forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			943 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			943 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements C++ semantic analysis for scope specifiers.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "TypeLocBuilder.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/NestedNameSpecifier.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/Template.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace clang;
 | |
| 
 | |
| /// \brief Find the current instantiation that associated with the given type.
 | |
| static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
 | |
|                                                 DeclContext *CurContext) {
 | |
|   if (T.isNull())
 | |
|     return 0;
 | |
| 
 | |
|   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
 | |
|   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
 | |
|     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|     if (!Record->isDependentContext() ||
 | |
|         Record->isCurrentInstantiation(CurContext))
 | |
|       return Record;
 | |
| 
 | |
|     return 0;
 | |
|   } else if (isa<InjectedClassNameType>(Ty))
 | |
|     return cast<InjectedClassNameType>(Ty)->getDecl();
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /// \brief Compute the DeclContext that is associated with the given type.
 | |
| ///
 | |
| /// \param T the type for which we are attempting to find a DeclContext.
 | |
| ///
 | |
| /// \returns the declaration context represented by the type T,
 | |
| /// or NULL if the declaration context cannot be computed (e.g., because it is
 | |
| /// dependent and not the current instantiation).
 | |
| DeclContext *Sema::computeDeclContext(QualType T) {
 | |
|   if (!T->isDependentType())
 | |
|     if (const TagType *Tag = T->getAs<TagType>())
 | |
|       return Tag->getDecl();
 | |
| 
 | |
|   return ::getCurrentInstantiationOf(T, CurContext);
 | |
| }
 | |
| 
 | |
| /// \brief Compute the DeclContext that is associated with the given
 | |
| /// scope specifier.
 | |
| ///
 | |
| /// \param SS the C++ scope specifier as it appears in the source
 | |
| ///
 | |
| /// \param EnteringContext when true, we will be entering the context of
 | |
| /// this scope specifier, so we can retrieve the declaration context of a
 | |
| /// class template or class template partial specialization even if it is
 | |
| /// not the current instantiation.
 | |
| ///
 | |
| /// \returns the declaration context represented by the scope specifier @p SS,
 | |
| /// or NULL if the declaration context cannot be computed (e.g., because it is
 | |
| /// dependent and not the current instantiation).
 | |
| DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
 | |
|                                       bool EnteringContext) {
 | |
|   if (!SS.isSet() || SS.isInvalid())
 | |
|     return 0;
 | |
| 
 | |
|   NestedNameSpecifier *NNS = SS.getScopeRep();
 | |
|   if (NNS->isDependent()) {
 | |
|     // If this nested-name-specifier refers to the current
 | |
|     // instantiation, return its DeclContext.
 | |
|     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
 | |
|       return Record;
 | |
| 
 | |
|     if (EnteringContext) {
 | |
|       const Type *NNSType = NNS->getAsType();
 | |
|       if (!NNSType) {
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       // Look through type alias templates, per C++0x [temp.dep.type]p1.
 | |
|       NNSType = Context.getCanonicalType(NNSType);
 | |
|       if (const TemplateSpecializationType *SpecType
 | |
|             = NNSType->getAs<TemplateSpecializationType>()) {
 | |
|         // We are entering the context of the nested name specifier, so try to
 | |
|         // match the nested name specifier to either a primary class template
 | |
|         // or a class template partial specialization.
 | |
|         if (ClassTemplateDecl *ClassTemplate
 | |
|               = dyn_cast_or_null<ClassTemplateDecl>(
 | |
|                             SpecType->getTemplateName().getAsTemplateDecl())) {
 | |
|           QualType ContextType
 | |
|             = Context.getCanonicalType(QualType(SpecType, 0));
 | |
| 
 | |
|           // If the type of the nested name specifier is the same as the
 | |
|           // injected class name of the named class template, we're entering
 | |
|           // into that class template definition.
 | |
|           QualType Injected
 | |
|             = ClassTemplate->getInjectedClassNameSpecialization();
 | |
|           if (Context.hasSameType(Injected, ContextType))
 | |
|             return ClassTemplate->getTemplatedDecl();
 | |
| 
 | |
|           // If the type of the nested name specifier is the same as the
 | |
|           // type of one of the class template's class template partial
 | |
|           // specializations, we're entering into the definition of that
 | |
|           // class template partial specialization.
 | |
|           if (ClassTemplatePartialSpecializationDecl *PartialSpec
 | |
|                 = ClassTemplate->findPartialSpecialization(ContextType))
 | |
|             return PartialSpec;
 | |
|         }
 | |
|       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
 | |
|         // The nested name specifier refers to a member of a class template.
 | |
|         return RecordT->getDecl();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   switch (NNS->getKind()) {
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
 | |
| 
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|     return NNS->getAsNamespace();
 | |
| 
 | |
|   case NestedNameSpecifier::NamespaceAlias:
 | |
|     return NNS->getAsNamespaceAlias()->getNamespace();
 | |
| 
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate: {
 | |
|     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
 | |
|     assert(Tag && "Non-tag type in nested-name-specifier");
 | |
|     return Tag->getDecl();
 | |
|   }
 | |
| 
 | |
|   case NestedNameSpecifier::Global:
 | |
|     return Context.getTranslationUnitDecl();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
 | |
| }
 | |
| 
 | |
| bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
 | |
|   if (!SS.isSet() || SS.isInvalid())
 | |
|     return false;
 | |
| 
 | |
|   return SS.getScopeRep()->isDependent();
 | |
| }
 | |
| 
 | |
| /// \brief If the given nested name specifier refers to the current
 | |
| /// instantiation, return the declaration that corresponds to that
 | |
| /// current instantiation (C++0x [temp.dep.type]p1).
 | |
| ///
 | |
| /// \param NNS a dependent nested name specifier.
 | |
| CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
 | |
|   assert(getLangOpts().CPlusPlus && "Only callable in C++");
 | |
|   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
 | |
| 
 | |
|   if (!NNS->getAsType())
 | |
|     return 0;
 | |
| 
 | |
|   QualType T = QualType(NNS->getAsType(), 0);
 | |
|   return ::getCurrentInstantiationOf(T, CurContext);
 | |
| }
 | |
| 
 | |
| /// \brief Require that the context specified by SS be complete.
 | |
| ///
 | |
| /// If SS refers to a type, this routine checks whether the type is
 | |
| /// complete enough (or can be made complete enough) for name lookup
 | |
| /// into the DeclContext. A type that is not yet completed can be
 | |
| /// considered "complete enough" if it is a class/struct/union/enum
 | |
| /// that is currently being defined. Or, if we have a type that names
 | |
| /// a class template specialization that is not a complete type, we
 | |
| /// will attempt to instantiate that class template.
 | |
| bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
 | |
|                                       DeclContext *DC) {
 | |
|   assert(DC != 0 && "given null context");
 | |
| 
 | |
|   TagDecl *tag = dyn_cast<TagDecl>(DC);
 | |
| 
 | |
|   // If this is a dependent type, then we consider it complete.
 | |
|   if (!tag || tag->isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   // If we're currently defining this type, then lookup into the
 | |
|   // type is okay: don't complain that it isn't complete yet.
 | |
|   QualType type = Context.getTypeDeclType(tag);
 | |
|   const TagType *tagType = type->getAs<TagType>();
 | |
|   if (tagType && tagType->isBeingDefined())
 | |
|     return false;
 | |
| 
 | |
|   SourceLocation loc = SS.getLastQualifierNameLoc();
 | |
|   if (loc.isInvalid()) loc = SS.getRange().getBegin();
 | |
| 
 | |
|   // The type must be complete.
 | |
|   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
 | |
|                           SS.getRange())) {
 | |
|     SS.SetInvalid(SS.getRange());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Fixed enum types are complete, but they aren't valid as scopes
 | |
|   // until we see a definition, so awkwardly pull out this special
 | |
|   // case.
 | |
|   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
 | |
|   if (!enumType || enumType->getDecl()->isCompleteDefinition())
 | |
|     return false;
 | |
| 
 | |
|   // Try to instantiate the definition, if this is a specialization of an
 | |
|   // enumeration temploid.
 | |
|   EnumDecl *ED = enumType->getDecl();
 | |
|   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
 | |
|     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
 | |
|     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
 | |
|       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
 | |
|                           TSK_ImplicitInstantiation)) {
 | |
|         SS.SetInvalid(SS.getRange());
 | |
|         return true;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Diag(loc, diag::err_incomplete_nested_name_spec)
 | |
|     << type << SS.getRange();
 | |
|   SS.SetInvalid(SS.getRange());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
 | |
|                                         CXXScopeSpec &SS) {
 | |
|   SS.MakeGlobal(Context, CCLoc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Determines whether the given declaration is an valid acceptable
 | |
| /// result for name lookup of a nested-name-specifier.
 | |
| bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
 | |
|   if (!SD)
 | |
|     return false;
 | |
| 
 | |
|   // Namespace and namespace aliases are fine.
 | |
|   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
 | |
|     return true;
 | |
| 
 | |
|   if (!isa<TypeDecl>(SD))
 | |
|     return false;
 | |
| 
 | |
|   // Determine whether we have a class (or, in C++11, an enum) or
 | |
|   // a typedef thereof. If so, build the nested-name-specifier.
 | |
|   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
 | |
|   if (T->isDependentType())
 | |
|     return true;
 | |
|   else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
 | |
|     if (TD->getUnderlyingType()->isRecordType() ||
 | |
|         (Context.getLangOpts().CPlusPlus11 &&
 | |
|          TD->getUnderlyingType()->isEnumeralType()))
 | |
|       return true;
 | |
|   } else if (isa<RecordDecl>(SD) ||
 | |
|              (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief If the given nested-name-specifier begins with a bare identifier
 | |
| /// (e.g., Base::), perform name lookup for that identifier as a
 | |
| /// nested-name-specifier within the given scope, and return the result of that
 | |
| /// name lookup.
 | |
| NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
 | |
|   if (!S || !NNS)
 | |
|     return 0;
 | |
| 
 | |
|   while (NNS->getPrefix())
 | |
|     NNS = NNS->getPrefix();
 | |
| 
 | |
|   if (NNS->getKind() != NestedNameSpecifier::Identifier)
 | |
|     return 0;
 | |
| 
 | |
|   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
 | |
|                      LookupNestedNameSpecifierName);
 | |
|   LookupName(Found, S);
 | |
|   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
 | |
| 
 | |
|   if (!Found.isSingleResult())
 | |
|     return 0;
 | |
| 
 | |
|   NamedDecl *Result = Found.getFoundDecl();
 | |
|   if (isAcceptableNestedNameSpecifier(Result))
 | |
|     return Result;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
 | |
|                                         SourceLocation IdLoc,
 | |
|                                         IdentifierInfo &II,
 | |
|                                         ParsedType ObjectTypePtr) {
 | |
|   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
 | |
|   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
 | |
|   
 | |
|   // Determine where to perform name lookup
 | |
|   DeclContext *LookupCtx = 0;
 | |
|   bool isDependent = false;
 | |
|   if (!ObjectType.isNull()) {
 | |
|     // This nested-name-specifier occurs in a member access expression, e.g.,
 | |
|     // x->B::f, and we are looking into the type of the object.
 | |
|     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
 | |
|     LookupCtx = computeDeclContext(ObjectType);
 | |
|     isDependent = ObjectType->isDependentType();
 | |
|   } else if (SS.isSet()) {
 | |
|     // This nested-name-specifier occurs after another nested-name-specifier,
 | |
|     // so long into the context associated with the prior nested-name-specifier.
 | |
|     LookupCtx = computeDeclContext(SS, false);
 | |
|     isDependent = isDependentScopeSpecifier(SS);
 | |
|     Found.setContextRange(SS.getRange());
 | |
|   }
 | |
|   
 | |
|   if (LookupCtx) {
 | |
|     // Perform "qualified" name lookup into the declaration context we
 | |
|     // computed, which is either the type of the base of a member access
 | |
|     // expression or the declaration context associated with a prior
 | |
|     // nested-name-specifier.
 | |
|     
 | |
|     // The declaration context must be complete.
 | |
|     if (!LookupCtx->isDependentContext() &&
 | |
|         RequireCompleteDeclContext(SS, LookupCtx))
 | |
|       return false;
 | |
|     
 | |
|     LookupQualifiedName(Found, LookupCtx);
 | |
|   } else if (isDependent) {
 | |
|     return false;
 | |
|   } else {
 | |
|     LookupName(Found, S);
 | |
|   }
 | |
|   Found.suppressDiagnostics();
 | |
|   
 | |
|   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
 | |
|     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Callback to only accept typo corrections that can be a valid C++ member
 | |
| // intializer: either a non-static field member or a base class.
 | |
| class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
 | |
|  public:
 | |
|   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
 | |
|       : SRef(SRef) {}
 | |
| 
 | |
|   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | |
|     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   Sema &SRef;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// \brief Build a new nested-name-specifier for "identifier::", as described
 | |
| /// by ActOnCXXNestedNameSpecifier.
 | |
| ///
 | |
| /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
 | |
| /// that it contains an extra parameter \p ScopeLookupResult, which provides
 | |
| /// the result of name lookup within the scope of the nested-name-specifier
 | |
| /// that was computed at template definition time.
 | |
| ///
 | |
| /// If ErrorRecoveryLookup is true, then this call is used to improve error
 | |
| /// recovery.  This means that it should not emit diagnostics, it should
 | |
| /// just return true on failure.  It also means it should only return a valid
 | |
| /// scope if it *knows* that the result is correct.  It should not return in a
 | |
| /// dependent context, for example. Nor will it extend \p SS with the scope
 | |
| /// specifier.
 | |
| bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
 | |
|                                        IdentifierInfo &Identifier,
 | |
|                                        SourceLocation IdentifierLoc,
 | |
|                                        SourceLocation CCLoc,
 | |
|                                        QualType ObjectType,
 | |
|                                        bool EnteringContext,
 | |
|                                        CXXScopeSpec &SS,
 | |
|                                        NamedDecl *ScopeLookupResult,
 | |
|                                        bool ErrorRecoveryLookup) {
 | |
|   LookupResult Found(*this, &Identifier, IdentifierLoc, 
 | |
|                      LookupNestedNameSpecifierName);
 | |
| 
 | |
|   // Determine where to perform name lookup
 | |
|   DeclContext *LookupCtx = 0;
 | |
|   bool isDependent = false;
 | |
|   if (!ObjectType.isNull()) {
 | |
|     // This nested-name-specifier occurs in a member access expression, e.g.,
 | |
|     // x->B::f, and we are looking into the type of the object.
 | |
|     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
 | |
|     LookupCtx = computeDeclContext(ObjectType);
 | |
|     isDependent = ObjectType->isDependentType();
 | |
|   } else if (SS.isSet()) {
 | |
|     // This nested-name-specifier occurs after another nested-name-specifier,
 | |
|     // so look into the context associated with the prior nested-name-specifier.
 | |
|     LookupCtx = computeDeclContext(SS, EnteringContext);
 | |
|     isDependent = isDependentScopeSpecifier(SS);
 | |
|     Found.setContextRange(SS.getRange());
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool ObjectTypeSearchedInScope = false;
 | |
|   if (LookupCtx) {
 | |
|     // Perform "qualified" name lookup into the declaration context we
 | |
|     // computed, which is either the type of the base of a member access
 | |
|     // expression or the declaration context associated with a prior
 | |
|     // nested-name-specifier.
 | |
| 
 | |
|     // The declaration context must be complete.
 | |
|     if (!LookupCtx->isDependentContext() &&
 | |
|         RequireCompleteDeclContext(SS, LookupCtx))
 | |
|       return true;
 | |
| 
 | |
|     LookupQualifiedName(Found, LookupCtx);
 | |
| 
 | |
|     if (!ObjectType.isNull() && Found.empty()) {
 | |
|       // C++ [basic.lookup.classref]p4:
 | |
|       //   If the id-expression in a class member access is a qualified-id of
 | |
|       //   the form
 | |
|       //
 | |
|       //        class-name-or-namespace-name::...
 | |
|       //
 | |
|       //   the class-name-or-namespace-name following the . or -> operator is
 | |
|       //   looked up both in the context of the entire postfix-expression and in
 | |
|       //   the scope of the class of the object expression. If the name is found
 | |
|       //   only in the scope of the class of the object expression, the name
 | |
|       //   shall refer to a class-name. If the name is found only in the
 | |
|       //   context of the entire postfix-expression, the name shall refer to a
 | |
|       //   class-name or namespace-name. [...]
 | |
|       //
 | |
|       // Qualified name lookup into a class will not find a namespace-name,
 | |
|       // so we do not need to diagnose that case specifically. However,
 | |
|       // this qualified name lookup may find nothing. In that case, perform
 | |
|       // unqualified name lookup in the given scope (if available) or
 | |
|       // reconstruct the result from when name lookup was performed at template
 | |
|       // definition time.
 | |
|       if (S)
 | |
|         LookupName(Found, S);
 | |
|       else if (ScopeLookupResult)
 | |
|         Found.addDecl(ScopeLookupResult);
 | |
| 
 | |
|       ObjectTypeSearchedInScope = true;
 | |
|     }
 | |
|   } else if (!isDependent) {
 | |
|     // Perform unqualified name lookup in the current scope.
 | |
|     LookupName(Found, S);
 | |
|   }
 | |
| 
 | |
|   // If we performed lookup into a dependent context and did not find anything,
 | |
|   // that's fine: just build a dependent nested-name-specifier.
 | |
|   if (Found.empty() && isDependent &&
 | |
|       !(LookupCtx && LookupCtx->isRecord() &&
 | |
|         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
 | |
|          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
 | |
|     // Don't speculate if we're just trying to improve error recovery.
 | |
|     if (ErrorRecoveryLookup)
 | |
|       return true;
 | |
|     
 | |
|     // We were not able to compute the declaration context for a dependent
 | |
|     // base object type or prior nested-name-specifier, so this
 | |
|     // nested-name-specifier refers to an unknown specialization. Just build
 | |
|     // a dependent nested-name-specifier.
 | |
|     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
 | |
|     return false;
 | |
|   } 
 | |
|   
 | |
|   // FIXME: Deal with ambiguities cleanly.
 | |
| 
 | |
|   if (Found.empty() && !ErrorRecoveryLookup) {
 | |
|     // We haven't found anything, and we're not recovering from a
 | |
|     // different kind of error, so look for typos.
 | |
|     DeclarationName Name = Found.getLookupName();
 | |
|     NestedNameSpecifierValidatorCCC Validator(*this);
 | |
|     TypoCorrection Corrected;
 | |
|     Found.clear();
 | |
|     if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
 | |
|                                  Found.getLookupKind(), S, &SS, Validator,
 | |
|                                  LookupCtx, EnteringContext))) {
 | |
|       std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | |
|       std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
 | |
|       bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | |
|                               Name.getAsString() == CorrectedStr;
 | |
|       if (LookupCtx)
 | |
|         Diag(Found.getNameLoc(), diag::err_no_member_suggest)
 | |
|           << Name << LookupCtx << droppedSpecifier << CorrectedQuotedStr
 | |
|           << SS.getRange()
 | |
|           << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
 | |
|                                           CorrectedStr);
 | |
|       else
 | |
|         Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
 | |
|           << Name << CorrectedQuotedStr
 | |
|           << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
 | |
|                                           CorrectedStr);
 | |
| 
 | |
|       if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
 | |
|         Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
 | |
|         Found.addDecl(ND);
 | |
|       }
 | |
|       Found.setLookupName(Corrected.getCorrection());
 | |
|     } else {
 | |
|       Found.setLookupName(&Identifier);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
 | |
|   if (isAcceptableNestedNameSpecifier(SD)) {
 | |
|     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
 | |
|         !getLangOpts().CPlusPlus11) {
 | |
|       // C++03 [basic.lookup.classref]p4:
 | |
|       //   [...] If the name is found in both contexts, the
 | |
|       //   class-name-or-namespace-name shall refer to the same entity.
 | |
|       //
 | |
|       // We already found the name in the scope of the object. Now, look
 | |
|       // into the current scope (the scope of the postfix-expression) to
 | |
|       // see if we can find the same name there. As above, if there is no
 | |
|       // scope, reconstruct the result from the template instantiation itself.
 | |
|       //
 | |
|       // Note that C++11 does *not* perform this redundant lookup.
 | |
|       NamedDecl *OuterDecl;
 | |
|       if (S) {
 | |
|         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, 
 | |
|                                 LookupNestedNameSpecifierName);
 | |
|         LookupName(FoundOuter, S);
 | |
|         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
 | |
|       } else
 | |
|         OuterDecl = ScopeLookupResult;
 | |
| 
 | |
|       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
 | |
|           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
 | |
|           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
 | |
|            !Context.hasSameType(
 | |
|                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
 | |
|                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
 | |
|          if (ErrorRecoveryLookup)
 | |
|            return true;
 | |
| 
 | |
|          Diag(IdentifierLoc, 
 | |
|               diag::err_nested_name_member_ref_lookup_ambiguous)
 | |
|            << &Identifier;
 | |
|          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
 | |
|            << ObjectType;
 | |
|          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
 | |
| 
 | |
|          // Fall through so that we'll pick the name we found in the object
 | |
|          // type, since that's probably what the user wanted anyway.
 | |
|        }
 | |
|     }
 | |
| 
 | |
|     // If we're just performing this lookup for error-recovery purposes, 
 | |
|     // don't extend the nested-name-specifier. Just return now.
 | |
|     if (ErrorRecoveryLookup)
 | |
|       return false;
 | |
|     
 | |
|     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
 | |
|       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
 | |
|       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
 | |
|     TypeLocBuilder TLB;
 | |
|     if (isa<InjectedClassNameType>(T)) {
 | |
|       InjectedClassNameTypeLoc InjectedTL
 | |
|         = TLB.push<InjectedClassNameTypeLoc>(T);
 | |
|       InjectedTL.setNameLoc(IdentifierLoc);
 | |
|     } else if (isa<RecordType>(T)) {
 | |
|       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
 | |
|       RecordTL.setNameLoc(IdentifierLoc);
 | |
|     } else if (isa<TypedefType>(T)) {
 | |
|       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
 | |
|       TypedefTL.setNameLoc(IdentifierLoc);
 | |
|     } else if (isa<EnumType>(T)) {
 | |
|       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
 | |
|       EnumTL.setNameLoc(IdentifierLoc);
 | |
|     } else if (isa<TemplateTypeParmType>(T)) {
 | |
|       TemplateTypeParmTypeLoc TemplateTypeTL
 | |
|         = TLB.push<TemplateTypeParmTypeLoc>(T);
 | |
|       TemplateTypeTL.setNameLoc(IdentifierLoc);
 | |
|     } else if (isa<UnresolvedUsingType>(T)) {
 | |
|       UnresolvedUsingTypeLoc UnresolvedTL
 | |
|         = TLB.push<UnresolvedUsingTypeLoc>(T);
 | |
|       UnresolvedTL.setNameLoc(IdentifierLoc);
 | |
|     } else if (isa<SubstTemplateTypeParmType>(T)) {
 | |
|       SubstTemplateTypeParmTypeLoc TL 
 | |
|         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
 | |
|       TL.setNameLoc(IdentifierLoc);
 | |
|     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
 | |
|       SubstTemplateTypeParmPackTypeLoc TL
 | |
|         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
 | |
|       TL.setNameLoc(IdentifierLoc);
 | |
|     } else {
 | |
|       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
 | |
|     }
 | |
| 
 | |
|     if (T->isEnumeralType())
 | |
|       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
 | |
| 
 | |
|     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
 | |
|               CCLoc);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have an error case.  If we don't want diagnostics, just
 | |
|   // return an error now.
 | |
|   if (ErrorRecoveryLookup)
 | |
|     return true;
 | |
| 
 | |
|   // If we didn't find anything during our lookup, try again with
 | |
|   // ordinary name lookup, which can help us produce better error
 | |
|   // messages.
 | |
|   if (Found.empty()) {
 | |
|     Found.clear(LookupOrdinaryName);
 | |
|     LookupName(Found, S);
 | |
|   }
 | |
| 
 | |
|   // In Microsoft mode, if we are within a templated function and we can't
 | |
|   // resolve Identifier, then extend the SS with Identifier. This will have 
 | |
|   // the effect of resolving Identifier during template instantiation. 
 | |
|   // The goal is to be able to resolve a function call whose
 | |
|   // nested-name-specifier is located inside a dependent base class.
 | |
|   // Example: 
 | |
|   //
 | |
|   // class C {
 | |
|   // public:
 | |
|   //    static void foo2() {  }
 | |
|   // };
 | |
|   // template <class T> class A { public: typedef C D; };
 | |
|   //
 | |
|   // template <class T> class B : public A<T> {
 | |
|   // public:
 | |
|   //   void foo() { D::foo2(); }
 | |
|   // };
 | |
|   if (getLangOpts().MicrosoftExt) {
 | |
|     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
 | |
|     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
 | |
|       SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned DiagID;
 | |
|   if (!Found.empty())
 | |
|     DiagID = diag::err_expected_class_or_namespace;
 | |
|   else if (SS.isSet()) {
 | |
|     Diag(IdentifierLoc, diag::err_no_member) 
 | |
|       << &Identifier << LookupCtx << SS.getRange();
 | |
|     return true;
 | |
|   } else
 | |
|     DiagID = diag::err_undeclared_var_use;
 | |
| 
 | |
|   if (SS.isSet())
 | |
|     Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
 | |
|   else
 | |
|     Diag(IdentifierLoc, DiagID) << &Identifier;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
 | |
|                                        IdentifierInfo &Identifier,
 | |
|                                        SourceLocation IdentifierLoc,
 | |
|                                        SourceLocation CCLoc,
 | |
|                                        ParsedType ObjectType,
 | |
|                                        bool EnteringContext,
 | |
|                                        CXXScopeSpec &SS) {
 | |
|   if (SS.isInvalid())
 | |
|     return true;
 | |
|   
 | |
|   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
 | |
|                                      GetTypeFromParser(ObjectType),
 | |
|                                      EnteringContext, SS, 
 | |
|                                      /*ScopeLookupResult=*/0, false);
 | |
| }
 | |
| 
 | |
| bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
 | |
|                                                const DeclSpec &DS,
 | |
|                                                SourceLocation ColonColonLoc) {
 | |
|   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
 | |
|     return true;
 | |
| 
 | |
|   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
 | |
| 
 | |
|   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
 | |
|   if (!T->isDependentType() && !T->getAs<TagType>()) {
 | |
|     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class) 
 | |
|       << T << getLangOpts().CPlusPlus;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   TypeLocBuilder TLB;
 | |
|   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
 | |
|   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
 | |
|   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
 | |
|             ColonColonLoc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsInvalidUnlessNestedName - This method is used for error recovery
 | |
| /// purposes to determine whether the specified identifier is only valid as
 | |
| /// a nested name specifier, for example a namespace name.  It is
 | |
| /// conservatively correct to always return false from this method.
 | |
| ///
 | |
| /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
 | |
| bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
 | |
|                                      IdentifierInfo &Identifier, 
 | |
|                                      SourceLocation IdentifierLoc,
 | |
|                                      SourceLocation ColonLoc,
 | |
|                                      ParsedType ObjectType,
 | |
|                                      bool EnteringContext) {
 | |
|   if (SS.isInvalid())
 | |
|     return false;
 | |
|   
 | |
|   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
 | |
|                                       GetTypeFromParser(ObjectType),
 | |
|                                       EnteringContext, SS, 
 | |
|                                       /*ScopeLookupResult=*/0, true);
 | |
| }
 | |
| 
 | |
| bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
 | |
|                                        CXXScopeSpec &SS,
 | |
|                                        SourceLocation TemplateKWLoc,
 | |
|                                        TemplateTy Template,
 | |
|                                        SourceLocation TemplateNameLoc,
 | |
|                                        SourceLocation LAngleLoc,
 | |
|                                        ASTTemplateArgsPtr TemplateArgsIn,
 | |
|                                        SourceLocation RAngleLoc,
 | |
|                                        SourceLocation CCLoc,
 | |
|                                        bool EnteringContext) {
 | |
|   if (SS.isInvalid())
 | |
|     return true;
 | |
|   
 | |
|   // Translate the parser's template argument list in our AST format.
 | |
|   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | |
|   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | |
| 
 | |
|   if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
 | |
|     // Handle a dependent template specialization for which we cannot resolve
 | |
|     // the template name.
 | |
|     assert(DTN->getQualifier() == SS.getScopeRep());
 | |
|     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
 | |
|                                                           DTN->getQualifier(),
 | |
|                                                           DTN->getIdentifier(),
 | |
|                                                                 TemplateArgs);
 | |
|     
 | |
|     // Create source-location information for this type.
 | |
|     TypeLocBuilder Builder;
 | |
|     DependentTemplateSpecializationTypeLoc SpecTL
 | |
|       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
 | |
|     SpecTL.setElaboratedKeywordLoc(SourceLocation());
 | |
|     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | |
|     SpecTL.setTemplateNameLoc(TemplateNameLoc);
 | |
|     SpecTL.setLAngleLoc(LAngleLoc);
 | |
|     SpecTL.setRAngleLoc(RAngleLoc);
 | |
|     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | |
|       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | |
|     
 | |
|     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
 | |
|               CCLoc);
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   if (Template.get().getAsOverloadedTemplate() ||
 | |
|       isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
 | |
|     SourceRange R(TemplateNameLoc, RAngleLoc);
 | |
|     if (SS.getRange().isValid())
 | |
|       R.setBegin(SS.getRange().getBegin());
 | |
|       
 | |
|     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
 | |
|       << Template.get() << R;
 | |
|     NoteAllFoundTemplates(Template.get());
 | |
|     return true;
 | |
|   }
 | |
|                                 
 | |
|   // We were able to resolve the template name to an actual template. 
 | |
|   // Build an appropriate nested-name-specifier.
 | |
|   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc, 
 | |
|                                    TemplateArgs);
 | |
|   if (T.isNull())
 | |
|     return true;
 | |
| 
 | |
|   // Alias template specializations can produce types which are not valid
 | |
|   // nested name specifiers.
 | |
|   if (!T->isDependentType() && !T->getAs<TagType>()) {
 | |
|     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
 | |
|     NoteAllFoundTemplates(Template.get());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Provide source-location information for the template specialization type.
 | |
|   TypeLocBuilder Builder;
 | |
|   TemplateSpecializationTypeLoc SpecTL
 | |
|     = Builder.push<TemplateSpecializationTypeLoc>(T);
 | |
|   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | |
|   SpecTL.setTemplateNameLoc(TemplateNameLoc);
 | |
|   SpecTL.setLAngleLoc(LAngleLoc);
 | |
|   SpecTL.setRAngleLoc(RAngleLoc);
 | |
|   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | |
|     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | |
| 
 | |
| 
 | |
|   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
 | |
|             CCLoc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief A structure that stores a nested-name-specifier annotation,
 | |
|   /// including both the nested-name-specifier 
 | |
|   struct NestedNameSpecifierAnnotation {
 | |
|     NestedNameSpecifier *NNS;
 | |
|   };
 | |
| }
 | |
| 
 | |
| void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
 | |
|   if (SS.isEmpty() || SS.isInvalid())
 | |
|     return 0;
 | |
|   
 | |
|   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
 | |
|                                                         SS.location_size()),
 | |
|                                llvm::alignOf<NestedNameSpecifierAnnotation>());
 | |
|   NestedNameSpecifierAnnotation *Annotation
 | |
|     = new (Mem) NestedNameSpecifierAnnotation;
 | |
|   Annotation->NNS = SS.getScopeRep();
 | |
|   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
 | |
|   return Annotation;
 | |
| }
 | |
| 
 | |
| void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr, 
 | |
|                                                 SourceRange AnnotationRange,
 | |
|                                                 CXXScopeSpec &SS) {
 | |
|   if (!AnnotationPtr) {
 | |
|     SS.SetInvalid(AnnotationRange);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   NestedNameSpecifierAnnotation *Annotation
 | |
|     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
 | |
|   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
 | |
| }
 | |
| 
 | |
| bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
 | |
|   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
 | |
| 
 | |
|   NestedNameSpecifier *Qualifier = SS.getScopeRep();
 | |
| 
 | |
|   // There are only two places a well-formed program may qualify a
 | |
|   // declarator: first, when defining a namespace or class member
 | |
|   // out-of-line, and second, when naming an explicitly-qualified
 | |
|   // friend function.  The latter case is governed by
 | |
|   // C++03 [basic.lookup.unqual]p10:
 | |
|   //   In a friend declaration naming a member function, a name used
 | |
|   //   in the function declarator and not part of a template-argument
 | |
|   //   in a template-id is first looked up in the scope of the member
 | |
|   //   function's class. If it is not found, or if the name is part of
 | |
|   //   a template-argument in a template-id, the look up is as
 | |
|   //   described for unqualified names in the definition of the class
 | |
|   //   granting friendship.
 | |
|   // i.e. we don't push a scope unless it's a class member.
 | |
| 
 | |
|   switch (Qualifier->getKind()) {
 | |
|   case NestedNameSpecifier::Global:
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|   case NestedNameSpecifier::NamespaceAlias:
 | |
|     // These are always namespace scopes.  We never want to enter a
 | |
|     // namespace scope from anything but a file context.
 | |
|     return CurContext->getRedeclContext()->isFileContext();
 | |
| 
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate:
 | |
|     // These are never namespace scopes.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
 | |
| }
 | |
| 
 | |
| /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
 | |
| /// scope or nested-name-specifier) is parsed, part of a declarator-id.
 | |
| /// After this method is called, according to [C++ 3.4.3p3], names should be
 | |
| /// looked up in the declarator-id's scope, until the declarator is parsed and
 | |
| /// ActOnCXXExitDeclaratorScope is called.
 | |
| /// The 'SS' should be a non-empty valid CXXScopeSpec.
 | |
| bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
 | |
|   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
 | |
| 
 | |
|   if (SS.isInvalid()) return true;
 | |
| 
 | |
|   DeclContext *DC = computeDeclContext(SS, true);
 | |
|   if (!DC) return true;
 | |
| 
 | |
|   // Before we enter a declarator's context, we need to make sure that
 | |
|   // it is a complete declaration context.
 | |
|   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
 | |
|     return true;
 | |
|     
 | |
|   EnterDeclaratorContext(S, DC);
 | |
| 
 | |
|   // Rebuild the nested name specifier for the new scope.
 | |
|   if (DC->isDependentContext())
 | |
|     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
 | |
| /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
 | |
| /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
 | |
| /// Used to indicate that names should revert to being looked up in the
 | |
| /// defining scope.
 | |
| void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
 | |
|   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
 | |
|   if (SS.isInvalid())
 | |
|     return;
 | |
|   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
 | |
|          "exiting declarator scope we never really entered");
 | |
|   ExitDeclaratorContext(S);
 | |
| }
 |