forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			5479 lines
		
	
	
		
			196 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5479 lines
		
	
	
		
			196 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// These classes wrap the information about a call or function
 | 
						|
// definition used to handle ABI compliancy.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "TargetInfo.h"
 | 
						|
#include "ABIInfo.h"
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/Frontend/CodeGenOptions.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
 | 
						|
                               llvm::Value *Array,
 | 
						|
                               llvm::Value *Value,
 | 
						|
                               unsigned FirstIndex,
 | 
						|
                               unsigned LastIndex) {
 | 
						|
  // Alternatively, we could emit this as a loop in the source.
 | 
						|
  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
 | 
						|
    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
 | 
						|
    Builder.CreateStore(Value, Cell);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isAggregateTypeForABI(QualType T) {
 | 
						|
  return !CodeGenFunction::hasScalarEvaluationKind(T) ||
 | 
						|
         T->isMemberFunctionPointerType();
 | 
						|
}
 | 
						|
 | 
						|
ABIInfo::~ABIInfo() {}
 | 
						|
 | 
						|
static bool isRecordReturnIndirect(const RecordType *RT, CodeGen::CodeGenTypes &CGT) {
 | 
						|
  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
  if (!RD)
 | 
						|
    return false;
 | 
						|
  return CGT.CGM.getCXXABI().isReturnTypeIndirect(RD);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool isRecordReturnIndirect(QualType T, CodeGen::CodeGenTypes &CGT) {
 | 
						|
  const RecordType *RT = T->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return false;
 | 
						|
  return isRecordReturnIndirect(RT, CGT);
 | 
						|
}
 | 
						|
 | 
						|
static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
 | 
						|
                                              CodeGen::CodeGenTypes &CGT) {
 | 
						|
  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
  if (!RD)
 | 
						|
    return CGCXXABI::RAA_Default;
 | 
						|
  return CGT.CGM.getCXXABI().getRecordArgABI(RD);
 | 
						|
}
 | 
						|
 | 
						|
static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
 | 
						|
                                              CodeGen::CodeGenTypes &CGT) {
 | 
						|
  const RecordType *RT = T->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return CGCXXABI::RAA_Default;
 | 
						|
  return getRecordArgABI(RT, CGT);
 | 
						|
}
 | 
						|
 | 
						|
ASTContext &ABIInfo::getContext() const {
 | 
						|
  return CGT.getContext();
 | 
						|
}
 | 
						|
 | 
						|
llvm::LLVMContext &ABIInfo::getVMContext() const {
 | 
						|
  return CGT.getLLVMContext();
 | 
						|
}
 | 
						|
 | 
						|
const llvm::DataLayout &ABIInfo::getDataLayout() const {
 | 
						|
  return CGT.getDataLayout();
 | 
						|
}
 | 
						|
 | 
						|
const TargetInfo &ABIInfo::getTarget() const {
 | 
						|
  return CGT.getTarget();
 | 
						|
}
 | 
						|
 | 
						|
void ABIArgInfo::dump() const {
 | 
						|
  raw_ostream &OS = llvm::errs();
 | 
						|
  OS << "(ABIArgInfo Kind=";
 | 
						|
  switch (TheKind) {
 | 
						|
  case Direct:
 | 
						|
    OS << "Direct Type=";
 | 
						|
    if (llvm::Type *Ty = getCoerceToType())
 | 
						|
      Ty->print(OS);
 | 
						|
    else
 | 
						|
      OS << "null";
 | 
						|
    break;
 | 
						|
  case Extend:
 | 
						|
    OS << "Extend";
 | 
						|
    break;
 | 
						|
  case Ignore:
 | 
						|
    OS << "Ignore";
 | 
						|
    break;
 | 
						|
  case Indirect:
 | 
						|
    OS << "Indirect Align=" << getIndirectAlign()
 | 
						|
       << " ByVal=" << getIndirectByVal()
 | 
						|
       << " Realign=" << getIndirectRealign();
 | 
						|
    break;
 | 
						|
  case Expand:
 | 
						|
    OS << "Expand";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  OS << ")\n";
 | 
						|
}
 | 
						|
 | 
						|
TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
 | 
						|
 | 
						|
// If someone can figure out a general rule for this, that would be great.
 | 
						|
// It's probably just doomed to be platform-dependent, though.
 | 
						|
unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
 | 
						|
  // Verified for:
 | 
						|
  //   x86-64     FreeBSD, Linux, Darwin
 | 
						|
  //   x86-32     FreeBSD, Linux, Darwin
 | 
						|
  //   PowerPC    Linux, Darwin
 | 
						|
  //   ARM        Darwin (*not* EABI)
 | 
						|
  //   AArch64    Linux
 | 
						|
  return 32;
 | 
						|
}
 | 
						|
 | 
						|
bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
 | 
						|
                                     const FunctionNoProtoType *fnType) const {
 | 
						|
  // The following conventions are known to require this to be false:
 | 
						|
  //   x86_stdcall
 | 
						|
  //   MIPS
 | 
						|
  // For everything else, we just prefer false unless we opt out.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
 | 
						|
                                             llvm::SmallString<24> &Opt) const {
 | 
						|
  // This assumes the user is passing a library name like "rt" instead of a
 | 
						|
  // filename like "librt.a/so", and that they don't care whether it's static or
 | 
						|
  // dynamic.
 | 
						|
  Opt = "-l";
 | 
						|
  Opt += Lib;
 | 
						|
}
 | 
						|
 | 
						|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
 | 
						|
 | 
						|
/// isEmptyField - Return true iff a the field is "empty", that is it
 | 
						|
/// is an unnamed bit-field or an (array of) empty record(s).
 | 
						|
static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
 | 
						|
                         bool AllowArrays) {
 | 
						|
  if (FD->isUnnamedBitfield())
 | 
						|
    return true;
 | 
						|
 | 
						|
  QualType FT = FD->getType();
 | 
						|
 | 
						|
  // Constant arrays of empty records count as empty, strip them off.
 | 
						|
  // Constant arrays of zero length always count as empty.
 | 
						|
  if (AllowArrays)
 | 
						|
    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
 | 
						|
      if (AT->getSize() == 0)
 | 
						|
        return true;
 | 
						|
      FT = AT->getElementType();
 | 
						|
    }
 | 
						|
 | 
						|
  const RecordType *RT = FT->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ record fields are never empty, at least in the Itanium ABI.
 | 
						|
  //
 | 
						|
  // FIXME: We should use a predicate for whether this behavior is true in the
 | 
						|
  // current ABI.
 | 
						|
  if (isa<CXXRecordDecl>(RT->getDecl()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return isEmptyRecord(Context, FT, AllowArrays);
 | 
						|
}
 | 
						|
 | 
						|
/// isEmptyRecord - Return true iff a structure contains only empty
 | 
						|
/// fields. Note that a structure with a flexible array member is not
 | 
						|
/// considered empty.
 | 
						|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
 | 
						|
  const RecordType *RT = T->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return 0;
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
  if (RD->hasFlexibleArrayMember())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is a C++ record, check the bases first.
 | 
						|
  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | 
						|
    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | 
						|
           e = CXXRD->bases_end(); i != e; ++i)
 | 
						|
      if (!isEmptyRecord(Context, i->getType(), true))
 | 
						|
        return false;
 | 
						|
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
         i != e; ++i)
 | 
						|
    if (!isEmptyField(Context, *i, AllowArrays))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isSingleElementStruct - Determine if a structure is a "single
 | 
						|
/// element struct", i.e. it has exactly one non-empty field or
 | 
						|
/// exactly one field which is itself a single element
 | 
						|
/// struct. Structures with flexible array members are never
 | 
						|
/// considered single element structs.
 | 
						|
///
 | 
						|
/// \return The field declaration for the single non-empty field, if
 | 
						|
/// it exists.
 | 
						|
static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
 | 
						|
  const RecordType *RT = T->getAsStructureType();
 | 
						|
  if (!RT)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
  if (RD->hasFlexibleArrayMember())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const Type *Found = 0;
 | 
						|
 | 
						|
  // If this is a C++ record, check the bases first.
 | 
						|
  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | 
						|
           e = CXXRD->bases_end(); i != e; ++i) {
 | 
						|
      // Ignore empty records.
 | 
						|
      if (isEmptyRecord(Context, i->getType(), true))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If we already found an element then this isn't a single-element struct.
 | 
						|
      if (Found)
 | 
						|
        return 0;
 | 
						|
 | 
						|
      // If this is non-empty and not a single element struct, the composite
 | 
						|
      // cannot be a single element struct.
 | 
						|
      Found = isSingleElementStruct(i->getType(), Context);
 | 
						|
      if (!Found)
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for single element.
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
         i != e; ++i) {
 | 
						|
    const FieldDecl *FD = *i;
 | 
						|
    QualType FT = FD->getType();
 | 
						|
 | 
						|
    // Ignore empty fields.
 | 
						|
    if (isEmptyField(Context, FD, true))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If we already found an element then this isn't a single-element
 | 
						|
    // struct.
 | 
						|
    if (Found)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // Treat single element arrays as the element.
 | 
						|
    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
 | 
						|
      if (AT->getSize().getZExtValue() != 1)
 | 
						|
        break;
 | 
						|
      FT = AT->getElementType();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isAggregateTypeForABI(FT)) {
 | 
						|
      Found = FT.getTypePtr();
 | 
						|
    } else {
 | 
						|
      Found = isSingleElementStruct(FT, Context);
 | 
						|
      if (!Found)
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't consider a struct a single-element struct if it has
 | 
						|
  // padding beyond the element type.
 | 
						|
  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Found;
 | 
						|
}
 | 
						|
 | 
						|
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
 | 
						|
  // Treat complex types as the element type.
 | 
						|
  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
 | 
						|
    Ty = CTy->getElementType();
 | 
						|
 | 
						|
  // Check for a type which we know has a simple scalar argument-passing
 | 
						|
  // convention without any padding.  (We're specifically looking for 32
 | 
						|
  // and 64-bit integer and integer-equivalents, float, and double.)
 | 
						|
  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
 | 
						|
      !Ty->isEnumeralType() && !Ty->isBlockPointerType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint64_t Size = Context.getTypeSize(Ty);
 | 
						|
  return Size == 32 || Size == 64;
 | 
						|
}
 | 
						|
 | 
						|
/// canExpandIndirectArgument - Test whether an argument type which is to be
 | 
						|
/// passed indirectly (on the stack) would have the equivalent layout if it was
 | 
						|
/// expanded into separate arguments. If so, we prefer to do the latter to avoid
 | 
						|
/// inhibiting optimizations.
 | 
						|
///
 | 
						|
// FIXME: This predicate is missing many cases, currently it just follows
 | 
						|
// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
 | 
						|
// should probably make this smarter, or better yet make the LLVM backend
 | 
						|
// capable of handling it.
 | 
						|
static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
 | 
						|
  // We can only expand structure types.
 | 
						|
  const RecordType *RT = Ty->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can only expand (C) structures.
 | 
						|
  //
 | 
						|
  // FIXME: This needs to be generalized to handle classes as well.
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint64_t Size = 0;
 | 
						|
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
         i != e; ++i) {
 | 
						|
    const FieldDecl *FD = *i;
 | 
						|
 | 
						|
    if (!is32Or64BitBasicType(FD->getType(), Context))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
 | 
						|
    // how to expand them yet, and the predicate for telling if a bitfield still
 | 
						|
    // counts as "basic" is more complicated than what we were doing previously.
 | 
						|
    if (FD->isBitField())
 | 
						|
      return false;
 | 
						|
 | 
						|
    Size += Context.getTypeSize(FD->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure there are not any holes in the struct.
 | 
						|
  if (Size != Context.getTypeSize(Ty))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// DefaultABIInfo - The default implementation for ABI specific
 | 
						|
/// details. This implementation provides information which results in
 | 
						|
/// self-consistent and sensible LLVM IR generation, but does not
 | 
						|
/// conform to any particular ABI.
 | 
						|
class DefaultABIInfo : public ABIInfo {
 | 
						|
public:
 | 
						|
  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy) const;
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const {
 | 
						|
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | 
						|
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
         it != ie; ++it)
 | 
						|
      it->info = classifyArgumentType(it->type);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | 
						|
    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
 | 
						|
};
 | 
						|
 | 
						|
llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
 | 
						|
  if (isAggregateTypeForABI(Ty)) {
 | 
						|
    // Records with non trivial destructors/constructors should not be passed
 | 
						|
    // by value.
 | 
						|
    if (isRecordReturnIndirect(Ty, CGT))
 | 
						|
      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | 
						|
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat an enum type as its underlying type.
 | 
						|
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
    Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  return (Ty->isPromotableIntegerType() ?
 | 
						|
          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
 | 
						|
  if (RetTy->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  if (isAggregateTypeForABI(RetTy))
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
  // Treat an enum type as its underlying type.
 | 
						|
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | 
						|
    RetTy = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  return (RetTy->isPromotableIntegerType() ?
 | 
						|
          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// le32/PNaCl bitcode ABI Implementation
 | 
						|
//
 | 
						|
// This is a simplified version of the x86_32 ABI.  Arguments and return values
 | 
						|
// are always passed on the stack.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
class PNaClABIInfo : public ABIInfo {
 | 
						|
 public:
 | 
						|
  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy) const;
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
 public:
 | 
						|
  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | 
						|
    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
 | 
						|
};
 | 
						|
 | 
						|
void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | 
						|
 | 
						|
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
         it != ie; ++it)
 | 
						|
      it->info = classifyArgumentType(it->type);
 | 
						|
  }
 | 
						|
 | 
						|
llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Classify argument of given type \p Ty.
 | 
						|
ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
 | 
						|
  if (isAggregateTypeForABI(Ty)) {
 | 
						|
    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
 | 
						|
      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
 | 
						|
    // Treat an enum type as its underlying type.
 | 
						|
    Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
  } else if (Ty->isFloatingType()) {
 | 
						|
    // Floating-point types don't go inreg.
 | 
						|
    return ABIArgInfo::getDirect();
 | 
						|
  }
 | 
						|
 | 
						|
  return (Ty->isPromotableIntegerType() ?
 | 
						|
          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
 | 
						|
  if (RetTy->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  // In the PNaCl ABI we always return records/structures on the stack.
 | 
						|
  if (isAggregateTypeForABI(RetTy))
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
  // Treat an enum type as its underlying type.
 | 
						|
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | 
						|
    RetTy = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  return (RetTy->isPromotableIntegerType() ?
 | 
						|
          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
}
 | 
						|
 | 
						|
/// IsX86_MMXType - Return true if this is an MMX type.
 | 
						|
bool IsX86_MMXType(llvm::Type *IRType) {
 | 
						|
  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
 | 
						|
  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
 | 
						|
    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
 | 
						|
    IRType->getScalarSizeInBits() != 64;
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
 | 
						|
                                          StringRef Constraint,
 | 
						|
                                          llvm::Type* Ty) {
 | 
						|
  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
 | 
						|
    if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
 | 
						|
      // Invalid MMX constraint
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
 | 
						|
  }
 | 
						|
 | 
						|
  // No operation needed
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// X86-32 ABI Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// X86_32ABIInfo - The X86-32 ABI information.
 | 
						|
class X86_32ABIInfo : public ABIInfo {
 | 
						|
  enum Class {
 | 
						|
    Integer,
 | 
						|
    Float
 | 
						|
  };
 | 
						|
 | 
						|
  static const unsigned MinABIStackAlignInBytes = 4;
 | 
						|
 | 
						|
  bool IsDarwinVectorABI;
 | 
						|
  bool IsSmallStructInRegABI;
 | 
						|
  bool IsWin32StructABI;
 | 
						|
  unsigned DefaultNumRegisterParameters;
 | 
						|
 | 
						|
  static bool isRegisterSize(unsigned Size) {
 | 
						|
    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
 | 
						|
  }
 | 
						|
 | 
						|
  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, 
 | 
						|
                                          unsigned callingConvention);
 | 
						|
 | 
						|
  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | 
						|
  /// such that the argument will be passed in memory.
 | 
						|
  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
 | 
						|
                               unsigned &FreeRegs) const;
 | 
						|
 | 
						|
  /// \brief Return the alignment to use for the given type on the stack.
 | 
						|
  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
 | 
						|
 | 
						|
  Class classify(QualType Ty) const;
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy,
 | 
						|
                                unsigned callingConvention) const;
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
 | 
						|
                                  bool IsFastCall) const;
 | 
						|
  bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
 | 
						|
                      bool IsFastCall, bool &NeedsPadding) const;
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
 | 
						|
  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
 | 
						|
                unsigned r)
 | 
						|
    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
 | 
						|
      IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
 | 
						|
};
 | 
						|
 | 
						|
class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
 | 
						|
      bool d, bool p, bool w, unsigned r)
 | 
						|
    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
 | 
						|
 | 
						|
  static bool isStructReturnInRegABI(
 | 
						|
      const llvm::Triple &Triple, const CodeGenOptions &Opts);
 | 
						|
 | 
						|
  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | 
						|
                           CodeGen::CodeGenModule &CGM) const;
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
 | 
						|
    // Darwin uses different dwarf register numbers for EH.
 | 
						|
    if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
 | 
						|
    return 4;
 | 
						|
  }
 | 
						|
 | 
						|
  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                               llvm::Value *Address) const;
 | 
						|
 | 
						|
  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
 | 
						|
                                  StringRef Constraint,
 | 
						|
                                  llvm::Type* Ty) const {
 | 
						|
    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// shouldReturnTypeInRegister - Determine if the given type should be
 | 
						|
/// passed in a register (for the Darwin ABI).
 | 
						|
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
 | 
						|
                                               ASTContext &Context,
 | 
						|
                                               unsigned callingConvention) {
 | 
						|
  uint64_t Size = Context.getTypeSize(Ty);
 | 
						|
 | 
						|
  // Type must be register sized.
 | 
						|
  if (!isRegisterSize(Size))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Ty->isVectorType()) {
 | 
						|
    // 64- and 128- bit vectors inside structures are not returned in
 | 
						|
    // registers.
 | 
						|
    if (Size == 64 || Size == 128)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a builtin, pointer, enum, complex type, member pointer, or
 | 
						|
  // member function pointer it is ok.
 | 
						|
  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
 | 
						|
      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
 | 
						|
      Ty->isBlockPointerType() || Ty->isMemberPointerType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Arrays are treated like records.
 | 
						|
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
 | 
						|
    return shouldReturnTypeInRegister(AT->getElementType(), Context,
 | 
						|
                                      callingConvention);
 | 
						|
 | 
						|
  // Otherwise, it must be a record type.
 | 
						|
  const RecordType *RT = Ty->getAs<RecordType>();
 | 
						|
  if (!RT) return false;
 | 
						|
 | 
						|
  // FIXME: Traverse bases here too.
 | 
						|
 | 
						|
  // For thiscall conventions, structures will never be returned in
 | 
						|
  // a register.  This is for compatibility with the MSVC ABI
 | 
						|
  if (callingConvention == llvm::CallingConv::X86_ThisCall && 
 | 
						|
      RT->isStructureType()) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Structure types are passed in register if all fields would be
 | 
						|
  // passed in a register.
 | 
						|
  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
 | 
						|
         e = RT->getDecl()->field_end(); i != e; ++i) {
 | 
						|
    const FieldDecl *FD = *i;
 | 
						|
 | 
						|
    // Empty fields are ignored.
 | 
						|
    if (isEmptyField(Context, FD, true))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check fields recursively.
 | 
						|
    if (!shouldReturnTypeInRegister(FD->getType(), Context, 
 | 
						|
                                    callingConvention))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 
 | 
						|
                                            unsigned callingConvention) const {
 | 
						|
  if (RetTy->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
 | 
						|
    // On Darwin, some vectors are returned in registers.
 | 
						|
    if (IsDarwinVectorABI) {
 | 
						|
      uint64_t Size = getContext().getTypeSize(RetTy);
 | 
						|
 | 
						|
      // 128-bit vectors are a special case; they are returned in
 | 
						|
      // registers and we need to make sure to pick a type the LLVM
 | 
						|
      // backend will like.
 | 
						|
      if (Size == 128)
 | 
						|
        return ABIArgInfo::getDirect(llvm::VectorType::get(
 | 
						|
                  llvm::Type::getInt64Ty(getVMContext()), 2));
 | 
						|
 | 
						|
      // Always return in register if it fits in a general purpose
 | 
						|
      // register, or if it is 64 bits and has a single element.
 | 
						|
      if ((Size == 8 || Size == 16 || Size == 32) ||
 | 
						|
          (Size == 64 && VT->getNumElements() == 1))
 | 
						|
        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | 
						|
                                                            Size));
 | 
						|
 | 
						|
      return ABIArgInfo::getIndirect(0);
 | 
						|
    }
 | 
						|
 | 
						|
    return ABIArgInfo::getDirect();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isAggregateTypeForABI(RetTy)) {
 | 
						|
    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
 | 
						|
      if (isRecordReturnIndirect(RT, CGT))
 | 
						|
        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | 
						|
 | 
						|
      // Structures with flexible arrays are always indirect.
 | 
						|
      if (RT->getDecl()->hasFlexibleArrayMember())
 | 
						|
        return ABIArgInfo::getIndirect(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // If specified, structs and unions are always indirect.
 | 
						|
    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
 | 
						|
      return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
    // Small structures which are register sized are generally returned
 | 
						|
    // in a register.
 | 
						|
    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(), 
 | 
						|
                                                  callingConvention)) {
 | 
						|
      uint64_t Size = getContext().getTypeSize(RetTy);
 | 
						|
 | 
						|
      // As a special-case, if the struct is a "single-element" struct, and
 | 
						|
      // the field is of type "float" or "double", return it in a
 | 
						|
      // floating-point register. (MSVC does not apply this special case.)
 | 
						|
      // We apply a similar transformation for pointer types to improve the
 | 
						|
      // quality of the generated IR.
 | 
						|
      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
 | 
						|
        if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
 | 
						|
            || SeltTy->hasPointerRepresentation())
 | 
						|
          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
 | 
						|
 | 
						|
      // FIXME: We should be able to narrow this integer in cases with dead
 | 
						|
      // padding.
 | 
						|
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
 | 
						|
    }
 | 
						|
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat an enum type as its underlying type.
 | 
						|
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | 
						|
    RetTy = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  return (RetTy->isPromotableIntegerType() ?
 | 
						|
          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
}
 | 
						|
 | 
						|
static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
 | 
						|
  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
 | 
						|
}
 | 
						|
 | 
						|
static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
 | 
						|
  const RecordType *RT = Ty->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return 0;
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
 | 
						|
  // If this is a C++ record, check the bases first.
 | 
						|
  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | 
						|
    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | 
						|
           e = CXXRD->bases_end(); i != e; ++i)
 | 
						|
      if (!isRecordWithSSEVectorType(Context, i->getType()))
 | 
						|
        return false;
 | 
						|
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    QualType FT = i->getType();
 | 
						|
 | 
						|
    if (isSSEVectorType(Context, FT))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (isRecordWithSSEVectorType(Context, FT))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
 | 
						|
                                                 unsigned Align) const {
 | 
						|
  // Otherwise, if the alignment is less than or equal to the minimum ABI
 | 
						|
  // alignment, just use the default; the backend will handle this.
 | 
						|
  if (Align <= MinABIStackAlignInBytes)
 | 
						|
    return 0; // Use default alignment.
 | 
						|
 | 
						|
  // On non-Darwin, the stack type alignment is always 4.
 | 
						|
  if (!IsDarwinVectorABI) {
 | 
						|
    // Set explicit alignment, since we may need to realign the top.
 | 
						|
    return MinABIStackAlignInBytes;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
 | 
						|
  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
 | 
						|
                      isRecordWithSSEVectorType(getContext(), Ty)))
 | 
						|
    return 16;
 | 
						|
 | 
						|
  return MinABIStackAlignInBytes;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
 | 
						|
                                            unsigned &FreeRegs) const {
 | 
						|
  if (!ByVal) {
 | 
						|
    if (FreeRegs) {
 | 
						|
      --FreeRegs; // Non byval indirects just use one pointer.
 | 
						|
      return ABIArgInfo::getIndirectInReg(0, false);
 | 
						|
    }
 | 
						|
    return ABIArgInfo::getIndirect(0, false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the byval alignment.
 | 
						|
  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
 | 
						|
  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
 | 
						|
  if (StackAlign == 0)
 | 
						|
    return ABIArgInfo::getIndirect(4);
 | 
						|
 | 
						|
  // If the stack alignment is less than the type alignment, realign the
 | 
						|
  // argument.
 | 
						|
  if (StackAlign < TypeAlign)
 | 
						|
    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
 | 
						|
                                   /*Realign=*/true);
 | 
						|
 | 
						|
  return ABIArgInfo::getIndirect(StackAlign);
 | 
						|
}
 | 
						|
 | 
						|
X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
 | 
						|
  const Type *T = isSingleElementStruct(Ty, getContext());
 | 
						|
  if (!T)
 | 
						|
    T = Ty.getTypePtr();
 | 
						|
 | 
						|
  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
 | 
						|
    BuiltinType::Kind K = BT->getKind();
 | 
						|
    if (K == BuiltinType::Float || K == BuiltinType::Double)
 | 
						|
      return Float;
 | 
						|
  }
 | 
						|
  return Integer;
 | 
						|
}
 | 
						|
 | 
						|
bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
 | 
						|
                                   bool IsFastCall, bool &NeedsPadding) const {
 | 
						|
  NeedsPadding = false;
 | 
						|
  Class C = classify(Ty);
 | 
						|
  if (C == Float)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Size = getContext().getTypeSize(Ty);
 | 
						|
  unsigned SizeInRegs = (Size + 31) / 32;
 | 
						|
 | 
						|
  if (SizeInRegs == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (SizeInRegs > FreeRegs) {
 | 
						|
    FreeRegs = 0;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  FreeRegs -= SizeInRegs;
 | 
						|
 | 
						|
  if (IsFastCall) {
 | 
						|
    if (Size > 32)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Ty->isIntegralOrEnumerationType())
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (Ty->isPointerType())
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (Ty->isReferenceType())
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (FreeRegs)
 | 
						|
      NeedsPadding = true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
 | 
						|
                                               unsigned &FreeRegs,
 | 
						|
                                               bool IsFastCall) const {
 | 
						|
  // FIXME: Set alignment on indirect arguments.
 | 
						|
  if (isAggregateTypeForABI(Ty)) {
 | 
						|
    if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
      if (IsWin32StructABI)
 | 
						|
        return getIndirectResult(Ty, true, FreeRegs);
 | 
						|
 | 
						|
      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, CGT))
 | 
						|
        return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs);
 | 
						|
 | 
						|
      // Structures with flexible arrays are always indirect.
 | 
						|
      if (RT->getDecl()->hasFlexibleArrayMember())
 | 
						|
        return getIndirectResult(Ty, true, FreeRegs);
 | 
						|
    }
 | 
						|
 | 
						|
    // Ignore empty structs/unions.
 | 
						|
    if (isEmptyRecord(getContext(), Ty, true))
 | 
						|
      return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
    llvm::LLVMContext &LLVMContext = getVMContext();
 | 
						|
    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
 | 
						|
    bool NeedsPadding;
 | 
						|
    if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
 | 
						|
      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
 | 
						|
      SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
 | 
						|
      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
 | 
						|
      return ABIArgInfo::getDirectInReg(Result);
 | 
						|
    }
 | 
						|
    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
 | 
						|
 | 
						|
    // Expand small (<= 128-bit) record types when we know that the stack layout
 | 
						|
    // of those arguments will match the struct. This is important because the
 | 
						|
    // LLVM backend isn't smart enough to remove byval, which inhibits many
 | 
						|
    // optimizations.
 | 
						|
    if (getContext().getTypeSize(Ty) <= 4*32 &&
 | 
						|
        canExpandIndirectArgument(Ty, getContext()))
 | 
						|
      return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
 | 
						|
 | 
						|
    return getIndirectResult(Ty, true, FreeRegs);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | 
						|
    // On Darwin, some vectors are passed in memory, we handle this by passing
 | 
						|
    // it as an i8/i16/i32/i64.
 | 
						|
    if (IsDarwinVectorABI) {
 | 
						|
      uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
      if ((Size == 8 || Size == 16 || Size == 32) ||
 | 
						|
          (Size == 64 && VT->getNumElements() == 1))
 | 
						|
        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | 
						|
                                                            Size));
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsX86_MMXType(CGT.ConvertType(Ty)))
 | 
						|
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
 | 
						|
 | 
						|
    return ABIArgInfo::getDirect();
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
    Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  bool NeedsPadding;
 | 
						|
  bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
 | 
						|
 | 
						|
  if (Ty->isPromotableIntegerType()) {
 | 
						|
    if (InReg)
 | 
						|
      return ABIArgInfo::getExtendInReg();
 | 
						|
    return ABIArgInfo::getExtend();
 | 
						|
  }
 | 
						|
  if (InReg)
 | 
						|
    return ABIArgInfo::getDirectInReg();
 | 
						|
  return ABIArgInfo::getDirect();
 | 
						|
}
 | 
						|
 | 
						|
void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
 | 
						|
                                          FI.getCallingConvention());
 | 
						|
 | 
						|
  unsigned CC = FI.getCallingConvention();
 | 
						|
  bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
 | 
						|
  unsigned FreeRegs;
 | 
						|
  if (IsFastCall)
 | 
						|
    FreeRegs = 2;
 | 
						|
  else if (FI.getHasRegParm())
 | 
						|
    FreeRegs = FI.getRegParm();
 | 
						|
  else
 | 
						|
    FreeRegs = DefaultNumRegisterParameters;
 | 
						|
 | 
						|
  // If the return value is indirect, then the hidden argument is consuming one
 | 
						|
  // integer register.
 | 
						|
  if (FI.getReturnInfo().isIndirect() && FreeRegs) {
 | 
						|
    --FreeRegs;
 | 
						|
    ABIArgInfo &Old = FI.getReturnInfo();
 | 
						|
    Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
 | 
						|
                                       Old.getIndirectByVal(),
 | 
						|
                                       Old.getIndirectRealign());
 | 
						|
  }
 | 
						|
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it)
 | 
						|
    it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                      CodeGenFunction &CGF) const {
 | 
						|
  llvm::Type *BPP = CGF.Int8PtrPtrTy;
 | 
						|
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
 | 
						|
                                                       "ap");
 | 
						|
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | 
						|
 | 
						|
  // Compute if the address needs to be aligned
 | 
						|
  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
 | 
						|
  Align = getTypeStackAlignInBytes(Ty, Align);
 | 
						|
  Align = std::max(Align, 4U);
 | 
						|
  if (Align > 4) {
 | 
						|
    // addr = (addr + align - 1) & -align;
 | 
						|
    llvm::Value *Offset =
 | 
						|
      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
 | 
						|
    Addr = CGF.Builder.CreateGEP(Addr, Offset);
 | 
						|
    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
 | 
						|
                                                    CGF.Int32Ty);
 | 
						|
    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
 | 
						|
    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
 | 
						|
                                      Addr->getType(),
 | 
						|
                                      "ap.cur.aligned");
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type *PTy =
 | 
						|
    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | 
						|
  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
 | 
						|
 | 
						|
  uint64_t Offset =
 | 
						|
    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
 | 
						|
  llvm::Value *NextAddr =
 | 
						|
    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
 | 
						|
                      "ap.next");
 | 
						|
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | 
						|
 | 
						|
  return AddrTyped;
 | 
						|
}
 | 
						|
 | 
						|
void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
 | 
						|
                                                  llvm::GlobalValue *GV,
 | 
						|
                                            CodeGen::CodeGenModule &CGM) const {
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
 | 
						|
      // Get the LLVM function.
 | 
						|
      llvm::Function *Fn = cast<llvm::Function>(GV);
 | 
						|
 | 
						|
      // Now add the 'alignstack' attribute with a value of 16.
 | 
						|
      llvm::AttrBuilder B;
 | 
						|
      B.addStackAlignmentAttr(16);
 | 
						|
      Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
 | 
						|
                      llvm::AttributeSet::get(CGM.getLLVMContext(),
 | 
						|
                                              llvm::AttributeSet::FunctionIndex,
 | 
						|
                                              B));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
 | 
						|
                                               CodeGen::CodeGenFunction &CGF,
 | 
						|
                                               llvm::Value *Address) const {
 | 
						|
  CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | 
						|
 | 
						|
  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
 | 
						|
 | 
						|
  // 0-7 are the eight integer registers;  the order is different
 | 
						|
  //   on Darwin (for EH), but the range is the same.
 | 
						|
  // 8 is %eip.
 | 
						|
  AssignToArrayRange(Builder, Address, Four8, 0, 8);
 | 
						|
 | 
						|
  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
 | 
						|
    // 12-16 are st(0..4).  Not sure why we stop at 4.
 | 
						|
    // These have size 16, which is sizeof(long double) on
 | 
						|
    // platforms with 8-byte alignment for that type.
 | 
						|
    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
 | 
						|
    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
 | 
						|
 | 
						|
  } else {
 | 
						|
    // 9 is %eflags, which doesn't get a size on Darwin for some
 | 
						|
    // reason.
 | 
						|
    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
 | 
						|
 | 
						|
    // 11-16 are st(0..5).  Not sure why we stop at 5.
 | 
						|
    // These have size 12, which is sizeof(long double) on
 | 
						|
    // platforms with 4-byte alignment for that type.
 | 
						|
    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
 | 
						|
    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// X86-64 ABI Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
/// X86_64ABIInfo - The X86_64 ABI information.
 | 
						|
class X86_64ABIInfo : public ABIInfo {
 | 
						|
  enum Class {
 | 
						|
    Integer = 0,
 | 
						|
    SSE,
 | 
						|
    SSEUp,
 | 
						|
    X87,
 | 
						|
    X87Up,
 | 
						|
    ComplexX87,
 | 
						|
    NoClass,
 | 
						|
    Memory
 | 
						|
  };
 | 
						|
 | 
						|
  /// merge - Implement the X86_64 ABI merging algorithm.
 | 
						|
  ///
 | 
						|
  /// Merge an accumulating classification \arg Accum with a field
 | 
						|
  /// classification \arg Field.
 | 
						|
  ///
 | 
						|
  /// \param Accum - The accumulating classification. This should
 | 
						|
  /// always be either NoClass or the result of a previous merge
 | 
						|
  /// call. In addition, this should never be Memory (the caller
 | 
						|
  /// should just return Memory for the aggregate).
 | 
						|
  static Class merge(Class Accum, Class Field);
 | 
						|
 | 
						|
  /// postMerge - Implement the X86_64 ABI post merging algorithm.
 | 
						|
  ///
 | 
						|
  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
 | 
						|
  /// final MEMORY or SSE classes when necessary.
 | 
						|
  ///
 | 
						|
  /// \param AggregateSize - The size of the current aggregate in
 | 
						|
  /// the classification process.
 | 
						|
  ///
 | 
						|
  /// \param Lo - The classification for the parts of the type
 | 
						|
  /// residing in the low word of the containing object.
 | 
						|
  ///
 | 
						|
  /// \param Hi - The classification for the parts of the type
 | 
						|
  /// residing in the higher words of the containing object.
 | 
						|
  ///
 | 
						|
  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
 | 
						|
 | 
						|
  /// classify - Determine the x86_64 register classes in which the
 | 
						|
  /// given type T should be passed.
 | 
						|
  ///
 | 
						|
  /// \param Lo - The classification for the parts of the type
 | 
						|
  /// residing in the low word of the containing object.
 | 
						|
  ///
 | 
						|
  /// \param Hi - The classification for the parts of the type
 | 
						|
  /// residing in the high word of the containing object.
 | 
						|
  ///
 | 
						|
  /// \param OffsetBase - The bit offset of this type in the
 | 
						|
  /// containing object.  Some parameters are classified different
 | 
						|
  /// depending on whether they straddle an eightbyte boundary.
 | 
						|
  ///
 | 
						|
  /// \param isNamedArg - Whether the argument in question is a "named"
 | 
						|
  /// argument, as used in AMD64-ABI 3.5.7.
 | 
						|
  ///
 | 
						|
  /// If a word is unused its result will be NoClass; if a type should
 | 
						|
  /// be passed in Memory then at least the classification of \arg Lo
 | 
						|
  /// will be Memory.
 | 
						|
  ///
 | 
						|
  /// The \arg Lo class will be NoClass iff the argument is ignored.
 | 
						|
  ///
 | 
						|
  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
 | 
						|
  /// also be ComplexX87.
 | 
						|
  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
 | 
						|
                bool isNamedArg) const;
 | 
						|
 | 
						|
  llvm::Type *GetByteVectorType(QualType Ty) const;
 | 
						|
  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
 | 
						|
                                 unsigned IROffset, QualType SourceTy,
 | 
						|
                                 unsigned SourceOffset) const;
 | 
						|
  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
 | 
						|
                                     unsigned IROffset, QualType SourceTy,
 | 
						|
                                     unsigned SourceOffset) const;
 | 
						|
 | 
						|
  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | 
						|
  /// such that the argument will be returned in memory.
 | 
						|
  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
 | 
						|
 | 
						|
  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | 
						|
  /// such that the argument will be passed in memory.
 | 
						|
  ///
 | 
						|
  /// \param freeIntRegs - The number of free integer registers remaining
 | 
						|
  /// available.
 | 
						|
  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyArgumentType(QualType Ty,
 | 
						|
                                  unsigned freeIntRegs,
 | 
						|
                                  unsigned &neededInt,
 | 
						|
                                  unsigned &neededSSE,
 | 
						|
                                  bool isNamedArg) const;
 | 
						|
 | 
						|
  bool IsIllegalVectorType(QualType Ty) const;
 | 
						|
 | 
						|
  /// The 0.98 ABI revision clarified a lot of ambiguities,
 | 
						|
  /// unfortunately in ways that were not always consistent with
 | 
						|
  /// certain previous compilers.  In particular, platforms which
 | 
						|
  /// required strict binary compatibility with older versions of GCC
 | 
						|
  /// may need to exempt themselves.
 | 
						|
  bool honorsRevision0_98() const {
 | 
						|
    return !getTarget().getTriple().isOSDarwin();
 | 
						|
  }
 | 
						|
 | 
						|
  bool HasAVX;
 | 
						|
  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
 | 
						|
  // 64-bit hardware.
 | 
						|
  bool Has64BitPointers;
 | 
						|
 | 
						|
public:
 | 
						|
  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
 | 
						|
      ABIInfo(CGT), HasAVX(hasavx),
 | 
						|
      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
 | 
						|
  }
 | 
						|
 | 
						|
  bool isPassedUsingAVXType(QualType type) const {
 | 
						|
    unsigned neededInt, neededSSE;
 | 
						|
    // The freeIntRegs argument doesn't matter here.
 | 
						|
    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
 | 
						|
                                           /*isNamedArg*/true);
 | 
						|
    if (info.isDirect()) {
 | 
						|
      llvm::Type *ty = info.getCoerceToType();
 | 
						|
      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
 | 
						|
        return (vectorTy->getBitWidth() > 128);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
 | 
						|
class WinX86_64ABIInfo : public ABIInfo {
 | 
						|
 | 
						|
  ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
 | 
						|
 | 
						|
public:
 | 
						|
  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
 | 
						|
      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
 | 
						|
 | 
						|
  const X86_64ABIInfo &getABIInfo() const {
 | 
						|
    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
 | 
						|
    return 7;
 | 
						|
  }
 | 
						|
 | 
						|
  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                               llvm::Value *Address) const {
 | 
						|
    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
 | 
						|
 | 
						|
    // 0-15 are the 16 integer registers.
 | 
						|
    // 16 is %rip.
 | 
						|
    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
 | 
						|
                                  StringRef Constraint,
 | 
						|
                                  llvm::Type* Ty) const {
 | 
						|
    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isNoProtoCallVariadic(const CallArgList &args,
 | 
						|
                             const FunctionNoProtoType *fnType) const {
 | 
						|
    // The default CC on x86-64 sets %al to the number of SSA
 | 
						|
    // registers used, and GCC sets this when calling an unprototyped
 | 
						|
    // function, so we override the default behavior.  However, don't do
 | 
						|
    // that when AVX types are involved: the ABI explicitly states it is
 | 
						|
    // undefined, and it doesn't work in practice because of how the ABI
 | 
						|
    // defines varargs anyway.
 | 
						|
    if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
 | 
						|
      bool HasAVXType = false;
 | 
						|
      for (CallArgList::const_iterator
 | 
						|
             it = args.begin(), ie = args.end(); it != ie; ++it) {
 | 
						|
        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
 | 
						|
          HasAVXType = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!HasAVXType)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
 | 
						|
  // If the argument does not end in .lib, automatically add the suffix. This
 | 
						|
  // matches the behavior of MSVC.
 | 
						|
  std::string ArgStr = Lib;
 | 
						|
  if (Lib.size() <= 4 ||
 | 
						|
      Lib.substr(Lib.size() - 4).compare_lower(".lib") != 0) {
 | 
						|
    ArgStr += ".lib";
 | 
						|
  }
 | 
						|
  return ArgStr;
 | 
						|
}
 | 
						|
 | 
						|
class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
 | 
						|
        bool d, bool p, bool w, unsigned RegParms)
 | 
						|
    : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
 | 
						|
 | 
						|
  void getDependentLibraryOption(llvm::StringRef Lib,
 | 
						|
                                 llvm::SmallString<24> &Opt) const {
 | 
						|
    Opt = "/DEFAULTLIB:";
 | 
						|
    Opt += qualifyWindowsLibrary(Lib);
 | 
						|
  }
 | 
						|
 | 
						|
  void getDetectMismatchOption(llvm::StringRef Name,
 | 
						|
                               llvm::StringRef Value,
 | 
						|
                               llvm::SmallString<32> &Opt) const {
 | 
						|
    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | 
						|
    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
 | 
						|
    return 7;
 | 
						|
  }
 | 
						|
 | 
						|
  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                               llvm::Value *Address) const {
 | 
						|
    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
 | 
						|
 | 
						|
    // 0-15 are the 16 integer registers.
 | 
						|
    // 16 is %rip.
 | 
						|
    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  void getDependentLibraryOption(llvm::StringRef Lib,
 | 
						|
                                 llvm::SmallString<24> &Opt) const {
 | 
						|
    Opt = "/DEFAULTLIB:";
 | 
						|
    Opt += qualifyWindowsLibrary(Lib);
 | 
						|
  }
 | 
						|
 | 
						|
  void getDetectMismatchOption(llvm::StringRef Name,
 | 
						|
                               llvm::StringRef Value,
 | 
						|
                               llvm::SmallString<32> &Opt) const {
 | 
						|
    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
 | 
						|
                              Class &Hi) const {
 | 
						|
  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
 | 
						|
  //
 | 
						|
  // (a) If one of the classes is Memory, the whole argument is passed in
 | 
						|
  //     memory.
 | 
						|
  //
 | 
						|
  // (b) If X87UP is not preceded by X87, the whole argument is passed in
 | 
						|
  //     memory.
 | 
						|
  //
 | 
						|
  // (c) If the size of the aggregate exceeds two eightbytes and the first
 | 
						|
  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
 | 
						|
  //     argument is passed in memory. NOTE: This is necessary to keep the
 | 
						|
  //     ABI working for processors that don't support the __m256 type.
 | 
						|
  //
 | 
						|
  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
 | 
						|
  //
 | 
						|
  // Some of these are enforced by the merging logic.  Others can arise
 | 
						|
  // only with unions; for example:
 | 
						|
  //   union { _Complex double; unsigned; }
 | 
						|
  //
 | 
						|
  // Note that clauses (b) and (c) were added in 0.98.
 | 
						|
  //
 | 
						|
  if (Hi == Memory)
 | 
						|
    Lo = Memory;
 | 
						|
  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
 | 
						|
    Lo = Memory;
 | 
						|
  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
 | 
						|
    Lo = Memory;
 | 
						|
  if (Hi == SSEUp && Lo != SSE)
 | 
						|
    Hi = SSE;
 | 
						|
}
 | 
						|
 | 
						|
X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
 | 
						|
  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
 | 
						|
  // classified recursively so that always two fields are
 | 
						|
  // considered. The resulting class is calculated according to
 | 
						|
  // the classes of the fields in the eightbyte:
 | 
						|
  //
 | 
						|
  // (a) If both classes are equal, this is the resulting class.
 | 
						|
  //
 | 
						|
  // (b) If one of the classes is NO_CLASS, the resulting class is
 | 
						|
  // the other class.
 | 
						|
  //
 | 
						|
  // (c) If one of the classes is MEMORY, the result is the MEMORY
 | 
						|
  // class.
 | 
						|
  //
 | 
						|
  // (d) If one of the classes is INTEGER, the result is the
 | 
						|
  // INTEGER.
 | 
						|
  //
 | 
						|
  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
 | 
						|
  // MEMORY is used as class.
 | 
						|
  //
 | 
						|
  // (f) Otherwise class SSE is used.
 | 
						|
 | 
						|
  // Accum should never be memory (we should have returned) or
 | 
						|
  // ComplexX87 (because this cannot be passed in a structure).
 | 
						|
  assert((Accum != Memory && Accum != ComplexX87) &&
 | 
						|
         "Invalid accumulated classification during merge.");
 | 
						|
  if (Accum == Field || Field == NoClass)
 | 
						|
    return Accum;
 | 
						|
  if (Field == Memory)
 | 
						|
    return Memory;
 | 
						|
  if (Accum == NoClass)
 | 
						|
    return Field;
 | 
						|
  if (Accum == Integer || Field == Integer)
 | 
						|
    return Integer;
 | 
						|
  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
 | 
						|
      Accum == X87 || Accum == X87Up)
 | 
						|
    return Memory;
 | 
						|
  return SSE;
 | 
						|
}
 | 
						|
 | 
						|
void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
 | 
						|
                             Class &Lo, Class &Hi, bool isNamedArg) const {
 | 
						|
  // FIXME: This code can be simplified by introducing a simple value class for
 | 
						|
  // Class pairs with appropriate constructor methods for the various
 | 
						|
  // situations.
 | 
						|
 | 
						|
  // FIXME: Some of the split computations are wrong; unaligned vectors
 | 
						|
  // shouldn't be passed in registers for example, so there is no chance they
 | 
						|
  // can straddle an eightbyte. Verify & simplify.
 | 
						|
 | 
						|
  Lo = Hi = NoClass;
 | 
						|
 | 
						|
  Class &Current = OffsetBase < 64 ? Lo : Hi;
 | 
						|
  Current = Memory;
 | 
						|
 | 
						|
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | 
						|
    BuiltinType::Kind k = BT->getKind();
 | 
						|
 | 
						|
    if (k == BuiltinType::Void) {
 | 
						|
      Current = NoClass;
 | 
						|
    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
 | 
						|
      Lo = Integer;
 | 
						|
      Hi = Integer;
 | 
						|
    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
 | 
						|
      Current = Integer;
 | 
						|
    } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
 | 
						|
               (k == BuiltinType::LongDouble &&
 | 
						|
                getTarget().getTriple().getOS() == llvm::Triple::NaCl)) {
 | 
						|
      Current = SSE;
 | 
						|
    } else if (k == BuiltinType::LongDouble) {
 | 
						|
      Lo = X87;
 | 
						|
      Hi = X87Up;
 | 
						|
    }
 | 
						|
    // FIXME: _Decimal32 and _Decimal64 are SSE.
 | 
						|
    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const EnumType *ET = Ty->getAs<EnumType>()) {
 | 
						|
    // Classify the underlying integer type.
 | 
						|
    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ty->hasPointerRepresentation()) {
 | 
						|
    Current = Integer;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ty->isMemberPointerType()) {
 | 
						|
    if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
 | 
						|
      Lo = Hi = Integer;
 | 
						|
    else
 | 
						|
      Current = Integer;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | 
						|
    uint64_t Size = getContext().getTypeSize(VT);
 | 
						|
    if (Size == 32) {
 | 
						|
      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
 | 
						|
      // float> as integer.
 | 
						|
      Current = Integer;
 | 
						|
 | 
						|
      // If this type crosses an eightbyte boundary, it should be
 | 
						|
      // split.
 | 
						|
      uint64_t EB_Real = (OffsetBase) / 64;
 | 
						|
      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
 | 
						|
      if (EB_Real != EB_Imag)
 | 
						|
        Hi = Lo;
 | 
						|
    } else if (Size == 64) {
 | 
						|
      // gcc passes <1 x double> in memory. :(
 | 
						|
      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
 | 
						|
        return;
 | 
						|
 | 
						|
      // gcc passes <1 x long long> as INTEGER.
 | 
						|
      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
 | 
						|
          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
 | 
						|
          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
 | 
						|
          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
 | 
						|
        Current = Integer;
 | 
						|
      else
 | 
						|
        Current = SSE;
 | 
						|
 | 
						|
      // If this type crosses an eightbyte boundary, it should be
 | 
						|
      // split.
 | 
						|
      if (OffsetBase && OffsetBase != 64)
 | 
						|
        Hi = Lo;
 | 
						|
    } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
 | 
						|
      // Arguments of 256-bits are split into four eightbyte chunks. The
 | 
						|
      // least significant one belongs to class SSE and all the others to class
 | 
						|
      // SSEUP. The original Lo and Hi design considers that types can't be
 | 
						|
      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
 | 
						|
      // This design isn't correct for 256-bits, but since there're no cases
 | 
						|
      // where the upper parts would need to be inspected, avoid adding
 | 
						|
      // complexity and just consider Hi to match the 64-256 part.
 | 
						|
      //
 | 
						|
      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
 | 
						|
      // registers if they are "named", i.e. not part of the "..." of a
 | 
						|
      // variadic function.
 | 
						|
      Lo = SSE;
 | 
						|
      Hi = SSEUp;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
 | 
						|
    QualType ET = getContext().getCanonicalType(CT->getElementType());
 | 
						|
 | 
						|
    uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
    if (ET->isIntegralOrEnumerationType()) {
 | 
						|
      if (Size <= 64)
 | 
						|
        Current = Integer;
 | 
						|
      else if (Size <= 128)
 | 
						|
        Lo = Hi = Integer;
 | 
						|
    } else if (ET == getContext().FloatTy)
 | 
						|
      Current = SSE;
 | 
						|
    else if (ET == getContext().DoubleTy ||
 | 
						|
             (ET == getContext().LongDoubleTy &&
 | 
						|
              getTarget().getTriple().getOS() == llvm::Triple::NaCl))
 | 
						|
      Lo = Hi = SSE;
 | 
						|
    else if (ET == getContext().LongDoubleTy)
 | 
						|
      Current = ComplexX87;
 | 
						|
 | 
						|
    // If this complex type crosses an eightbyte boundary then it
 | 
						|
    // should be split.
 | 
						|
    uint64_t EB_Real = (OffsetBase) / 64;
 | 
						|
    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
 | 
						|
    if (Hi == NoClass && EB_Real != EB_Imag)
 | 
						|
      Hi = Lo;
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
 | 
						|
    // Arrays are treated like structures.
 | 
						|
 | 
						|
    uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
 | 
						|
    // than four eightbytes, ..., it has class MEMORY.
 | 
						|
    if (Size > 256)
 | 
						|
      return;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
 | 
						|
    // fields, it has class MEMORY.
 | 
						|
    //
 | 
						|
    // Only need to check alignment of array base.
 | 
						|
    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Otherwise implement simplified merge. We could be smarter about
 | 
						|
    // this, but it isn't worth it and would be harder to verify.
 | 
						|
    Current = NoClass;
 | 
						|
    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
 | 
						|
    uint64_t ArraySize = AT->getSize().getZExtValue();
 | 
						|
 | 
						|
    // The only case a 256-bit wide vector could be used is when the array
 | 
						|
    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
 | 
						|
    // to work for sizes wider than 128, early check and fallback to memory.
 | 
						|
    if (Size > 128 && EltSize != 256)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
 | 
						|
      Class FieldLo, FieldHi;
 | 
						|
      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
 | 
						|
      Lo = merge(Lo, FieldLo);
 | 
						|
      Hi = merge(Hi, FieldHi);
 | 
						|
      if (Lo == Memory || Hi == Memory)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    postMerge(Size, Lo, Hi);
 | 
						|
    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
    uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
 | 
						|
    // than four eightbytes, ..., it has class MEMORY.
 | 
						|
    if (Size > 256)
 | 
						|
      return;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
 | 
						|
    // copy constructor or a non-trivial destructor, it is passed by invisible
 | 
						|
    // reference.
 | 
						|
    if (getRecordArgABI(RT, CGT))
 | 
						|
      return;
 | 
						|
 | 
						|
    const RecordDecl *RD = RT->getDecl();
 | 
						|
 | 
						|
    // Assume variable sized types are passed in memory.
 | 
						|
    if (RD->hasFlexibleArrayMember())
 | 
						|
      return;
 | 
						|
 | 
						|
    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
 | 
						|
 | 
						|
    // Reset Lo class, this will be recomputed.
 | 
						|
    Current = NoClass;
 | 
						|
 | 
						|
    // If this is a C++ record, classify the bases first.
 | 
						|
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | 
						|
             e = CXXRD->bases_end(); i != e; ++i) {
 | 
						|
        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
 | 
						|
               "Unexpected base class!");
 | 
						|
        const CXXRecordDecl *Base =
 | 
						|
          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
        // Classify this field.
 | 
						|
        //
 | 
						|
        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
 | 
						|
        // single eightbyte, each is classified separately. Each eightbyte gets
 | 
						|
        // initialized to class NO_CLASS.
 | 
						|
        Class FieldLo, FieldHi;
 | 
						|
        uint64_t Offset =
 | 
						|
          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
 | 
						|
        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
 | 
						|
        Lo = merge(Lo, FieldLo);
 | 
						|
        Hi = merge(Hi, FieldHi);
 | 
						|
        if (Lo == Memory || Hi == Memory)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Classify the fields one at a time, merging the results.
 | 
						|
    unsigned idx = 0;
 | 
						|
    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
           i != e; ++i, ++idx) {
 | 
						|
      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
 | 
						|
      bool BitField = i->isBitField();
 | 
						|
 | 
						|
      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
 | 
						|
      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
 | 
						|
      //
 | 
						|
      // The only case a 256-bit wide vector could be used is when the struct
 | 
						|
      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
 | 
						|
      // to work for sizes wider than 128, early check and fallback to memory.
 | 
						|
      //
 | 
						|
      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
 | 
						|
        Lo = Memory;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // Note, skip this test for bit-fields, see below.
 | 
						|
      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
 | 
						|
        Lo = Memory;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Classify this field.
 | 
						|
      //
 | 
						|
      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
 | 
						|
      // exceeds a single eightbyte, each is classified
 | 
						|
      // separately. Each eightbyte gets initialized to class
 | 
						|
      // NO_CLASS.
 | 
						|
      Class FieldLo, FieldHi;
 | 
						|
 | 
						|
      // Bit-fields require special handling, they do not force the
 | 
						|
      // structure to be passed in memory even if unaligned, and
 | 
						|
      // therefore they can straddle an eightbyte.
 | 
						|
      if (BitField) {
 | 
						|
        // Ignore padding bit-fields.
 | 
						|
        if (i->isUnnamedBitfield())
 | 
						|
          continue;
 | 
						|
 | 
						|
        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
 | 
						|
        uint64_t Size = i->getBitWidthValue(getContext());
 | 
						|
 | 
						|
        uint64_t EB_Lo = Offset / 64;
 | 
						|
        uint64_t EB_Hi = (Offset + Size - 1) / 64;
 | 
						|
        FieldLo = FieldHi = NoClass;
 | 
						|
        if (EB_Lo) {
 | 
						|
          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
 | 
						|
          FieldLo = NoClass;
 | 
						|
          FieldHi = Integer;
 | 
						|
        } else {
 | 
						|
          FieldLo = Integer;
 | 
						|
          FieldHi = EB_Hi ? Integer : NoClass;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
 | 
						|
      Lo = merge(Lo, FieldLo);
 | 
						|
      Hi = merge(Hi, FieldHi);
 | 
						|
      if (Lo == Memory || Hi == Memory)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    postMerge(Size, Lo, Hi);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
 | 
						|
  // If this is a scalar LLVM value then assume LLVM will pass it in the right
 | 
						|
  // place naturally.
 | 
						|
  if (!isAggregateTypeForABI(Ty)) {
 | 
						|
    // Treat an enum type as its underlying type.
 | 
						|
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
      Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
    return (Ty->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
 | 
						|
  return ABIArgInfo::getIndirect(0);
 | 
						|
}
 | 
						|
 | 
						|
bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
 | 
						|
  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
 | 
						|
    uint64_t Size = getContext().getTypeSize(VecTy);
 | 
						|
    unsigned LargestVector = HasAVX ? 256 : 128;
 | 
						|
    if (Size <= 64 || Size > LargestVector)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
 | 
						|
                                            unsigned freeIntRegs) const {
 | 
						|
  // If this is a scalar LLVM value then assume LLVM will pass it in the right
 | 
						|
  // place naturally.
 | 
						|
  //
 | 
						|
  // This assumption is optimistic, as there could be free registers available
 | 
						|
  // when we need to pass this argument in memory, and LLVM could try to pass
 | 
						|
  // the argument in the free register. This does not seem to happen currently,
 | 
						|
  // but this code would be much safer if we could mark the argument with
 | 
						|
  // 'onstack'. See PR12193.
 | 
						|
  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
 | 
						|
    // Treat an enum type as its underlying type.
 | 
						|
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
      Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
    return (Ty->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
 | 
						|
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
 | 
						|
    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
 | 
						|
 | 
						|
  // Compute the byval alignment. We specify the alignment of the byval in all
 | 
						|
  // cases so that the mid-level optimizer knows the alignment of the byval.
 | 
						|
  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
 | 
						|
 | 
						|
  // Attempt to avoid passing indirect results using byval when possible. This
 | 
						|
  // is important for good codegen.
 | 
						|
  //
 | 
						|
  // We do this by coercing the value into a scalar type which the backend can
 | 
						|
  // handle naturally (i.e., without using byval).
 | 
						|
  //
 | 
						|
  // For simplicity, we currently only do this when we have exhausted all of the
 | 
						|
  // free integer registers. Doing this when there are free integer registers
 | 
						|
  // would require more care, as we would have to ensure that the coerced value
 | 
						|
  // did not claim the unused register. That would require either reording the
 | 
						|
  // arguments to the function (so that any subsequent inreg values came first),
 | 
						|
  // or only doing this optimization when there were no following arguments that
 | 
						|
  // might be inreg.
 | 
						|
  //
 | 
						|
  // We currently expect it to be rare (particularly in well written code) for
 | 
						|
  // arguments to be passed on the stack when there are still free integer
 | 
						|
  // registers available (this would typically imply large structs being passed
 | 
						|
  // by value), so this seems like a fair tradeoff for now.
 | 
						|
  //
 | 
						|
  // We can revisit this if the backend grows support for 'onstack' parameter
 | 
						|
  // attributes. See PR12193.
 | 
						|
  if (freeIntRegs == 0) {
 | 
						|
    uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
 | 
						|
    // If this type fits in an eightbyte, coerce it into the matching integral
 | 
						|
    // type, which will end up on the stack (with alignment 8).
 | 
						|
    if (Align == 8 && Size <= 64)
 | 
						|
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | 
						|
                                                          Size));
 | 
						|
  }
 | 
						|
 | 
						|
  return ABIArgInfo::getIndirect(Align);
 | 
						|
}
 | 
						|
 | 
						|
/// GetByteVectorType - The ABI specifies that a value should be passed in an
 | 
						|
/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
 | 
						|
/// vector register.
 | 
						|
llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
 | 
						|
  llvm::Type *IRType = CGT.ConvertType(Ty);
 | 
						|
 | 
						|
  // Wrapper structs that just contain vectors are passed just like vectors,
 | 
						|
  // strip them off if present.
 | 
						|
  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
 | 
						|
  while (STy && STy->getNumElements() == 1) {
 | 
						|
    IRType = STy->getElementType(0);
 | 
						|
    STy = dyn_cast<llvm::StructType>(IRType);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the preferred type is a 16-byte vector, prefer to pass it.
 | 
						|
  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
 | 
						|
    llvm::Type *EltTy = VT->getElementType();
 | 
						|
    unsigned BitWidth = VT->getBitWidth();
 | 
						|
    if ((BitWidth >= 128 && BitWidth <= 256) &&
 | 
						|
        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
 | 
						|
         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
 | 
						|
         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
 | 
						|
         EltTy->isIntegerTy(128)))
 | 
						|
      return VT;
 | 
						|
  }
 | 
						|
 | 
						|
  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
 | 
						|
}
 | 
						|
 | 
						|
/// BitsContainNoUserData - Return true if the specified [start,end) bit range
 | 
						|
/// is known to either be off the end of the specified type or being in
 | 
						|
/// alignment padding.  The user type specified is known to be at most 128 bits
 | 
						|
/// in size, and have passed through X86_64ABIInfo::classify with a successful
 | 
						|
/// classification that put one of the two halves in the INTEGER class.
 | 
						|
///
 | 
						|
/// It is conservatively correct to return false.
 | 
						|
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
 | 
						|
                                  unsigned EndBit, ASTContext &Context) {
 | 
						|
  // If the bytes being queried are off the end of the type, there is no user
 | 
						|
  // data hiding here.  This handles analysis of builtins, vectors and other
 | 
						|
  // types that don't contain interesting padding.
 | 
						|
  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
 | 
						|
  if (TySize <= StartBit)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
 | 
						|
    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
 | 
						|
    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
 | 
						|
 | 
						|
    // Check each element to see if the element overlaps with the queried range.
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
      // If the element is after the span we care about, then we're done..
 | 
						|
      unsigned EltOffset = i*EltSize;
 | 
						|
      if (EltOffset >= EndBit) break;
 | 
						|
 | 
						|
      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
 | 
						|
      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
 | 
						|
                                 EndBit-EltOffset, Context))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    // If it overlaps no elements, then it is safe to process as padding.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
    const RecordDecl *RD = RT->getDecl();
 | 
						|
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | 
						|
 | 
						|
    // If this is a C++ record, check the bases first.
 | 
						|
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | 
						|
           e = CXXRD->bases_end(); i != e; ++i) {
 | 
						|
        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
 | 
						|
               "Unexpected base class!");
 | 
						|
        const CXXRecordDecl *Base =
 | 
						|
          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
        // If the base is after the span we care about, ignore it.
 | 
						|
        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
 | 
						|
        if (BaseOffset >= EndBit) continue;
 | 
						|
 | 
						|
        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
 | 
						|
        if (!BitsContainNoUserData(i->getType(), BaseStart,
 | 
						|
                                   EndBit-BaseOffset, Context))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Verify that no field has data that overlaps the region of interest.  Yes
 | 
						|
    // this could be sped up a lot by being smarter about queried fields,
 | 
						|
    // however we're only looking at structs up to 16 bytes, so we don't care
 | 
						|
    // much.
 | 
						|
    unsigned idx = 0;
 | 
						|
    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
         i != e; ++i, ++idx) {
 | 
						|
      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
 | 
						|
 | 
						|
      // If we found a field after the region we care about, then we're done.
 | 
						|
      if (FieldOffset >= EndBit) break;
 | 
						|
 | 
						|
      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
 | 
						|
      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
 | 
						|
                                 Context))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If nothing in this record overlapped the area of interest, then we're
 | 
						|
    // clean.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
 | 
						|
/// float member at the specified offset.  For example, {int,{float}} has a
 | 
						|
/// float at offset 4.  It is conservatively correct for this routine to return
 | 
						|
/// false.
 | 
						|
static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
 | 
						|
                                  const llvm::DataLayout &TD) {
 | 
						|
  // Base case if we find a float.
 | 
						|
  if (IROffset == 0 && IRType->isFloatTy())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is a struct, recurse into the field at the specified offset.
 | 
						|
  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
 | 
						|
    const llvm::StructLayout *SL = TD.getStructLayout(STy);
 | 
						|
    unsigned Elt = SL->getElementContainingOffset(IROffset);
 | 
						|
    IROffset -= SL->getElementOffset(Elt);
 | 
						|
    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is an array, recurse into the field at the specified offset.
 | 
						|
  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
 | 
						|
    llvm::Type *EltTy = ATy->getElementType();
 | 
						|
    unsigned EltSize = TD.getTypeAllocSize(EltTy);
 | 
						|
    IROffset -= IROffset/EltSize*EltSize;
 | 
						|
    return ContainsFloatAtOffset(EltTy, IROffset, TD);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
 | 
						|
/// low 8 bytes of an XMM register, corresponding to the SSE class.
 | 
						|
llvm::Type *X86_64ABIInfo::
 | 
						|
GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
 | 
						|
                   QualType SourceTy, unsigned SourceOffset) const {
 | 
						|
  // The only three choices we have are either double, <2 x float>, or float. We
 | 
						|
  // pass as float if the last 4 bytes is just padding.  This happens for
 | 
						|
  // structs that contain 3 floats.
 | 
						|
  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
 | 
						|
                            SourceOffset*8+64, getContext()))
 | 
						|
    return llvm::Type::getFloatTy(getVMContext());
 | 
						|
 | 
						|
  // We want to pass as <2 x float> if the LLVM IR type contains a float at
 | 
						|
  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
 | 
						|
  // case.
 | 
						|
  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
 | 
						|
      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
 | 
						|
    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
 | 
						|
 | 
						|
  return llvm::Type::getDoubleTy(getVMContext());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
 | 
						|
/// an 8-byte GPR.  This means that we either have a scalar or we are talking
 | 
						|
/// about the high or low part of an up-to-16-byte struct.  This routine picks
 | 
						|
/// the best LLVM IR type to represent this, which may be i64 or may be anything
 | 
						|
/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
 | 
						|
/// etc).
 | 
						|
///
 | 
						|
/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
 | 
						|
/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
 | 
						|
/// the 8-byte value references.  PrefType may be null.
 | 
						|
///
 | 
						|
/// SourceTy is the source level type for the entire argument.  SourceOffset is
 | 
						|
/// an offset into this that we're processing (which is always either 0 or 8).
 | 
						|
///
 | 
						|
llvm::Type *X86_64ABIInfo::
 | 
						|
GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
 | 
						|
                       QualType SourceTy, unsigned SourceOffset) const {
 | 
						|
  // If we're dealing with an un-offset LLVM IR type, then it means that we're
 | 
						|
  // returning an 8-byte unit starting with it.  See if we can safely use it.
 | 
						|
  if (IROffset == 0) {
 | 
						|
    // Pointers and int64's always fill the 8-byte unit.
 | 
						|
    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
 | 
						|
        IRType->isIntegerTy(64))
 | 
						|
      return IRType;
 | 
						|
 | 
						|
    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
 | 
						|
    // goodness in the source type is just tail padding.  This is allowed to
 | 
						|
    // kick in for struct {double,int} on the int, but not on
 | 
						|
    // struct{double,int,int} because we wouldn't return the second int.  We
 | 
						|
    // have to do this analysis on the source type because we can't depend on
 | 
						|
    // unions being lowered a specific way etc.
 | 
						|
    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
 | 
						|
        IRType->isIntegerTy(32) ||
 | 
						|
        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
 | 
						|
      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
 | 
						|
          cast<llvm::IntegerType>(IRType)->getBitWidth();
 | 
						|
 | 
						|
      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
 | 
						|
                                SourceOffset*8+64, getContext()))
 | 
						|
        return IRType;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
 | 
						|
    // If this is a struct, recurse into the field at the specified offset.
 | 
						|
    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
 | 
						|
    if (IROffset < SL->getSizeInBytes()) {
 | 
						|
      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
 | 
						|
      IROffset -= SL->getElementOffset(FieldIdx);
 | 
						|
 | 
						|
      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
 | 
						|
                                    SourceTy, SourceOffset);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
 | 
						|
    llvm::Type *EltTy = ATy->getElementType();
 | 
						|
    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
 | 
						|
    unsigned EltOffset = IROffset/EltSize*EltSize;
 | 
						|
    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
 | 
						|
                                  SourceOffset);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we don't have any better idea of what to pass, so we pass this in an
 | 
						|
  // integer register that isn't too big to fit the rest of the struct.
 | 
						|
  unsigned TySizeInBytes =
 | 
						|
    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
 | 
						|
 | 
						|
  assert(TySizeInBytes != SourceOffset && "Empty field?");
 | 
						|
 | 
						|
  // It is always safe to classify this as an integer type up to i64 that
 | 
						|
  // isn't larger than the structure.
 | 
						|
  return llvm::IntegerType::get(getVMContext(),
 | 
						|
                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
 | 
						|
/// be used as elements of a two register pair to pass or return, return a
 | 
						|
/// first class aggregate to represent them.  For example, if the low part of
 | 
						|
/// a by-value argument should be passed as i32* and the high part as float,
 | 
						|
/// return {i32*, float}.
 | 
						|
static llvm::Type *
 | 
						|
GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
 | 
						|
                           const llvm::DataLayout &TD) {
 | 
						|
  // In order to correctly satisfy the ABI, we need to the high part to start
 | 
						|
  // at offset 8.  If the high and low parts we inferred are both 4-byte types
 | 
						|
  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
 | 
						|
  // the second element at offset 8.  Check for this:
 | 
						|
  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
 | 
						|
  unsigned HiAlign = TD.getABITypeAlignment(Hi);
 | 
						|
  unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
 | 
						|
  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
 | 
						|
 | 
						|
  // To handle this, we have to increase the size of the low part so that the
 | 
						|
  // second element will start at an 8 byte offset.  We can't increase the size
 | 
						|
  // of the second element because it might make us access off the end of the
 | 
						|
  // struct.
 | 
						|
  if (HiStart != 8) {
 | 
						|
    // There are only two sorts of types the ABI generation code can produce for
 | 
						|
    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
 | 
						|
    // Promote these to a larger type.
 | 
						|
    if (Lo->isFloatTy())
 | 
						|
      Lo = llvm::Type::getDoubleTy(Lo->getContext());
 | 
						|
    else {
 | 
						|
      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
 | 
						|
      Lo = llvm::Type::getInt64Ty(Lo->getContext());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
 | 
						|
 | 
						|
 | 
						|
  // Verify that the second element is at an 8-byte offset.
 | 
						|
  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
 | 
						|
         "Invalid x86-64 argument pair!");
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_64ABIInfo::
 | 
						|
classifyReturnType(QualType RetTy) const {
 | 
						|
  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
 | 
						|
  // classification algorithm.
 | 
						|
  X86_64ABIInfo::Class Lo, Hi;
 | 
						|
  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
 | 
						|
 | 
						|
  // Check some invariants.
 | 
						|
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
 | 
						|
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
 | 
						|
 | 
						|
  llvm::Type *ResType = 0;
 | 
						|
  switch (Lo) {
 | 
						|
  case NoClass:
 | 
						|
    if (Hi == NoClass)
 | 
						|
      return ABIArgInfo::getIgnore();
 | 
						|
    // If the low part is just padding, it takes no register, leave ResType
 | 
						|
    // null.
 | 
						|
    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
 | 
						|
           "Unknown missing lo part");
 | 
						|
    break;
 | 
						|
 | 
						|
  case SSEUp:
 | 
						|
  case X87Up:
 | 
						|
    llvm_unreachable("Invalid classification for lo word.");
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
 | 
						|
    // hidden argument.
 | 
						|
  case Memory:
 | 
						|
    return getIndirectReturnResult(RetTy);
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
 | 
						|
    // available register of the sequence %rax, %rdx is used.
 | 
						|
  case Integer:
 | 
						|
    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
 | 
						|
 | 
						|
    // If we have a sign or zero extended integer, make sure to return Extend
 | 
						|
    // so that the parameter gets the right LLVM IR attributes.
 | 
						|
    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
 | 
						|
      // Treat an enum type as its underlying type.
 | 
						|
      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | 
						|
        RetTy = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
      if (RetTy->isIntegralOrEnumerationType() &&
 | 
						|
          RetTy->isPromotableIntegerType())
 | 
						|
        return ABIArgInfo::getExtend();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
 | 
						|
    // available SSE register of the sequence %xmm0, %xmm1 is used.
 | 
						|
  case SSE:
 | 
						|
    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
 | 
						|
    // returned on the X87 stack in %st0 as 80-bit x87 number.
 | 
						|
  case X87:
 | 
						|
    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
 | 
						|
    // part of the value is returned in %st0 and the imaginary part in
 | 
						|
    // %st1.
 | 
						|
  case ComplexX87:
 | 
						|
    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
 | 
						|
    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
 | 
						|
                                    llvm::Type::getX86_FP80Ty(getVMContext()),
 | 
						|
                                    NULL);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type *HighPart = 0;
 | 
						|
  switch (Hi) {
 | 
						|
    // Memory was handled previously and X87 should
 | 
						|
    // never occur as a hi class.
 | 
						|
  case Memory:
 | 
						|
  case X87:
 | 
						|
    llvm_unreachable("Invalid classification for hi word.");
 | 
						|
 | 
						|
  case ComplexX87: // Previously handled.
 | 
						|
  case NoClass:
 | 
						|
    break;
 | 
						|
 | 
						|
  case Integer:
 | 
						|
    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
 | 
						|
    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
 | 
						|
      return ABIArgInfo::getDirect(HighPart, 8);
 | 
						|
    break;
 | 
						|
  case SSE:
 | 
						|
    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
 | 
						|
    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
 | 
						|
      return ABIArgInfo::getDirect(HighPart, 8);
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
 | 
						|
    // is passed in the next available eightbyte chunk if the last used
 | 
						|
    // vector register.
 | 
						|
    //
 | 
						|
    // SSEUP should always be preceded by SSE, just widen.
 | 
						|
  case SSEUp:
 | 
						|
    assert(Lo == SSE && "Unexpected SSEUp classification.");
 | 
						|
    ResType = GetByteVectorType(RetTy);
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
 | 
						|
    // returned together with the previous X87 value in %st0.
 | 
						|
  case X87Up:
 | 
						|
    // If X87Up is preceded by X87, we don't need to do
 | 
						|
    // anything. However, in some cases with unions it may not be
 | 
						|
    // preceded by X87. In such situations we follow gcc and pass the
 | 
						|
    // extra bits in an SSE reg.
 | 
						|
    if (Lo != X87) {
 | 
						|
      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
 | 
						|
      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
 | 
						|
        return ABIArgInfo::getDirect(HighPart, 8);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If a high part was specified, merge it together with the low part.  It is
 | 
						|
  // known to pass in the high eightbyte of the result.  We do this by forming a
 | 
						|
  // first class struct aggregate with the high and low part: {low, high}
 | 
						|
  if (HighPart)
 | 
						|
    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
 | 
						|
 | 
						|
  return ABIArgInfo::getDirect(ResType);
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_64ABIInfo::classifyArgumentType(
 | 
						|
  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
 | 
						|
  bool isNamedArg)
 | 
						|
  const
 | 
						|
{
 | 
						|
  X86_64ABIInfo::Class Lo, Hi;
 | 
						|
  classify(Ty, 0, Lo, Hi, isNamedArg);
 | 
						|
 | 
						|
  // Check some invariants.
 | 
						|
  // FIXME: Enforce these by construction.
 | 
						|
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
 | 
						|
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
 | 
						|
 | 
						|
  neededInt = 0;
 | 
						|
  neededSSE = 0;
 | 
						|
  llvm::Type *ResType = 0;
 | 
						|
  switch (Lo) {
 | 
						|
  case NoClass:
 | 
						|
    if (Hi == NoClass)
 | 
						|
      return ABIArgInfo::getIgnore();
 | 
						|
    // If the low part is just padding, it takes no register, leave ResType
 | 
						|
    // null.
 | 
						|
    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
 | 
						|
           "Unknown missing lo part");
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
 | 
						|
    // on the stack.
 | 
						|
  case Memory:
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
 | 
						|
    // COMPLEX_X87, it is passed in memory.
 | 
						|
  case X87:
 | 
						|
  case ComplexX87:
 | 
						|
    if (getRecordArgABI(Ty, CGT) == CGCXXABI::RAA_Indirect)
 | 
						|
      ++neededInt;
 | 
						|
    return getIndirectResult(Ty, freeIntRegs);
 | 
						|
 | 
						|
  case SSEUp:
 | 
						|
  case X87Up:
 | 
						|
    llvm_unreachable("Invalid classification for lo word.");
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
 | 
						|
    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
 | 
						|
    // and %r9 is used.
 | 
						|
  case Integer:
 | 
						|
    ++neededInt;
 | 
						|
 | 
						|
    // Pick an 8-byte type based on the preferred type.
 | 
						|
    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
 | 
						|
 | 
						|
    // If we have a sign or zero extended integer, make sure to return Extend
 | 
						|
    // so that the parameter gets the right LLVM IR attributes.
 | 
						|
    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
 | 
						|
      // Treat an enum type as its underlying type.
 | 
						|
      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
        Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
      if (Ty->isIntegralOrEnumerationType() &&
 | 
						|
          Ty->isPromotableIntegerType())
 | 
						|
        return ABIArgInfo::getExtend();
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
 | 
						|
    // available SSE register is used, the registers are taken in the
 | 
						|
    // order from %xmm0 to %xmm7.
 | 
						|
  case SSE: {
 | 
						|
    llvm::Type *IRType = CGT.ConvertType(Ty);
 | 
						|
    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
 | 
						|
    ++neededSSE;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type *HighPart = 0;
 | 
						|
  switch (Hi) {
 | 
						|
    // Memory was handled previously, ComplexX87 and X87 should
 | 
						|
    // never occur as hi classes, and X87Up must be preceded by X87,
 | 
						|
    // which is passed in memory.
 | 
						|
  case Memory:
 | 
						|
  case X87:
 | 
						|
  case ComplexX87:
 | 
						|
    llvm_unreachable("Invalid classification for hi word.");
 | 
						|
 | 
						|
  case NoClass: break;
 | 
						|
 | 
						|
  case Integer:
 | 
						|
    ++neededInt;
 | 
						|
    // Pick an 8-byte type based on the preferred type.
 | 
						|
    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
 | 
						|
 | 
						|
    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
 | 
						|
      return ABIArgInfo::getDirect(HighPart, 8);
 | 
						|
    break;
 | 
						|
 | 
						|
    // X87Up generally doesn't occur here (long double is passed in
 | 
						|
    // memory), except in situations involving unions.
 | 
						|
  case X87Up:
 | 
						|
  case SSE:
 | 
						|
    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
 | 
						|
 | 
						|
    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
 | 
						|
      return ABIArgInfo::getDirect(HighPart, 8);
 | 
						|
 | 
						|
    ++neededSSE;
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
 | 
						|
    // eightbyte is passed in the upper half of the last used SSE
 | 
						|
    // register.  This only happens when 128-bit vectors are passed.
 | 
						|
  case SSEUp:
 | 
						|
    assert(Lo == SSE && "Unexpected SSEUp classification");
 | 
						|
    ResType = GetByteVectorType(Ty);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If a high part was specified, merge it together with the low part.  It is
 | 
						|
  // known to pass in the high eightbyte of the result.  We do this by forming a
 | 
						|
  // first class struct aggregate with the high and low part: {low, high}
 | 
						|
  if (HighPart)
 | 
						|
    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
 | 
						|
 | 
						|
  return ABIArgInfo::getDirect(ResType);
 | 
						|
}
 | 
						|
 | 
						|
void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
 | 
						|
  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | 
						|
 | 
						|
  // Keep track of the number of assigned registers.
 | 
						|
  unsigned freeIntRegs = 6, freeSSERegs = 8;
 | 
						|
 | 
						|
  // If the return value is indirect, then the hidden argument is consuming one
 | 
						|
  // integer register.
 | 
						|
  if (FI.getReturnInfo().isIndirect())
 | 
						|
    --freeIntRegs;
 | 
						|
 | 
						|
  bool isVariadic = FI.isVariadic();
 | 
						|
  unsigned numRequiredArgs = 0;
 | 
						|
  if (isVariadic)
 | 
						|
    numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
 | 
						|
 | 
						|
  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
 | 
						|
  // get assigned (in left-to-right order) for passing as follows...
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    bool isNamedArg = true;
 | 
						|
    if (isVariadic)
 | 
						|
      isNamedArg = (it - FI.arg_begin()) < 
 | 
						|
                    static_cast<signed>(numRequiredArgs);
 | 
						|
 | 
						|
    unsigned neededInt, neededSSE;
 | 
						|
    it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
 | 
						|
                                    neededSSE, isNamedArg);
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: If there are no registers available for any
 | 
						|
    // eightbyte of an argument, the whole argument is passed on the
 | 
						|
    // stack. If registers have already been assigned for some
 | 
						|
    // eightbytes of such an argument, the assignments get reverted.
 | 
						|
    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
 | 
						|
      freeIntRegs -= neededInt;
 | 
						|
      freeSSERegs -= neededSSE;
 | 
						|
    } else {
 | 
						|
      it->info = getIndirectResult(it->type, freeIntRegs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
 | 
						|
                                        QualType Ty,
 | 
						|
                                        CodeGenFunction &CGF) {
 | 
						|
  llvm::Value *overflow_arg_area_p =
 | 
						|
    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
 | 
						|
  llvm::Value *overflow_arg_area =
 | 
						|
    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
 | 
						|
  // byte boundary if alignment needed by type exceeds 8 byte boundary.
 | 
						|
  // It isn't stated explicitly in the standard, but in practice we use
 | 
						|
  // alignment greater than 16 where necessary.
 | 
						|
  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
 | 
						|
  if (Align > 8) {
 | 
						|
    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
 | 
						|
    llvm::Value *Offset =
 | 
						|
      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
 | 
						|
    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
 | 
						|
    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
 | 
						|
                                                    CGF.Int64Ty);
 | 
						|
    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
 | 
						|
    overflow_arg_area =
 | 
						|
      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
 | 
						|
                                 overflow_arg_area->getType(),
 | 
						|
                                 "overflow_arg_area.align");
 | 
						|
  }
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
 | 
						|
  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
 | 
						|
  llvm::Value *Res =
 | 
						|
    CGF.Builder.CreateBitCast(overflow_arg_area,
 | 
						|
                              llvm::PointerType::getUnqual(LTy));
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
 | 
						|
  // l->overflow_arg_area + sizeof(type).
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
 | 
						|
  // an 8 byte boundary.
 | 
						|
 | 
						|
  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
 | 
						|
  llvm::Value *Offset =
 | 
						|
      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
 | 
						|
  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
 | 
						|
                                            "overflow_arg_area.next");
 | 
						|
  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                      CodeGenFunction &CGF) const {
 | 
						|
  // Assume that va_list type is correct; should be pointer to LLVM type:
 | 
						|
  // struct {
 | 
						|
  //   i32 gp_offset;
 | 
						|
  //   i32 fp_offset;
 | 
						|
  //   i8* overflow_arg_area;
 | 
						|
  //   i8* reg_save_area;
 | 
						|
  // };
 | 
						|
  unsigned neededInt, neededSSE;
 | 
						|
 | 
						|
  Ty = CGF.getContext().getCanonicalType(Ty);
 | 
						|
  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 
 | 
						|
                                       /*isNamedArg*/false);
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
 | 
						|
  // in the registers. If not go to step 7.
 | 
						|
  if (!neededInt && !neededSSE)
 | 
						|
    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
 | 
						|
  // general purpose registers needed to pass type and num_fp to hold
 | 
						|
  // the number of floating point registers needed.
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
 | 
						|
  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
 | 
						|
  // l->fp_offset > 304 - num_fp * 16 go to step 7.
 | 
						|
  //
 | 
						|
  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
 | 
						|
  // register save space).
 | 
						|
 | 
						|
  llvm::Value *InRegs = 0;
 | 
						|
  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
 | 
						|
  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
 | 
						|
  if (neededInt) {
 | 
						|
    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
 | 
						|
    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
 | 
						|
    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
 | 
						|
    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
 | 
						|
  }
 | 
						|
 | 
						|
  if (neededSSE) {
 | 
						|
    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
 | 
						|
    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
 | 
						|
    llvm::Value *FitsInFP =
 | 
						|
      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
 | 
						|
    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
 | 
						|
    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
 | 
						|
  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
 | 
						|
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
 | 
						|
  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
 | 
						|
 | 
						|
  // Emit code to load the value if it was passed in registers.
 | 
						|
 | 
						|
  CGF.EmitBlock(InRegBlock);
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
 | 
						|
  // an offset of l->gp_offset and/or l->fp_offset. This may require
 | 
						|
  // copying to a temporary location in case the parameter is passed
 | 
						|
  // in different register classes or requires an alignment greater
 | 
						|
  // than 8 for general purpose registers and 16 for XMM registers.
 | 
						|
  //
 | 
						|
  // FIXME: This really results in shameful code when we end up needing to
 | 
						|
  // collect arguments from different places; often what should result in a
 | 
						|
  // simple assembling of a structure from scattered addresses has many more
 | 
						|
  // loads than necessary. Can we clean this up?
 | 
						|
  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
 | 
						|
  llvm::Value *RegAddr =
 | 
						|
    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
 | 
						|
                           "reg_save_area");
 | 
						|
  if (neededInt && neededSSE) {
 | 
						|
    // FIXME: Cleanup.
 | 
						|
    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
 | 
						|
    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
 | 
						|
    llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
 | 
						|
    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
 | 
						|
    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
 | 
						|
    llvm::Type *TyLo = ST->getElementType(0);
 | 
						|
    llvm::Type *TyHi = ST->getElementType(1);
 | 
						|
    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
 | 
						|
           "Unexpected ABI info for mixed regs");
 | 
						|
    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
 | 
						|
    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
 | 
						|
    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
 | 
						|
    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
 | 
						|
    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
 | 
						|
    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
 | 
						|
    llvm::Value *V =
 | 
						|
      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
 | 
						|
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
 | 
						|
    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
 | 
						|
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
 | 
						|
 | 
						|
    RegAddr = CGF.Builder.CreateBitCast(Tmp,
 | 
						|
                                        llvm::PointerType::getUnqual(LTy));
 | 
						|
  } else if (neededInt) {
 | 
						|
    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
 | 
						|
    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
 | 
						|
                                        llvm::PointerType::getUnqual(LTy));
 | 
						|
 | 
						|
    // Copy to a temporary if necessary to ensure the appropriate alignment.
 | 
						|
    std::pair<CharUnits, CharUnits> SizeAlign =
 | 
						|
        CGF.getContext().getTypeInfoInChars(Ty);
 | 
						|
    uint64_t TySize = SizeAlign.first.getQuantity();
 | 
						|
    unsigned TyAlign = SizeAlign.second.getQuantity();
 | 
						|
    if (TyAlign > 8) {
 | 
						|
      llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
 | 
						|
      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
 | 
						|
      RegAddr = Tmp;
 | 
						|
    }
 | 
						|
  } else if (neededSSE == 1) {
 | 
						|
    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
 | 
						|
    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
 | 
						|
                                        llvm::PointerType::getUnqual(LTy));
 | 
						|
  } else {
 | 
						|
    assert(neededSSE == 2 && "Invalid number of needed registers!");
 | 
						|
    // SSE registers are spaced 16 bytes apart in the register save
 | 
						|
    // area, we need to collect the two eightbytes together.
 | 
						|
    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
 | 
						|
    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
 | 
						|
    llvm::Type *DoubleTy = CGF.DoubleTy;
 | 
						|
    llvm::Type *DblPtrTy =
 | 
						|
      llvm::PointerType::getUnqual(DoubleTy);
 | 
						|
    llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
 | 
						|
    llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
 | 
						|
    Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
 | 
						|
    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
 | 
						|
                                                         DblPtrTy));
 | 
						|
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
 | 
						|
    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
 | 
						|
                                                         DblPtrTy));
 | 
						|
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
 | 
						|
    RegAddr = CGF.Builder.CreateBitCast(Tmp,
 | 
						|
                                        llvm::PointerType::getUnqual(LTy));
 | 
						|
  }
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 5. Set:
 | 
						|
  // l->gp_offset = l->gp_offset + num_gp * 8
 | 
						|
  // l->fp_offset = l->fp_offset + num_fp * 16.
 | 
						|
  if (neededInt) {
 | 
						|
    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
 | 
						|
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
 | 
						|
                            gp_offset_p);
 | 
						|
  }
 | 
						|
  if (neededSSE) {
 | 
						|
    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
 | 
						|
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
 | 
						|
                            fp_offset_p);
 | 
						|
  }
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
 | 
						|
  // Emit code to load the value if it was passed in memory.
 | 
						|
 | 
						|
  CGF.EmitBlock(InMemBlock);
 | 
						|
  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
 | 
						|
 | 
						|
  // Return the appropriate result.
 | 
						|
 | 
						|
  CGF.EmitBlock(ContBlock);
 | 
						|
  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
 | 
						|
                                                 "vaarg.addr");
 | 
						|
  ResAddr->addIncoming(RegAddr, InRegBlock);
 | 
						|
  ResAddr->addIncoming(MemAddr, InMemBlock);
 | 
						|
  return ResAddr;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
 | 
						|
 | 
						|
  if (Ty->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
    Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
 | 
						|
  if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
    if (IsReturnType) {
 | 
						|
      if (isRecordReturnIndirect(RT, CGT))
 | 
						|
        return ABIArgInfo::getIndirect(0, false);
 | 
						|
    } else {
 | 
						|
      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, CGT))
 | 
						|
        return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
 | 
						|
    }
 | 
						|
 | 
						|
    if (RT->getDecl()->hasFlexibleArrayMember())
 | 
						|
      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | 
						|
 | 
						|
    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
 | 
						|
    if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
 | 
						|
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | 
						|
                                                          Size));
 | 
						|
 | 
						|
    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
 | 
						|
    // not 1, 2, 4, or 8 bytes, must be passed by reference."
 | 
						|
    if (Size <= 64 &&
 | 
						|
        (Size & (Size - 1)) == 0)
 | 
						|
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | 
						|
                                                          Size));
 | 
						|
 | 
						|
    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ty->isPromotableIntegerType())
 | 
						|
    return ABIArgInfo::getExtend();
 | 
						|
 | 
						|
  return ABIArgInfo::getDirect();
 | 
						|
}
 | 
						|
 | 
						|
void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
 | 
						|
  QualType RetTy = FI.getReturnType();
 | 
						|
  FI.getReturnInfo() = classify(RetTy, true);
 | 
						|
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it)
 | 
						|
    it->info = classify(it->type, false);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                      CodeGenFunction &CGF) const {
 | 
						|
  llvm::Type *BPP = CGF.Int8PtrPtrTy;
 | 
						|
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
 | 
						|
                                                       "ap");
 | 
						|
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | 
						|
  llvm::Type *PTy =
 | 
						|
    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | 
						|
  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
 | 
						|
 | 
						|
  uint64_t Offset =
 | 
						|
    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
 | 
						|
  llvm::Value *NextAddr =
 | 
						|
    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
 | 
						|
                      "ap.next");
 | 
						|
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | 
						|
 | 
						|
  return AddrTyped;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class NaClX86_64ABIInfo : public ABIInfo {
 | 
						|
 public:
 | 
						|
  NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
 | 
						|
      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
 private:
 | 
						|
  PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
 | 
						|
  X86_64ABIInfo NInfo; // Used for everything else.
 | 
						|
};
 | 
						|
 | 
						|
class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
 | 
						|
 public:
 | 
						|
  NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
 | 
						|
      : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
  if (FI.getASTCallingConvention() == CC_PnaclCall)
 | 
						|
    PInfo.computeInfo(FI);
 | 
						|
  else
 | 
						|
    NInfo.computeInfo(FI);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                          CodeGenFunction &CGF) const {
 | 
						|
  // Always use the native convention; calling pnacl-style varargs functions
 | 
						|
  // is unuspported.
 | 
						|
  return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// PowerPC-32
 | 
						|
 | 
						|
namespace {
 | 
						|
class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
 | 
						|
    // This is recovered from gcc output.
 | 
						|
    return 1; // r1 is the dedicated stack pointer
 | 
						|
  }
 | 
						|
 | 
						|
  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                               llvm::Value *Address) const;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                                                llvm::Value *Address) const {
 | 
						|
  // This is calculated from the LLVM and GCC tables and verified
 | 
						|
  // against gcc output.  AFAIK all ABIs use the same encoding.
 | 
						|
 | 
						|
  CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | 
						|
 | 
						|
  llvm::IntegerType *i8 = CGF.Int8Ty;
 | 
						|
  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
 | 
						|
  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
 | 
						|
  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
 | 
						|
 | 
						|
  // 0-31: r0-31, the 4-byte general-purpose registers
 | 
						|
  AssignToArrayRange(Builder, Address, Four8, 0, 31);
 | 
						|
 | 
						|
  // 32-63: fp0-31, the 8-byte floating-point registers
 | 
						|
  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
 | 
						|
 | 
						|
  // 64-76 are various 4-byte special-purpose registers:
 | 
						|
  // 64: mq
 | 
						|
  // 65: lr
 | 
						|
  // 66: ctr
 | 
						|
  // 67: ap
 | 
						|
  // 68-75 cr0-7
 | 
						|
  // 76: xer
 | 
						|
  AssignToArrayRange(Builder, Address, Four8, 64, 76);
 | 
						|
 | 
						|
  // 77-108: v0-31, the 16-byte vector registers
 | 
						|
  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
 | 
						|
 | 
						|
  // 109: vrsave
 | 
						|
  // 110: vscr
 | 
						|
  // 111: spe_acc
 | 
						|
  // 112: spefscr
 | 
						|
  // 113: sfp
 | 
						|
  AssignToArrayRange(Builder, Address, Four8, 109, 113);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// PowerPC-64
 | 
						|
 | 
						|
namespace {
 | 
						|
/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
 | 
						|
class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
 | 
						|
 | 
						|
public:
 | 
						|
  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
 | 
						|
 | 
						|
  bool isPromotableTypeForABI(QualType Ty) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy) const;
 | 
						|
  ABIArgInfo classifyArgumentType(QualType Ty) const;
 | 
						|
 | 
						|
  // TODO: We can add more logic to computeInfo to improve performance.
 | 
						|
  // Example: For aggregate arguments that fit in a register, we could
 | 
						|
  // use getDirectInReg (as is done below for structs containing a single
 | 
						|
  // floating-point value) to avoid pushing them to memory on function
 | 
						|
  // entry.  This would require changing the logic in PPCISelLowering
 | 
						|
  // when lowering the parameters in the caller and args in the callee.
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const {
 | 
						|
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | 
						|
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
         it != ie; ++it) {
 | 
						|
      // We rely on the default argument classification for the most part.
 | 
						|
      // One exception:  An aggregate containing a single floating-point
 | 
						|
      // or vector item must be passed in a register if one is available.
 | 
						|
      const Type *T = isSingleElementStruct(it->type, getContext());
 | 
						|
      if (T) {
 | 
						|
        const BuiltinType *BT = T->getAs<BuiltinType>();
 | 
						|
        if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
 | 
						|
          QualType QT(T, 0);
 | 
						|
          it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      it->info = classifyArgumentType(it->type);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, 
 | 
						|
                                 QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
 | 
						|
    : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
 | 
						|
    // This is recovered from gcc output.
 | 
						|
    return 1; // r1 is the dedicated stack pointer
 | 
						|
  }
 | 
						|
 | 
						|
  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                               llvm::Value *Address) const;
 | 
						|
};
 | 
						|
 | 
						|
class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
 | 
						|
    // This is recovered from gcc output.
 | 
						|
    return 1; // r1 is the dedicated stack pointer
 | 
						|
  }
 | 
						|
 | 
						|
  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                               llvm::Value *Address) const;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
// Return true if the ABI requires Ty to be passed sign- or zero-
 | 
						|
// extended to 64 bits.
 | 
						|
bool
 | 
						|
PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
 | 
						|
  // Treat an enum type as its underlying type.
 | 
						|
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
    Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  // Promotable integer types are required to be promoted by the ABI.
 | 
						|
  if (Ty->isPromotableIntegerType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // In addition to the usual promotable integer types, we also need to
 | 
						|
  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
 | 
						|
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
 | 
						|
    switch (BT->getKind()) {
 | 
						|
    case BuiltinType::Int:
 | 
						|
    case BuiltinType::UInt:
 | 
						|
      return true;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo
 | 
						|
PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
 | 
						|
  if (Ty->isAnyComplexType())
 | 
						|
    return ABIArgInfo::getDirect();
 | 
						|
 | 
						|
  if (isAggregateTypeForABI(Ty)) {
 | 
						|
    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
 | 
						|
      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
 | 
						|
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  }
 | 
						|
 | 
						|
  return (isPromotableTypeForABI(Ty) ?
 | 
						|
          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo
 | 
						|
PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
 | 
						|
  if (RetTy->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  if (RetTy->isAnyComplexType())
 | 
						|
    return ABIArgInfo::getDirect();
 | 
						|
 | 
						|
  if (isAggregateTypeForABI(RetTy))
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
  return (isPromotableTypeForABI(RetTy) ?
 | 
						|
          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
}
 | 
						|
 | 
						|
// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
 | 
						|
llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
 | 
						|
                                           QualType Ty,
 | 
						|
                                           CodeGenFunction &CGF) const {
 | 
						|
  llvm::Type *BP = CGF.Int8PtrTy;
 | 
						|
  llvm::Type *BPP = CGF.Int8PtrPtrTy;
 | 
						|
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
 | 
						|
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | 
						|
 | 
						|
  // Update the va_list pointer.  The pointer should be bumped by the
 | 
						|
  // size of the object.  We can trust getTypeSize() except for a complex
 | 
						|
  // type whose base type is smaller than a doubleword.  For these, the
 | 
						|
  // size of the object is 16 bytes; see below for further explanation.
 | 
						|
  unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
 | 
						|
  QualType BaseTy;
 | 
						|
  unsigned CplxBaseSize = 0;
 | 
						|
 | 
						|
  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
 | 
						|
    BaseTy = CTy->getElementType();
 | 
						|
    CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
 | 
						|
    if (CplxBaseSize < 8)
 | 
						|
      SizeInBytes = 16;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
 | 
						|
  llvm::Value *NextAddr =
 | 
						|
    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
 | 
						|
                      "ap.next");
 | 
						|
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | 
						|
 | 
						|
  // If we have a complex type and the base type is smaller than 8 bytes,
 | 
						|
  // the ABI calls for the real and imaginary parts to be right-adjusted
 | 
						|
  // in separate doublewords.  However, Clang expects us to produce a
 | 
						|
  // pointer to a structure with the two parts packed tightly.  So generate
 | 
						|
  // loads of the real and imaginary parts relative to the va_list pointer,
 | 
						|
  // and store them to a temporary structure.
 | 
						|
  if (CplxBaseSize && CplxBaseSize < 8) {
 | 
						|
    llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
 | 
						|
    llvm::Value *ImagAddr = RealAddr;
 | 
						|
    RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
 | 
						|
    ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
 | 
						|
    llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
 | 
						|
    RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
 | 
						|
    ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
 | 
						|
    llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
 | 
						|
    llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
 | 
						|
    llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
 | 
						|
                                            "vacplx");
 | 
						|
    llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
 | 
						|
    llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
 | 
						|
    Builder.CreateStore(Real, RealPtr, false);
 | 
						|
    Builder.CreateStore(Imag, ImagPtr, false);
 | 
						|
    return Ptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the argument is smaller than 8 bytes, it is right-adjusted in
 | 
						|
  // its doubleword slot.  Adjust the pointer to pick it up from the
 | 
						|
  // correct offset.
 | 
						|
  if (SizeInBytes < 8) {
 | 
						|
    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
 | 
						|
    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
 | 
						|
    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | 
						|
  return Builder.CreateBitCast(Addr, PTy);
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                              llvm::Value *Address) {
 | 
						|
  // This is calculated from the LLVM and GCC tables and verified
 | 
						|
  // against gcc output.  AFAIK all ABIs use the same encoding.
 | 
						|
 | 
						|
  CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | 
						|
 | 
						|
  llvm::IntegerType *i8 = CGF.Int8Ty;
 | 
						|
  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
 | 
						|
  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
 | 
						|
  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
 | 
						|
 | 
						|
  // 0-31: r0-31, the 8-byte general-purpose registers
 | 
						|
  AssignToArrayRange(Builder, Address, Eight8, 0, 31);
 | 
						|
 | 
						|
  // 32-63: fp0-31, the 8-byte floating-point registers
 | 
						|
  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
 | 
						|
 | 
						|
  // 64-76 are various 4-byte special-purpose registers:
 | 
						|
  // 64: mq
 | 
						|
  // 65: lr
 | 
						|
  // 66: ctr
 | 
						|
  // 67: ap
 | 
						|
  // 68-75 cr0-7
 | 
						|
  // 76: xer
 | 
						|
  AssignToArrayRange(Builder, Address, Four8, 64, 76);
 | 
						|
 | 
						|
  // 77-108: v0-31, the 16-byte vector registers
 | 
						|
  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
 | 
						|
 | 
						|
  // 109: vrsave
 | 
						|
  // 110: vscr
 | 
						|
  // 111: spe_acc
 | 
						|
  // 112: spefscr
 | 
						|
  // 113: sfp
 | 
						|
  AssignToArrayRange(Builder, Address, Four8, 109, 113);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
 | 
						|
  CodeGen::CodeGenFunction &CGF,
 | 
						|
  llvm::Value *Address) const {
 | 
						|
 | 
						|
  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                                                llvm::Value *Address) const {
 | 
						|
 | 
						|
  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ARM ABI Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class ARMABIInfo : public ABIInfo {
 | 
						|
public:
 | 
						|
  enum ABIKind {
 | 
						|
    APCS = 0,
 | 
						|
    AAPCS = 1,
 | 
						|
    AAPCS_VFP
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  ABIKind Kind;
 | 
						|
 | 
						|
public:
 | 
						|
  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
 | 
						|
    setRuntimeCC();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isEABI() const {
 | 
						|
    StringRef Env = getTarget().getTriple().getEnvironmentName();
 | 
						|
    return (Env == "gnueabi" || Env == "eabi" ||
 | 
						|
            Env == "android" || Env == "androideabi");
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  ABIKind getABIKind() const { return Kind; }
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy) const;
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
 | 
						|
                                  unsigned &AllocatedVFP,
 | 
						|
                                  bool &IsHA) const;
 | 
						|
  bool isIllegalVectorType(QualType Ty) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
 | 
						|
  llvm::CallingConv::ID getLLVMDefaultCC() const;
 | 
						|
  llvm::CallingConv::ID getABIDefaultCC() const;
 | 
						|
  void setRuntimeCC();
 | 
						|
};
 | 
						|
 | 
						|
class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
 | 
						|
    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
 | 
						|
 | 
						|
  const ARMABIInfo &getABIInfo() const {
 | 
						|
    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
 | 
						|
    return 13;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
 | 
						|
    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
 | 
						|
  }
 | 
						|
 | 
						|
  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                               llvm::Value *Address) const {
 | 
						|
    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
 | 
						|
 | 
						|
    // 0-15 are the 16 integer registers.
 | 
						|
    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getSizeOfUnwindException() const {
 | 
						|
    if (getABIInfo().isEABI()) return 88;
 | 
						|
    return TargetCodeGenInfo::getSizeOfUnwindException();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
  // To correctly handle Homogeneous Aggregate, we need to keep track of the
 | 
						|
  // VFP registers allocated so far.
 | 
						|
  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
 | 
						|
  // VFP registers of the appropriate type unallocated then the argument is
 | 
						|
  // allocated to the lowest-numbered sequence of such registers.
 | 
						|
  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
 | 
						|
  // unallocated are marked as unavailable. 
 | 
						|
  unsigned AllocatedVFP = 0;
 | 
						|
  int VFPRegs[16] = { 0 };
 | 
						|
  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    unsigned PreAllocation = AllocatedVFP;
 | 
						|
    bool IsHA = false;
 | 
						|
    // 6.1.2.3 There is one VFP co-processor register class using registers
 | 
						|
    // s0-s15 (d0-d7) for passing arguments.
 | 
						|
    const unsigned NumVFPs = 16;
 | 
						|
    it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
 | 
						|
    // If we do not have enough VFP registers for the HA, any VFP registers
 | 
						|
    // that are unallocated are marked as unavailable. To achieve this, we add
 | 
						|
    // padding of (NumVFPs - PreAllocation) floats.
 | 
						|
    if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
 | 
						|
      llvm::Type *PaddingTy = llvm::ArrayType::get(
 | 
						|
          llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
 | 
						|
      it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Always honor user-specified calling convention.
 | 
						|
  if (FI.getCallingConvention() != llvm::CallingConv::C)
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::CallingConv::ID cc = getRuntimeCC();
 | 
						|
  if (cc != llvm::CallingConv::C)
 | 
						|
    FI.setEffectiveCallingConvention(cc);    
 | 
						|
}
 | 
						|
 | 
						|
/// Return the default calling convention that LLVM will use.
 | 
						|
llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
 | 
						|
  // The default calling convention that LLVM will infer.
 | 
						|
  if (getTarget().getTriple().getEnvironmentName()=="gnueabihf")
 | 
						|
    return llvm::CallingConv::ARM_AAPCS_VFP;
 | 
						|
  else if (isEABI())
 | 
						|
    return llvm::CallingConv::ARM_AAPCS;
 | 
						|
  else
 | 
						|
    return llvm::CallingConv::ARM_APCS;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the calling convention that our ABI would like us to use
 | 
						|
/// as the C calling convention.
 | 
						|
llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
 | 
						|
  switch (getABIKind()) {
 | 
						|
  case APCS: return llvm::CallingConv::ARM_APCS;
 | 
						|
  case AAPCS: return llvm::CallingConv::ARM_AAPCS;
 | 
						|
  case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad ABI kind");
 | 
						|
}
 | 
						|
 | 
						|
void ARMABIInfo::setRuntimeCC() {
 | 
						|
  assert(getRuntimeCC() == llvm::CallingConv::C);
 | 
						|
 | 
						|
  // Don't muddy up the IR with a ton of explicit annotations if
 | 
						|
  // they'd just match what LLVM will infer from the triple.
 | 
						|
  llvm::CallingConv::ID abiCC = getABIDefaultCC();
 | 
						|
  if (abiCC != getLLVMDefaultCC())
 | 
						|
    RuntimeCC = abiCC;
 | 
						|
}
 | 
						|
 | 
						|
/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
 | 
						|
/// aggregate.  If HAMembers is non-null, the number of base elements
 | 
						|
/// contained in the type is returned through it; this is used for the
 | 
						|
/// recursive calls that check aggregate component types.
 | 
						|
static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
 | 
						|
                                   ASTContext &Context,
 | 
						|
                                   uint64_t *HAMembers = 0) {
 | 
						|
  uint64_t Members = 0;
 | 
						|
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
 | 
						|
    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
 | 
						|
      return false;
 | 
						|
    Members *= AT->getSize().getZExtValue();
 | 
						|
  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
    const RecordDecl *RD = RT->getDecl();
 | 
						|
    if (RD->hasFlexibleArrayMember())
 | 
						|
      return false;
 | 
						|
 | 
						|
    Members = 0;
 | 
						|
    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      const FieldDecl *FD = *i;
 | 
						|
      uint64_t FldMembers;
 | 
						|
      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
 | 
						|
        return false;
 | 
						|
 | 
						|
      Members = (RD->isUnion() ?
 | 
						|
                 std::max(Members, FldMembers) : Members + FldMembers);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Members = 1;
 | 
						|
    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
 | 
						|
      Members = 2;
 | 
						|
      Ty = CT->getElementType();
 | 
						|
    }
 | 
						|
 | 
						|
    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
 | 
						|
    // double, or 64-bit or 128-bit vectors.
 | 
						|
    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | 
						|
      if (BT->getKind() != BuiltinType::Float && 
 | 
						|
          BT->getKind() != BuiltinType::Double &&
 | 
						|
          BT->getKind() != BuiltinType::LongDouble)
 | 
						|
        return false;
 | 
						|
    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | 
						|
      unsigned VecSize = Context.getTypeSize(VT);
 | 
						|
      if (VecSize != 64 && VecSize != 128)
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // The base type must be the same for all members.  Vector types of the
 | 
						|
    // same total size are treated as being equivalent here.
 | 
						|
    const Type *TyPtr = Ty.getTypePtr();
 | 
						|
    if (!Base)
 | 
						|
      Base = TyPtr;
 | 
						|
    if (Base != TyPtr &&
 | 
						|
        (!Base->isVectorType() || !TyPtr->isVectorType() ||
 | 
						|
         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Homogeneous Aggregates can have at most 4 members of the base type.
 | 
						|
  if (HAMembers)
 | 
						|
    *HAMembers = Members;
 | 
						|
 | 
						|
  return (Members > 0 && Members <= 4);
 | 
						|
}
 | 
						|
 | 
						|
/// markAllocatedVFPs - update VFPRegs according to the alignment and
 | 
						|
/// number of VFP registers (unit is S register) requested.
 | 
						|
static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
 | 
						|
                              unsigned Alignment,
 | 
						|
                              unsigned NumRequired) {
 | 
						|
  // Early Exit.
 | 
						|
  if (AllocatedVFP >= 16)
 | 
						|
    return;
 | 
						|
  // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
 | 
						|
  // VFP registers of the appropriate type unallocated then the argument is
 | 
						|
  // allocated to the lowest-numbered sequence of such registers.
 | 
						|
  for (unsigned I = 0; I < 16; I += Alignment) {
 | 
						|
    bool FoundSlot = true;
 | 
						|
    for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
 | 
						|
      if (J >= 16 || VFPRegs[J]) {
 | 
						|
         FoundSlot = false;
 | 
						|
         break;
 | 
						|
      }
 | 
						|
    if (FoundSlot) {
 | 
						|
      for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
 | 
						|
        VFPRegs[J] = 1;
 | 
						|
      AllocatedVFP += NumRequired;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
 | 
						|
  // unallocated are marked as unavailable.
 | 
						|
  for (unsigned I = 0; I < 16; I++)
 | 
						|
    VFPRegs[I] = 1;
 | 
						|
  AllocatedVFP = 17; // We do not have enough VFP registers.
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
 | 
						|
                                            unsigned &AllocatedVFP,
 | 
						|
                                            bool &IsHA) const {
 | 
						|
  // We update number of allocated VFPs according to
 | 
						|
  // 6.1.2.1 The following argument types are VFP CPRCs:
 | 
						|
  //   A single-precision floating-point type (including promoted
 | 
						|
  //   half-precision types); A double-precision floating-point type;
 | 
						|
  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
 | 
						|
  //   with a Base Type of a single- or double-precision floating-point type,
 | 
						|
  //   64-bit containerized vectors or 128-bit containerized vectors with one
 | 
						|
  //   to four Elements.
 | 
						|
 | 
						|
  // Handle illegal vector types here.
 | 
						|
  if (isIllegalVectorType(Ty)) {
 | 
						|
    uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
    if (Size <= 32) {
 | 
						|
      llvm::Type *ResType =
 | 
						|
          llvm::Type::getInt32Ty(getVMContext());
 | 
						|
      return ABIArgInfo::getDirect(ResType);
 | 
						|
    }
 | 
						|
    if (Size == 64) {
 | 
						|
      llvm::Type *ResType = llvm::VectorType::get(
 | 
						|
          llvm::Type::getInt32Ty(getVMContext()), 2);
 | 
						|
      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
 | 
						|
      return ABIArgInfo::getDirect(ResType);
 | 
						|
    }
 | 
						|
    if (Size == 128) {
 | 
						|
      llvm::Type *ResType = llvm::VectorType::get(
 | 
						|
          llvm::Type::getInt32Ty(getVMContext()), 4);
 | 
						|
      markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
 | 
						|
      return ABIArgInfo::getDirect(ResType);
 | 
						|
    }
 | 
						|
    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | 
						|
  }
 | 
						|
  // Update VFPRegs for legal vector types.
 | 
						|
  if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | 
						|
    uint64_t Size = getContext().getTypeSize(VT);
 | 
						|
    // Size of a legal vector should be power of 2 and above 64.
 | 
						|
    markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
 | 
						|
  }
 | 
						|
  // Update VFPRegs for floating point types.
 | 
						|
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | 
						|
    if (BT->getKind() == BuiltinType::Half ||
 | 
						|
        BT->getKind() == BuiltinType::Float)
 | 
						|
      markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
 | 
						|
    if (BT->getKind() == BuiltinType::Double ||
 | 
						|
        BT->getKind() == BuiltinType::LongDouble)
 | 
						|
      markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isAggregateTypeForABI(Ty)) {
 | 
						|
    // Treat an enum type as its underlying type.
 | 
						|
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
      Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
    return (Ty->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
 | 
						|
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
 | 
						|
    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
 | 
						|
 | 
						|
  // Ignore empty records.
 | 
						|
  if (isEmptyRecord(getContext(), Ty, true))
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
 | 
						|
    // Homogeneous Aggregates need to be expanded when we can fit the aggregate
 | 
						|
    // into VFP registers.
 | 
						|
    const Type *Base = 0;
 | 
						|
    uint64_t Members = 0;
 | 
						|
    if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
 | 
						|
      assert(Base && "Base class should be set for homogeneous aggregate");
 | 
						|
      // Base can be a floating-point or a vector.
 | 
						|
      if (Base->isVectorType()) {
 | 
						|
        // ElementSize is in number of floats.
 | 
						|
        unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
 | 
						|
        markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
 | 
						|
                          Members * ElementSize);
 | 
						|
      } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
 | 
						|
        markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
 | 
						|
      else {
 | 
						|
        assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
 | 
						|
               Base->isSpecificBuiltinType(BuiltinType::LongDouble));
 | 
						|
        markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
 | 
						|
      }
 | 
						|
      IsHA = true;
 | 
						|
      return ABIArgInfo::getExpand();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Support byval for ARM.
 | 
						|
  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
 | 
						|
  // most 8-byte. We realign the indirect argument if type alignment is bigger
 | 
						|
  // than ABI alignment.
 | 
						|
  uint64_t ABIAlign = 4;
 | 
						|
  uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
 | 
						|
  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
 | 
						|
      getABIKind() == ARMABIInfo::AAPCS)
 | 
						|
    ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
 | 
						|
  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
 | 
						|
    return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
 | 
						|
           /*Realign=*/TyAlign > ABIAlign);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, pass by coercing to a structure of the appropriate size.
 | 
						|
  llvm::Type* ElemTy;
 | 
						|
  unsigned SizeRegs;
 | 
						|
  // FIXME: Try to match the types of the arguments more accurately where
 | 
						|
  // we can.
 | 
						|
  if (getContext().getTypeAlign(Ty) <= 32) {
 | 
						|
    ElemTy = llvm::Type::getInt32Ty(getVMContext());
 | 
						|
    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
 | 
						|
  } else {
 | 
						|
    ElemTy = llvm::Type::getInt64Ty(getVMContext());
 | 
						|
    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type *STy =
 | 
						|
    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
 | 
						|
  return ABIArgInfo::getDirect(STy);
 | 
						|
}
 | 
						|
 | 
						|
static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
 | 
						|
                              llvm::LLVMContext &VMContext) {
 | 
						|
  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
 | 
						|
  // is called integer-like if its size is less than or equal to one word, and
 | 
						|
  // the offset of each of its addressable sub-fields is zero.
 | 
						|
 | 
						|
  uint64_t Size = Context.getTypeSize(Ty);
 | 
						|
 | 
						|
  // Check that the type fits in a word.
 | 
						|
  if (Size > 32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Handle vector types!
 | 
						|
  if (Ty->isVectorType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Float types are never treated as "integer like".
 | 
						|
  if (Ty->isRealFloatingType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is a builtin or pointer type then it is ok.
 | 
						|
  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Small complex integer types are "integer like".
 | 
						|
  if (const ComplexType *CT = Ty->getAs<ComplexType>())
 | 
						|
    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
 | 
						|
 | 
						|
  // Single element and zero sized arrays should be allowed, by the definition
 | 
						|
  // above, but they are not.
 | 
						|
 | 
						|
  // Otherwise, it must be a record type.
 | 
						|
  const RecordType *RT = Ty->getAs<RecordType>();
 | 
						|
  if (!RT) return false;
 | 
						|
 | 
						|
  // Ignore records with flexible arrays.
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
  if (RD->hasFlexibleArrayMember())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that all sub-fields are at offset 0, and are themselves "integer
 | 
						|
  // like".
 | 
						|
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | 
						|
 | 
						|
  bool HadField = false;
 | 
						|
  unsigned idx = 0;
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
       i != e; ++i, ++idx) {
 | 
						|
    const FieldDecl *FD = *i;
 | 
						|
 | 
						|
    // Bit-fields are not addressable, we only need to verify they are "integer
 | 
						|
    // like". We still have to disallow a subsequent non-bitfield, for example:
 | 
						|
    //   struct { int : 0; int x }
 | 
						|
    // is non-integer like according to gcc.
 | 
						|
    if (FD->isBitField()) {
 | 
						|
      if (!RD->isUnion())
 | 
						|
        HadField = true;
 | 
						|
 | 
						|
      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
 | 
						|
        return false;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if this field is at offset 0.
 | 
						|
    if (Layout.getFieldOffset(idx) != 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Only allow at most one field in a structure. This doesn't match the
 | 
						|
    // wording above, but follows gcc in situations with a field following an
 | 
						|
    // empty structure.
 | 
						|
    if (!RD->isUnion()) {
 | 
						|
      if (HadField)
 | 
						|
        return false;
 | 
						|
 | 
						|
      HadField = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
 | 
						|
  if (RetTy->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  // Large vector types should be returned via memory.
 | 
						|
  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
  if (!isAggregateTypeForABI(RetTy)) {
 | 
						|
    // Treat an enum type as its underlying type.
 | 
						|
    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | 
						|
      RetTy = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
    return (RetTy->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
 | 
						|
  // Structures with either a non-trivial destructor or a non-trivial
 | 
						|
  // copy constructor are always indirect.
 | 
						|
  if (isRecordReturnIndirect(RetTy, CGT))
 | 
						|
    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | 
						|
 | 
						|
  // Are we following APCS?
 | 
						|
  if (getABIKind() == APCS) {
 | 
						|
    if (isEmptyRecord(getContext(), RetTy, false))
 | 
						|
      return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
    // Complex types are all returned as packed integers.
 | 
						|
    //
 | 
						|
    // FIXME: Consider using 2 x vector types if the back end handles them
 | 
						|
    // correctly.
 | 
						|
    if (RetTy->isAnyComplexType())
 | 
						|
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | 
						|
                                              getContext().getTypeSize(RetTy)));
 | 
						|
 | 
						|
    // Integer like structures are returned in r0.
 | 
						|
    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
 | 
						|
      // Return in the smallest viable integer type.
 | 
						|
      uint64_t Size = getContext().getTypeSize(RetTy);
 | 
						|
      if (Size <= 8)
 | 
						|
        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
 | 
						|
      if (Size <= 16)
 | 
						|
        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise return in memory.
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise this is an AAPCS variant.
 | 
						|
 | 
						|
  if (isEmptyRecord(getContext(), RetTy, true))
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  // Check for homogeneous aggregates with AAPCS-VFP.
 | 
						|
  if (getABIKind() == AAPCS_VFP) {
 | 
						|
    const Type *Base = 0;
 | 
						|
    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
 | 
						|
      assert(Base && "Base class should be set for homogeneous aggregate");
 | 
						|
      // Homogeneous Aggregates are returned directly.
 | 
						|
      return ABIArgInfo::getDirect();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Aggregates <= 4 bytes are returned in r0; other aggregates
 | 
						|
  // are returned indirectly.
 | 
						|
  uint64_t Size = getContext().getTypeSize(RetTy);
 | 
						|
  if (Size <= 32) {
 | 
						|
    // Return in the smallest viable integer type.
 | 
						|
    if (Size <= 8)
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
 | 
						|
    if (Size <= 16)
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | 
						|
    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | 
						|
  }
 | 
						|
 | 
						|
  return ABIArgInfo::getIndirect(0);
 | 
						|
}
 | 
						|
 | 
						|
/// isIllegalVector - check whether Ty is an illegal vector type.
 | 
						|
bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
 | 
						|
  if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | 
						|
    // Check whether VT is legal.
 | 
						|
    unsigned NumElements = VT->getNumElements();
 | 
						|
    uint64_t Size = getContext().getTypeSize(VT);
 | 
						|
    // NumElements should be power of 2.
 | 
						|
    if ((NumElements & (NumElements - 1)) != 0)
 | 
						|
      return true;
 | 
						|
    // Size should be greater than 32 bits.
 | 
						|
    return Size <= 32;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                   CodeGenFunction &CGF) const {
 | 
						|
  llvm::Type *BP = CGF.Int8PtrTy;
 | 
						|
  llvm::Type *BPP = CGF.Int8PtrPtrTy;
 | 
						|
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
 | 
						|
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | 
						|
 | 
						|
  if (isEmptyRecord(getContext(), Ty, true)) {
 | 
						|
    // These are ignored for parameter passing purposes.
 | 
						|
    llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | 
						|
    return Builder.CreateBitCast(Addr, PTy);
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
 | 
						|
  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
 | 
						|
  bool IsIndirect = false;
 | 
						|
 | 
						|
  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
 | 
						|
  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
 | 
						|
  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
 | 
						|
      getABIKind() == ARMABIInfo::AAPCS)
 | 
						|
    TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
 | 
						|
  else
 | 
						|
    TyAlign = 4;
 | 
						|
  // Use indirect if size of the illegal vector is bigger than 16 bytes.
 | 
						|
  if (isIllegalVectorType(Ty) && Size > 16) {
 | 
						|
    IsIndirect = true;
 | 
						|
    Size = 4;
 | 
						|
    TyAlign = 4;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle address alignment for ABI alignment > 4 bytes.
 | 
						|
  if (TyAlign > 4) {
 | 
						|
    assert((TyAlign & (TyAlign - 1)) == 0 &&
 | 
						|
           "Alignment is not power of 2!");
 | 
						|
    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
 | 
						|
    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
 | 
						|
    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
 | 
						|
    Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t Offset =
 | 
						|
    llvm::RoundUpToAlignment(Size, 4);
 | 
						|
  llvm::Value *NextAddr =
 | 
						|
    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
 | 
						|
                      "ap.next");
 | 
						|
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | 
						|
 | 
						|
  if (IsIndirect)
 | 
						|
    Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
 | 
						|
  else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
 | 
						|
    // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
 | 
						|
    // may not be correctly aligned for the vector type. We create an aligned
 | 
						|
    // temporary space and copy the content over from ap.cur to the temporary
 | 
						|
    // space. This is necessary if the natural alignment of the type is greater
 | 
						|
    // than the ABI alignment.
 | 
						|
    llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
 | 
						|
    CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
 | 
						|
    llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
 | 
						|
                                                    "var.align");
 | 
						|
    llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
 | 
						|
    llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
 | 
						|
    Builder.CreateMemCpy(Dst, Src,
 | 
						|
        llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
 | 
						|
        TyAlign, false);
 | 
						|
    Addr = AlignedTemp; //The content is in aligned location.
 | 
						|
  }
 | 
						|
  llvm::Type *PTy =
 | 
						|
    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | 
						|
  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
 | 
						|
 | 
						|
  return AddrTyped;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class NaClARMABIInfo : public ABIInfo {
 | 
						|
 public:
 | 
						|
  NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
 | 
						|
      : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
 private:
 | 
						|
  PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
 | 
						|
  ARMABIInfo NInfo; // Used for everything else.
 | 
						|
};
 | 
						|
 | 
						|
class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
 | 
						|
 public:
 | 
						|
  NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
 | 
						|
      : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
  if (FI.getASTCallingConvention() == CC_PnaclCall)
 | 
						|
    PInfo.computeInfo(FI);
 | 
						|
  else
 | 
						|
    static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  // Always use the native convention; calling pnacl-style varargs functions
 | 
						|
  // is unsupported.
 | 
						|
  return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// AArch64 ABI Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class AArch64ABIInfo : public ABIInfo {
 | 
						|
public:
 | 
						|
  AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | 
						|
 | 
						|
private:
 | 
						|
  // The AArch64 PCS is explicit about return types and argument types being
 | 
						|
  // handled identically, so we don't need to draw a distinction between
 | 
						|
  // Argument and Return classification.
 | 
						|
  ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
 | 
						|
                                 int &FreeVFPRegs) const;
 | 
						|
 | 
						|
  ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
 | 
						|
                        llvm::Type *DirectTy = 0) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
 | 
						|
    :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
 | 
						|
 | 
						|
  const AArch64ABIInfo &getABIInfo() const {
 | 
						|
    return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
 | 
						|
    return 31;
 | 
						|
  }
 | 
						|
 | 
						|
  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                               llvm::Value *Address) const {
 | 
						|
    // 0-31 are x0-x30 and sp: 8 bytes each
 | 
						|
    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
 | 
						|
    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
 | 
						|
 | 
						|
    // 64-95 are v0-v31: 16 bytes each
 | 
						|
    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
 | 
						|
    AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
  int FreeIntRegs = 8, FreeVFPRegs = 8;
 | 
						|
 | 
						|
  FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
 | 
						|
                                           FreeIntRegs, FreeVFPRegs);
 | 
						|
 | 
						|
  FreeIntRegs = FreeVFPRegs = 8;
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo
 | 
						|
AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
 | 
						|
                           bool IsInt, llvm::Type *DirectTy) const {
 | 
						|
  if (FreeRegs >= RegsNeeded) {
 | 
						|
    FreeRegs -= RegsNeeded;
 | 
						|
    return ABIArgInfo::getDirect(DirectTy);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type *Padding = 0;
 | 
						|
 | 
						|
  // We need padding so that later arguments don't get filled in anyway. That
 | 
						|
  // wouldn't happen if only ByVal arguments followed in the same category, but
 | 
						|
  // a large structure will simply seem to be a pointer as far as LLVM is
 | 
						|
  // concerned.
 | 
						|
  if (FreeRegs > 0) {
 | 
						|
    if (IsInt)
 | 
						|
      Padding = llvm::Type::getInt64Ty(getVMContext());
 | 
						|
    else
 | 
						|
      Padding = llvm::Type::getFloatTy(getVMContext());
 | 
						|
 | 
						|
    // Either [N x i64] or [N x float].
 | 
						|
    Padding = llvm::ArrayType::get(Padding, FreeRegs);
 | 
						|
    FreeRegs = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
 | 
						|
                                 /*IsByVal=*/ true, /*Realign=*/ false,
 | 
						|
                                 Padding);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
 | 
						|
                                               int &FreeIntRegs,
 | 
						|
                                               int &FreeVFPRegs) const {
 | 
						|
  // Can only occurs for return, but harmless otherwise.
 | 
						|
  if (Ty->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  // Large vector types should be returned via memory. There's no such concept
 | 
						|
  // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
 | 
						|
  // classified they'd go into memory (see B.3).
 | 
						|
  if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
 | 
						|
    if (FreeIntRegs > 0)
 | 
						|
      --FreeIntRegs;
 | 
						|
    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  // All non-aggregate LLVM types have a concrete ABI representation so they can
 | 
						|
  // be passed directly. After this block we're guaranteed to be in a
 | 
						|
  // complicated case.
 | 
						|
  if (!isAggregateTypeForABI(Ty)) {
 | 
						|
    // Treat an enum type as its underlying type.
 | 
						|
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
      Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
    if (Ty->isFloatingType() || Ty->isVectorType())
 | 
						|
      return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
 | 
						|
 | 
						|
    assert(getContext().getTypeSize(Ty) <= 128 &&
 | 
						|
           "unexpectedly large scalar type");
 | 
						|
 | 
						|
    int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
 | 
						|
 | 
						|
    // If the type may need padding registers to ensure "alignment", we must be
 | 
						|
    // careful when this is accounted for. Increasing the effective size covers
 | 
						|
    // all cases.
 | 
						|
    if (getContext().getTypeAlign(Ty) == 128)
 | 
						|
      RegsNeeded += FreeIntRegs % 2 != 0;
 | 
						|
 | 
						|
    return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT)) {
 | 
						|
    if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
 | 
						|
      --FreeIntRegs;
 | 
						|
    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isEmptyRecord(getContext(), Ty, true)) {
 | 
						|
    if (!getContext().getLangOpts().CPlusPlus) {
 | 
						|
      // Empty structs outside C++ mode are a GNU extension, so no ABI can
 | 
						|
      // possibly tell us what to do. It turns out (I believe) that GCC ignores
 | 
						|
      // the object for parameter-passsing purposes.
 | 
						|
      return ABIArgInfo::getIgnore();
 | 
						|
    }
 | 
						|
 | 
						|
    // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
 | 
						|
    // description of va_arg in the PCS require that an empty struct does
 | 
						|
    // actually occupy space for parameter-passing. I'm hoping for a
 | 
						|
    // clarification giving an explicit paragraph to point to in future.
 | 
						|
    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
 | 
						|
                      llvm::Type::getInt8Ty(getVMContext()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Homogeneous vector aggregates get passed in registers or on the stack.
 | 
						|
  const Type *Base = 0;
 | 
						|
  uint64_t NumMembers = 0;
 | 
						|
  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
 | 
						|
    assert(Base && "Base class should be set for homogeneous aggregate");
 | 
						|
    // Homogeneous aggregates are passed and returned directly.
 | 
						|
    return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
 | 
						|
                      /*IsInt=*/ false);
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
  if (Size <= 128) {
 | 
						|
    // Small structs can use the same direct type whether they're in registers
 | 
						|
    // or on the stack.
 | 
						|
    llvm::Type *BaseTy;
 | 
						|
    unsigned NumBases;
 | 
						|
    int SizeInRegs = (Size + 63) / 64;
 | 
						|
 | 
						|
    if (getContext().getTypeAlign(Ty) == 128) {
 | 
						|
      BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
 | 
						|
      NumBases = 1;
 | 
						|
 | 
						|
      // If the type may need padding registers to ensure "alignment", we must
 | 
						|
      // be careful when this is accounted for. Increasing the effective size
 | 
						|
      // covers all cases.
 | 
						|
      SizeInRegs += FreeIntRegs % 2 != 0;
 | 
						|
    } else {
 | 
						|
      BaseTy = llvm::Type::getInt64Ty(getVMContext());
 | 
						|
      NumBases = SizeInRegs;
 | 
						|
    }
 | 
						|
    llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
 | 
						|
 | 
						|
    return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
 | 
						|
                      /*IsInt=*/ true, DirectTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
 | 
						|
  // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
 | 
						|
  --FreeIntRegs;
 | 
						|
  return ABIArgInfo::getIndirect(0, /* byVal = */ false);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  // The AArch64 va_list type and handling is specified in the Procedure Call
 | 
						|
  // Standard, section B.4:
 | 
						|
  //
 | 
						|
  // struct {
 | 
						|
  //   void *__stack;
 | 
						|
  //   void *__gr_top;
 | 
						|
  //   void *__vr_top;
 | 
						|
  //   int __gr_offs;
 | 
						|
  //   int __vr_offs;
 | 
						|
  // };
 | 
						|
 | 
						|
  assert(!CGF.CGM.getDataLayout().isBigEndian()
 | 
						|
         && "va_arg not implemented for big-endian AArch64");
 | 
						|
 | 
						|
  int FreeIntRegs = 8, FreeVFPRegs = 8;
 | 
						|
  Ty = CGF.getContext().getCanonicalType(Ty);
 | 
						|
  ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
 | 
						|
 | 
						|
  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
 | 
						|
  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
 | 
						|
  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
 | 
						|
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
 | 
						|
 | 
						|
  llvm::Value *reg_offs_p = 0, *reg_offs = 0;
 | 
						|
  int reg_top_index;
 | 
						|
  int RegSize;
 | 
						|
  if (FreeIntRegs < 8) {
 | 
						|
    assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
 | 
						|
    // 3 is the field number of __gr_offs
 | 
						|
    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
 | 
						|
    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
 | 
						|
    reg_top_index = 1; // field number for __gr_top
 | 
						|
    RegSize = 8 * (8 - FreeIntRegs);
 | 
						|
  } else {
 | 
						|
    assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
 | 
						|
    // 4 is the field number of __vr_offs.
 | 
						|
    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
 | 
						|
    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
 | 
						|
    reg_top_index = 2; // field number for __vr_top
 | 
						|
    RegSize = 16 * (8 - FreeVFPRegs);
 | 
						|
  }
 | 
						|
 | 
						|
  //=======================================
 | 
						|
  // Find out where argument was passed
 | 
						|
  //=======================================
 | 
						|
 | 
						|
  // If reg_offs >= 0 we're already using the stack for this type of
 | 
						|
  // argument. We don't want to keep updating reg_offs (in case it overflows,
 | 
						|
  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
 | 
						|
  // whatever they get).
 | 
						|
  llvm::Value *UsingStack = 0;
 | 
						|
  UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
 | 
						|
                                         llvm::ConstantInt::get(CGF.Int32Ty, 0));
 | 
						|
 | 
						|
  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
 | 
						|
 | 
						|
  // Otherwise, at least some kind of argument could go in these registers, the
 | 
						|
  // quesiton is whether this particular type is too big.
 | 
						|
  CGF.EmitBlock(MaybeRegBlock);
 | 
						|
 | 
						|
  // Integer arguments may need to correct register alignment (for example a
 | 
						|
  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
 | 
						|
  // align __gr_offs to calculate the potential address.
 | 
						|
  if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
 | 
						|
    int Align = getContext().getTypeAlign(Ty) / 8;
 | 
						|
 | 
						|
    reg_offs = CGF.Builder.CreateAdd(reg_offs,
 | 
						|
                                 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
 | 
						|
                                 "align_regoffs");
 | 
						|
    reg_offs = CGF.Builder.CreateAnd(reg_offs,
 | 
						|
                                    llvm::ConstantInt::get(CGF.Int32Ty, -Align),
 | 
						|
                                    "aligned_regoffs");
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
 | 
						|
  llvm::Value *NewOffset = 0;
 | 
						|
  NewOffset = CGF.Builder.CreateAdd(reg_offs,
 | 
						|
                                    llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
 | 
						|
                                    "new_reg_offs");
 | 
						|
  CGF.Builder.CreateStore(NewOffset, reg_offs_p);
 | 
						|
 | 
						|
  // Now we're in a position to decide whether this argument really was in
 | 
						|
  // registers or not.
 | 
						|
  llvm::Value *InRegs = 0;
 | 
						|
  InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
 | 
						|
                                     llvm::ConstantInt::get(CGF.Int32Ty, 0),
 | 
						|
                                     "inreg");
 | 
						|
 | 
						|
  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
 | 
						|
 | 
						|
  //=======================================
 | 
						|
  // Argument was in registers
 | 
						|
  //=======================================
 | 
						|
 | 
						|
  // Now we emit the code for if the argument was originally passed in
 | 
						|
  // registers. First start the appropriate block:
 | 
						|
  CGF.EmitBlock(InRegBlock);
 | 
						|
 | 
						|
  llvm::Value *reg_top_p = 0, *reg_top = 0;
 | 
						|
  reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
 | 
						|
  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
 | 
						|
  llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
 | 
						|
  llvm::Value *RegAddr = 0;
 | 
						|
  llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
 | 
						|
 | 
						|
  if (!AI.isDirect()) {
 | 
						|
    // If it's been passed indirectly (actually a struct), whatever we find from
 | 
						|
    // stored registers or on the stack will actually be a struct **.
 | 
						|
    MemTy = llvm::PointerType::getUnqual(MemTy);
 | 
						|
  }
 | 
						|
 | 
						|
  const Type *Base = 0;
 | 
						|
  uint64_t NumMembers;
 | 
						|
  if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
 | 
						|
      && NumMembers > 1) {
 | 
						|
    // Homogeneous aggregates passed in registers will have their elements split
 | 
						|
    // and stored 16-bytes apart regardless of size (they're notionally in qN,
 | 
						|
    // qN+1, ...). We reload and store into a temporary local variable
 | 
						|
    // contiguously.
 | 
						|
    assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
 | 
						|
    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
 | 
						|
    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
 | 
						|
    llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
 | 
						|
 | 
						|
    for (unsigned i = 0; i < NumMembers; ++i) {
 | 
						|
      llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
 | 
						|
      llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
 | 
						|
      LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
 | 
						|
                                           llvm::PointerType::getUnqual(BaseTy));
 | 
						|
      llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
 | 
						|
 | 
						|
      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
 | 
						|
      CGF.Builder.CreateStore(Elem, StoreAddr);
 | 
						|
    }
 | 
						|
 | 
						|
    RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
 | 
						|
  } else {
 | 
						|
    // Otherwise the object is contiguous in memory
 | 
						|
    RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
 | 
						|
  }
 | 
						|
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
 | 
						|
  //=======================================
 | 
						|
  // Argument was on the stack
 | 
						|
  //=======================================
 | 
						|
  CGF.EmitBlock(OnStackBlock);
 | 
						|
 | 
						|
  llvm::Value *stack_p = 0, *OnStackAddr = 0;
 | 
						|
  stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
 | 
						|
  OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
 | 
						|
 | 
						|
  // Again, stack arguments may need realigmnent. In this case both integer and
 | 
						|
  // floating-point ones might be affected.
 | 
						|
  if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
 | 
						|
    int Align = getContext().getTypeAlign(Ty) / 8;
 | 
						|
 | 
						|
    OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
 | 
						|
 | 
						|
    OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
 | 
						|
                                 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
 | 
						|
                                 "align_stack");
 | 
						|
    OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
 | 
						|
                                    llvm::ConstantInt::get(CGF.Int64Ty, -Align),
 | 
						|
                                    "align_stack");
 | 
						|
 | 
						|
    OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t StackSize;
 | 
						|
  if (AI.isDirect())
 | 
						|
    StackSize = getContext().getTypeSize(Ty) / 8;
 | 
						|
  else
 | 
						|
    StackSize = 8;
 | 
						|
 | 
						|
  // All stack slots are 8 bytes
 | 
						|
  StackSize = llvm::RoundUpToAlignment(StackSize, 8);
 | 
						|
 | 
						|
  llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
 | 
						|
  llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
 | 
						|
                                                "new_stack");
 | 
						|
 | 
						|
  // Write the new value of __stack for the next call to va_arg
 | 
						|
  CGF.Builder.CreateStore(NewStack, stack_p);
 | 
						|
 | 
						|
  OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
 | 
						|
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
 | 
						|
  //=======================================
 | 
						|
  // Tidy up
 | 
						|
  //=======================================
 | 
						|
  CGF.EmitBlock(ContBlock);
 | 
						|
 | 
						|
  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
 | 
						|
  ResAddr->addIncoming(RegAddr, InRegBlock);
 | 
						|
  ResAddr->addIncoming(OnStackAddr, OnStackBlock);
 | 
						|
 | 
						|
  if (AI.isDirect())
 | 
						|
    return ResAddr;
 | 
						|
 | 
						|
  return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// NVPTX ABI Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class NVPTXABIInfo : public ABIInfo {
 | 
						|
public:
 | 
						|
  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy) const;
 | 
						|
  ABIArgInfo classifyArgumentType(QualType Ty) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CFG) const;
 | 
						|
};
 | 
						|
 | 
						|
class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
 | 
						|
    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
 | 
						|
    
 | 
						|
  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | 
						|
                                   CodeGen::CodeGenModule &M) const;
 | 
						|
private:
 | 
						|
  static void addKernelMetadata(llvm::Function *F);
 | 
						|
};
 | 
						|
 | 
						|
ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
 | 
						|
  if (RetTy->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
  if (isAggregateTypeForABI(RetTy))
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  return ABIArgInfo::getDirect();
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
 | 
						|
  if (isAggregateTypeForABI(Ty))
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
  return ABIArgInfo::getDirect();
 | 
						|
}
 | 
						|
 | 
						|
void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it)
 | 
						|
    it->info = classifyArgumentType(it->type);
 | 
						|
 | 
						|
  // Always honor user-specified calling convention.
 | 
						|
  if (FI.getCallingConvention() != llvm::CallingConv::C)
 | 
						|
    return;
 | 
						|
 | 
						|
  FI.setEffectiveCallingConvention(getRuntimeCC());
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                     CodeGenFunction &CFG) const {
 | 
						|
  llvm_unreachable("NVPTX does not support varargs");
 | 
						|
}
 | 
						|
 | 
						|
void NVPTXTargetCodeGenInfo::
 | 
						|
SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | 
						|
                    CodeGen::CodeGenModule &M) const{
 | 
						|
  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | 
						|
  if (!FD) return;
 | 
						|
 | 
						|
  llvm::Function *F = cast<llvm::Function>(GV);
 | 
						|
 | 
						|
  // Perform special handling in OpenCL mode
 | 
						|
  if (M.getLangOpts().OpenCL) {
 | 
						|
    // Use OpenCL function attributes to check for kernel functions
 | 
						|
    // By default, all functions are device functions
 | 
						|
    if (FD->hasAttr<OpenCLKernelAttr>()) {
 | 
						|
      // OpenCL __kernel functions get kernel metadata
 | 
						|
      addKernelMetadata(F);
 | 
						|
      // And kernel functions are not subject to inlining
 | 
						|
      F->addFnAttr(llvm::Attribute::NoInline);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform special handling in CUDA mode.
 | 
						|
  if (M.getLangOpts().CUDA) {
 | 
						|
    // CUDA __global__ functions get a kernel metadata entry.  Since
 | 
						|
    // __global__ functions cannot be called from the device, we do not
 | 
						|
    // need to set the noinline attribute.
 | 
						|
    if (FD->getAttr<CUDAGlobalAttr>())
 | 
						|
      addKernelMetadata(F);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
 | 
						|
  llvm::Module *M = F->getParent();
 | 
						|
  llvm::LLVMContext &Ctx = M->getContext();
 | 
						|
 | 
						|
  // Get "nvvm.annotations" metadata node
 | 
						|
  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
 | 
						|
 | 
						|
  // Create !{<func-ref>, metadata !"kernel", i32 1} node
 | 
						|
  llvm::SmallVector<llvm::Value *, 3> MDVals;
 | 
						|
  MDVals.push_back(F);
 | 
						|
  MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
 | 
						|
  MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
 | 
						|
 | 
						|
  // Append metadata to nvvm.annotations
 | 
						|
  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SystemZ ABI Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class SystemZABIInfo : public ABIInfo {
 | 
						|
public:
 | 
						|
  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | 
						|
 | 
						|
  bool isPromotableIntegerType(QualType Ty) const;
 | 
						|
  bool isCompoundType(QualType Ty) const;
 | 
						|
  bool isFPArgumentType(QualType Ty) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy) const;
 | 
						|
  ABIArgInfo classifyArgumentType(QualType ArgTy) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const {
 | 
						|
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | 
						|
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
         it != ie; ++it)
 | 
						|
      it->info = classifyArgumentType(it->type);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
 | 
						|
    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
 | 
						|
  // Treat an enum type as its underlying type.
 | 
						|
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
    Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  // Promotable integer types are required to be promoted by the ABI.
 | 
						|
  if (Ty->isPromotableIntegerType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // 32-bit values must also be promoted.
 | 
						|
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
 | 
						|
    switch (BT->getKind()) {
 | 
						|
    case BuiltinType::Int:
 | 
						|
    case BuiltinType::UInt:
 | 
						|
      return true;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZABIInfo::isCompoundType(QualType Ty) const {
 | 
						|
  return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
 | 
						|
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
 | 
						|
    switch (BT->getKind()) {
 | 
						|
    case BuiltinType::Float:
 | 
						|
    case BuiltinType::Double:
 | 
						|
      return true;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  if (const RecordType *RT = Ty->getAsStructureType()) {
 | 
						|
    const RecordDecl *RD = RT->getDecl();
 | 
						|
    bool Found = false;
 | 
						|
 | 
						|
    // If this is a C++ record, check the bases first.
 | 
						|
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | 
						|
      for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
 | 
						|
             E = CXXRD->bases_end(); I != E; ++I) {
 | 
						|
        QualType Base = I->getType();
 | 
						|
 | 
						|
        // Empty bases don't affect things either way.
 | 
						|
        if (isEmptyRecord(getContext(), Base, true))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (Found)
 | 
						|
          return false;
 | 
						|
        Found = isFPArgumentType(Base);
 | 
						|
        if (!Found)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
 | 
						|
    // Check the fields.
 | 
						|
    for (RecordDecl::field_iterator I = RD->field_begin(),
 | 
						|
           E = RD->field_end(); I != E; ++I) {
 | 
						|
      const FieldDecl *FD = *I;
 | 
						|
 | 
						|
      // Empty bitfields don't affect things either way.
 | 
						|
      // Unlike isSingleElementStruct(), empty structure and array fields
 | 
						|
      // do count.  So do anonymous bitfields that aren't zero-sized.
 | 
						|
      if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Unlike isSingleElementStruct(), arrays do not count.
 | 
						|
      // Nested isFPArgumentType structures still do though.
 | 
						|
      if (Found)
 | 
						|
        return false;
 | 
						|
      Found = isFPArgumentType(FD->getType());
 | 
						|
      if (!Found)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Unlike isSingleElementStruct(), trailing padding is allowed.
 | 
						|
    // An 8-byte aligned struct s { float f; } is passed as a double.
 | 
						|
    return Found;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  // Assume that va_list type is correct; should be pointer to LLVM type:
 | 
						|
  // struct {
 | 
						|
  //   i64 __gpr;
 | 
						|
  //   i64 __fpr;
 | 
						|
  //   i8 *__overflow_arg_area;
 | 
						|
  //   i8 *__reg_save_area;
 | 
						|
  // };
 | 
						|
 | 
						|
  // Every argument occupies 8 bytes and is passed by preference in either
 | 
						|
  // GPRs or FPRs.
 | 
						|
  Ty = CGF.getContext().getCanonicalType(Ty);
 | 
						|
  ABIArgInfo AI = classifyArgumentType(Ty);
 | 
						|
  bool InFPRs = isFPArgumentType(Ty);
 | 
						|
 | 
						|
  llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
 | 
						|
  bool IsIndirect = AI.isIndirect();
 | 
						|
  unsigned UnpaddedBitSize;
 | 
						|
  if (IsIndirect) {
 | 
						|
    APTy = llvm::PointerType::getUnqual(APTy);
 | 
						|
    UnpaddedBitSize = 64;
 | 
						|
  } else
 | 
						|
    UnpaddedBitSize = getContext().getTypeSize(Ty);
 | 
						|
  unsigned PaddedBitSize = 64;
 | 
						|
  assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
 | 
						|
 | 
						|
  unsigned PaddedSize = PaddedBitSize / 8;
 | 
						|
  unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
 | 
						|
 | 
						|
  unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
 | 
						|
  if (InFPRs) {
 | 
						|
    MaxRegs = 4; // Maximum of 4 FPR arguments
 | 
						|
    RegCountField = 1; // __fpr
 | 
						|
    RegSaveIndex = 16; // save offset for f0
 | 
						|
    RegPadding = 0; // floats are passed in the high bits of an FPR
 | 
						|
  } else {
 | 
						|
    MaxRegs = 5; // Maximum of 5 GPR arguments
 | 
						|
    RegCountField = 0; // __gpr
 | 
						|
    RegSaveIndex = 2; // save offset for r2
 | 
						|
    RegPadding = Padding; // values are passed in the low bits of a GPR
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *RegCountPtr =
 | 
						|
    CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
 | 
						|
  llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
 | 
						|
  llvm::Type *IndexTy = RegCount->getType();
 | 
						|
  llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
 | 
						|
  llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
 | 
						|
						  "fits_in_regs");
 | 
						|
 | 
						|
  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
 | 
						|
  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
 | 
						|
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
 | 
						|
  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
 | 
						|
 | 
						|
  // Emit code to load the value if it was passed in registers.
 | 
						|
  CGF.EmitBlock(InRegBlock);
 | 
						|
 | 
						|
  // Work out the address of an argument register.
 | 
						|
  llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
 | 
						|
  llvm::Value *ScaledRegCount =
 | 
						|
    CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
 | 
						|
  llvm::Value *RegBase =
 | 
						|
    llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
 | 
						|
  llvm::Value *RegOffset =
 | 
						|
    CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
 | 
						|
  llvm::Value *RegSaveAreaPtr =
 | 
						|
    CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
 | 
						|
  llvm::Value *RegSaveArea =
 | 
						|
    CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
 | 
						|
  llvm::Value *RawRegAddr =
 | 
						|
    CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
 | 
						|
  llvm::Value *RegAddr =
 | 
						|
    CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
 | 
						|
 | 
						|
  // Update the register count
 | 
						|
  llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
 | 
						|
  llvm::Value *NewRegCount =
 | 
						|
    CGF.Builder.CreateAdd(RegCount, One, "reg_count");
 | 
						|
  CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
 | 
						|
  // Emit code to load the value if it was passed in memory.
 | 
						|
  CGF.EmitBlock(InMemBlock);
 | 
						|
 | 
						|
  // Work out the address of a stack argument.
 | 
						|
  llvm::Value *OverflowArgAreaPtr =
 | 
						|
    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
 | 
						|
  llvm::Value *OverflowArgArea =
 | 
						|
    CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
 | 
						|
  llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
 | 
						|
  llvm::Value *RawMemAddr =
 | 
						|
    CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
 | 
						|
  llvm::Value *MemAddr =
 | 
						|
    CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
 | 
						|
 | 
						|
  // Update overflow_arg_area_ptr pointer
 | 
						|
  llvm::Value *NewOverflowArgArea =
 | 
						|
    CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
 | 
						|
  CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
 | 
						|
  // Return the appropriate result.
 | 
						|
  CGF.EmitBlock(ContBlock);
 | 
						|
  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
 | 
						|
  ResAddr->addIncoming(RegAddr, InRegBlock);
 | 
						|
  ResAddr->addIncoming(MemAddr, InMemBlock);
 | 
						|
 | 
						|
  if (IsIndirect)
 | 
						|
    return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
 | 
						|
 | 
						|
  return ResAddr;
 | 
						|
}
 | 
						|
 | 
						|
bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
 | 
						|
    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
 | 
						|
  assert(Triple.getArch() == llvm::Triple::x86);
 | 
						|
 | 
						|
  switch (Opts.getStructReturnConvention()) {
 | 
						|
  case CodeGenOptions::SRCK_Default:
 | 
						|
    break;
 | 
						|
  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
 | 
						|
    return false;
 | 
						|
  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Triple.isOSDarwin())
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (Triple.getOS()) {
 | 
						|
  case llvm::Triple::Cygwin:
 | 
						|
  case llvm::Triple::MinGW32:
 | 
						|
  case llvm::Triple::AuroraUX:
 | 
						|
  case llvm::Triple::DragonFly:
 | 
						|
  case llvm::Triple::FreeBSD:
 | 
						|
  case llvm::Triple::OpenBSD:
 | 
						|
  case llvm::Triple::Bitrig:
 | 
						|
  case llvm::Triple::Win32:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
 | 
						|
  if (RetTy->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
  if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  return (isPromotableIntegerType(RetTy) ?
 | 
						|
          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
 | 
						|
  // Handle the generic C++ ABI.
 | 
						|
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
 | 
						|
    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
 | 
						|
 | 
						|
  // Integers and enums are extended to full register width.
 | 
						|
  if (isPromotableIntegerType(Ty))
 | 
						|
    return ABIArgInfo::getExtend();
 | 
						|
 | 
						|
  // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
 | 
						|
  uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
  if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
  // Handle small structures.
 | 
						|
  if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
    // Structures with flexible arrays have variable length, so really
 | 
						|
    // fail the size test above.
 | 
						|
    const RecordDecl *RD = RT->getDecl();
 | 
						|
    if (RD->hasFlexibleArrayMember())
 | 
						|
      return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
    // The structure is passed as an unextended integer, a float, or a double.
 | 
						|
    llvm::Type *PassTy;
 | 
						|
    if (isFPArgumentType(Ty)) {
 | 
						|
      assert(Size == 32 || Size == 64);
 | 
						|
      if (Size == 32)
 | 
						|
        PassTy = llvm::Type::getFloatTy(getVMContext());
 | 
						|
      else
 | 
						|
        PassTy = llvm::Type::getDoubleTy(getVMContext());
 | 
						|
    } else
 | 
						|
      PassTy = llvm::IntegerType::get(getVMContext(), Size);
 | 
						|
    return ABIArgInfo::getDirect(PassTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Non-structure compounds are passed indirectly.
 | 
						|
  if (isCompoundType(Ty))
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
  return ABIArgInfo::getDirect(0);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// MSP430 ABI Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
 | 
						|
    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
 | 
						|
  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | 
						|
                           CodeGen::CodeGenModule &M) const;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
 | 
						|
                                                  llvm::GlobalValue *GV,
 | 
						|
                                             CodeGen::CodeGenModule &M) const {
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
 | 
						|
      // Handle 'interrupt' attribute:
 | 
						|
      llvm::Function *F = cast<llvm::Function>(GV);
 | 
						|
 | 
						|
      // Step 1: Set ISR calling convention.
 | 
						|
      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
 | 
						|
 | 
						|
      // Step 2: Add attributes goodness.
 | 
						|
      F->addFnAttr(llvm::Attribute::NoInline);
 | 
						|
 | 
						|
      // Step 3: Emit ISR vector alias.
 | 
						|
      unsigned Num = attr->getNumber() / 2;
 | 
						|
      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
 | 
						|
                            "__isr_" + Twine(Num),
 | 
						|
                            GV, &M.getModule());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// MIPS ABI Implementation.  This works for both little-endian and
 | 
						|
// big-endian variants.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class MipsABIInfo : public ABIInfo {
 | 
						|
  bool IsO32;
 | 
						|
  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
 | 
						|
  void CoerceToIntArgs(uint64_t TySize,
 | 
						|
                       SmallVectorImpl<llvm::Type *> &ArgList) const;
 | 
						|
  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
 | 
						|
  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
 | 
						|
  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
 | 
						|
public:
 | 
						|
  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
 | 
						|
    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
 | 
						|
    StackAlignInBytes(IsO32 ? 8 : 16) {}
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy) const;
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
  unsigned SizeOfUnwindException;
 | 
						|
public:
 | 
						|
  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
 | 
						|
    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
 | 
						|
      SizeOfUnwindException(IsO32 ? 24 : 32) {}
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
 | 
						|
    return 29;
 | 
						|
  }
 | 
						|
 | 
						|
  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | 
						|
                           CodeGen::CodeGenModule &CGM) const {
 | 
						|
    const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | 
						|
    if (!FD) return;
 | 
						|
    llvm::Function *Fn = cast<llvm::Function>(GV);
 | 
						|
    if (FD->hasAttr<Mips16Attr>()) {
 | 
						|
      Fn->addFnAttr("mips16");
 | 
						|
    }
 | 
						|
    else if (FD->hasAttr<NoMips16Attr>()) {
 | 
						|
      Fn->addFnAttr("nomips16");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                               llvm::Value *Address) const;
 | 
						|
 | 
						|
  unsigned getSizeOfUnwindException() const {
 | 
						|
    return SizeOfUnwindException;
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
 | 
						|
                                  SmallVectorImpl<llvm::Type *> &ArgList) const {
 | 
						|
  llvm::IntegerType *IntTy =
 | 
						|
    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
 | 
						|
 | 
						|
  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
 | 
						|
  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
 | 
						|
    ArgList.push_back(IntTy);
 | 
						|
 | 
						|
  // If necessary, add one more integer type to ArgList.
 | 
						|
  unsigned R = TySize % (MinABIStackAlignInBytes * 8);
 | 
						|
 | 
						|
  if (R)
 | 
						|
    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
 | 
						|
}
 | 
						|
 | 
						|
// In N32/64, an aligned double precision floating point field is passed in
 | 
						|
// a register.
 | 
						|
llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
 | 
						|
  SmallVector<llvm::Type*, 8> ArgList, IntArgList;
 | 
						|
 | 
						|
  if (IsO32) {
 | 
						|
    CoerceToIntArgs(TySize, ArgList);
 | 
						|
    return llvm::StructType::get(getVMContext(), ArgList);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ty->isComplexType())
 | 
						|
    return CGT.ConvertType(Ty);
 | 
						|
 | 
						|
  const RecordType *RT = Ty->getAs<RecordType>();
 | 
						|
 | 
						|
  // Unions/vectors are passed in integer registers.
 | 
						|
  if (!RT || !RT->isStructureOrClassType()) {
 | 
						|
    CoerceToIntArgs(TySize, ArgList);
 | 
						|
    return llvm::StructType::get(getVMContext(), ArgList);
 | 
						|
  }
 | 
						|
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
 | 
						|
  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
 | 
						|
  
 | 
						|
  uint64_t LastOffset = 0;
 | 
						|
  unsigned idx = 0;
 | 
						|
  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
 | 
						|
 | 
						|
  // Iterate over fields in the struct/class and check if there are any aligned
 | 
						|
  // double fields.
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
       i != e; ++i, ++idx) {
 | 
						|
    const QualType Ty = i->getType();
 | 
						|
    const BuiltinType *BT = Ty->getAs<BuiltinType>();
 | 
						|
 | 
						|
    if (!BT || BT->getKind() != BuiltinType::Double)
 | 
						|
      continue;
 | 
						|
 | 
						|
    uint64_t Offset = Layout.getFieldOffset(idx);
 | 
						|
    if (Offset % 64) // Ignore doubles that are not aligned.
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Add ((Offset - LastOffset) / 64) args of type i64.
 | 
						|
    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
 | 
						|
      ArgList.push_back(I64);
 | 
						|
 | 
						|
    // Add double type.
 | 
						|
    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
 | 
						|
    LastOffset = Offset + 64;
 | 
						|
  }
 | 
						|
 | 
						|
  CoerceToIntArgs(TySize - LastOffset, IntArgList);
 | 
						|
  ArgList.append(IntArgList.begin(), IntArgList.end());
 | 
						|
 | 
						|
  return llvm::StructType::get(getVMContext(), ArgList);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
 | 
						|
  assert((Offset % MinABIStackAlignInBytes) == 0);
 | 
						|
 | 
						|
  if ((Align - 1) & Offset)
 | 
						|
    return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo
 | 
						|
MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
 | 
						|
  uint64_t OrigOffset = Offset;
 | 
						|
  uint64_t TySize = getContext().getTypeSize(Ty);
 | 
						|
  uint64_t Align = getContext().getTypeAlign(Ty) / 8;
 | 
						|
 | 
						|
  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
 | 
						|
                   (uint64_t)StackAlignInBytes);
 | 
						|
  Offset = llvm::RoundUpToAlignment(Offset, Align);
 | 
						|
  Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
 | 
						|
 | 
						|
  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
 | 
						|
    // Ignore empty aggregates.
 | 
						|
    if (TySize == 0)
 | 
						|
      return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT)) {
 | 
						|
      Offset = OrigOffset + MinABIStackAlignInBytes;
 | 
						|
      return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have reached here, aggregates are passed directly by coercing to
 | 
						|
    // another structure type. Padding is inserted if the offset of the
 | 
						|
    // aggregate is unaligned.
 | 
						|
    return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
 | 
						|
                                 getPaddingType(Align, OrigOffset));
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat an enum type as its underlying type.
 | 
						|
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
    Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  if (Ty->isPromotableIntegerType())
 | 
						|
    return ABIArgInfo::getExtend();
 | 
						|
 | 
						|
  return ABIArgInfo::getDirect(0, 0,
 | 
						|
                               IsO32 ? 0 : getPaddingType(Align, OrigOffset));
 | 
						|
}
 | 
						|
 | 
						|
llvm::Type*
 | 
						|
MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
 | 
						|
  const RecordType *RT = RetTy->getAs<RecordType>();
 | 
						|
  SmallVector<llvm::Type*, 8> RTList;
 | 
						|
 | 
						|
  if (RT && RT->isStructureOrClassType()) {
 | 
						|
    const RecordDecl *RD = RT->getDecl();
 | 
						|
    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
 | 
						|
    unsigned FieldCnt = Layout.getFieldCount();
 | 
						|
 | 
						|
    // N32/64 returns struct/classes in floating point registers if the
 | 
						|
    // following conditions are met:
 | 
						|
    // 1. The size of the struct/class is no larger than 128-bit.
 | 
						|
    // 2. The struct/class has one or two fields all of which are floating
 | 
						|
    //    point types.
 | 
						|
    // 3. The offset of the first field is zero (this follows what gcc does). 
 | 
						|
    //
 | 
						|
    // Any other composite results are returned in integer registers.
 | 
						|
    //
 | 
						|
    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
 | 
						|
      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
 | 
						|
      for (; b != e; ++b) {
 | 
						|
        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
 | 
						|
 | 
						|
        if (!BT || !BT->isFloatingPoint())
 | 
						|
          break;
 | 
						|
 | 
						|
        RTList.push_back(CGT.ConvertType(b->getType()));
 | 
						|
      }
 | 
						|
 | 
						|
      if (b == e)
 | 
						|
        return llvm::StructType::get(getVMContext(), RTList,
 | 
						|
                                     RD->hasAttr<PackedAttr>());
 | 
						|
 | 
						|
      RTList.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CoerceToIntArgs(Size, RTList);
 | 
						|
  return llvm::StructType::get(getVMContext(), RTList);
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
 | 
						|
  uint64_t Size = getContext().getTypeSize(RetTy);
 | 
						|
 | 
						|
  if (RetTy->isVoidType() || Size == 0)
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
 | 
						|
    if (isRecordReturnIndirect(RetTy, CGT))
 | 
						|
      return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
    if (Size <= 128) {
 | 
						|
      if (RetTy->isAnyComplexType())
 | 
						|
        return ABIArgInfo::getDirect();
 | 
						|
 | 
						|
      // O32 returns integer vectors in registers.
 | 
						|
      if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
 | 
						|
        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
 | 
						|
 | 
						|
      if (!IsO32)
 | 
						|
        return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
 | 
						|
    }
 | 
						|
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat an enum type as its underlying type.
 | 
						|
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | 
						|
    RetTy = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  return (RetTy->isPromotableIntegerType() ?
 | 
						|
          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
}
 | 
						|
 | 
						|
void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
  ABIArgInfo &RetInfo = FI.getReturnInfo();
 | 
						|
  RetInfo = classifyReturnType(FI.getReturnType());
 | 
						|
 | 
						|
  // Check if a pointer to an aggregate is passed as a hidden argument.  
 | 
						|
  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
 | 
						|
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it)
 | 
						|
    it->info = classifyArgumentType(it->type, Offset);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                    CodeGenFunction &CGF) const {
 | 
						|
  llvm::Type *BP = CGF.Int8PtrTy;
 | 
						|
  llvm::Type *BPP = CGF.Int8PtrPtrTy;
 | 
						|
 
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
 | 
						|
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | 
						|
  int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
 | 
						|
  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | 
						|
  llvm::Value *AddrTyped;
 | 
						|
  unsigned PtrWidth = getTarget().getPointerWidth(0);
 | 
						|
  llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
 | 
						|
 | 
						|
  if (TypeAlign > MinABIStackAlignInBytes) {
 | 
						|
    llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
 | 
						|
    llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
 | 
						|
    llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
 | 
						|
    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
 | 
						|
    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
 | 
						|
    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    AddrTyped = Builder.CreateBitCast(Addr, PTy);  
 | 
						|
 | 
						|
  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
 | 
						|
  TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
 | 
						|
  uint64_t Offset =
 | 
						|
    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
 | 
						|
  llvm::Value *NextAddr =
 | 
						|
    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
 | 
						|
                      "ap.next");
 | 
						|
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | 
						|
  
 | 
						|
  return AddrTyped;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | 
						|
                                               llvm::Value *Address) const {
 | 
						|
  // This information comes from gcc's implementation, which seems to
 | 
						|
  // as canonical as it gets.
 | 
						|
 | 
						|
  // Everything on MIPS is 4 bytes.  Double-precision FP registers
 | 
						|
  // are aliased to pairs of single-precision FP registers.
 | 
						|
  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
 | 
						|
 | 
						|
  // 0-31 are the general purpose registers, $0 - $31.
 | 
						|
  // 32-63 are the floating-point registers, $f0 - $f31.
 | 
						|
  // 64 and 65 are the multiply/divide registers, $hi and $lo.
 | 
						|
  // 66 is the (notional, I think) register for signal-handler return.
 | 
						|
  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
 | 
						|
 | 
						|
  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
 | 
						|
  // They are one bit wide and ignored here.
 | 
						|
 | 
						|
  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
 | 
						|
  // (coprocessor 1 is the FP unit)
 | 
						|
  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
 | 
						|
  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
 | 
						|
  // 176-181 are the DSP accumulator registers.
 | 
						|
  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
 | 
						|
// Currently subclassed only to implement custom OpenCL C function attribute 
 | 
						|
// handling.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  TCETargetCodeGenInfo(CodeGenTypes &CGT)
 | 
						|
    : DefaultTargetCodeGenInfo(CGT) {}
 | 
						|
 | 
						|
  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | 
						|
                                   CodeGen::CodeGenModule &M) const;
 | 
						|
};
 | 
						|
 | 
						|
void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
 | 
						|
                                               llvm::GlobalValue *GV,
 | 
						|
                                               CodeGen::CodeGenModule &M) const {
 | 
						|
  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | 
						|
  if (!FD) return;
 | 
						|
 | 
						|
  llvm::Function *F = cast<llvm::Function>(GV);
 | 
						|
  
 | 
						|
  if (M.getLangOpts().OpenCL) {
 | 
						|
    if (FD->hasAttr<OpenCLKernelAttr>()) {
 | 
						|
      // OpenCL C Kernel functions are not subject to inlining
 | 
						|
      F->addFnAttr(llvm::Attribute::NoInline);
 | 
						|
          
 | 
						|
      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
 | 
						|
 | 
						|
        // Convert the reqd_work_group_size() attributes to metadata.
 | 
						|
        llvm::LLVMContext &Context = F->getContext();
 | 
						|
        llvm::NamedMDNode *OpenCLMetadata = 
 | 
						|
            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
 | 
						|
 | 
						|
        SmallVector<llvm::Value*, 5> Operands;
 | 
						|
        Operands.push_back(F);
 | 
						|
 | 
						|
        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 
 | 
						|
                             llvm::APInt(32, 
 | 
						|
                             FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
 | 
						|
        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
 | 
						|
                             llvm::APInt(32,
 | 
						|
                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
 | 
						|
        Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 
 | 
						|
                             llvm::APInt(32, 
 | 
						|
                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
 | 
						|
 | 
						|
        // Add a boolean constant operand for "required" (true) or "hint" (false)
 | 
						|
        // for implementing the work_group_size_hint attr later. Currently 
 | 
						|
        // always true as the hint is not yet implemented.
 | 
						|
        Operands.push_back(llvm::ConstantInt::getTrue(Context));
 | 
						|
        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Hexagon ABI Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class HexagonABIInfo : public ABIInfo {
 | 
						|
 | 
						|
 | 
						|
public:
 | 
						|
  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy) const;
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
 | 
						|
    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
 | 
						|
 | 
						|
  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
 | 
						|
    return 29;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it)
 | 
						|
    it->info = classifyArgumentType(it->type);
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
 | 
						|
  if (!isAggregateTypeForABI(Ty)) {
 | 
						|
    // Treat an enum type as its underlying type.
 | 
						|
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
      Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
    return (Ty->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
 | 
						|
  // Ignore empty records.
 | 
						|
  if (isEmptyRecord(getContext(), Ty, true))
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT))
 | 
						|
    return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
 | 
						|
 | 
						|
  uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
  if (Size > 64)
 | 
						|
    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
 | 
						|
    // Pass in the smallest viable integer type.
 | 
						|
  else if (Size > 32)
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
 | 
						|
  else if (Size > 16)
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | 
						|
  else if (Size > 8)
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | 
						|
  else
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
 | 
						|
  if (RetTy->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  // Large vector types should be returned via memory.
 | 
						|
  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
  if (!isAggregateTypeForABI(RetTy)) {
 | 
						|
    // Treat an enum type as its underlying type.
 | 
						|
    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | 
						|
      RetTy = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
    return (RetTy->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
 | 
						|
  // Structures with either a non-trivial destructor or a non-trivial
 | 
						|
  // copy constructor are always indirect.
 | 
						|
  if (isRecordReturnIndirect(RetTy, CGT))
 | 
						|
    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | 
						|
 | 
						|
  if (isEmptyRecord(getContext(), RetTy, true))
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  // Aggregates <= 8 bytes are returned in r0; other aggregates
 | 
						|
  // are returned indirectly.
 | 
						|
  uint64_t Size = getContext().getTypeSize(RetTy);
 | 
						|
  if (Size <= 64) {
 | 
						|
    // Return in the smallest viable integer type.
 | 
						|
    if (Size <= 8)
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
 | 
						|
    if (Size <= 16)
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | 
						|
    if (Size <= 32)
 | 
						|
      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | 
						|
    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
 | 
						|
  }
 | 
						|
 | 
						|
  return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  // FIXME: Need to handle alignment
 | 
						|
  llvm::Type *BPP = CGF.Int8PtrPtrTy;
 | 
						|
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
 | 
						|
                                                       "ap");
 | 
						|
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | 
						|
  llvm::Type *PTy =
 | 
						|
    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | 
						|
  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
 | 
						|
 | 
						|
  uint64_t Offset =
 | 
						|
    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
 | 
						|
  llvm::Value *NextAddr =
 | 
						|
    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
 | 
						|
                      "ap.next");
 | 
						|
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | 
						|
 | 
						|
  return AddrTyped;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SPARC v9 ABI Implementation.
 | 
						|
// Based on the SPARC Compliance Definition version 2.4.1.
 | 
						|
//
 | 
						|
// Function arguments a mapped to a nominal "parameter array" and promoted to
 | 
						|
// registers depending on their type. Each argument occupies 8 or 16 bytes in
 | 
						|
// the array, structs larger than 16 bytes are passed indirectly.
 | 
						|
//
 | 
						|
// One case requires special care:
 | 
						|
//
 | 
						|
//   struct mixed {
 | 
						|
//     int i;
 | 
						|
//     float f;
 | 
						|
//   };
 | 
						|
//
 | 
						|
// When a struct mixed is passed by value, it only occupies 8 bytes in the
 | 
						|
// parameter array, but the int is passed in an integer register, and the float
 | 
						|
// is passed in a floating point register. This is represented as two arguments
 | 
						|
// with the LLVM IR inreg attribute:
 | 
						|
//
 | 
						|
//   declare void f(i32 inreg %i, float inreg %f)
 | 
						|
//
 | 
						|
// The code generator will only allocate 4 bytes from the parameter array for
 | 
						|
// the inreg arguments. All other arguments are allocated a multiple of 8
 | 
						|
// bytes.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
class SparcV9ABIInfo : public ABIInfo {
 | 
						|
public:
 | 
						|
  SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | 
						|
 | 
						|
private:
 | 
						|
  ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI) const;
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
 | 
						|
  // Coercion type builder for structs passed in registers. The coercion type
 | 
						|
  // serves two purposes:
 | 
						|
  //
 | 
						|
  // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
 | 
						|
  //    in registers.
 | 
						|
  // 2. Expose aligned floating point elements as first-level elements, so the
 | 
						|
  //    code generator knows to pass them in floating point registers.
 | 
						|
  //
 | 
						|
  // We also compute the InReg flag which indicates that the struct contains
 | 
						|
  // aligned 32-bit floats.
 | 
						|
  //
 | 
						|
  struct CoerceBuilder {
 | 
						|
    llvm::LLVMContext &Context;
 | 
						|
    const llvm::DataLayout &DL;
 | 
						|
    SmallVector<llvm::Type*, 8> Elems;
 | 
						|
    uint64_t Size;
 | 
						|
    bool InReg;
 | 
						|
 | 
						|
    CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
 | 
						|
      : Context(c), DL(dl), Size(0), InReg(false) {}
 | 
						|
 | 
						|
    // Pad Elems with integers until Size is ToSize.
 | 
						|
    void pad(uint64_t ToSize) {
 | 
						|
      assert(ToSize >= Size && "Cannot remove elements");
 | 
						|
      if (ToSize == Size)
 | 
						|
        return;
 | 
						|
 | 
						|
      // Finish the current 64-bit word.
 | 
						|
      uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
 | 
						|
      if (Aligned > Size && Aligned <= ToSize) {
 | 
						|
        Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
 | 
						|
        Size = Aligned;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add whole 64-bit words.
 | 
						|
      while (Size + 64 <= ToSize) {
 | 
						|
        Elems.push_back(llvm::Type::getInt64Ty(Context));
 | 
						|
        Size += 64;
 | 
						|
      }
 | 
						|
 | 
						|
      // Final in-word padding.
 | 
						|
      if (Size < ToSize) {
 | 
						|
        Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
 | 
						|
        Size = ToSize;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a floating point element at Offset.
 | 
						|
    void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
 | 
						|
      // Unaligned floats are treated as integers.
 | 
						|
      if (Offset % Bits)
 | 
						|
        return;
 | 
						|
      // The InReg flag is only required if there are any floats < 64 bits.
 | 
						|
      if (Bits < 64)
 | 
						|
        InReg = true;
 | 
						|
      pad(Offset);
 | 
						|
      Elems.push_back(Ty);
 | 
						|
      Size = Offset + Bits;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a struct type to the coercion type, starting at Offset (in bits).
 | 
						|
    void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
 | 
						|
      const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
 | 
						|
      for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
 | 
						|
        llvm::Type *ElemTy = StrTy->getElementType(i);
 | 
						|
        uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
 | 
						|
        switch (ElemTy->getTypeID()) {
 | 
						|
        case llvm::Type::StructTyID:
 | 
						|
          addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
 | 
						|
          break;
 | 
						|
        case llvm::Type::FloatTyID:
 | 
						|
          addFloat(ElemOffset, ElemTy, 32);
 | 
						|
          break;
 | 
						|
        case llvm::Type::DoubleTyID:
 | 
						|
          addFloat(ElemOffset, ElemTy, 64);
 | 
						|
          break;
 | 
						|
        case llvm::Type::FP128TyID:
 | 
						|
          addFloat(ElemOffset, ElemTy, 128);
 | 
						|
          break;
 | 
						|
        case llvm::Type::PointerTyID:
 | 
						|
          if (ElemOffset % 64 == 0) {
 | 
						|
            pad(ElemOffset);
 | 
						|
            Elems.push_back(ElemTy);
 | 
						|
            Size += 64;
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if Ty is a usable substitute for the coercion type.
 | 
						|
    bool isUsableType(llvm::StructType *Ty) const {
 | 
						|
      if (Ty->getNumElements() != Elems.size())
 | 
						|
        return false;
 | 
						|
      for (unsigned i = 0, e = Elems.size(); i != e; ++i)
 | 
						|
        if (Elems[i] != Ty->getElementType(i))
 | 
						|
          return false;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the coercion type as a literal struct type.
 | 
						|
    llvm::Type *getType() const {
 | 
						|
      if (Elems.size() == 1)
 | 
						|
        return Elems.front();
 | 
						|
      else
 | 
						|
        return llvm::StructType::get(Context, Elems);
 | 
						|
    }
 | 
						|
  };
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
ABIArgInfo
 | 
						|
SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
 | 
						|
  if (Ty->isVoidType())
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  uint64_t Size = getContext().getTypeSize(Ty);
 | 
						|
 | 
						|
  // Anything too big to fit in registers is passed with an explicit indirect
 | 
						|
  // pointer / sret pointer.
 | 
						|
  if (Size > SizeLimit)
 | 
						|
    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | 
						|
 | 
						|
  // Treat an enum type as its underlying type.
 | 
						|
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | 
						|
    Ty = EnumTy->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  // Integer types smaller than a register are extended.
 | 
						|
  if (Size < 64 && Ty->isIntegerType())
 | 
						|
    return ABIArgInfo::getExtend();
 | 
						|
 | 
						|
  // Other non-aggregates go in registers.
 | 
						|
  if (!isAggregateTypeForABI(Ty))
 | 
						|
    return ABIArgInfo::getDirect();
 | 
						|
 | 
						|
  // This is a small aggregate type that should be passed in registers.
 | 
						|
  // Build a coercion type from the LLVM struct type.
 | 
						|
  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
 | 
						|
  if (!StrTy)
 | 
						|
    return ABIArgInfo::getDirect();
 | 
						|
 | 
						|
  CoerceBuilder CB(getVMContext(), getDataLayout());
 | 
						|
  CB.addStruct(0, StrTy);
 | 
						|
  CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
 | 
						|
 | 
						|
  // Try to use the original type for coercion.
 | 
						|
  llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
 | 
						|
 | 
						|
  if (CB.InReg)
 | 
						|
    return ABIArgInfo::getDirectInReg(CoerceTy);
 | 
						|
  else
 | 
						|
    return ABIArgInfo::getDirect(CoerceTy);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  ABIArgInfo AI = classifyType(Ty, 16 * 8);
 | 
						|
  llvm::Type *ArgTy = CGT.ConvertType(Ty);
 | 
						|
  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
 | 
						|
    AI.setCoerceToType(ArgTy);
 | 
						|
 | 
						|
  llvm::Type *BPP = CGF.Int8PtrPtrTy;
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
 | 
						|
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | 
						|
  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
 | 
						|
  llvm::Value *ArgAddr;
 | 
						|
  unsigned Stride;
 | 
						|
 | 
						|
  switch (AI.getKind()) {
 | 
						|
  case ABIArgInfo::Expand:
 | 
						|
    llvm_unreachable("Unsupported ABI kind for va_arg");
 | 
						|
 | 
						|
  case ABIArgInfo::Extend:
 | 
						|
    Stride = 8;
 | 
						|
    ArgAddr = Builder
 | 
						|
      .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
 | 
						|
                          "extend");
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::Direct:
 | 
						|
    Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
 | 
						|
    ArgAddr = Addr;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::Indirect:
 | 
						|
    Stride = 8;
 | 
						|
    ArgAddr = Builder.CreateBitCast(Addr,
 | 
						|
                                    llvm::PointerType::getUnqual(ArgPtrTy),
 | 
						|
                                    "indirect");
 | 
						|
    ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::Ignore:
 | 
						|
    return llvm::UndefValue::get(ArgPtrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update VAList.
 | 
						|
  Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
 | 
						|
  Builder.CreateStore(Addr, VAListAddrAsBPP);
 | 
						|
 | 
						|
  return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
 | 
						|
}
 | 
						|
 | 
						|
void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | 
						|
  FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it)
 | 
						|
    it->info = classifyType(it->type, 16 * 8);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
 | 
						|
public:
 | 
						|
  SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
 | 
						|
    : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
 | 
						|
  if (TheTargetCodeGenInfo)
 | 
						|
    return *TheTargetCodeGenInfo;
 | 
						|
 | 
						|
  const llvm::Triple &Triple = getTarget().getTriple();
 | 
						|
  switch (Triple.getArch()) {
 | 
						|
  default:
 | 
						|
    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
 | 
						|
 | 
						|
  case llvm::Triple::le32:
 | 
						|
    return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
 | 
						|
  case llvm::Triple::mips:
 | 
						|
  case llvm::Triple::mipsel:
 | 
						|
    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
 | 
						|
 | 
						|
  case llvm::Triple::mips64:
 | 
						|
  case llvm::Triple::mips64el:
 | 
						|
    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
 | 
						|
 | 
						|
  case llvm::Triple::aarch64:
 | 
						|
    return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
 | 
						|
 | 
						|
  case llvm::Triple::arm:
 | 
						|
  case llvm::Triple::thumb:
 | 
						|
    {
 | 
						|
      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
 | 
						|
      if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
 | 
						|
        Kind = ARMABIInfo::APCS;
 | 
						|
      else if (CodeGenOpts.FloatABI == "hard" ||
 | 
						|
               (CodeGenOpts.FloatABI != "soft" &&
 | 
						|
                Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
 | 
						|
        Kind = ARMABIInfo::AAPCS_VFP;
 | 
						|
 | 
						|
      switch (Triple.getOS()) {
 | 
						|
        case llvm::Triple::NaCl:
 | 
						|
          return *(TheTargetCodeGenInfo =
 | 
						|
                   new NaClARMTargetCodeGenInfo(Types, Kind));
 | 
						|
        default:
 | 
						|
          return *(TheTargetCodeGenInfo =
 | 
						|
                   new ARMTargetCodeGenInfo(Types, Kind));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  case llvm::Triple::ppc:
 | 
						|
    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
 | 
						|
  case llvm::Triple::ppc64:
 | 
						|
    if (Triple.isOSBinFormatELF())
 | 
						|
      return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
 | 
						|
    else
 | 
						|
      return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
 | 
						|
  case llvm::Triple::ppc64le:
 | 
						|
    assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
 | 
						|
    return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
 | 
						|
 | 
						|
  case llvm::Triple::nvptx:
 | 
						|
  case llvm::Triple::nvptx64:
 | 
						|
    return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
 | 
						|
 | 
						|
  case llvm::Triple::msp430:
 | 
						|
    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
 | 
						|
 | 
						|
  case llvm::Triple::systemz:
 | 
						|
    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
 | 
						|
 | 
						|
  case llvm::Triple::tce:
 | 
						|
    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
 | 
						|
 | 
						|
  case llvm::Triple::x86: {
 | 
						|
    bool IsDarwinVectorABI = Triple.isOSDarwin();
 | 
						|
    bool IsSmallStructInRegABI =
 | 
						|
        X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
 | 
						|
    bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
 | 
						|
 | 
						|
    if (Triple.getOS() == llvm::Triple::Win32) {
 | 
						|
      return *(TheTargetCodeGenInfo =
 | 
						|
               new WinX86_32TargetCodeGenInfo(Types,
 | 
						|
                                              IsDarwinVectorABI, IsSmallStructInRegABI,
 | 
						|
                                              IsWin32FloatStructABI,
 | 
						|
                                              CodeGenOpts.NumRegisterParameters));
 | 
						|
    } else {
 | 
						|
      return *(TheTargetCodeGenInfo =
 | 
						|
               new X86_32TargetCodeGenInfo(Types,
 | 
						|
                                           IsDarwinVectorABI, IsSmallStructInRegABI,
 | 
						|
                                           IsWin32FloatStructABI,
 | 
						|
                                           CodeGenOpts.NumRegisterParameters));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  case llvm::Triple::x86_64: {
 | 
						|
    bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
 | 
						|
 | 
						|
    switch (Triple.getOS()) {
 | 
						|
    case llvm::Triple::Win32:
 | 
						|
    case llvm::Triple::MinGW32:
 | 
						|
    case llvm::Triple::Cygwin:
 | 
						|
      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
 | 
						|
    case llvm::Triple::NaCl:
 | 
						|
      return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
 | 
						|
                                                                      HasAVX));
 | 
						|
    default:
 | 
						|
      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
 | 
						|
                                                                  HasAVX));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case llvm::Triple::hexagon:
 | 
						|
    return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
 | 
						|
  case llvm::Triple::sparcv9:
 | 
						|
    return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
 | 
						|
  }
 | 
						|
}
 |