisp' this-adjustment.)
 | |
| 
 | |
|   // Collect the set of bases directly overridden by any method in this class.
 | |
|   // It's possible that some of these classes won't be virtual bases, or won't be
 | |
|   // provided by virtual bases, or won't be virtual bases in the overridden
 | |
|   // instance but are virtual bases elsewhere.  Only the last matters for what
 | |
|   // we're doing, and we can ignore those:  if we don't directly override
 | |
|   // a method provided by a virtual copy of a base class, but we do directly
 | |
|   // override a method provided by a non-virtual copy of that base class,
 | |
|   // then we must indirectly override the method provided by the virtual base,
 | |
|   // and so we should already have collected it in the loop above.
 | |
|   ClassSetTy overriddenBases;
 | |
|   for (CXXRecordDecl::method_iterator
 | |
|          M = RD->method_begin(), E = RD->method_end(); M != E; ++M) {
 | |
|     // Ignore non-virtual methods and destructors.
 | |
|     if (isa<CXXDestructorDecl>(*M) || !M->isVirtual())
 | |
|       continue;
 | |
|     
 | |
|     for (CXXMethodDecl::method_iterator I = M->begin_overridden_methods(),
 | |
|           E = M->end_overridden_methods(); I != E; ++I) {
 | |
|       const CXXMethodDecl *overriddenMethod = (*I);
 | |
| 
 | |
|       // Ignore methods that override methods from vbases that require
 | |
|       // require vtordisps.
 | |
|       if (overridesMethodRequiringVtorDisp(Context, overriddenMethod))
 | |
|         continue;
 | |
| 
 | |
|       // As an optimization, check immediately whether we're overriding
 | |
|       // something from the undecided set.
 | |
|       const CXXRecordDecl *overriddenBase = overriddenMethod->getParent();
 | |
|       if (undecidedVBases.erase(overriddenBase)) {
 | |
|         vtordispVBases.insert(overriddenBase);
 | |
|         if (undecidedVBases.empty()) return;
 | |
| 
 | |
|         // We can't 'continue;' here because one of our undecided
 | |
|         // vbases might non-virtually inherit from this base.
 | |
|         // Consider:
 | |
|         //   struct A { virtual void foo(); };
 | |
|         //   struct B : A {};
 | |
|         //   struct C : virtual A, virtual B { virtual void foo(); };
 | |
|         // We need a vtordisp for B here.
 | |
|       }
 | |
| 
 | |
|       // Otherwise, just collect it.
 | |
|       overriddenBases.insert(overriddenBase);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Walk the undecided v-bases and check whether they (non-virtually)
 | |
|   // provide any of the overridden bases.  We don't need to consider
 | |
|   // virtual links because the vtordisp inheres to the layout
 | |
|   // subobject containing the base.
 | |
|   for (ClassSetTy::const_iterator
 | |
|          I = undecidedVBases.begin(), E = undecidedVBases.end(); I != E; ++I) {
 | |
|     if (hasNonVirtualBaseInSet(*I, overriddenBases))
 | |
|       vtordispVBases.insert(*I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hasNewVirtualFunction - Does the given polymorphic class declare a
 | |
| /// virtual function that does not override a method from any of its
 | |
| /// base classes?
 | |
| bool 
 | |
| RecordLayoutBuilder::hasNewVirtualFunction(const CXXRecordDecl *RD, 
 | |
|                                            bool IgnoreDestructor) const {
 | |
|   if (!RD->getNumBases()) 
 | |
|     return true;
 | |
| 
 | |
|   for (CXXRecordDecl::method_iterator method = RD->method_begin();
 | |
|        method != RD->method_end();
 | |
|        ++method) {
 | |
|     if (method->isVirtual() && !method->size_overridden_methods() &&
 | |
|         !(IgnoreDestructor && method->getKind() == Decl::CXXDestructor)) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isPossiblePrimaryBase - Is the given base class an acceptable
 | |
| /// primary base class?
 | |
| bool 
 | |
| RecordLayoutBuilder::isPossiblePrimaryBase(const CXXRecordDecl *base) const {
 | |
|   // In the Itanium ABI, a class can be a primary base class if it has
 | |
|   // a vtable for any reason.
 | |
|   if (!isMicrosoftCXXABI())
 | |
|     return base->isDynamicClass();
 | |
| 
 | |
|   // In the MS ABI, a class can only be a primary base class if it
 | |
|   // provides a vf-table at a static offset.  That means it has to be
 | |
|   // non-virtual base.  The existence of a separate vb-table means
 | |
|   // that it's possible to get virtual functions only from a virtual
 | |
|   // base, which we have to guard against.
 | |
| 
 | |
|   // First off, it has to have virtual functions.
 | |
|   if (!base->isPolymorphic()) return false;
 | |
| 
 | |
|   // If it has no virtual bases, then the vfptr must be at a static offset.
 | |
|   if (!base->getNumVBases()) return true;
 | |
|   
 | |
|   // Otherwise, the necessary information is cached in the layout.
 | |
|   const ASTRecordLayout &layout = Context.getASTRecordLayout(base);
 | |
| 
 | |
|   // If the base has its own vfptr, it can be a primary base.
 | |
|   if (layout.hasOwnVFPtr()) return true;
 | |
| 
 | |
|   // If the base has a primary base class, then it can be a primary base.
 | |
|   if (layout.getPrimaryBase()) return true;
 | |
| 
 | |
|   // Otherwise it can't.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
 | |
|                                         const CXXRecordDecl *MostDerivedClass) {
 | |
|   const CXXRecordDecl *PrimaryBase;
 | |
|   bool PrimaryBaseIsVirtual;
 | |
| 
 | |
|   if (MostDerivedClass == RD) {
 | |
|     PrimaryBase = this->PrimaryBase;
 | |
|     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
 | |
|   } else {
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     PrimaryBase = Layout.getPrimaryBase();
 | |
|     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|          E = RD->bases_end(); I != E; ++I) {
 | |
|     assert(!I->getType()->isDependentType() &&
 | |
|            "Cannot layout class with dependent bases.");
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
 | |
| 
 | |
|     if (I->isVirtual()) {
 | |
|       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
 | |
|         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
 | |
| 
 | |
|         // Only lay out the virtual base if it's not an indirect primary base.
 | |
|         if (!IndirectPrimaryBase) {
 | |
|           // Only visit virtual bases once.
 | |
|           if (!VisitedVirtualBases.insert(BaseDecl))
 | |
|             continue;
 | |
| 
 | |
|           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
 | |
|           assert(BaseInfo && "Did not find virtual base info!");
 | |
|           LayoutVirtualBase(BaseInfo);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!BaseDecl->getNumVBases()) {
 | |
|       // This base isn't interesting since it doesn't have any virtual bases.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     LayoutVirtualBases(BaseDecl, MostDerivedClass);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD) {
 | |
|   if (!RD->getNumVBases())
 | |
|     return;
 | |
| 
 | |
|   ClassSetTy VtordispVBases;
 | |
|   computeVtordisps(RD, VtordispVBases);
 | |
|   
 | |
|   // This is substantially simplified because there are no virtual
 | |
|   // primary bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|        E = RD->vbases_end(); I != E; ++I) {
 | |
|     const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
 | |
|     const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
 | |
|     assert(BaseInfo && "Did not find virtual base info!");
 | |
| 
 | |
|     // If this base requires a vtordisp, add enough space for an int field.
 | |
|     // This is apparently always 32-bits, even on x64.
 | |
|     bool vtordispNeeded = false;
 | |
|     if (VtordispVBases.count(BaseDecl)) {
 | |
|       CharUnits IntSize = 
 | |
|         CharUnits::fromQuantity(Context.getTargetInfo().getIntWidth() / 8);
 | |
| 
 | |
|       setSize(getSize() + IntSize);
 | |
|       setDataSize(getSize());
 | |
|       vtordispNeeded = true;
 | |
|     }
 | |
| 
 | |
|     LayoutVirtualBase(BaseInfo, vtordispNeeded);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base,
 | |
|                                             bool IsVtordispNeed) {
 | |
|   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
 | |
|   
 | |
|   // Layout the base.
 | |
|   CharUnits Offset = LayoutBase(Base);
 | |
| 
 | |
|   // Add its base class offset.
 | |
|   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
 | |
|   VBases.insert(std::make_pair(Base->Class, 
 | |
|                        ASTRecordLayout::VBaseInfo(Offset, IsVtordispNeed)));
 | |
| 
 | |
|   if (!isMicrosoftCXXABI())
 | |
|     AddPrimaryVirtualBaseOffsets(Base, Offset);
 | |
| }
 | |
| 
 | |
| CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
 | |
| 
 | |
|   
 | |
|   CharUnits Offset;
 | |
|   
 | |
|   // Query the external layout to see if it provides an offset.
 | |
|   bool HasExternalLayout = false;
 | |
|   if (ExternalLayout) {
 | |
|     llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
 | |
|     if (Base->IsVirtual) {
 | |
|       Known = ExternalVirtualBaseOffsets.find(Base->Class);
 | |
|       if (Known != ExternalVirtualBaseOffsets.end()) {
 | |
|         Offset = Known->second;
 | |
|         HasExternalLayout = true;
 | |
|       }
 | |
|     } else {
 | |
|       Known = ExternalBaseOffsets.find(Base->Class);
 | |
|       if (Known != ExternalBaseOffsets.end()) {
 | |
|         Offset = Known->second;
 | |
|         HasExternalLayout = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
 | |
|   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
 | |
|  
 | |
|   // If we have an empty base class, try to place it at offset 0.
 | |
|   if (Base->Class->isEmpty() &&
 | |
|       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
 | |
|       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
 | |
|     setSize(std::max(getSize(), Layout.getSize()));
 | |
|     UpdateAlignment(BaseAlign, UnpackedBaseAlign);
 | |
| 
 | |
|     return CharUnits::Zero();
 | |
|   }
 | |
| 
 | |
|   // The maximum field alignment overrides base align.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
 | |
|     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   if (!HasExternalLayout) {
 | |
|     // Round up the current record size to the base's alignment boundary.
 | |
|     Offset = getDataSize().RoundUpToAlignment(BaseAlign);
 | |
| 
 | |
|     // Try to place the base.
 | |
|     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
 | |
|       Offset += BaseAlign;
 | |
|   } else {
 | |
|     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
 | |
|     (void)Allowed;
 | |
|     assert(Allowed && "Base subobject externally placed at overlapping offset");
 | |
| 
 | |
|     if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
 | |
|       // The externally-supplied base offset is before the base offset we
 | |
|       // computed. Assume that the structure is packed.
 | |
|       Alignment = CharUnits::One();
 | |
|       InferAlignment = false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!Base->Class->isEmpty()) {
 | |
|     // Update the data size.
 | |
|     setDataSize(Offset + Layout.getNonVirtualSize());
 | |
| 
 | |
|     setSize(std::max(getSize(), getDataSize()));
 | |
|   } else
 | |
|     setSize(std::max(getSize(), Offset + Layout.getSize()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
 | |
|   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
 | |
|     IsUnion = RD->isUnion();
 | |
|     IsMsStruct = RD->isMsStruct(Context);
 | |
|   }
 | |
| 
 | |
|   Packed = D->hasAttr<PackedAttr>();  
 | |
| 
 | |
|   // Honor the default struct packing maximum alignment flag.
 | |
|   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
 | |
|     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   // mac68k alignment supersedes maximum field alignment and attribute aligned,
 | |
|   // and forces all structures to have 2-byte alignment. The IBM docs on it
 | |
|   // allude to additional (more complicated) semantics, especially with regard
 | |
|   // to bit-fields, but gcc appears not to follow that.
 | |
|   if (D->hasAttr<AlignMac68kAttr>()) {
 | |
|     IsMac68kAlign = true;
 | |
|     MaxFieldAlignment = CharUnits::fromQuantity(2);
 | |
|     Alignment = CharUnits::fromQuantity(2);
 | |
|   } else {
 | |
|     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
 | |
|       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
 | |
| 
 | |
|     if (unsigned MaxAlign = D->getMaxAlignment())
 | |
|       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
 | |
|   }
 | |
|   
 | |
|   // If there is an external AST source, ask it for the various offsets.
 | |
|   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
 | |
|     if (ExternalASTSource *External = Context.getExternalSource()) {
 | |
|       ExternalLayout = External->layoutRecordType(RD, 
 | |
|                                                   ExternalSize,
 | |
|                                                   ExternalAlign,
 | |
|                                                   ExternalFieldOffsets,
 | |
|                                                   ExternalBaseOffsets,
 | |
|                                                   ExternalVirtualBaseOffsets);
 | |
|       
 | |
|       // Update based on external alignment.
 | |
|       if (ExternalLayout) {
 | |
|         if (ExternalAlign > 0) {
 | |
|           Alignment = Context.toCharUnitsFromBits(ExternalAlign);
 | |
|         } else {
 | |
|           // The external source didn't have alignment information; infer it.
 | |
|           InferAlignment = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::Layout(const RecordDecl *D) {
 | |
|   InitializeLayout(D);
 | |
|   LayoutFields(D);
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment of the
 | |
|   // struct itself.
 | |
|   FinishLayout(D);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
 | |
|   InitializeLayout(RD);
 | |
| 
 | |
|   // Lay out the vtable and the non-virtual bases.
 | |
|   LayoutNonVirtualBases(RD);
 | |
| 
 | |
|   LayoutFields(RD);
 | |
| 
 | |
|   NonVirtualSize = Context.toCharUnitsFromBits(
 | |
|         llvm::RoundUpToAlignment(getSizeInBits(), 
 | |
|                                  Context.getTargetInfo().getCharAlign()));
 | |
|   NonVirtualAlignment = Alignment;
 | |
| 
 | |
|   if (isMicrosoftCXXABI()) {
 | |
|     if (NonVirtualSize != NonVirtualSize.RoundUpToAlignment(Alignment)) {
 | |
|     CharUnits AlignMember = 
 | |
|       NonVirtualSize.RoundUpToAlignment(Alignment) - NonVirtualSize;
 | |
| 
 | |
|     setSize(getSize() + AlignMember);
 | |
|     setDataSize(getSize());
 | |
| 
 | |
|     NonVirtualSize = Context.toCharUnitsFromBits(
 | |
|                              llvm::RoundUpToAlignment(getSizeInBits(),
 | |
|                              Context.getTargetInfo().getCharAlign()));
 | |
|     }
 | |
| 
 | |
|     MSLayoutVirtualBases(RD);
 | |
|   } else {
 | |
|     // Lay out the virtual bases and add the primary virtual base offsets.
 | |
|     LayoutVirtualBases(RD, RD);
 | |
|   }
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment
 | |
|   // of the struct itself.
 | |
|   FinishLayout(RD);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that we have base offsets for all bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     if (I->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     assert(Bases.count(BaseDecl) && "Did not find base offset!");
 | |
|   }
 | |
| 
 | |
|   // And all virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|        E = RD->vbases_end(); I != E; ++I) {
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     assert(VBases.count(BaseDecl) && "Did not find base offset!");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
 | |
|   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
 | |
|     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
 | |
| 
 | |
|     UpdateAlignment(SL.getAlignment());
 | |
| 
 | |
|     // We start laying out ivars not at the end of the superclass
 | |
|     // structure, but at the next byte following the last field.
 | |
|     setSize(SL.getDataSize());
 | |
|     setDataSize(getSize());
 | |
|   }
 | |
| 
 | |
|   InitializeLayout(D);
 | |
|   // Layout each ivar sequentially.
 | |
|   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
 | |
|        IVD = IVD->getNextIvar())
 | |
|     LayoutField(IVD);
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment of the
 | |
|   // struct itself.
 | |
|   FinishLayout(D);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
 | |
|   // Layout each field, for now, just sequentially, respecting alignment.  In
 | |
|   // the future, this will need to be tweakable by targets.
 | |
|   for (RecordDecl::field_iterator Field = D->field_begin(),
 | |
|        FieldEnd = D->field_end(); Field != FieldEnd; ++Field)
 | |
|     LayoutField(*Field);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
 | |
|                                              uint64_t TypeSize,
 | |
|                                              bool FieldPacked,
 | |
|                                              const FieldDecl *D) {
 | |
|   assert(Context.getLangOpts().CPlusPlus &&
 | |
|          "Can only have wide bit-fields in C++!");
 | |
| 
 | |
|   // Itanium C++ ABI 2.4:
 | |
|   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
 | |
|   //   sizeof(T')*8 <= n.
 | |
| 
 | |
|   QualType IntegralPODTypes[] = {
 | |
|     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
 | |
|     Context.UnsignedLongTy, Context.UnsignedLongLongTy
 | |
|   };
 | |
| 
 | |
|   QualType Type;
 | |
|   for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
 | |
|        I != E; ++I) {
 | |
|     uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
 | |
| 
 | |
|     if (Size > FieldSize)
 | |
|       break;
 | |
| 
 | |
|     Type = IntegralPODTypes[I];
 | |
|   }
 | |
|   assert(!Type.isNull() && "Did not find a type!");
 | |
| 
 | |
|   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
 | |
| 
 | |
|   // We're not going to use any of the unfilled bits in the last byte.
 | |
|   UnfilledBitsInLastUnit = 0;
 | |
|   LastBitfieldTypeSize = 0;
 | |
| 
 | |
|   uint64_t FieldOffset;
 | |
|   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
 | |
| 
 | |
|   if (IsUnion) {
 | |
|     setDataSize(std::max(getDataSizeInBits(), FieldSize));
 | |
|     FieldOffset = 0;
 | |
|   } else {
 | |
|     // The bitfield is allocated starting at the next offset aligned 
 | |
|     // appropriately for T', with length n bits.
 | |
|     FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(), 
 | |
|                                            Context.toBits(TypeAlign));
 | |
| 
 | |
|     uint64_t NewSizeInBits = FieldOffset + FieldSize;
 | |
| 
 | |
|     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, 
 | |
|                                          Context.getTargetInfo().getCharAlign()));
 | |
|     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
 | |
|   }
 | |
| 
 | |
|   // Place this field at the current location.
 | |
|   FieldOffsets.push_back(FieldOffset);
 | |
| 
 | |
|   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
 | |
|                     Context.toBits(TypeAlign), FieldPacked, D);
 | |
| 
 | |
|   // Update the size.
 | |
|   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(TypeAlign);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
 | |
|   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
 | |
|   uint64_t FieldSize = D->getBitWidthValue(Context);
 | |
|   std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
 | |
|   uint64_t TypeSize = FieldInfo.first;
 | |
|   unsigned FieldAlign = FieldInfo.second;
 | |
| 
 | |
|   if (IsMsStruct) {
 | |
|     // The field alignment for integer types in ms_struct structs is
 | |
|     // always the size.
 | |
|     FieldAlign = TypeSize;
 | |
|     // Ignore zero-length bitfields after non-bitfields in ms_struct structs.
 | |
|     if (!FieldSize && !LastBitfieldTypeSize)
 | |
|       FieldAlign = 1;
 | |
|     // If a bitfield is followed by a bitfield of a different size, don't
 | |
|     // pack the bits together in ms_struct structs.
 | |
|     if (LastBitfieldTypeSize != TypeSize) {
 | |
|       UnfilledBitsInLastUnit = 0;
 | |
|       LastBitfieldTypeSize = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
 | |
|   uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
 | |
| 
 | |
|   bool ZeroLengthBitfield = false;
 | |
|   if (!Context.getTargetInfo().useBitFieldTypeAlignment() &&
 | |
|       Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
 | |
|       FieldSize == 0) {
 | |
|     // The alignment of a zero-length bitfield affects the alignment
 | |
|     // of the next member.  The alignment is the max of the zero 
 | |
|     // length bitfield's alignment and a target specific fixed value.
 | |
|     ZeroLengthBitfield = true;
 | |
|     unsigned ZeroLengthBitfieldBoundary =
 | |
|       Context.getTargetInfo().getZeroLengthBitfieldBoundary();
 | |
|     if (ZeroLengthBitfieldBoundary > FieldAlign)
 | |
|       FieldAlign = ZeroLengthBitfieldBoundary;
 | |
|   }
 | |
| 
 | |
|   if (FieldSize > TypeSize) {
 | |
|     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The align if the field is not packed. This is to check if the attribute
 | |
|   // was unnecessary (-Wpacked).
 | |
|   unsigned UnpackedFieldAlign = FieldAlign;
 | |
|   uint64_t UnpackedFieldOffset = FieldOffset;
 | |
|   if (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield)
 | |
|     UnpackedFieldAlign = 1;
 | |
| 
 | |
|   if (FieldPacked || 
 | |
|       (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield))
 | |
|     FieldAlign = 1;
 | |
|   FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
 | |
|   UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
 | |
| 
 | |
|   // The maximum field alignment overrides the aligned attribute.
 | |
|   if (!MaxFieldAlignment.isZero() && FieldSize != 0) {
 | |
|     unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
 | |
|     FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
 | |
|     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
 | |
|   }
 | |
| 
 | |
|   // ms_struct bitfields always have to start at a round alignment.
 | |
|   if (IsMsStruct && !LastBitfieldTypeSize) {
 | |
|     FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
 | |
|     UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
 | |
|                                                    UnpackedFieldAlign);
 | |
|   }
 | |
| 
 | |
|   // Check if we need to add padding to give the field the correct alignment.
 | |
|   if (FieldSize == 0 || 
 | |
|       (MaxFieldAlignment.isZero() &&
 | |
|        (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize))
 | |
|     FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
 | |
| 
 | |
|   if (FieldSize == 0 ||
 | |
|       (MaxFieldAlignment.isZero() &&
 | |
|        (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
 | |
|     UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
 | |
|                                                    UnpackedFieldAlign);
 | |
| 
 | |
|   // Padding members don't affect overall alignment, unless zero length bitfield
 | |
|   // alignment is enabled.
 | |
|   if (!D->getIdentifier() &&
 | |
|       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
 | |
|       !IsMsStruct)
 | |
|     FieldAlign = UnpackedFieldAlign = 1;
 | |
| 
 | |
|   if (ExternalLayout)
 | |
|     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
 | |
| 
 | |
|   // Place this field at the current location.
 | |
|   FieldOffsets.push_back(FieldOffset);
 | |
| 
 | |
|   if (!ExternalLayout)
 | |
|     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
 | |
|                       UnpackedFieldAlign, FieldPacked, D);
 | |
| 
 | |
|   // Update DataSize to include the last byte containing (part of) the bitfield.
 | |
|   if (IsUnion) {
 | |
|     // FIXME: I think FieldSize should be TypeSize here.
 | |
|     setDataSize(std::max(getDataSizeInBits(), FieldSize));
 | |
|   } else {
 | |
|     if (IsMsStruct && FieldSize) {
 | |
|       // Under ms_struct, a bitfield always takes up space equal to the size
 | |
|       // of the type.  We can't just change the alignment computation on the
 | |
|       // other codepath because of the way this interacts with #pragma pack:
 | |
|       // in a packed struct, we need to allocate misaligned space in the
 | |
|       // struct to hold the bitfield.
 | |
|       if (!UnfilledBitsInLastUnit) {
 | |
|         setDataSize(FieldOffset + TypeSize);
 | |
|         UnfilledBitsInLastUnit = TypeSize - FieldSize;
 | |
|       } else if (UnfilledBitsInLastUnit < FieldSize) {
 | |
|         setDataSize(getDataSizeInBits() + TypeSize);
 | |
|         UnfilledBitsInLastUnit = TypeSize - FieldSize;
 | |
|       } else {
 | |
|         UnfilledBitsInLastUnit -= FieldSize;
 | |
|       }
 | |
|       LastBitfieldTypeSize = TypeSize;
 | |
|     } else {
 | |
|       uint64_t NewSizeInBits = FieldOffset + FieldSize;
 | |
|       uint64_t BitfieldAlignment = Context.getTargetInfo().getCharAlign();
 | |
|       setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, BitfieldAlignment));
 | |
|       UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
 | |
|       LastBitfieldTypeSize = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update the size.
 | |
|   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), 
 | |
|                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {  
 | |
|   if (D->isBitField()) {
 | |
|     LayoutBitField(D);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
 | |
| 
 | |
|   // Reset the unfilled bits.
 | |
|   UnfilledBitsInLastUnit = 0;
 | |
|   LastBitfieldTypeSize = 0;
 | |
| 
 | |
|   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
 | |
|   CharUnits FieldOffset = 
 | |
|     IsUnion ? CharUnits::Zero() : getDataSize();
 | |
|   CharUnits FieldSize;
 | |
|   CharUnits FieldAlign;
 | |
| 
 | |
|   if (D->getType()->isIncompleteArrayType()) {
 | |
|     // This is a flexible array member; we can't directly
 | |
|     // query getTypeInfo about these, so we figure it out here.
 | |
|     // Flexible array members don't have any size, but they
 | |
|     // have to be aligned appropriately for their element type.
 | |
|     FieldSize = CharUnits::Zero();
 | |
|     const ArrayType* ATy = Context.getAsArrayType(D->getType());
 | |
|     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
 | |
|   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
 | |
|     unsigned AS = RT->getPointeeType().getAddressSpace();
 | |
|     FieldSize = 
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
 | |
|     FieldAlign = 
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
 | |
|   } else {
 | |
|     std::pair<CharUnits, CharUnits> FieldInfo = 
 | |
|       Context.getTypeInfoInChars(D->getType());
 | |
|     FieldSize = FieldInfo.first;
 | |
|     FieldAlign = FieldInfo.second;
 | |
| 
 | |
|     if (IsMsStruct) {
 | |
|       // If MS bitfield layout is required, figure out what type is being
 | |
|       // laid out and align the field to the width of that type.
 | |
|       
 | |
|       // Resolve all typedefs down to their base type and round up the field
 | |
|       // alignment if necessary.
 | |
|       QualType T = Context.getBaseElementType(D->getType());
 | |
|       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
 | |
|         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
 | |
|         if (TypeSize > FieldAlign)
 | |
|           FieldAlign = TypeSize;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The align if the field is not packed. This is to check if the attribute
 | |
|   // was unnecessary (-Wpacked).
 | |
|   CharUnits UnpackedFieldAlign = FieldAlign;
 | |
|   CharUnits UnpackedFieldOffset = FieldOffset;
 | |
| 
 | |
|   if (FieldPacked)
 | |
|     FieldAlign = CharUnits::One();
 | |
|   CharUnits MaxAlignmentInChars = 
 | |
|     Context.toCharUnitsFromBits(D->getMaxAlignment());
 | |
|   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
 | |
|   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
 | |
| 
 | |
|   // The maximum field alignment overrides the aligned attribute.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
 | |
|     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   // Round up the current record size to the field's alignment boundary.
 | |
|   FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
 | |
|   UnpackedFieldOffset = 
 | |
|     UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
 | |
| 
 | |
|   if (ExternalLayout) {
 | |
|     FieldOffset = Context.toCharUnitsFromBits(
 | |
|                     updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
 | |
|     
 | |
|     if (!IsUnion && EmptySubobjects) {
 | |
|       // Record the fact that we're placing a field at this offset.
 | |
|       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
 | |
|       (void)Allowed;
 | |
|       assert(Allowed && "Externally-placed field cannot be placed here");      
 | |
|     }
 | |
|   } else {
 | |
|     if (!IsUnion && EmptySubobjects) {
 | |
|       // Check if we can place the field at this offset.
 | |
|       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
 | |
|         // We couldn't place the field at the offset. Try again at a new offset.
 | |
|         FieldOffset += FieldAlign;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Place this field at the current location.
 | |
|   FieldOffsets.push_back(Context.toBits(FieldOffset));
 | |
| 
 | |
|   if (!ExternalLayout)
 | |
|     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, 
 | |
|                       Context.toBits(UnpackedFieldOffset),
 | |
|                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
 | |
| 
 | |
|   // Reserve space for this field.
 | |
|   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
 | |
|   if (IsUnion)
 | |
|     setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
 | |
|   else
 | |
|     setDataSize(FieldOffset + FieldSize);
 | |
| 
 | |
|   // Update the size.
 | |
|   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
 | |
|   // In C++, records cannot be of size 0.
 | |
|   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
 | |
|     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|       // Compatibility with gcc requires a class (pod or non-pod)
 | |
|       // which is not empty but of size 0; such as having fields of
 | |
|       // array of zero-length, remains of Size 0
 | |
|       if (RD->isEmpty())
 | |
|         setSize(CharUnits::One());
 | |
|     }
 | |
|     else
 | |
|       setSize(CharUnits::One());
 | |
|   }
 | |
| 
 | |
|   // Finally, round the size of the record up to the alignment of the
 | |
|   // record itself.
 | |
|   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
 | |
|   uint64_t UnpackedSizeInBits =
 | |
|   llvm::RoundUpToAlignment(getSizeInBits(),
 | |
|                            Context.toBits(UnpackedAlignment));
 | |
|   CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
 | |
|   uint64_t RoundedSize
 | |
|     = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
 | |
| 
 | |
|   if (ExternalLayout) {
 | |
|     // If we're inferring alignment, and the external size is smaller than
 | |
|     // our size after we've rounded up to alignment, conservatively set the
 | |
|     // alignment to 1.
 | |
|     if (InferAlignment && ExternalSize < RoundedSize) {
 | |
|       Alignment = CharUnits::One();
 | |
|       InferAlignment = false;
 | |
|     }
 | |
|     setSize(ExternalSize);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // MSVC doesn't round up to the alignment of the record with virtual bases.
 | |
|   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|     if (isMicrosoftCXXABI() && RD->getNumVBases())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Set the size to the final size.
 | |
|   setSize(RoundedSize);
 | |
| 
 | |
|   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
 | |
|   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
 | |
|     // Warn if padding was introduced to the struct/class/union.
 | |
|     if (getSizeInBits() > UnpaddedSize) {
 | |
|       unsigned PadSize = getSizeInBits() - UnpaddedSize;
 | |
|       bool InBits = true;
 | |
|       if (PadSize % CharBitNum == 0) {
 | |
|         PadSize = PadSize / CharBitNum;
 | |
|         InBits = false;
 | |
|       }
 | |
|       Diag(RD->getLocation(), diag::warn_padded_struct_size)
 | |
|           << Context.getTypeDeclType(RD)
 | |
|           << PadSize
 | |
|           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
 | |
|     }
 | |
| 
 | |
|     // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
 | |
|     // bother since there won't be alignment issues.
 | |
|     if (Packed && UnpackedAlignment > CharUnits::One() && 
 | |
|         getSize() == UnpackedSize)
 | |
|       Diag(D->getLocation(), diag::warn_unnecessary_packed)
 | |
|           << Context.getTypeDeclType(RD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
 | |
|                                           CharUnits UnpackedNewAlignment) {
 | |
|   // The alignment is not modified when using 'mac68k' alignment or when
 | |
|   // we have an externally-supplied layout that also provides overall alignment.
 | |
|   if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
 | |
|     return;
 | |
| 
 | |
|   if (NewAlignment > Alignment) {
 | |
|     assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() && 
 | |
|            "Alignment not a power of 2"));
 | |
|     Alignment = NewAlignment;
 | |
|   }
 | |
| 
 | |
|   if (UnpackedNewAlignment > UnpackedAlignment) {
 | |
|     assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
 | |
|            "Alignment not a power of 2"));
 | |
|     UnpackedAlignment = UnpackedNewAlignment;
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, 
 | |
|                                                uint64_t ComputedOffset) {
 | |
|   assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
 | |
|          "Field does not have an external offset");
 | |
|   
 | |
|   uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
 | |
|   
 | |
|   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
 | |
|     // The externally-supplied field offset is before the field offset we
 | |
|     // computed. Assume that the structure is packed.
 | |
|     Alignment = CharUnits::One();
 | |
|     InferAlignment = false;
 | |
|   }
 | |
|   
 | |
|   // Use the externally-supplied field offset.
 | |
|   return ExternalFieldOffset;
 | |
| }
 | |
| 
 | |
| /// \brief Get diagnostic %select index for tag kind for
 | |
| /// field padding diagnostic message.
 | |
| /// WARNING: Indexes apply to particular diagnostics only!
 | |
| ///
 | |
| /// \returns diagnostic %select index.
 | |
| static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
 | |
|   switch (Tag) {
 | |
|   case TTK_Struct: return 0;
 | |
|   case TTK_Interface: return 1;
 | |
|   case TTK_Class: return 2;
 | |
|   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
 | |
|                                             uint64_t UnpaddedOffset,
 | |
|                                             uint64_t UnpackedOffset,
 | |
|                                             unsigned UnpackedAlign,
 | |
|                                             bool isPacked,
 | |
|                                             const FieldDecl *D) {
 | |
|   // We let objc ivars without warning, objc interfaces generally are not used
 | |
|   // for padding tricks.
 | |
|   if (isa<ObjCIvarDecl>(D))
 | |
|     return;
 | |
| 
 | |
|   // Don't warn about structs created without a SourceLocation.  This can
 | |
|   // be done by clients of the AST, such as codegen.
 | |
|   if (D->getLocation().isInvalid())
 | |
|     return;
 | |
|   
 | |
|   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
 | |
| 
 | |
|   // Warn if padding was introduced to the struct/class.
 | |
|   if (!IsUnion && Offset > UnpaddedOffset) {
 | |
|     unsigned PadSize = Offset - UnpaddedOffset;
 | |
|     bool InBits = true;
 | |
|     if (PadSize % CharBitNum == 0) {
 | |
|       PadSize = PadSize / CharBitNum;
 | |
|       InBits = false;
 | |
|     }
 | |
|     if (D->getIdentifier())
 | |
|       Diag(D->getLocation(), diag::warn_padded_struct_field)
 | |
|           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
 | |
|           << Context.getTypeDeclType(D->getParent())
 | |
|           << PadSize
 | |
|           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
 | |
|           << D->getIdentifier();
 | |
|     else
 | |
|       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
 | |
|           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
 | |
|           << Context.getTypeDeclType(D->getParent())
 | |
|           << PadSize
 | |
|           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
 | |
|   }
 | |
| 
 | |
|   // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
 | |
|   // bother since there won't be alignment issues.
 | |
|   if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
 | |
|     Diag(D->getLocation(), diag::warn_unnecessary_packed)
 | |
|         << D->getIdentifier();
 | |
| }
 | |
| 
 | |
| static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
 | |
|                                                const CXXRecordDecl *RD) {
 | |
|   // If a class isn't polymorphic it doesn't have a key function.
 | |
|   if (!RD->isPolymorphic())
 | |
|     return 0;
 | |
| 
 | |
|   // A class that is not externally visible doesn't have a key function. (Or
 | |
|   // at least, there's no point to assigning a key function to such a class;
 | |
|   // this doesn't affect the ABI.)
 | |
|   if (!RD->isExternallyVisible())
 | |
|     return 0;
 | |
| 
 | |
|   // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
 | |
|   // Same behavior as GCC.
 | |
|   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
 | |
|   if (TSK == TSK_ImplicitInstantiation ||
 | |
|       TSK == TSK_ExplicitInstantiationDefinition)
 | |
|     return 0;
 | |
| 
 | |
|   bool allowInlineFunctions =
 | |
|     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
 | |
| 
 | |
|   for (CXXRecordDecl::method_iterator I = RD->method_begin(),
 | |
|          E = RD->method_end(); I != E; ++I) {
 | |
|     const CXXMethodDecl *MD = *I;
 | |
| 
 | |
|     if (!MD->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     if (MD->isPure())
 | |
|       continue;
 | |
| 
 | |
|     // Ignore implicit member functions, they are always marked as inline, but
 | |
|     // they don't have a body until they're defined.
 | |
|     if (MD->isImplicit())
 | |
|       continue;
 | |
| 
 | |
|     if (MD->isInlineSpecified())
 | |
|       continue;
 | |
| 
 | |
|     if (MD->hasInlineBody())
 | |
|       continue;
 | |
| 
 | |
|     // Ignore inline deleted or defaulted functions.
 | |
|     if (!MD->isUserProvided())
 | |
|       continue;
 | |
| 
 | |
|     // In certain ABIs, ignore functions with out-of-line inline definitions.
 | |
|     if (!allowInlineFunctions) {
 | |
|       const FunctionDecl *Def;
 | |
|       if (MD->hasBody(Def) && Def->isInlineSpecified())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // We found it.
 | |
|     return MD;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| DiagnosticBuilder
 | |
| RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
 | |
|   return Context.getDiagnostics().Report(Loc, DiagID);
 | |
| }
 | |
| 
 | |
| /// Does the target C++ ABI require us to skip over the tail-padding
 | |
| /// of the given class (considering it as a base class) when allocating
 | |
| /// objects?
 | |
| static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
 | |
|   switch (ABI.getTailPaddingUseRules()) {
 | |
|   case TargetCXXABI::AlwaysUseTailPadding:
 | |
|     return false;
 | |
| 
 | |
|   case TargetCXXABI::UseTailPaddingUnlessPOD03:
 | |
|     // FIXME: To the extent that this is meant to cover the Itanium ABI
 | |
|     // rules, we should implement the restrictions about over-sized
 | |
|     // bitfields:
 | |
|     //
 | |
|     // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
 | |
|     //   In general, a type is considered a POD for the purposes of
 | |
|     //   layout if it is a POD type (in the sense of ISO C++
 | |
|     //   [basic.types]). However, a POD-struct or POD-union (in the
 | |
|     //   sense of ISO C++ [class]) with a bitfield member whose
 | |
|     //   declared width is wider than the declared type of the
 | |
|     //   bitfield is not a POD for the purpose of layout.  Similarly,
 | |
|     //   an array type is not a POD for the purpose of layout if the
 | |
|     //   element type of the array is not a POD for the purpose of
 | |
|     //   layout.
 | |
|     //
 | |
|     //   Where references to the ISO C++ are made in this paragraph,
 | |
|     //   the Technical Corrigendum 1 version of the standard is
 | |
|     //   intended.
 | |
|     return RD->isPOD();
 | |
| 
 | |
|   case TargetCXXABI::UseTailPaddingUnlessPOD11:
 | |
|     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
 | |
|     // but with a lot of abstraction penalty stripped off.  This does
 | |
|     // assume that these properties are set correctly even in C++98
 | |
|     // mode; fortunately, that is true because we want to assign
 | |
|     // consistently semantics to the type-traits intrinsics (or at
 | |
|     // least as many of them as possible).
 | |
|     return RD->isTrivial() && RD->isStandardLayout();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("bad tail-padding use kind");
 | |
| }
 | |
| 
 | |
| /// getASTRecordLayout - Get or compute information about the layout of the
 | |
| /// specified record (struct/union/class), which indicates its size and field
 | |
| /// position information.
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getASTRecordLayout(const RecordDecl *D) const {
 | |
|   // These asserts test different things.  A record has a definition
 | |
|   // as soon as we begin to parse the definition.  That definition is
 | |
|   // not a complete definition (which is what isDefinition() tests)
 | |
|   // until we *finish* parsing the definition.
 | |
| 
 | |
|   if (D->hasExternalLexicalStorage() && !D->getDefinition())
 | |
|     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
 | |
|     
 | |
|   D = D->getDefinition();
 | |
|   assert(D && "Cannot get layout of forward declarations!");
 | |
|   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
 | |
|   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
 | |
| 
 | |
|   // Look up this layout, if already laid out, return what we have.
 | |
|   // Note that we can't save a reference to the entry because this function
 | |
|   // is recursive.
 | |
|   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
 | |
|   if (Entry) return *Entry;
 | |
| 
 | |
|   const ASTRecordLayout *NewEntry;
 | |
| 
 | |
|   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|     EmptySubobjectMap EmptySubobjects(*this, RD);
 | |
|     RecordLayoutBuilder Builder(*this, &EmptySubobjects);
 | |
|     Builder.Layout(RD);
 | |
| 
 | |
|     // MSVC gives the vb-table pointer an alignment equal to that of
 | |
|     // the non-virtual part of the structure.  That's an inherently
 | |
|     // multi-pass operation.  If our first pass doesn't give us
 | |
|     // adequate alignment, try again with the specified minimum
 | |
|     // alignment.  This is *much* more maintainable than computing the
 | |
|     // alignment in advance in a separately-coded pass; it's also
 | |
|     // significantly more efficient in the common case where the
 | |
|     // vb-table doesn't need extra padding.
 | |
|     if (Builder.VBPtrOffset != CharUnits::fromQuantity(-1) &&
 | |
|         (Builder.VBPtrOffset % Builder.NonVirtualAlignment) != 0) {
 | |
|       Builder.resetWithTargetAlignment(Builder.NonVirtualAlignment);
 | |
|       Builder.Layout(RD);
 | |
|     }
 | |
| 
 | |
|     // In certain situations, we are allowed to lay out objects in the
 | |
|     // tail-padding of base classes.  This is ABI-dependent.
 | |
|     // FIXME: this should be stored in the record layout.
 | |
|     bool skipTailPadding =
 | |
|       mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
 | |
| 
 | |
|     // FIXME: This should be done in FinalizeLayout.
 | |
|     CharUnits DataSize =
 | |
|       skipTailPadding ? Builder.getSize() : Builder.getDataSize();
 | |
|     CharUnits NonVirtualSize = 
 | |
|       skipTailPadding ? DataSize : Builder.NonVirtualSize;
 | |
| 
 | |
|     NewEntry =
 | |
|       new (*this) ASTRecordLayout(*this, Builder.getSize(), 
 | |
|                                   Builder.Alignment,
 | |
|                                   Builder.HasOwnVFPtr,
 | |
|                                   Builder.VBPtrOffset,
 | |
|                                   DataSize, 
 | |
|                                   Builder.FieldOffsets.data(),
 | |
|                                   Builder.FieldOffsets.size(),
 | |
|                                   NonVirtualSize,
 | |
|                                   Builder.NonVirtualAlignment,
 | |
|                                   EmptySubobjects.SizeOfLargestEmptySubobject,
 | |
|                                   Builder.PrimaryBase,
 | |
|                                   Builder.PrimaryBaseIsVirtual,
 | |
|                                   Builder.Bases, Builder.VBases);
 | |
|   } else {
 | |
|     RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
 | |
|     Builder.Layout(D);
 | |
| 
 | |
|     NewEntry =
 | |
|       new (*this) ASTRecordLayout(*this, Builder.getSize(), 
 | |
|                                   Builder.Alignment,
 | |
|                                   Builder.getSize(),
 | |
|                                   Builder.FieldOffsets.data(),
 | |
|                                   Builder.FieldOffsets.size());
 | |
|   }
 | |
| 
 | |
|   ASTRecordLayouts[D] = NewEntry;
 | |
| 
 | |
|   if (getLangOpts().DumpRecordLayouts) {
 | |
|     llvm::outs() << "\n*** Dumping AST Record Layout\n";
 | |
|     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
 | |
|   }
 | |
| 
 | |
|   return *NewEntry;
 | |
| }
 | |
| 
 | |
| const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
 | |
|   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
 | |
|     return 0;
 | |
| 
 | |
|   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
 | |
|   RD = cast<CXXRecordDecl>(RD->getDefinition());
 | |
| 
 | |
|   const CXXMethodDecl *&entry = KeyFunctions[RD];
 | |
|   if (!entry) {
 | |
|     entry = computeKeyFunction(*this, RD);
 | |
|   }
 | |
| 
 | |
|   return entry;
 | |
| }
 | |
| 
 | |
| void ASTContext::setNonKeyFunction(const CXXMethodDecl *method) {
 | |
|   assert(method == method->getFirstDeclaration() &&
 | |
|          "not working with method declaration from class definition");
 | |
| 
 | |
|   // Look up the cache entry.  Since we're working with the first
 | |
|   // declaration, its parent must be the class definition, which is
 | |
|   // the correct key for the KeyFunctions hash.
 | |
|   llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*>::iterator
 | |
|     i = KeyFunctions.find(method->getParent());
 | |
| 
 | |
|   // If it's not cached, there's nothing to do.
 | |
|   if (i == KeyFunctions.end()) return;
 | |
| 
 | |
|   // If it is cached, check whether it's the target method, and if so,
 | |
|   // remove it from the cache.
 | |
|   if (i->second == method) {
 | |
|     // FIXME: remember that we did this for module / chained PCH state?
 | |
|     KeyFunctions.erase(i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
 | |
|   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
 | |
|   return Layout.getFieldOffset(FD->getFieldIndex());
 | |
| }
 | |
| 
 | |
| uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
 | |
|   uint64_t OffsetInBits;
 | |
|   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
 | |
|     OffsetInBits = ::getFieldOffset(*this, FD);
 | |
|   } else {
 | |
|     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
 | |
| 
 | |
|     OffsetInBits = 0;
 | |
|     for (IndirectFieldDecl::chain_iterator CI = IFD->chain_begin(),
 | |
|                                            CE = IFD->chain_end();
 | |
|          CI != CE; ++CI)
 | |
|       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(*CI));
 | |
|   }
 | |
| 
 | |
|   return OffsetInBits;
 | |
| }
 | |
| 
 | |
| /// getObjCLayout - Get or compute information about the layout of the
 | |
| /// given interface.
 | |
| ///
 | |
| /// \param Impl - If given, also include the layout of the interface's
 | |
| /// implementation. This may differ by including synthesized ivars.
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
 | |
|                           const ObjCImplementationDecl *Impl) const {
 | |
|   // Retrieve the definition
 | |
|   if (D->hasExternalLexicalStorage() && !D->getDefinition())
 | |
|     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
 | |
|   D = D->getDefinition();
 | |
|   assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
 | |
| 
 | |
|   // Look up this layout, if already laid out, return what we have.
 | |
|   const ObjCContainerDecl *Key =
 | |
|     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
 | |
|   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
 | |
|     return *Entry;
 | |
| 
 | |
|   // Add in synthesized ivar count if laying out an implementation.
 | |
|   if (Impl) {
 | |
|     unsigned SynthCount = CountNonClassIvars(D);
 | |
|     // If there aren't any sythesized ivars then reuse the interface
 | |
|     // entry. Note we can't cache this because we simply free all
 | |
|     // entries later; however we shouldn't look up implementations
 | |
|     // frequently.
 | |
|     if (SynthCount == 0)
 | |
|       return getObjCLayout(D, 0);
 | |
|   }
 | |
| 
 | |
|   RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
 | |
|   Builder.Layout(D);
 | |
| 
 | |
|   const ASTRecordLayout *NewEntry =
 | |
|     new (*this) ASTRecordLayout(*this, Builder.getSize(), 
 | |
|                                 Builder.Alignment,
 | |
|                                 Builder.getDataSize(),
 | |
|                                 Builder.FieldOffsets.data(),
 | |
|                                 Builder.FieldOffsets.size());
 | |
| 
 | |
|   ObjCLayouts[Key] = NewEntry;
 | |
| 
 | |
|   return *NewEntry;
 | |
| }
 | |
| 
 | |
| static void PrintOffset(raw_ostream &OS,
 | |
|                         CharUnits Offset, unsigned IndentLevel) {
 | |
|   OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
 | |
|   OS.indent(IndentLevel * 2);
 | |
| }
 | |
| 
 | |
| static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
 | |
|   OS << "     | ";
 | |
|   OS.indent(IndentLevel * 2);
 | |
| }
 | |
| 
 | |
| static void DumpCXXRecordLayout(raw_ostream &OS,
 | |
|                                 const CXXRecordDecl *RD, const ASTContext &C,
 | |
|                                 CharUnits Offset,
 | |
|                                 unsigned IndentLevel,
 | |
|                                 const char* Description,
 | |
|                                 bool IncludeVirtualBases) {
 | |
|   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
 | |
| 
 | |
|   PrintOffset(OS, Offset, IndentLevel);
 | |
|   OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
 | |
|   if (Description)
 | |
|     OS << ' ' << Description;
 | |
|   if (RD->isEmpty())
 | |
|     OS << " (empty)";
 | |
|   OS << '\n';
 | |
| 
 | |
|   IndentLevel++;
 | |
| 
 | |
|   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
 | |
|   bool HasVfptr = Layout.hasOwnVFPtr();
 | |
|   bool HasVbptr = Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1);
 | |
| 
 | |
|   // Vtable pointer.
 | |
|   if (RD->isDynamicClass() && !PrimaryBase &&
 | |
|       !C.getTargetInfo().getCXXABI().isMicrosoft()) {
 | |
|     PrintOffset(OS, Offset, IndentLevel);
 | |
|     OS << '(' << *RD << " vtable pointer)\n";
 | |
|   }
 | |
|   
 | |
|   // Dump (non-virtual) bases
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|          E = RD->bases_end(); I != E; ++I) {
 | |
|     assert(!I->getType()->isDependentType() &&
 | |
|            "Cannot layout class with dependent bases.");
 | |
|     if (I->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *Base =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
 | |
| 
 | |
|     DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
 | |
|                         Base == PrimaryBase ? "(primary base)" : "(base)",
 | |
|                         /*IncludeVirtualBases=*/false);
 | |
|   }
 | |
| 
 | |
|   // vfptr and vbptr (for Microsoft C++ ABI)
 | |
|   if (HasVfptr) {
 | |
|     PrintOffset(OS, Offset, IndentLevel);
 | |
|     OS << '(' << *RD << " vftable pointer)\n";
 | |
|   }
 | |
|   if (HasVbptr) {
 | |
|     PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
 | |
|     OS << '(' << *RD << " vbtable pointer)\n";
 | |
|   }
 | |
| 
 | |
|   // Dump fields.
 | |
|   uint64_t FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = RD->field_begin(),
 | |
|          E = RD->field_end(); I != E; ++I, ++FieldNo) {
 | |
|     const FieldDecl &Field = **I;
 | |
|     CharUnits FieldOffset = Offset + 
 | |
|       C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
 | |
| 
 | |
|     if (const RecordType *RT = Field.getType()->getAs<RecordType>()) {
 | |
|       if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
 | |
|         DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
 | |
|                             Field.getName().data(),
 | |
|                             /*IncludeVirtualBases=*/true);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PrintOffset(OS, FieldOffset, IndentLevel);
 | |
|     OS << Field.getType().getAsString() << ' ' << Field << '\n';
 | |
|   }
 | |
| 
 | |
|   if (!IncludeVirtualBases)
 | |
|     return;
 | |
| 
 | |
|   // Dump virtual bases.
 | |
|   const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps = 
 | |
|     Layout.getVBaseOffsetsMap();
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|          E = RD->vbases_end(); I != E; ++I) {
 | |
|     assert(I->isVirtual() && "Found non-virtual class!");
 | |
|     const CXXRecordDecl *VBase =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
 | |
| 
 | |
|     if (vtordisps.find(VBase)->second.hasVtorDisp()) {
 | |
|       PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
 | |
|       OS << "(vtordisp for vbase " << *VBase << ")\n";
 | |
|     }
 | |
| 
 | |
|     DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
 | |
|                         VBase == PrimaryBase ?
 | |
|                         "(primary virtual base)" : "(virtual base)",
 | |
|                         /*IncludeVirtualBases=*/false);
 | |
|   }
 | |
| 
 | |
|   PrintIndentNoOffset(OS, IndentLevel - 1);
 | |
|   OS << "[sizeof=" << Layout.getSize().getQuantity();
 | |
|   OS << ", dsize=" << Layout.getDataSize().getQuantity();
 | |
|   OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
 | |
| 
 | |
|   PrintIndentNoOffset(OS, IndentLevel - 1);
 | |
|   OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
 | |
|   OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << "]\n";
 | |
|   OS << '\n';
 | |
| }
 | |
| 
 | |
| void ASTContext::DumpRecordLayout(const RecordDecl *RD,
 | |
|                                   raw_ostream &OS,
 | |
|                                   bool Simple) const {
 | |
|   const ASTRecordLayout &Info = getASTRecordLayout(RD);
 | |
| 
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|     if (!Simple)
 | |
|       return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
 | |
|                                  /*IncludeVirtualBases=*/true);
 | |
| 
 | |
|   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
 | |
|   if (!Simple) {
 | |
|     OS << "Record: ";
 | |
|     RD->dump();
 | |
|   }
 | |
|   OS << "\nLayout: ";
 | |
|   OS << "<ASTRecordLayout\n";
 | |
|   OS << "  Size:" << toBits(Info.getSize()) << "\n";
 | |
|   OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
 | |
|   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
 | |
|   OS << "  FieldOffsets: [";
 | |
|   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
 | |
|     if (i) OS << ", ";
 | |
|     OS << Info.getFieldOffset(i);
 | |
|   }
 | |
|   OS << "]>\n";
 | |
| }
 |