forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			489 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			489 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// These classes implement wrappers around llvm::Value in order to
 | 
						|
// fully represent the range of values for C L- and R- values.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef CLANG_CODEGEN_CGVALUE_H
 | 
						|
#define CLANG_CODEGEN_CGVALUE_H
 | 
						|
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/AST/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  class Constant;
 | 
						|
  class MDNode;
 | 
						|
}
 | 
						|
 | 
						|
namespace clang {
 | 
						|
namespace CodeGen {
 | 
						|
  class AggValueSlot;
 | 
						|
  struct CGBitFieldInfo;
 | 
						|
 | 
						|
/// RValue - This trivial value class is used to represent the result of an
 | 
						|
/// expression that is evaluated.  It can be one of three things: either a
 | 
						|
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
 | 
						|
/// address of an aggregate value in memory.
 | 
						|
class RValue {
 | 
						|
  enum Flavor { Scalar, Complex, Aggregate };
 | 
						|
 | 
						|
  // Stores first value and flavor.
 | 
						|
  llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
 | 
						|
  // Stores second value and volatility.
 | 
						|
  llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
 | 
						|
 | 
						|
public:
 | 
						|
  bool isScalar() const { return V1.getInt() == Scalar; }
 | 
						|
  bool isComplex() const { return V1.getInt() == Complex; }
 | 
						|
  bool isAggregate() const { return V1.getInt() == Aggregate; }
 | 
						|
 | 
						|
  bool isVolatileQualified() const { return V2.getInt(); }
 | 
						|
 | 
						|
  /// getScalarVal() - Return the Value* of this scalar value.
 | 
						|
  llvm::Value *getScalarVal() const {
 | 
						|
    assert(isScalar() && "Not a scalar!");
 | 
						|
    return V1.getPointer();
 | 
						|
  }
 | 
						|
 | 
						|
  /// getComplexVal - Return the real/imag components of this complex value.
 | 
						|
  ///
 | 
						|
  std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
 | 
						|
    return std::make_pair(V1.getPointer(), V2.getPointer());
 | 
						|
  }
 | 
						|
 | 
						|
  /// getAggregateAddr() - Return the Value* of the address of the aggregate.
 | 
						|
  llvm::Value *getAggregateAddr() const {
 | 
						|
    assert(isAggregate() && "Not an aggregate!");
 | 
						|
    return V1.getPointer();
 | 
						|
  }
 | 
						|
 | 
						|
  static RValue get(llvm::Value *V) {
 | 
						|
    RValue ER;
 | 
						|
    ER.V1.setPointer(V);
 | 
						|
    ER.V1.setInt(Scalar);
 | 
						|
    ER.V2.setInt(false);
 | 
						|
    return ER;
 | 
						|
  }
 | 
						|
  static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
 | 
						|
    RValue ER;
 | 
						|
    ER.V1.setPointer(V1);
 | 
						|
    ER.V2.setPointer(V2);
 | 
						|
    ER.V1.setInt(Complex);
 | 
						|
    ER.V2.setInt(false);
 | 
						|
    return ER;
 | 
						|
  }
 | 
						|
  static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
 | 
						|
    return getComplex(C.first, C.second);
 | 
						|
  }
 | 
						|
  // FIXME: Aggregate rvalues need to retain information about whether they are
 | 
						|
  // volatile or not.  Remove default to find all places that probably get this
 | 
						|
  // wrong.
 | 
						|
  static RValue getAggregate(llvm::Value *V, bool Volatile = false) {
 | 
						|
    RValue ER;
 | 
						|
    ER.V1.setPointer(V);
 | 
						|
    ER.V1.setInt(Aggregate);
 | 
						|
    ER.V2.setInt(Volatile);
 | 
						|
    return ER;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Does an ARC strong l-value have precise lifetime?
 | 
						|
enum ARCPreciseLifetime_t {
 | 
						|
  ARCImpreciseLifetime, ARCPreciseLifetime
 | 
						|
};
 | 
						|
 | 
						|
/// LValue - This represents an lvalue references.  Because C/C++ allow
 | 
						|
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
 | 
						|
/// bitrange.
 | 
						|
class LValue {
 | 
						|
  enum {
 | 
						|
    Simple,       // This is a normal l-value, use getAddress().
 | 
						|
    VectorElt,    // This is a vector element l-value (V[i]), use getVector*
 | 
						|
    BitField,     // This is a bitfield l-value, use getBitfield*.
 | 
						|
    ExtVectorElt  // This is an extended vector subset, use getExtVectorComp
 | 
						|
  } LVType;
 | 
						|
 | 
						|
  llvm::Value *V;
 | 
						|
 | 
						|
  union {
 | 
						|
    // Index into a vector subscript: V[i]
 | 
						|
    llvm::Value *VectorIdx;
 | 
						|
 | 
						|
    // ExtVector element subset: V.xyx
 | 
						|
    llvm::Constant *VectorElts;
 | 
						|
 | 
						|
    // BitField start bit and size
 | 
						|
    const CGBitFieldInfo *BitFieldInfo;
 | 
						|
  };
 | 
						|
 | 
						|
  QualType Type;
 | 
						|
 | 
						|
  // 'const' is unused here
 | 
						|
  Qualifiers Quals;
 | 
						|
 | 
						|
  // The alignment to use when accessing this lvalue.  (For vector elements,
 | 
						|
  // this is the alignment of the whole vector.)
 | 
						|
  int64_t Alignment;
 | 
						|
 | 
						|
  // objective-c's ivar
 | 
						|
  bool Ivar:1;
 | 
						|
  
 | 
						|
  // objective-c's ivar is an array
 | 
						|
  bool ObjIsArray:1;
 | 
						|
 | 
						|
  // LValue is non-gc'able for any reason, including being a parameter or local
 | 
						|
  // variable.
 | 
						|
  bool NonGC: 1;
 | 
						|
 | 
						|
  // Lvalue is a global reference of an objective-c object
 | 
						|
  bool GlobalObjCRef : 1;
 | 
						|
  
 | 
						|
  // Lvalue is a thread local reference
 | 
						|
  bool ThreadLocalRef : 1;
 | 
						|
 | 
						|
  // Lvalue has ARC imprecise lifetime.  We store this inverted to try
 | 
						|
  // to make the default bitfield pattern all-zeroes.
 | 
						|
  bool ImpreciseLifetime : 1;
 | 
						|
 | 
						|
  Expr *BaseIvarExp;
 | 
						|
 | 
						|
  /// Used by struct-path-aware TBAA.
 | 
						|
  QualType TBAABaseType;
 | 
						|
  /// Offset relative to the base type.
 | 
						|
  uint64_t TBAAOffset;
 | 
						|
 | 
						|
  /// TBAAInfo - TBAA information to attach to dereferences of this LValue.
 | 
						|
  llvm::MDNode *TBAAInfo;
 | 
						|
 | 
						|
private:
 | 
						|
  void Initialize(QualType Type, Qualifiers Quals,
 | 
						|
                  CharUnits Alignment,
 | 
						|
                  llvm::MDNode *TBAAInfo = 0) {
 | 
						|
    this->Type = Type;
 | 
						|
    this->Quals = Quals;
 | 
						|
    this->Alignment = Alignment.getQuantity();
 | 
						|
    assert(this->Alignment == Alignment.getQuantity() &&
 | 
						|
           "Alignment exceeds allowed max!");
 | 
						|
 | 
						|
    // Initialize Objective-C flags.
 | 
						|
    this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
 | 
						|
    this->ImpreciseLifetime = false;
 | 
						|
    this->ThreadLocalRef = false;
 | 
						|
    this->BaseIvarExp = 0;
 | 
						|
 | 
						|
    // Initialize fields for TBAA.
 | 
						|
    this->TBAABaseType = Type;
 | 
						|
    this->TBAAOffset = 0;
 | 
						|
    this->TBAAInfo = TBAAInfo;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  bool isSimple() const { return LVType == Simple; }
 | 
						|
  bool isVectorElt() const { return LVType == VectorElt; }
 | 
						|
  bool isBitField() const { return LVType == BitField; }
 | 
						|
  bool isExtVectorElt() const { return LVType == ExtVectorElt; }
 | 
						|
 | 
						|
  bool isVolatileQualified() const { return Quals.hasVolatile(); }
 | 
						|
  bool isRestrictQualified() const { return Quals.hasRestrict(); }
 | 
						|
  unsigned getVRQualifiers() const {
 | 
						|
    return Quals.getCVRQualifiers() & ~Qualifiers::Const;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType getType() const { return Type; }
 | 
						|
 | 
						|
  Qualifiers::ObjCLifetime getObjCLifetime() const {
 | 
						|
    return Quals.getObjCLifetime();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isObjCIvar() const { return Ivar; }
 | 
						|
  void setObjCIvar(bool Value) { Ivar = Value; }
 | 
						|
 | 
						|
  bool isObjCArray() const { return ObjIsArray; }
 | 
						|
  void setObjCArray(bool Value) { ObjIsArray = Value; }
 | 
						|
 | 
						|
  bool isNonGC () const { return NonGC; }
 | 
						|
  void setNonGC(bool Value) { NonGC = Value; }
 | 
						|
 | 
						|
  bool isGlobalObjCRef() const { return GlobalObjCRef; }
 | 
						|
  void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
 | 
						|
 | 
						|
  bool isThreadLocalRef() const { return ThreadLocalRef; }
 | 
						|
  void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
 | 
						|
 | 
						|
  ARCPreciseLifetime_t isARCPreciseLifetime() const {
 | 
						|
    return ARCPreciseLifetime_t(!ImpreciseLifetime);
 | 
						|
  }
 | 
						|
  void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
 | 
						|
    ImpreciseLifetime = (value == ARCImpreciseLifetime);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isObjCWeak() const {
 | 
						|
    return Quals.getObjCGCAttr() == Qualifiers::Weak;
 | 
						|
  }
 | 
						|
  bool isObjCStrong() const {
 | 
						|
    return Quals.getObjCGCAttr() == Qualifiers::Strong;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isVolatile() const {
 | 
						|
    return Quals.hasVolatile();
 | 
						|
  }
 | 
						|
  
 | 
						|
  Expr *getBaseIvarExp() const { return BaseIvarExp; }
 | 
						|
  void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
 | 
						|
 | 
						|
  QualType getTBAABaseType() const { return TBAABaseType; }
 | 
						|
  void setTBAABaseType(QualType T) { TBAABaseType = T; }
 | 
						|
 | 
						|
  uint64_t getTBAAOffset() const { return TBAAOffset; }
 | 
						|
  void setTBAAOffset(uint64_t O) { TBAAOffset = O; }
 | 
						|
 | 
						|
  llvm::MDNode *getTBAAInfo() const { return TBAAInfo; }
 | 
						|
  void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; }
 | 
						|
 | 
						|
  const Qualifiers &getQuals() const { return Quals; }
 | 
						|
  Qualifiers &getQuals() { return Quals; }
 | 
						|
 | 
						|
  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
 | 
						|
 | 
						|
  CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
 | 
						|
  void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
 | 
						|
 | 
						|
  // simple lvalue
 | 
						|
  llvm::Value *getAddress() const { assert(isSimple()); return V; }
 | 
						|
  void setAddress(llvm::Value *address) {
 | 
						|
    assert(isSimple());
 | 
						|
    V = address;
 | 
						|
  }
 | 
						|
 | 
						|
  // vector elt lvalue
 | 
						|
  llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
 | 
						|
  llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
 | 
						|
 | 
						|
  // extended vector elements.
 | 
						|
  llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
 | 
						|
  llvm::Constant *getExtVectorElts() const {
 | 
						|
    assert(isExtVectorElt());
 | 
						|
    return VectorElts;
 | 
						|
  }
 | 
						|
 | 
						|
  // bitfield lvalue
 | 
						|
  llvm::Value *getBitFieldAddr() const {
 | 
						|
    assert(isBitField());
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  const CGBitFieldInfo &getBitFieldInfo() const {
 | 
						|
    assert(isBitField());
 | 
						|
    return *BitFieldInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  static LValue MakeAddr(llvm::Value *address, QualType type,
 | 
						|
                         CharUnits alignment, ASTContext &Context,
 | 
						|
                         llvm::MDNode *TBAAInfo = 0) {
 | 
						|
    Qualifiers qs = type.getQualifiers();
 | 
						|
    qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
 | 
						|
 | 
						|
    LValue R;
 | 
						|
    R.LVType = Simple;
 | 
						|
    R.V = address;
 | 
						|
    R.Initialize(type, qs, alignment, TBAAInfo);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
 | 
						|
                              QualType type, CharUnits Alignment) {
 | 
						|
    LValue R;
 | 
						|
    R.LVType = VectorElt;
 | 
						|
    R.V = Vec;
 | 
						|
    R.VectorIdx = Idx;
 | 
						|
    R.Initialize(type, type.getQualifiers(), Alignment);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
 | 
						|
                                 QualType type, CharUnits Alignment) {
 | 
						|
    LValue R;
 | 
						|
    R.LVType = ExtVectorElt;
 | 
						|
    R.V = Vec;
 | 
						|
    R.VectorElts = Elts;
 | 
						|
    R.Initialize(type, type.getQualifiers(), Alignment);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Create a new object to represent a bit-field access.
 | 
						|
  ///
 | 
						|
  /// \param Addr - The base address of the bit-field sequence this
 | 
						|
  /// bit-field refers to.
 | 
						|
  /// \param Info - The information describing how to perform the bit-field
 | 
						|
  /// access.
 | 
						|
  static LValue MakeBitfield(llvm::Value *Addr,
 | 
						|
                             const CGBitFieldInfo &Info,
 | 
						|
                             QualType type, CharUnits Alignment) {
 | 
						|
    LValue R;
 | 
						|
    R.LVType = BitField;
 | 
						|
    R.V = Addr;
 | 
						|
    R.BitFieldInfo = &Info;
 | 
						|
    R.Initialize(type, type.getQualifiers(), Alignment);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  RValue asAggregateRValue() const {
 | 
						|
    // FIMXE: Alignment
 | 
						|
    return RValue::getAggregate(getAddress(), isVolatileQualified());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// An aggregate value slot.
 | 
						|
class AggValueSlot {
 | 
						|
  /// The address.
 | 
						|
  llvm::Value *Addr;
 | 
						|
 | 
						|
  // Qualifiers
 | 
						|
  Qualifiers Quals;
 | 
						|
 | 
						|
  unsigned short Alignment;
 | 
						|
 | 
						|
  /// DestructedFlag - This is set to true if some external code is
 | 
						|
  /// responsible for setting up a destructor for the slot.  Otherwise
 | 
						|
  /// the code which constructs it should push the appropriate cleanup.
 | 
						|
  bool DestructedFlag : 1;
 | 
						|
 | 
						|
  /// ObjCGCFlag - This is set to true if writing to the memory in the
 | 
						|
  /// slot might require calling an appropriate Objective-C GC
 | 
						|
  /// barrier.  The exact interaction here is unnecessarily mysterious.
 | 
						|
  bool ObjCGCFlag : 1;
 | 
						|
  
 | 
						|
  /// ZeroedFlag - This is set to true if the memory in the slot is
 | 
						|
  /// known to be zero before the assignment into it.  This means that
 | 
						|
  /// zero fields don't need to be set.
 | 
						|
  bool ZeroedFlag : 1;
 | 
						|
 | 
						|
  /// AliasedFlag - This is set to true if the slot might be aliased
 | 
						|
  /// and it's not undefined behavior to access it through such an
 | 
						|
  /// alias.  Note that it's always undefined behavior to access a C++
 | 
						|
  /// object that's under construction through an alias derived from
 | 
						|
  /// outside the construction process.
 | 
						|
  ///
 | 
						|
  /// This flag controls whether calls that produce the aggregate
 | 
						|
  /// value may be evaluated directly into the slot, or whether they
 | 
						|
  /// must be evaluated into an unaliased temporary and then memcpy'ed
 | 
						|
  /// over.  Since it's invalid in general to memcpy a non-POD C++
 | 
						|
  /// object, it's important that this flag never be set when
 | 
						|
  /// evaluating an expression which constructs such an object.
 | 
						|
  bool AliasedFlag : 1;
 | 
						|
 | 
						|
public:
 | 
						|
  enum IsAliased_t { IsNotAliased, IsAliased };
 | 
						|
  enum IsDestructed_t { IsNotDestructed, IsDestructed };
 | 
						|
  enum IsZeroed_t { IsNotZeroed, IsZeroed };
 | 
						|
  enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
 | 
						|
 | 
						|
  /// ignored - Returns an aggregate value slot indicating that the
 | 
						|
  /// aggregate value is being ignored.
 | 
						|
  static AggValueSlot ignored() {
 | 
						|
    return forAddr(0, CharUnits(), Qualifiers(), IsNotDestructed,
 | 
						|
                   DoesNotNeedGCBarriers, IsNotAliased);
 | 
						|
  }
 | 
						|
 | 
						|
  /// forAddr - Make a slot for an aggregate value.
 | 
						|
  ///
 | 
						|
  /// \param quals - The qualifiers that dictate how the slot should
 | 
						|
  /// be initialied. Only 'volatile' and the Objective-C lifetime
 | 
						|
  /// qualifiers matter.
 | 
						|
  ///
 | 
						|
  /// \param isDestructed - true if something else is responsible
 | 
						|
  ///   for calling destructors on this object
 | 
						|
  /// \param needsGC - true if the slot is potentially located
 | 
						|
  ///   somewhere that ObjC GC calls should be emitted for
 | 
						|
  static AggValueSlot forAddr(llvm::Value *addr, CharUnits align,
 | 
						|
                              Qualifiers quals,
 | 
						|
                              IsDestructed_t isDestructed,
 | 
						|
                              NeedsGCBarriers_t needsGC,
 | 
						|
                              IsAliased_t isAliased,
 | 
						|
                              IsZeroed_t isZeroed = IsNotZeroed) {
 | 
						|
    AggValueSlot AV;
 | 
						|
    AV.Addr = addr;
 | 
						|
    AV.Alignment = align.getQuantity();
 | 
						|
    AV.Quals = quals;
 | 
						|
    AV.DestructedFlag = isDestructed;
 | 
						|
    AV.ObjCGCFlag = needsGC;
 | 
						|
    AV.ZeroedFlag = isZeroed;
 | 
						|
    AV.AliasedFlag = isAliased;
 | 
						|
    return AV;
 | 
						|
  }
 | 
						|
 | 
						|
  static AggValueSlot forLValue(const LValue &LV,
 | 
						|
                                IsDestructed_t isDestructed,
 | 
						|
                                NeedsGCBarriers_t needsGC,
 | 
						|
                                IsAliased_t isAliased,
 | 
						|
                                IsZeroed_t isZeroed = IsNotZeroed) {
 | 
						|
    return forAddr(LV.getAddress(), LV.getAlignment(),
 | 
						|
                   LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed);
 | 
						|
  }
 | 
						|
 | 
						|
  IsDestructed_t isExternallyDestructed() const {
 | 
						|
    return IsDestructed_t(DestructedFlag);
 | 
						|
  }
 | 
						|
  void setExternallyDestructed(bool destructed = true) {
 | 
						|
    DestructedFlag = destructed;
 | 
						|
  }
 | 
						|
 | 
						|
  Qualifiers getQualifiers() const { return Quals; }
 | 
						|
 | 
						|
  bool isVolatile() const {
 | 
						|
    return Quals.hasVolatile();
 | 
						|
  }
 | 
						|
 | 
						|
  void setVolatile(bool flag) {
 | 
						|
    Quals.setVolatile(flag);
 | 
						|
  }
 | 
						|
  
 | 
						|
  Qualifiers::ObjCLifetime getObjCLifetime() const {
 | 
						|
    return Quals.getObjCLifetime();
 | 
						|
  }
 | 
						|
 | 
						|
  NeedsGCBarriers_t requiresGCollection() const {
 | 
						|
    return NeedsGCBarriers_t(ObjCGCFlag);
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm::Value *getAddr() const {
 | 
						|
    return Addr;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isIgnored() const {
 | 
						|
    return Addr == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  CharUnits getAlignment() const {
 | 
						|
    return CharUnits::fromQuantity(Alignment);
 | 
						|
  }
 | 
						|
 | 
						|
  IsAliased_t isPotentiallyAliased() const {
 | 
						|
    return IsAliased_t(AliasedFlag);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Alignment?
 | 
						|
  RValue asRValue() const {
 | 
						|
    return RValue::getAggregate(getAddr(), isVolatile());
 | 
						|
  }
 | 
						|
 | 
						|
  void setZeroed(bool V = true) { ZeroedFlag = V; }
 | 
						|
  IsZeroed_t isZeroed() const {
 | 
						|
    return IsZeroed_t(ZeroedFlag);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // end namespace CodeGen
 | 
						|
}  // end namespace clang
 | 
						|
 | 
						|
#endif
 |