forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			12687 lines
		
	
	
		
			487 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			12687 lines
		
	
	
		
			487 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for declarations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "TypeLocBuilder.h"
 | |
| #include "clang/AST/ASTConsumer.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/CommentDiagnostic.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/EvaluatedExprVisitor.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
 | |
| #include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
 | |
| #include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
 | |
| #include "clang/Parse/ParseDiagnostic.h"
 | |
| #include "clang/Sema/CXXFieldCollector.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/DelayedDiagnostic.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/ParsedTemplate.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include <algorithm>
 | |
| #include <cstring>
 | |
| #include <functional>
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
 | |
|   if (OwnedType) {
 | |
|     Decl *Group[2] = { OwnedType, Ptr };
 | |
|     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
 | |
|   }
 | |
| 
 | |
|   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class TypeNameValidatorCCC : public CorrectionCandidateCallback {
 | |
|  public:
 | |
|   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
 | |
|       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
 | |
|     WantExpressionKeywords = false;
 | |
|     WantCXXNamedCasts = false;
 | |
|     WantRemainingKeywords = false;
 | |
|   }
 | |
| 
 | |
|   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | |
|     if (NamedDecl *ND = candidate.getCorrectionDecl())
 | |
|       return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
 | |
|           (AllowInvalidDecl || !ND->isInvalidDecl());
 | |
|     else
 | |
|       return !WantClassName && candidate.isKeyword();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   bool AllowInvalidDecl;
 | |
|   bool WantClassName;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the token kind starts a simple-type-specifier.
 | |
| bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
 | |
|   switch (Kind) {
 | |
|   // FIXME: Take into account the current language when deciding whether a
 | |
|   // token kind is a valid type specifier
 | |
|   case tok::kw_short:
 | |
|   case tok::kw_long:
 | |
|   case tok::kw___int64:
 | |
|   case tok::kw___int128:
 | |
|   case tok::kw_signed:
 | |
|   case tok::kw_unsigned:
 | |
|   case tok::kw_void:
 | |
|   case tok::kw_char:
 | |
|   case tok::kw_int:
 | |
|   case tok::kw_half:
 | |
|   case tok::kw_float:
 | |
|   case tok::kw_double:
 | |
|   case tok::kw_wchar_t:
 | |
|   case tok::kw_bool:
 | |
|   case tok::kw___underlying_type:
 | |
|     return true;
 | |
| 
 | |
|   case tok::annot_typename:
 | |
|   case tok::kw_char16_t:
 | |
|   case tok::kw_char32_t:
 | |
|   case tok::kw_typeof:
 | |
|   case tok::kw_decltype:
 | |
|     return getLangOpts().CPlusPlus;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief If the identifier refers to a type name within this scope,
 | |
| /// return the declaration of that type.
 | |
| ///
 | |
| /// This routine performs ordinary name lookup of the identifier II
 | |
| /// within the given scope, with optional C++ scope specifier SS, to
 | |
| /// determine whether the name refers to a type. If so, returns an
 | |
| /// opaque pointer (actually a QualType) corresponding to that
 | |
| /// type. Otherwise, returns NULL.
 | |
| ///
 | |
| /// If name lookup results in an ambiguity, this routine will complain
 | |
| /// and then return NULL.
 | |
| ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
 | |
|                              Scope *S, CXXScopeSpec *SS,
 | |
|                              bool isClassName, bool HasTrailingDot,
 | |
|                              ParsedType ObjectTypePtr,
 | |
|                              bool IsCtorOrDtorName,
 | |
|                              bool WantNontrivialTypeSourceInfo,
 | |
|                              IdentifierInfo **CorrectedII) {
 | |
|   // Determine where we will perform name lookup.
 | |
|   DeclContext *LookupCtx = 0;
 | |
|   if (ObjectTypePtr) {
 | |
|     QualType ObjectType = ObjectTypePtr.get();
 | |
|     if (ObjectType->isRecordType())
 | |
|       LookupCtx = computeDeclContext(ObjectType);
 | |
|   } else if (SS && SS->isNotEmpty()) {
 | |
|     LookupCtx = computeDeclContext(*SS, false);
 | |
| 
 | |
|     if (!LookupCtx) {
 | |
|       if (isDependentScopeSpecifier(*SS)) {
 | |
|         // C++ [temp.res]p3:
 | |
|         //   A qualified-id that refers to a type and in which the
 | |
|         //   nested-name-specifier depends on a template-parameter (14.6.2)
 | |
|         //   shall be prefixed by the keyword typename to indicate that the
 | |
|         //   qualified-id denotes a type, forming an
 | |
|         //   elaborated-type-specifier (7.1.5.3).
 | |
|         //
 | |
|         // We therefore do not perform any name lookup if the result would
 | |
|         // refer to a member of an unknown specialization.
 | |
|         if (!isClassName && !IsCtorOrDtorName)
 | |
|           return ParsedType();
 | |
|         
 | |
|         // We know from the grammar that this name refers to a type,
 | |
|         // so build a dependent node to describe the type.
 | |
|         if (WantNontrivialTypeSourceInfo)
 | |
|           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
 | |
|         
 | |
|         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
 | |
|         QualType T =
 | |
|           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
 | |
|                             II, NameLoc);
 | |
|         
 | |
|           return ParsedType::make(T);
 | |
|       }
 | |
|       
 | |
|       return ParsedType();
 | |
|     }
 | |
|     
 | |
|     if (!LookupCtx->isDependentContext() &&
 | |
|         RequireCompleteDeclContext(*SS, LookupCtx))
 | |
|       return ParsedType();
 | |
|   }
 | |
| 
 | |
|   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
 | |
|   // lookup for class-names.
 | |
|   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
 | |
|                                       LookupOrdinaryName;
 | |
|   LookupResult Result(*this, &II, NameLoc, Kind);
 | |
|   if (LookupCtx) {
 | |
|     // Perform "qualified" name lookup into the declaration context we
 | |
|     // computed, which is either the type of the base of a member access
 | |
|     // expression or the declaration context associated with a prior
 | |
|     // nested-name-specifier.
 | |
|     LookupQualifiedName(Result, LookupCtx);
 | |
| 
 | |
|     if (ObjectTypePtr && Result.empty()) {
 | |
|       // C++ [basic.lookup.classref]p3:
 | |
|       //   If the unqualified-id is ~type-name, the type-name is looked up
 | |
|       //   in the context of the entire postfix-expression. If the type T of 
 | |
|       //   the object expression is of a class type C, the type-name is also
 | |
|       //   looked up in the scope of class C. At least one of the lookups shall
 | |
|       //   find a name that refers to (possibly cv-qualified) T.
 | |
|       LookupName(Result, S);
 | |
|     }
 | |
|   } else {
 | |
|     // Perform unqualified name lookup.
 | |
|     LookupName(Result, S);
 | |
|   }
 | |
|   
 | |
|   NamedDecl *IIDecl = 0;
 | |
|   switch (Result.getResultKind()) {
 | |
|   case LookupResult::NotFound:
 | |
|   case LookupResult::NotFoundInCurrentInstantiation:
 | |
|     if (CorrectedII) {
 | |
|       TypeNameValidatorCCC Validator(true, isClassName);
 | |
|       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
 | |
|                                               Kind, S, SS, Validator);
 | |
|       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
 | |
|       TemplateTy Template;
 | |
|       bool MemberOfUnknownSpecialization;
 | |
|       UnqualifiedId TemplateName;
 | |
|       TemplateName.setIdentifier(NewII, NameLoc);
 | |
|       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
 | |
|       CXXScopeSpec NewSS, *NewSSPtr = SS;
 | |
|       if (SS && NNS) {
 | |
|         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
 | |
|         NewSSPtr = &NewSS;
 | |
|       }
 | |
|       if (Correction && (NNS || NewII != &II) &&
 | |
|           // Ignore a correction to a template type as the to-be-corrected
 | |
|           // identifier is not a template (typo correction for template names
 | |
|           // is handled elsewhere).
 | |
|           !(getLangOpts().CPlusPlus && NewSSPtr &&
 | |
|             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
 | |
|                            false, Template, MemberOfUnknownSpecialization))) {
 | |
|         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
 | |
|                                     isClassName, HasTrailingDot, ObjectTypePtr,
 | |
|                                     IsCtorOrDtorName,
 | |
|                                     WantNontrivialTypeSourceInfo);
 | |
|         if (Ty) {
 | |
|           std::string CorrectedStr(Correction.getAsString(getLangOpts()));
 | |
|           std::string CorrectedQuotedStr(
 | |
|               Correction.getQuoted(getLangOpts()));
 | |
|           Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
 | |
|               << Result.getLookupName() << CorrectedQuotedStr << isClassName
 | |
|               << FixItHint::CreateReplacement(SourceRange(NameLoc),
 | |
|                                               CorrectedStr);
 | |
|           if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
 | |
|             Diag(FirstDecl->getLocation(), diag::note_previous_decl)
 | |
|               << CorrectedQuotedStr;
 | |
| 
 | |
|           if (SS && NNS)
 | |
|             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
 | |
|           *CorrectedII = NewII;
 | |
|           return Ty;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // If typo correction failed or was not performed, fall through
 | |
|   case LookupResult::FoundOverloaded:
 | |
|   case LookupResult::FoundUnresolvedValue:
 | |
|     Result.suppressDiagnostics();
 | |
|     return ParsedType();
 | |
| 
 | |
|   case LookupResult::Ambiguous:
 | |
|     // Recover from type-hiding ambiguities by hiding the type.  We'll
 | |
|     // do the lookup again when looking for an object, and we can
 | |
|     // diagnose the error then.  If we don't do this, then the error
 | |
|     // about hiding the type will be immediately followed by an error
 | |
|     // that only makes sense if the identifier was treated like a type.
 | |
|     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
 | |
|       Result.suppressDiagnostics();
 | |
|       return ParsedType();
 | |
|     }
 | |
| 
 | |
|     // Look to see if we have a type anywhere in the list of results.
 | |
|     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
 | |
|          Res != ResEnd; ++Res) {
 | |
|       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
 | |
|         if (!IIDecl ||
 | |
|             (*Res)->getLocation().getRawEncoding() <
 | |
|               IIDecl->getLocation().getRawEncoding())
 | |
|           IIDecl = *Res;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!IIDecl) {
 | |
|       // None of the entities we found is a type, so there is no way
 | |
|       // to even assume that the result is a type. In this case, don't
 | |
|       // complain about the ambiguity. The parser will either try to
 | |
|       // perform this lookup again (e.g., as an object name), which
 | |
|       // will produce the ambiguity, or will complain that it expected
 | |
|       // a type name.
 | |
|       Result.suppressDiagnostics();
 | |
|       return ParsedType();
 | |
|     }
 | |
| 
 | |
|     // We found a type within the ambiguous lookup; diagnose the
 | |
|     // ambiguity and then return that type. This might be the right
 | |
|     // answer, or it might not be, but it suppresses any attempt to
 | |
|     // perform the name lookup again.
 | |
|     break;
 | |
| 
 | |
|   case LookupResult::Found:
 | |
|     IIDecl = Result.getFoundDecl();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   assert(IIDecl && "Didn't find decl");
 | |
| 
 | |
|   QualType T;
 | |
|   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
 | |
|     DiagnoseUseOfDecl(IIDecl, NameLoc);
 | |
| 
 | |
|     if (T.isNull())
 | |
|       T = Context.getTypeDeclType(TD);
 | |
| 
 | |
|     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
 | |
|     // constructor or destructor name (in such a case, the scope specifier
 | |
|     // will be attached to the enclosing Expr or Decl node).
 | |
|     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
 | |
|       if (WantNontrivialTypeSourceInfo) {
 | |
|         // Construct a type with type-source information.
 | |
|         TypeLocBuilder Builder;
 | |
|         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
 | |
|         
 | |
|         T = getElaboratedType(ETK_None, *SS, T);
 | |
|         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
 | |
|         ElabTL.setElaboratedKeywordLoc(SourceLocation());
 | |
|         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
 | |
|         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | |
|       } else {
 | |
|         T = getElaboratedType(ETK_None, *SS, T);
 | |
|       }
 | |
|     }
 | |
|   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
 | |
|     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
 | |
|     if (!HasTrailingDot)
 | |
|       T = Context.getObjCInterfaceType(IDecl);
 | |
|   }
 | |
| 
 | |
|   if (T.isNull()) {
 | |
|     // If it's not plausibly a type, suppress diagnostics.
 | |
|     Result.suppressDiagnostics();
 | |
|     return ParsedType();
 | |
|   }
 | |
|   return ParsedType::make(T);
 | |
| }
 | |
| 
 | |
| /// isTagName() - This method is called *for error recovery purposes only*
 | |
| /// to determine if the specified name is a valid tag name ("struct foo").  If
 | |
| /// so, this returns the TST for the tag corresponding to it (TST_enum,
 | |
| /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
 | |
| /// cases in C where the user forgot to specify the tag.
 | |
| DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
 | |
|   // Do a tag name lookup in this scope.
 | |
|   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
 | |
|   LookupName(R, S, false);
 | |
|   R.suppressDiagnostics();
 | |
|   if (R.getResultKind() == LookupResult::Found)
 | |
|     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
 | |
|       switch (TD->getTagKind()) {
 | |
|       case TTK_Struct: return DeclSpec::TST_struct;
 | |
|       case TTK_Interface: return DeclSpec::TST_interface;
 | |
|       case TTK_Union:  return DeclSpec::TST_union;
 | |
|       case TTK_Class:  return DeclSpec::TST_class;
 | |
|       case TTK_Enum:   return DeclSpec::TST_enum;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return DeclSpec::TST_unspecified;
 | |
| }
 | |
| 
 | |
| /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
 | |
| /// if a CXXScopeSpec's type is equal to the type of one of the base classes
 | |
| /// then downgrade the missing typename error to a warning.
 | |
| /// This is needed for MSVC compatibility; Example:
 | |
| /// @code
 | |
| /// template<class T> class A {
 | |
| /// public:
 | |
| ///   typedef int TYPE;
 | |
| /// };
 | |
| /// template<class T> class B : public A<T> {
 | |
| /// public:
 | |
| ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
 | |
| /// };
 | |
| /// @endcode
 | |
| bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
 | |
|   if (CurContext->isRecord()) {
 | |
|     const Type *Ty = SS->getScopeRep()->getAsType();
 | |
| 
 | |
|     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
 | |
|     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
 | |
|           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
 | |
|       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
 | |
|         return true;
 | |
|     return S->isFunctionPrototypeScope();
 | |
|   } 
 | |
|   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
 | |
| }
 | |
| 
 | |
| bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
 | |
|                                    SourceLocation IILoc,
 | |
|                                    Scope *S,
 | |
|                                    CXXScopeSpec *SS,
 | |
|                                    ParsedType &SuggestedType) {
 | |
|   // We don't have anything to suggest (yet).
 | |
|   SuggestedType = ParsedType();
 | |
|   
 | |
|   // There may have been a typo in the name of the type. Look up typo
 | |
|   // results, in case we have something that we can suggest.
 | |
|   TypeNameValidatorCCC Validator(false);
 | |
|   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
 | |
|                                              LookupOrdinaryName, S, SS,
 | |
|                                              Validator)) {
 | |
|     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | |
|     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
 | |
| 
 | |
|     if (Corrected.isKeyword()) {
 | |
|       // We corrected to a keyword.
 | |
|       IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
 | |
|       if (!isSimpleTypeSpecifier(NewII->getTokenID()))
 | |
|         CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
 | |
|       Diag(IILoc, diag::err_unknown_typename_suggest)
 | |
|         << II << CorrectedQuotedStr
 | |
|         << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
 | |
|                                         CorrectedStr);
 | |
|       II = NewII;
 | |
|     } else {
 | |
|       NamedDecl *Result = Corrected.getCorrectionDecl();
 | |
|       // We found a similarly-named type or interface; suggest that.
 | |
|       if (!SS || !SS->isSet()) {
 | |
|         Diag(IILoc, diag::err_unknown_typename_suggest)
 | |
|           << II << CorrectedQuotedStr
 | |
|           << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
 | |
|                                           CorrectedStr);
 | |
|       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
 | |
|         bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | |
|                                 II->getName().equals(CorrectedStr);
 | |
|         Diag(IILoc, diag::err_unknown_nested_typename_suggest)
 | |
|             << II << DC << droppedSpecifier << CorrectedQuotedStr
 | |
|             << SS->getRange()
 | |
|             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
 | |
|                                             CorrectedStr);
 | |
|       }
 | |
|       else {
 | |
|         llvm_unreachable("could not have corrected a typo here");
 | |
|       }
 | |
| 
 | |
|       Diag(Result->getLocation(), diag::note_previous_decl)
 | |
|         << CorrectedQuotedStr;
 | |
| 
 | |
|       SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
 | |
|                                   false, false, ParsedType(),
 | |
|                                   /*IsCtorOrDtorName=*/false,
 | |
|                                   /*NonTrivialTypeSourceInfo=*/true);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     // See if II is a class template that the user forgot to pass arguments to.
 | |
|     UnqualifiedId Name;
 | |
|     Name.setIdentifier(II, IILoc);
 | |
|     CXXScopeSpec EmptySS;
 | |
|     TemplateTy TemplateResult;
 | |
|     bool MemberOfUnknownSpecialization;
 | |
|     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
 | |
|                        Name, ParsedType(), true, TemplateResult,
 | |
|                        MemberOfUnknownSpecialization) == TNK_Type_template) {
 | |
|       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
 | |
|       Diag(IILoc, diag::err_template_missing_args) << TplName;
 | |
|       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
 | |
|         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
 | |
|           << TplDecl->getTemplateParameters()->getSourceRange();
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Should we move the logic that tries to recover from a missing tag
 | |
|   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
 | |
|   
 | |
|   if (!SS || (!SS->isSet() && !SS->isInvalid()))
 | |
|     Diag(IILoc, diag::err_unknown_typename) << II;
 | |
|   else if (DeclContext *DC = computeDeclContext(*SS, false))
 | |
|     Diag(IILoc, diag::err_typename_nested_not_found) 
 | |
|       << II << DC << SS->getRange();
 | |
|   else if (isDependentScopeSpecifier(*SS)) {
 | |
|     unsigned DiagID = diag::err_typename_missing;
 | |
|     if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
 | |
|       DiagID = diag::warn_typename_missing;
 | |
| 
 | |
|     Diag(SS->getRange().getBegin(), DiagID)
 | |
|       << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
 | |
|       << SourceRange(SS->getRange().getBegin(), IILoc)
 | |
|       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
 | |
|     SuggestedType = ActOnTypenameType(S, SourceLocation(),
 | |
|                                       *SS, *II, IILoc).get();
 | |
|   } else {
 | |
|     assert(SS && SS->isInvalid() && 
 | |
|            "Invalid scope specifier has already been diagnosed");
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given result set contains either a type name
 | |
| /// or 
 | |
| static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
 | |
|   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
 | |
|                        NextToken.is(tok::less);
 | |
|   
 | |
|   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
 | |
|     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
 | |
|       return true;
 | |
|     
 | |
|     if (CheckTemplate && isa<TemplateDecl>(*I))
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
 | |
|                                     Scope *S, CXXScopeSpec &SS,
 | |
|                                     IdentifierInfo *&Name,
 | |
|                                     SourceLocation NameLoc) {
 | |
|   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
 | |
|   SemaRef.LookupParsedName(R, S, &SS);
 | |
|   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
 | |
|     const char *TagName = 0;
 | |
|     const char *FixItTagName = 0;
 | |
|     switch (Tag->getTagKind()) {
 | |
|       case TTK_Class:
 | |
|         TagName = "class";
 | |
|         FixItTagName = "class ";
 | |
|         break;
 | |
| 
 | |
|       case TTK_Enum:
 | |
|         TagName = "enum";
 | |
|         FixItTagName = "enum ";
 | |
|         break;
 | |
| 
 | |
|       case TTK_Struct:
 | |
|         TagName = "struct";
 | |
|         FixItTagName = "struct ";
 | |
|         break;
 | |
| 
 | |
|       case TTK_Interface:
 | |
|         TagName = "__interface";
 | |
|         FixItTagName = "__interface ";
 | |
|         break;
 | |
| 
 | |
|       case TTK_Union:
 | |
|         TagName = "union";
 | |
|         FixItTagName = "union ";
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
 | |
|       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
 | |
|       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
 | |
| 
 | |
|     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
 | |
|          I != IEnd; ++I)
 | |
|       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
 | |
|         << Name << TagName;
 | |
| 
 | |
|     // Replace lookup results with just the tag decl.
 | |
|     Result.clear(Sema::LookupTagName);
 | |
|     SemaRef.LookupParsedName(Result, S, &SS);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
 | |
| static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
 | |
|                                   QualType T, SourceLocation NameLoc) {
 | |
|   ASTContext &Context = S.Context;
 | |
| 
 | |
|   TypeLocBuilder Builder;
 | |
|   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
 | |
| 
 | |
|   T = S.getElaboratedType(ETK_None, SS, T);
 | |
|   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
 | |
|   ElabTL.setElaboratedKeywordLoc(SourceLocation());
 | |
|   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | |
| }
 | |
| 
 | |
| Sema::NameClassification Sema::ClassifyName(Scope *S,
 | |
|                                             CXXScopeSpec &SS,
 | |
|                                             IdentifierInfo *&Name,
 | |
|                                             SourceLocation NameLoc,
 | |
|                                             const Token &NextToken,
 | |
|                                             bool IsAddressOfOperand,
 | |
|                                             CorrectionCandidateCallback *CCC) {
 | |
|   DeclarationNameInfo NameInfo(Name, NameLoc);
 | |
|   ObjCMethodDecl *CurMethod = getCurMethodDecl();
 | |
|   
 | |
|   if (NextToken.is(tok::coloncolon)) {
 | |
|     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
 | |
|                                 QualType(), false, SS, 0, false);
 | |
|     
 | |
|   }
 | |
|       
 | |
|   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
 | |
|   LookupParsedName(Result, S, &SS, !CurMethod);
 | |
|   
 | |
|   // Perform lookup for Objective-C instance variables (including automatically 
 | |
|   // synthesized instance variables), if we're in an Objective-C method.
 | |
|   // FIXME: This lookup really, really needs to be folded in to the normal
 | |
|   // unqualified lookup mechanism.
 | |
|   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
 | |
|     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
 | |
|     if (E.get() || E.isInvalid())
 | |
|       return E;
 | |
|   }
 | |
|   
 | |
|   bool SecondTry = false;
 | |
|   bool IsFilteredTemplateName = false;
 | |
|   
 | |
| Corrected:
 | |
|   switch (Result.getResultKind()) {
 | |
|   case LookupResult::NotFound:
 | |
|     // If an unqualified-id is followed by a '(', then we have a function
 | |
|     // call.
 | |
|     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
 | |
|       // In C++, this is an ADL-only call.
 | |
|       // FIXME: Reference?
 | |
|       if (getLangOpts().CPlusPlus)
 | |
|         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
 | |
|       
 | |
|       // C90 6.3.2.2:
 | |
|       //   If the expression that precedes the parenthesized argument list in a 
 | |
|       //   function call consists solely of an identifier, and if no 
 | |
|       //   declaration is visible for this identifier, the identifier is 
 | |
|       //   implicitly declared exactly as if, in the innermost block containing
 | |
|       //   the function call, the declaration
 | |
|       //
 | |
|       //     extern int identifier (); 
 | |
|       //
 | |
|       //   appeared. 
 | |
|       // 
 | |
|       // We also allow this in C99 as an extension.
 | |
|       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
 | |
|         Result.addDecl(D);
 | |
|         Result.resolveKind();
 | |
|         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // In C, we first see whether there is a tag type by the same name, in 
 | |
|     // which case it's likely that the user just forget to write "enum", 
 | |
|     // "struct", or "union".
 | |
|     if (!getLangOpts().CPlusPlus && !SecondTry &&
 | |
|         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Perform typo correction to determine if there is another name that is
 | |
|     // close to this name.
 | |
|     if (!SecondTry && CCC) {
 | |
|       SecondTry = true;
 | |
|       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
 | |
|                                                  Result.getLookupKind(), S, 
 | |
|                                                  &SS, *CCC)) {
 | |
|         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
 | |
|         unsigned QualifiedDiag = diag::err_no_member_suggest;
 | |
|         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | |
|         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
 | |
|         
 | |
|         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
 | |
|         NamedDecl *UnderlyingFirstDecl
 | |
|           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
 | |
|         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
 | |
|             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
 | |
|           UnqualifiedDiag = diag::err_no_template_suggest;
 | |
|           QualifiedDiag = diag::err_no_member_template_suggest;
 | |
|         } else if (UnderlyingFirstDecl && 
 | |
|                    (isa<TypeDecl>(UnderlyingFirstDecl) || 
 | |
|                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
 | |
|                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
 | |
|           UnqualifiedDiag = diag::err_unknown_typename_suggest;
 | |
|           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
 | |
|         }
 | |
| 
 | |
|         if (SS.isEmpty()) {
 | |
|           Diag(NameLoc, UnqualifiedDiag)
 | |
|             << Name << CorrectedQuotedStr
 | |
|             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
 | |
|         } else {// FIXME: is this even reachable? Test it.
 | |
|           bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | |
|                                   Name->getName().equals(CorrectedStr);
 | |
|           Diag(NameLoc, QualifiedDiag)
 | |
|             << Name << computeDeclContext(SS, false) << droppedSpecifier
 | |
|             << CorrectedQuotedStr << SS.getRange()
 | |
|             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
 | |
|                                             CorrectedStr);
 | |
|         }
 | |
| 
 | |
|         // Update the name, so that the caller has the new name.
 | |
|         Name = Corrected.getCorrectionAsIdentifierInfo();
 | |
|         
 | |
|         // Typo correction corrected to a keyword.
 | |
|         if (Corrected.isKeyword())
 | |
|           return Corrected.getCorrectionAsIdentifierInfo();
 | |
| 
 | |
|         // Also update the LookupResult...
 | |
|         // FIXME: This should probably go away at some point
 | |
|         Result.clear();
 | |
|         Result.setLookupName(Corrected.getCorrection());
 | |
|         if (FirstDecl) {
 | |
|           Result.addDecl(FirstDecl);
 | |
|           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
 | |
|             << CorrectedQuotedStr;
 | |
|         }
 | |
| 
 | |
|         // If we found an Objective-C instance variable, let
 | |
|         // LookupInObjCMethod build the appropriate expression to
 | |
|         // reference the ivar.
 | |
|         // FIXME: This is a gross hack.
 | |
|         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
 | |
|           Result.clear();
 | |
|           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
 | |
|           return E;
 | |
|         }
 | |
|         
 | |
|         goto Corrected;
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     // We failed to correct; just fall through and let the parser deal with it.
 | |
|     Result.suppressDiagnostics();
 | |
|     return NameClassification::Unknown();
 | |
|       
 | |
|   case LookupResult::NotFoundInCurrentInstantiation: {
 | |
|     // We performed name lookup into the current instantiation, and there were 
 | |
|     // dependent bases, so we treat this result the same way as any other
 | |
|     // dependent nested-name-specifier.
 | |
|       
 | |
|     // C++ [temp.res]p2:
 | |
|     //   A name used in a template declaration or definition and that is 
 | |
|     //   dependent on a template-parameter is assumed not to name a type 
 | |
|     //   unless the applicable name lookup finds a type name or the name is 
 | |
|     //   qualified by the keyword typename.
 | |
|     //
 | |
|     // FIXME: If the next token is '<', we might want to ask the parser to
 | |
|     // perform some heroics to see if we actually have a 
 | |
|     // template-argument-list, which would indicate a missing 'template'
 | |
|     // keyword here.
 | |
|     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
 | |
|                                       NameInfo, IsAddressOfOperand,
 | |
|                                       /*TemplateArgs=*/0);
 | |
|   }
 | |
| 
 | |
|   case LookupResult::Found:
 | |
|   case LookupResult::FoundOverloaded:
 | |
|   case LookupResult::FoundUnresolvedValue:
 | |
|     break;
 | |
|       
 | |
|   case LookupResult::Ambiguous:
 | |
|     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
 | |
|         hasAnyAcceptableTemplateNames(Result)) {
 | |
|       // C++ [temp.local]p3:
 | |
|       //   A lookup that finds an injected-class-name (10.2) can result in an
 | |
|       //   ambiguity in certain cases (for example, if it is found in more than
 | |
|       //   one base class). If all of the injected-class-names that are found
 | |
|       //   refer to specializations of the same class template, and if the name
 | |
|       //   is followed by a template-argument-list, the reference refers to the
 | |
|       //   class template itself and not a specialization thereof, and is not
 | |
|       //   ambiguous.
 | |
|       //
 | |
|       // This filtering can make an ambiguous result into an unambiguous one,
 | |
|       // so try again after filtering out template names.
 | |
|       FilterAcceptableTemplateNames(Result);
 | |
|       if (!Result.isAmbiguous()) {
 | |
|         IsFilteredTemplateName = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     // Diagnose the ambiguity and return an error.
 | |
|     return NameClassification::Error();
 | |
|   }
 | |
|   
 | |
|   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
 | |
|       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
 | |
|     // C++ [temp.names]p3:
 | |
|     //   After name lookup (3.4) finds that a name is a template-name or that
 | |
|     //   an operator-function-id or a literal- operator-id refers to a set of
 | |
|     //   overloaded functions any member of which is a function template if 
 | |
|     //   this is followed by a <, the < is always taken as the delimiter of a
 | |
|     //   template-argument-list and never as the less-than operator.
 | |
|     if (!IsFilteredTemplateName)
 | |
|       FilterAcceptableTemplateNames(Result);
 | |
|     
 | |
|     if (!Result.empty()) {
 | |
|       bool IsFunctionTemplate;
 | |
|       bool IsVarTemplate;
 | |
|       TemplateName Template;
 | |
|       if (Result.end() - Result.begin() > 1) {
 | |
|         IsFunctionTemplate = true;
 | |
|         Template = Context.getOverloadedTemplateName(Result.begin(), 
 | |
|                                                      Result.end());
 | |
|       } else {
 | |
|         TemplateDecl *TD
 | |
|           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
 | |
|         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
 | |
|         IsVarTemplate = isa<VarTemplateDecl>(TD);
 | |
| 
 | |
|         if (SS.isSet() && !SS.isInvalid())
 | |
|           Template = Context.getQualifiedTemplateName(SS.getScopeRep(), 
 | |
|                                                     /*TemplateKeyword=*/false,
 | |
|                                                       TD);
 | |
|         else
 | |
|           Template = TemplateName(TD);
 | |
|       }
 | |
|       
 | |
|       if (IsFunctionTemplate) {
 | |
|         // Function templates always go through overload resolution, at which
 | |
|         // point we'll perform the various checks (e.g., accessibility) we need
 | |
|         // to based on which function we selected.
 | |
|         Result.suppressDiagnostics();
 | |
|         
 | |
|         return NameClassification::FunctionTemplate(Template);
 | |
|       }
 | |
| 
 | |
|       return IsVarTemplate ? NameClassification::VarTemplate(Template)
 | |
|                            : NameClassification::TypeTemplate(Template);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
 | |
|   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
 | |
|     DiagnoseUseOfDecl(Type, NameLoc);
 | |
|     QualType T = Context.getTypeDeclType(Type);
 | |
|     if (SS.isNotEmpty())
 | |
|       return buildNestedType(*this, SS, T, NameLoc);
 | |
|     return ParsedType::make(T);
 | |
|   }
 | |
| 
 | |
|   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
 | |
|   if (!Class) {
 | |
|     // FIXME: It's unfortunate that we don't have a Type node for handling this.
 | |
|     if (ObjCCompatibleAliasDecl *Alias 
 | |
|                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
 | |
|       Class = Alias->getClassInterface();
 | |
|   }
 | |
|   
 | |
|   if (Class) {
 | |
|     DiagnoseUseOfDecl(Class, NameLoc);
 | |
|     
 | |
|     if (NextToken.is(tok::period)) {
 | |
|       // Interface. <something> is parsed as a property reference expression.
 | |
|       // Just return "unknown" as a fall-through for now.
 | |
|       Result.suppressDiagnostics();
 | |
|       return NameClassification::Unknown();
 | |
|     }
 | |
|     
 | |
|     QualType T = Context.getObjCInterfaceType(Class);
 | |
|     return ParsedType::make(T);
 | |
|   }
 | |
| 
 | |
|   // We can have a type template here if we're classifying a template argument.
 | |
|   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
 | |
|     return NameClassification::TypeTemplate(
 | |
|         TemplateName(cast<TemplateDecl>(FirstDecl)));
 | |
| 
 | |
|   // Check for a tag type hidden by a non-type decl in a few cases where it
 | |
|   // seems likely a type is wanted instead of the non-type that was found.
 | |
|   bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
 | |
|   if ((NextToken.is(tok::identifier) ||
 | |
|        (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
 | |
|       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
 | |
|     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
 | |
|     DiagnoseUseOfDecl(Type, NameLoc);
 | |
|     QualType T = Context.getTypeDeclType(Type);
 | |
|     if (SS.isNotEmpty())
 | |
|       return buildNestedType(*this, SS, T, NameLoc);
 | |
|     return ParsedType::make(T);
 | |
|   }
 | |
|   
 | |
|   if (FirstDecl->isCXXClassMember())
 | |
|     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
 | |
| 
 | |
|   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
 | |
|   return BuildDeclarationNameExpr(SS, Result, ADL);
 | |
| }
 | |
| 
 | |
| // Determines the context to return to after temporarily entering a
 | |
| // context.  This depends in an unnecessarily complicated way on the
 | |
| // exact ordering of callbacks from the parser.
 | |
| DeclContext *Sema::getContainingDC(DeclContext *DC) {
 | |
| 
 | |
|   // Functions defined inline within classes aren't parsed until we've
 | |
|   // finished parsing the top-level class, so the top-level class is
 | |
|   // the context we'll need to return to.
 | |
|   if (isa<FunctionDecl>(DC)) {
 | |
|     DC = DC->getLexicalParent();
 | |
| 
 | |
|     // A function not defined within a class will always return to its
 | |
|     // lexical context.
 | |
|     if (!isa<CXXRecordDecl>(DC))
 | |
|       return DC;
 | |
| 
 | |
|     // A C++ inline method/friend is parsed *after* the topmost class
 | |
|     // it was declared in is fully parsed ("complete");  the topmost
 | |
|     // class is the context we need to return to.
 | |
|     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
 | |
|       DC = RD;
 | |
| 
 | |
|     // Return the declaration context of the topmost class the inline method is
 | |
|     // declared in.
 | |
|     return DC;
 | |
|   }
 | |
| 
 | |
|   return DC->getLexicalParent();
 | |
| }
 | |
| 
 | |
| void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
 | |
|   assert(getContainingDC(DC) == CurContext &&
 | |
|       "The next DeclContext should be lexically contained in the current one.");
 | |
|   CurContext = DC;
 | |
|   S->setEntity(DC);
 | |
| }
 | |
| 
 | |
| void Sema::PopDeclContext() {
 | |
|   assert(CurContext && "DeclContext imbalance!");
 | |
| 
 | |
|   CurContext = getContainingDC(CurContext);
 | |
|   assert(CurContext && "Popped translation unit!");
 | |
| }
 | |
| 
 | |
| /// EnterDeclaratorContext - Used when we must lookup names in the context
 | |
| /// of a declarator's nested name specifier.
 | |
| ///
 | |
| void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
 | |
|   // C++0x [basic.lookup.unqual]p13:
 | |
|   //   A name used in the definition of a static data member of class
 | |
|   //   X (after the qualified-id of the static member) is looked up as
 | |
|   //   if the name was used in a member function of X.
 | |
|   // C++0x [basic.lookup.unqual]p14:
 | |
|   //   If a variable member of a namespace is defined outside of the
 | |
|   //   scope of its namespace then any name used in the definition of
 | |
|   //   the variable member (after the declarator-id) is looked up as
 | |
|   //   if the definition of the variable member occurred in its
 | |
|   //   namespace.
 | |
|   // Both of these imply that we should push a scope whose context
 | |
|   // is the semantic context of the declaration.  We can't use
 | |
|   // PushDeclContext here because that context is not necessarily
 | |
|   // lexically contained in the current context.  Fortunately,
 | |
|   // the containing scope should have the appropriate information.
 | |
| 
 | |
|   assert(!S->getEntity() && "scope already has entity");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   Scope *Ancestor = S->getParent();
 | |
|   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
 | |
|   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
 | |
| #endif
 | |
| 
 | |
|   CurContext = DC;
 | |
|   S->setEntity(DC);
 | |
| }
 | |
| 
 | |
| void Sema::ExitDeclaratorContext(Scope *S) {
 | |
|   assert(S->getEntity() == CurContext && "Context imbalance!");
 | |
| 
 | |
|   // Switch back to the lexical context.  The safety of this is
 | |
|   // enforced by an assert in EnterDeclaratorContext.
 | |
|   Scope *Ancestor = S->getParent();
 | |
|   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
 | |
|   CurContext = (DeclContext*) Ancestor->getEntity();
 | |
| 
 | |
|   // We don't need to do anything with the scope, which is going to
 | |
|   // disappear.
 | |
| }
 | |
| 
 | |
| 
 | |
| void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
 | |
|   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | |
|   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
 | |
|     // We assume that the caller has already called
 | |
|     // ActOnReenterTemplateScope
 | |
|     FD = TFD->getTemplatedDecl();
 | |
|   }
 | |
|   if (!FD)
 | |
|     return;
 | |
| 
 | |
|   // Same implementation as PushDeclContext, but enters the context
 | |
|   // from the lexical parent, rather than the top-level class.
 | |
|   assert(CurContext == FD->getLexicalParent() &&
 | |
|     "The next DeclContext should be lexically contained in the current one.");
 | |
|   CurContext = FD;
 | |
|   S->setEntity(CurContext);
 | |
| 
 | |
|   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
 | |
|     ParmVarDecl *Param = FD->getParamDecl(P);
 | |
|     // If the parameter has an identifier, then add it to the scope
 | |
|     if (Param->getIdentifier()) {
 | |
|       S->AddDecl(Param);
 | |
|       IdResolver.AddDecl(Param);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void Sema::ActOnExitFunctionContext() {
 | |
|   // Same implementation as PopDeclContext, but returns to the lexical parent,
 | |
|   // rather than the top-level class.
 | |
|   assert(CurContext && "DeclContext imbalance!");
 | |
|   CurContext = CurContext->getLexicalParent();
 | |
|   assert(CurContext && "Popped translation unit!");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Determine whether we allow overloading of the function
 | |
| /// PrevDecl with another declaration.
 | |
| ///
 | |
| /// This routine determines whether overloading is possible, not
 | |
| /// whether some new function is actually an overload. It will return
 | |
| /// true in C++ (where we can always provide overloads) or, as an
 | |
| /// extension, in C when the previous function is already an
 | |
| /// overloaded function declaration or has the "overloadable"
 | |
| /// attribute.
 | |
| static bool AllowOverloadingOfFunction(LookupResult &Previous,
 | |
|                                        ASTContext &Context) {
 | |
|   if (Context.getLangOpts().CPlusPlus)
 | |
|     return true;
 | |
| 
 | |
|   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
 | |
|     return true;
 | |
| 
 | |
|   return (Previous.getResultKind() == LookupResult::Found
 | |
|           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
 | |
| }
 | |
| 
 | |
| /// Add this decl to the scope shadowed decl chains.
 | |
| void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
 | |
|   // Move up the scope chain until we find the nearest enclosing
 | |
|   // non-transparent context. The declaration will be introduced into this
 | |
|   // scope.
 | |
|   while (S->getEntity() &&
 | |
|          ((DeclContext *)S->getEntity())->isTransparentContext())
 | |
|     S = S->getParent();
 | |
| 
 | |
|   // Add scoped declarations into their context, so that they can be
 | |
|   // found later. Declarations without a context won't be inserted
 | |
|   // into any context.
 | |
|   if (AddToContext)
 | |
|     CurContext->addDecl(D);
 | |
| 
 | |
|   // Out-of-line definitions shouldn't be pushed into scope in C++.
 | |
|   // Out-of-line variable and function definitions shouldn't even in C.
 | |
|   if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
 | |
|       D->isOutOfLine() &&
 | |
|       !D->getDeclContext()->getRedeclContext()->Equals(
 | |
|         D->getLexicalDeclContext()->getRedeclContext()))
 | |
|     return;
 | |
| 
 | |
|   // Template instantiations should also not be pushed into scope.
 | |
|   if (isa<FunctionDecl>(D) &&
 | |
|       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
 | |
|     return;
 | |
| 
 | |
|   // If this replaces anything in the current scope, 
 | |
|   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
 | |
|                                IEnd = IdResolver.end();
 | |
|   for (; I != IEnd; ++I) {
 | |
|     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
 | |
|       S->RemoveDecl(*I);
 | |
|       IdResolver.RemoveDecl(*I);
 | |
| 
 | |
|       // Should only need to replace one decl.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   S->AddDecl(D);
 | |
|   
 | |
|   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
 | |
|     // Implicitly-generated labels may end up getting generated in an order that
 | |
|     // isn't strictly lexical, which breaks name lookup. Be careful to insert
 | |
|     // the label at the appropriate place in the identifier chain.
 | |
|     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
 | |
|       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
 | |
|       if (IDC == CurContext) {
 | |
|         if (!S->isDeclScope(*I))
 | |
|           continue;
 | |
|       } else if (IDC->Encloses(CurContext))
 | |
|         break;
 | |
|     }
 | |
|     
 | |
|     IdResolver.InsertDeclAfter(I, D);
 | |
|   } else {
 | |
|     IdResolver.AddDecl(D);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
 | |
|   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
 | |
|     TUScope->AddDecl(D);
 | |
| }
 | |
| 
 | |
| bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
 | |
|                          bool ExplicitInstantiationOrSpecialization) {
 | |
|   return IdResolver.isDeclInScope(D, Ctx, S,
 | |
|                                   ExplicitInstantiationOrSpecialization);
 | |
| }
 | |
| 
 | |
| Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
 | |
|   DeclContext *TargetDC = DC->getPrimaryContext();
 | |
|   do {
 | |
|     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
 | |
|       if (ScopeDC->getPrimaryContext() == TargetDC)
 | |
|         return S;
 | |
|   } while ((S = S->getParent()));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static bool isOutOfScopePreviousDeclaration(NamedDecl *,
 | |
|                                             DeclContext*,
 | |
|                                             ASTContext&);
 | |
| 
 | |
| /// Filters out lookup results that don't fall within the given scope
 | |
| /// as determined by isDeclInScope.
 | |
| void Sema::FilterLookupForScope(LookupResult &R,
 | |
|                                 DeclContext *Ctx, Scope *S,
 | |
|                                 bool ConsiderLinkage,
 | |
|                                 bool ExplicitInstantiationOrSpecialization) {
 | |
|   LookupResult::Filter F = R.makeFilter();
 | |
|   while (F.hasNext()) {
 | |
|     NamedDecl *D = F.next();
 | |
| 
 | |
|     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
 | |
|       continue;
 | |
| 
 | |
|     if (ConsiderLinkage &&
 | |
|         isOutOfScopePreviousDeclaration(D, Ctx, Context))
 | |
|       continue;
 | |
|     
 | |
|     F.erase();
 | |
|   }
 | |
| 
 | |
|   F.done();
 | |
| }
 | |
| 
 | |
| static bool isUsingDecl(NamedDecl *D) {
 | |
|   return isa<UsingShadowDecl>(D) ||
 | |
|          isa<UnresolvedUsingTypenameDecl>(D) ||
 | |
|          isa<UnresolvedUsingValueDecl>(D);
 | |
| }
 | |
| 
 | |
| /// Removes using shadow declarations from the lookup results.
 | |
| static void RemoveUsingDecls(LookupResult &R) {
 | |
|   LookupResult::Filter F = R.makeFilter();
 | |
|   while (F.hasNext())
 | |
|     if (isUsingDecl(F.next()))
 | |
|       F.erase();
 | |
| 
 | |
|   F.done();
 | |
| }
 | |
| 
 | |
| /// \brief Check for this common pattern:
 | |
| /// @code
 | |
| /// class S {
 | |
| ///   S(const S&); // DO NOT IMPLEMENT
 | |
| ///   void operator=(const S&); // DO NOT IMPLEMENT
 | |
| /// };
 | |
| /// @endcode
 | |
| static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
 | |
|   // FIXME: Should check for private access too but access is set after we get
 | |
|   // the decl here.
 | |
|   if (D->doesThisDeclarationHaveABody())
 | |
|     return false;
 | |
| 
 | |
|   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
 | |
|     return CD->isCopyConstructor();
 | |
|   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
 | |
|     return Method->isCopyAssignmentOperator();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // We need this to handle
 | |
| //
 | |
| // typedef struct {
 | |
| //   void *foo() { return 0; }
 | |
| // } A;
 | |
| //
 | |
| // When we see foo we don't know if after the typedef we will get 'A' or '*A'
 | |
| // for example. If 'A', foo will have external linkage. If we have '*A',
 | |
| // foo will have no linkage. Since we can't know untill we get to the end
 | |
| // of the typedef, this function finds out if D might have non external linkage.
 | |
| // Callers should verify at the end of the TU if it D has external linkage or
 | |
| // not.
 | |
| bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
 | |
|   const DeclContext *DC = D->getDeclContext();
 | |
|   while (!DC->isTranslationUnit()) {
 | |
|     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
 | |
|       if (!RD->hasNameForLinkage())
 | |
|         return true;
 | |
|     }
 | |
|     DC = DC->getParent();
 | |
|   }
 | |
| 
 | |
|   return !D->isExternallyVisible();
 | |
| }
 | |
| 
 | |
| bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
 | |
|   assert(D);
 | |
| 
 | |
|   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore class templates.
 | |
|   if (D->getDeclContext()->isDependentContext() ||
 | |
|       D->getLexicalDeclContext()->isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | |
|       return false;
 | |
| 
 | |
|     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | |
|       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
 | |
|         return false;
 | |
|     } else {
 | |
|       // 'static inline' functions are used in headers; don't warn.
 | |
|       // Make sure we get the storage class from the canonical declaration,
 | |
|       // since otherwise we will get spurious warnings on specialized
 | |
|       // static template functions.
 | |
|       if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
 | |
|           FD->isInlineSpecified())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (FD->doesThisDeclarationHaveABody() &&
 | |
|         Context.DeclMustBeEmitted(FD))
 | |
|       return false;
 | |
|   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|     // Don't warn on variables of const-qualified or reference type, since their
 | |
|     // values can be used even if though they're not odr-used, and because const
 | |
|     // qualified variables can appear in headers in contexts where they're not
 | |
|     // intended to be used.
 | |
|     // FIXME: Use more principled rules for these exemptions.
 | |
|     if (!VD->isFileVarDecl() ||
 | |
|         VD->getType().isConstQualified() ||
 | |
|         VD->getType()->isReferenceType() ||
 | |
|         Context.DeclMustBeEmitted(VD))
 | |
|       return false;
 | |
| 
 | |
|     if (VD->isStaticDataMember() &&
 | |
|         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | |
|       return false;
 | |
| 
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Only warn for unused decls internal to the translation unit.
 | |
|   return mightHaveNonExternalLinkage(D);
 | |
| }
 | |
| 
 | |
| void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
 | |
|   if (!D)
 | |
|     return;
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     const FunctionDecl *First = FD->getFirstDeclaration();
 | |
|     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
 | |
|       return; // First should already be in the vector.
 | |
|   }
 | |
| 
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|     const VarDecl *First = VD->getFirstDeclaration();
 | |
|     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
 | |
|       return; // First should already be in the vector.
 | |
|   }
 | |
| 
 | |
|   if (ShouldWarnIfUnusedFileScopedDecl(D))
 | |
|     UnusedFileScopedDecls.push_back(D);
 | |
| }
 | |
| 
 | |
| static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
 | |
|   if (D->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
 | |
|     return false;
 | |
| 
 | |
|   if (isa<LabelDecl>(D))
 | |
|     return true;
 | |
|   
 | |
|   // White-list anything that isn't a local variable.
 | |
|   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
 | |
|       !D->getDeclContext()->isFunctionOrMethod())
 | |
|     return false;
 | |
| 
 | |
|   // Types of valid local variables should be complete, so this should succeed.
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
| 
 | |
|     // White-list anything with an __attribute__((unused)) type.
 | |
|     QualType Ty = VD->getType();
 | |
| 
 | |
|     // Only look at the outermost level of typedef.
 | |
|     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
 | |
|       if (TT->getDecl()->hasAttr<UnusedAttr>())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If we failed to complete the type for some reason, or if the type is
 | |
|     // dependent, don't diagnose the variable. 
 | |
|     if (Ty->isIncompleteType() || Ty->isDependentType())
 | |
|       return false;
 | |
| 
 | |
|     if (const TagType *TT = Ty->getAs<TagType>()) {
 | |
|       const TagDecl *Tag = TT->getDecl();
 | |
|       if (Tag->hasAttr<UnusedAttr>())
 | |
|         return false;
 | |
| 
 | |
|       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
 | |
|         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
 | |
|           return false;
 | |
| 
 | |
|         if (const Expr *Init = VD->getInit()) {
 | |
|           if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
 | |
|             Init = Cleanups->getSubExpr();
 | |
|           const CXXConstructExpr *Construct =
 | |
|             dyn_cast<CXXConstructExpr>(Init);
 | |
|           if (Construct && !Construct->isElidable()) {
 | |
|             CXXConstructorDecl *CD = Construct->getConstructor();
 | |
|             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
 | |
|               return false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // TODO: __attribute__((unused)) templates?
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
 | |
|                                      FixItHint &Hint) {
 | |
|   if (isa<LabelDecl>(D)) {
 | |
|     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
 | |
|                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
 | |
|     if (AfterColon.isInvalid())
 | |
|       return;
 | |
|     Hint = FixItHint::CreateRemoval(CharSourceRange::
 | |
|                                     getCharRange(D->getLocStart(), AfterColon));
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
 | |
| /// unless they are marked attr(unused).
 | |
| void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
 | |
|   FixItHint Hint;
 | |
|   if (!ShouldDiagnoseUnusedDecl(D))
 | |
|     return;
 | |
|   
 | |
|   GenerateFixForUnusedDecl(D, Context, Hint);
 | |
| 
 | |
|   unsigned DiagID;
 | |
|   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
 | |
|     DiagID = diag::warn_unused_exception_param;
 | |
|   else if (isa<LabelDecl>(D))
 | |
|     DiagID = diag::warn_unused_label;
 | |
|   else
 | |
|     DiagID = diag::warn_unused_variable;
 | |
| 
 | |
|   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
 | |
| }
 | |
| 
 | |
| static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
 | |
|   // Verify that we have no forward references left.  If so, there was a goto
 | |
|   // or address of a label taken, but no definition of it.  Label fwd
 | |
|   // definitions are indicated with a null substmt.
 | |
|   if (L->getStmt() == 0)
 | |
|     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
 | |
| }
 | |
| 
 | |
| void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
 | |
|   if (S->decl_empty()) return;
 | |
|   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
 | |
|          "Scope shouldn't contain decls!");
 | |
| 
 | |
|   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
 | |
|        I != E; ++I) {
 | |
|     Decl *TmpD = (*I);
 | |
|     assert(TmpD && "This decl didn't get pushed??");
 | |
| 
 | |
|     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
 | |
|     NamedDecl *D = cast<NamedDecl>(TmpD);
 | |
| 
 | |
|     if (!D->getDeclName()) continue;
 | |
| 
 | |
|     // Diagnose unused variables in this scope.
 | |
|     if (!S->hasUnrecoverableErrorOccurred())
 | |
|       DiagnoseUnusedDecl(D);
 | |
|     
 | |
|     // If this was a forward reference to a label, verify it was defined.
 | |
|     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
 | |
|       CheckPoppedLabel(LD, *this);
 | |
|     
 | |
|     // Remove this name from our lexical scope.
 | |
|     IdResolver.RemoveDecl(D);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnStartFunctionDeclarator() {
 | |
|   ++InFunctionDeclarator;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnEndFunctionDeclarator() {
 | |
|   assert(InFunctionDeclarator);
 | |
|   --InFunctionDeclarator;
 | |
| }
 | |
| 
 | |
| /// \brief Look for an Objective-C class in the translation unit.
 | |
| ///
 | |
| /// \param Id The name of the Objective-C class we're looking for. If
 | |
| /// typo-correction fixes this name, the Id will be updated
 | |
| /// to the fixed name.
 | |
| ///
 | |
| /// \param IdLoc The location of the name in the translation unit.
 | |
| ///
 | |
| /// \param DoTypoCorrection If true, this routine will attempt typo correction
 | |
| /// if there is no class with the given name.
 | |
| ///
 | |
| /// \returns The declaration of the named Objective-C class, or NULL if the
 | |
| /// class could not be found.
 | |
| ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
 | |
|                                               SourceLocation IdLoc,
 | |
|                                               bool DoTypoCorrection) {
 | |
|   // The third "scope" argument is 0 since we aren't enabling lazy built-in
 | |
|   // creation from this context.
 | |
|   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
 | |
| 
 | |
|   if (!IDecl && DoTypoCorrection) {
 | |
|     // Perform typo correction at the given location, but only if we
 | |
|     // find an Objective-C class name.
 | |
|     DeclFilterCCC<ObjCInterfaceDecl> Validator;
 | |
|     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
 | |
|                                        LookupOrdinaryName, TUScope, NULL,
 | |
|                                        Validator)) {
 | |
|       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | |
|       Diag(IdLoc, diag::err_undef_interface_suggest)
 | |
|         << Id << IDecl->getDeclName() 
 | |
|         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
 | |
|       Diag(IDecl->getLocation(), diag::note_previous_decl)
 | |
|         << IDecl->getDeclName();
 | |
|       
 | |
|       Id = IDecl->getIdentifier();
 | |
|     }
 | |
|   }
 | |
|   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
 | |
|   // This routine must always return a class definition, if any.
 | |
|   if (Def && Def->getDefinition())
 | |
|       Def = Def->getDefinition();
 | |
|   return Def;
 | |
| }
 | |
| 
 | |
| /// getNonFieldDeclScope - Retrieves the innermost scope, starting
 | |
| /// from S, where a non-field would be declared. This routine copes
 | |
| /// with the difference between C and C++ scoping rules in structs and
 | |
| /// unions. For example, the following code is well-formed in C but
 | |
| /// ill-formed in C++:
 | |
| /// @code
 | |
| /// struct S6 {
 | |
| ///   enum { BAR } e;
 | |
| /// };
 | |
| ///
 | |
| /// void test_S6() {
 | |
| ///   struct S6 a;
 | |
| ///   a.e = BAR;
 | |
| /// }
 | |
| /// @endcode
 | |
| /// For the declaration of BAR, this routine will return a different
 | |
| /// scope. The scope S will be the scope of the unnamed enumeration
 | |
| /// within S6. In C++, this routine will return the scope associated
 | |
| /// with S6, because the enumeration's scope is a transparent
 | |
| /// context but structures can contain non-field names. In C, this
 | |
| /// routine will return the translation unit scope, since the
 | |
| /// enumeration's scope is a transparent context and structures cannot
 | |
| /// contain non-field names.
 | |
| Scope *Sema::getNonFieldDeclScope(Scope *S) {
 | |
|   while (((S->getFlags() & Scope::DeclScope) == 0) ||
 | |
|          (S->getEntity() &&
 | |
|           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
 | |
|          (S->isClassScope() && !getLangOpts().CPlusPlus))
 | |
|     S = S->getParent();
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// \brief Looks up the declaration of "struct objc_super" and
 | |
| /// saves it for later use in building builtin declaration of
 | |
| /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
 | |
| /// pre-existing declaration exists no action takes place.
 | |
| static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
 | |
|                                         IdentifierInfo *II) {
 | |
|   if (!II->isStr("objc_msgSendSuper"))
 | |
|     return;
 | |
|   ASTContext &Context = ThisSema.Context;
 | |
|     
 | |
|   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
 | |
|                       SourceLocation(), Sema::LookupTagName);
 | |
|   ThisSema.LookupName(Result, S);
 | |
|   if (Result.getResultKind() == LookupResult::Found)
 | |
|     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
 | |
|       Context.setObjCSuperType(Context.getTagDeclType(TD));
 | |
| }
 | |
| 
 | |
| /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
 | |
| /// file scope.  lazily create a decl for it. ForRedeclaration is true
 | |
| /// if we're creating this built-in in anticipation of redeclaring the
 | |
| /// built-in.
 | |
| NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
 | |
|                                      Scope *S, bool ForRedeclaration,
 | |
|                                      SourceLocation Loc) {
 | |
|   LookupPredefedObjCSuperType(*this, S, II);
 | |
|   
 | |
|   Builtin::ID BID = (Builtin::ID)bid;
 | |
| 
 | |
|   ASTContext::GetBuiltinTypeError Error;
 | |
|   QualType R = Context.GetBuiltinType(BID, Error);
 | |
|   switch (Error) {
 | |
|   case ASTContext::GE_None:
 | |
|     // Okay
 | |
|     break;
 | |
| 
 | |
|   case ASTContext::GE_Missing_stdio:
 | |
|     if (ForRedeclaration)
 | |
|       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
 | |
|         << Context.BuiltinInfo.GetName(BID);
 | |
|     return 0;
 | |
| 
 | |
|   case ASTContext::GE_Missing_setjmp:
 | |
|     if (ForRedeclaration)
 | |
|       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
 | |
|         << Context.BuiltinInfo.GetName(BID);
 | |
|     return 0;
 | |
| 
 | |
|   case ASTContext::GE_Missing_ucontext:
 | |
|     if (ForRedeclaration)
 | |
|       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
 | |
|         << Context.BuiltinInfo.GetName(BID);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
 | |
|     Diag(Loc, diag::ext_implicit_lib_function_decl)
 | |
|       << Context.BuiltinInfo.GetName(BID)
 | |
|       << R;
 | |
|     if (Context.BuiltinInfo.getHeaderName(BID) &&
 | |
|         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
 | |
|           != DiagnosticsEngine::Ignored)
 | |
|       Diag(Loc, diag::note_please_include_header)
 | |
|         << Context.BuiltinInfo.getHeaderName(BID)
 | |
|         << Context.BuiltinInfo.GetName(BID);
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *New = FunctionDecl::Create(Context,
 | |
|                                            Context.getTranslationUnitDecl(),
 | |
|                                            Loc, Loc, II, R, /*TInfo=*/0,
 | |
|                                            SC_Extern,
 | |
|                                            false,
 | |
|                                            /*hasPrototype=*/true);
 | |
|   New->setImplicit();
 | |
| 
 | |
|   // Create Decl objects for each parameter, adding them to the
 | |
|   // FunctionDecl.
 | |
|   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
 | |
|     SmallVector<ParmVarDecl*, 16> Params;
 | |
|     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
 | |
|       ParmVarDecl *parm =
 | |
|         ParmVarDecl::Create(Context, New, SourceLocation(),
 | |
|                             SourceLocation(), 0,
 | |
|                             FT->getArgType(i), /*TInfo=*/0,
 | |
|                             SC_None, 0);
 | |
|       parm->setScopeInfo(0, i);
 | |
|       Params.push_back(parm);
 | |
|     }
 | |
|     New->setParams(Params);
 | |
|   }
 | |
| 
 | |
|   AddKnownFunctionAttributes(New);
 | |
| 
 | |
|   // TUScope is the translation-unit scope to insert this function into.
 | |
|   // FIXME: This is hideous. We need to teach PushOnScopeChains to
 | |
|   // relate Scopes to DeclContexts, and probably eliminate CurContext
 | |
|   // entirely, but we're not there yet.
 | |
|   DeclContext *SavedContext = CurContext;
 | |
|   CurContext = Context.getTranslationUnitDecl();
 | |
|   PushOnScopeChains(New, TUScope);
 | |
|   CurContext = SavedContext;
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// \brief Filter out any previous declarations that the given declaration
 | |
| /// should not consider because they are not permitted to conflict, e.g.,
 | |
| /// because they come from hidden sub-modules and do not refer to the same
 | |
| /// entity.
 | |
| static void filterNonConflictingPreviousDecls(ASTContext &context,
 | |
|                                               NamedDecl *decl,
 | |
|                                               LookupResult &previous){
 | |
|   // This is only interesting when modules are enabled.
 | |
|   if (!context.getLangOpts().Modules)
 | |
|     return;
 | |
| 
 | |
|   // Empty sets are uninteresting.
 | |
|   if (previous.empty())
 | |
|     return;
 | |
| 
 | |
|   LookupResult::Filter filter = previous.makeFilter();
 | |
|   while (filter.hasNext()) {
 | |
|     NamedDecl *old = filter.next();
 | |
| 
 | |
|     // Non-hidden declarations are never ignored.
 | |
|     if (!old->isHidden())
 | |
|       continue;
 | |
| 
 | |
|     if (!old->isExternallyVisible())
 | |
|       filter.erase();
 | |
|   }
 | |
| 
 | |
|   filter.done();
 | |
| }
 | |
| 
 | |
| bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
 | |
|   QualType OldType;
 | |
|   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
 | |
|     OldType = OldTypedef->getUnderlyingType();
 | |
|   else
 | |
|     OldType = Context.getTypeDeclType(Old);
 | |
|   QualType NewType = New->getUnderlyingType();
 | |
| 
 | |
|   if (NewType->isVariablyModifiedType()) {
 | |
|     // Must not redefine a typedef with a variably-modified type.
 | |
|     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
 | |
|     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
 | |
|       << Kind << NewType;
 | |
|     if (Old->getLocation().isValid())
 | |
|       Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     New->setInvalidDecl();
 | |
|     return true;    
 | |
|   }
 | |
|   
 | |
|   if (OldType != NewType &&
 | |
|       !OldType->isDependentType() &&
 | |
|       !NewType->isDependentType() &&
 | |
|       !Context.hasSameType(OldType, NewType)) { 
 | |
|     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
 | |
|       << Kind << NewType << OldType;
 | |
|     if (Old->getLocation().isValid())
 | |
|       Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     New->setInvalidDecl();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
 | |
| /// same name and scope as a previous declaration 'Old'.  Figure out
 | |
| /// how to resolve this situation, merging decls or emitting
 | |
| /// diagnostics as appropriate. If there was an error, set New to be invalid.
 | |
| ///
 | |
| void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
 | |
|   // If the new decl is known invalid already, don't bother doing any
 | |
|   // merging checks.
 | |
|   if (New->isInvalidDecl()) return;
 | |
| 
 | |
|   // Allow multiple definitions for ObjC built-in typedefs.
 | |
|   // FIXME: Verify the underlying types are equivalent!
 | |
|   if (getLangOpts().ObjC1) {
 | |
|     const IdentifierInfo *TypeID = New->getIdentifier();
 | |
|     switch (TypeID->getLength()) {
 | |
|     default: break;
 | |
|     case 2:
 | |
|       {
 | |
|         if (!TypeID->isStr("id"))
 | |
|           break;
 | |
|         QualType T = New->getUnderlyingType();
 | |
|         if (!T->isPointerType())
 | |
|           break;
 | |
|         if (!T->isVoidPointerType()) {
 | |
|           QualType PT = T->getAs<PointerType>()->getPointeeType();
 | |
|           if (!PT->isStructureType())
 | |
|             break;
 | |
|         }
 | |
|         Context.setObjCIdRedefinitionType(T);
 | |
|         // Install the built-in type for 'id', ignoring the current definition.
 | |
|         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
 | |
|         return;
 | |
|       }
 | |
|     case 5:
 | |
|       if (!TypeID->isStr("Class"))
 | |
|         break;
 | |
|       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
 | |
|       // Install the built-in type for 'Class', ignoring the current definition.
 | |
|       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
 | |
|       return;
 | |
|     case 3:
 | |
|       if (!TypeID->isStr("SEL"))
 | |
|         break;
 | |
|       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
 | |
|       // Install the built-in type for 'SEL', ignoring the current definition.
 | |
|       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
 | |
|       return;
 | |
|     }
 | |
|     // Fall through - the typedef name was not a builtin type.
 | |
|   }
 | |
| 
 | |
|   // Verify the old decl was also a type.
 | |
|   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
 | |
|   if (!Old) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | |
|       << New->getDeclName();
 | |
| 
 | |
|     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
 | |
|     if (OldD->getLocation().isValid())
 | |
|       Diag(OldD->getLocation(), diag::note_previous_definition);
 | |
| 
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // If the old declaration is invalid, just give up here.
 | |
|   if (Old->isInvalidDecl())
 | |
|     return New->setInvalidDecl();
 | |
| 
 | |
|   // If the typedef types are not identical, reject them in all languages and
 | |
|   // with any extensions enabled.
 | |
|   if (isIncompatibleTypedef(Old, New))
 | |
|     return;
 | |
| 
 | |
|   // The types match.  Link up the redeclaration chain if the old
 | |
|   // declaration was a typedef.
 | |
|   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
 | |
|     New->setPreviousDeclaration(Typedef);
 | |
| 
 | |
|   mergeDeclAttributes(New, Old);
 | |
| 
 | |
|   if (getLangOpts().MicrosoftExt)
 | |
|     return;
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     // C++ [dcl.typedef]p2:
 | |
|     //   In a given non-class scope, a typedef specifier can be used to
 | |
|     //   redefine the name of any type declared in that scope to refer
 | |
|     //   to the type to which it already refers.
 | |
|     if (!isa<CXXRecordDecl>(CurContext))
 | |
|       return;
 | |
| 
 | |
|     // C++0x [dcl.typedef]p4:
 | |
|     //   In a given class scope, a typedef specifier can be used to redefine 
 | |
|     //   any class-name declared in that scope that is not also a typedef-name
 | |
|     //   to refer to the type to which it already refers.
 | |
|     //
 | |
|     // This wording came in via DR424, which was a correction to the
 | |
|     // wording in DR56, which accidentally banned code like:
 | |
|     //
 | |
|     //   struct S {
 | |
|     //     typedef struct A { } A;
 | |
|     //   };
 | |
|     //
 | |
|     // in the C++03 standard. We implement the C++0x semantics, which
 | |
|     // allow the above but disallow
 | |
|     //
 | |
|     //   struct S {
 | |
|     //     typedef int I;
 | |
|     //     typedef int I;
 | |
|     //   };
 | |
|     //
 | |
|     // since that was the intent of DR56.
 | |
|     if (!isa<TypedefNameDecl>(Old))
 | |
|       return;
 | |
| 
 | |
|     Diag(New->getLocation(), diag::err_redefinition)
 | |
|       << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Modules always permit redefinition of typedefs, as does C11.
 | |
|   if (getLangOpts().Modules || getLangOpts().C11)
 | |
|     return;
 | |
|   
 | |
|   // If we have a redefinition of a typedef in C, emit a warning.  This warning
 | |
|   // is normally mapped to an error, but can be controlled with
 | |
|   // -Wtypedef-redefinition.  If either the original or the redefinition is
 | |
|   // in a system header, don't emit this for compatibility with GCC.
 | |
|   if (getDiagnostics().getSuppressSystemWarnings() &&
 | |
|       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
 | |
|        Context.getSourceManager().isInSystemHeader(New->getLocation())))
 | |
|     return;
 | |
| 
 | |
|   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
 | |
|     << New->getDeclName();
 | |
|   Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// DeclhasAttr - returns true if decl Declaration already has the target
 | |
| /// attribute.
 | |
| static bool
 | |
| DeclHasAttr(const Decl *D, const Attr *A) {
 | |
|   // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
 | |
|   // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
 | |
|   // responsible for making sure they are consistent.
 | |
|   const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
 | |
|   if (AA)
 | |
|     return false;
 | |
| 
 | |
|   // The following thread safety attributes can also be duplicated.
 | |
|   switch (A->getKind()) {
 | |
|     case attr::ExclusiveLocksRequired:
 | |
|     case attr::SharedLocksRequired:
 | |
|     case attr::LocksExcluded:
 | |
|     case attr::ExclusiveLockFunction:
 | |
|     case attr::SharedLockFunction:
 | |
|     case attr::UnlockFunction:
 | |
|     case attr::ExclusiveTrylockFunction:
 | |
|     case attr::SharedTrylockFunction:
 | |
|     case attr::GuardedBy:
 | |
|     case attr::PtGuardedBy:
 | |
|     case attr::AcquiredBefore:
 | |
|     case attr::AcquiredAfter:
 | |
|       return false;
 | |
|     default:
 | |
|       ;
 | |
|   }
 | |
| 
 | |
|   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
 | |
|   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
 | |
|   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
 | |
|     if ((*i)->getKind() == A->getKind()) {
 | |
|       if (Ann) {
 | |
|         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
 | |
|           return true;
 | |
|         continue;
 | |
|       }
 | |
|       // FIXME: Don't hardcode this check
 | |
|       if (OA && isa<OwnershipAttr>(*i))
 | |
|         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isAttributeTargetADefinition(Decl *D) {
 | |
|   if (VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|     return VD->isThisDeclarationADefinition();
 | |
|   if (TagDecl *TD = dyn_cast<TagDecl>(D))
 | |
|     return TD->isCompleteDefinition() || TD->isBeingDefined();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Merge alignment attributes from \p Old to \p New, taking into account the
 | |
| /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
 | |
| ///
 | |
| /// \return \c true if any attributes were added to \p New.
 | |
| static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
 | |
|   // Look for alignas attributes on Old, and pick out whichever attribute
 | |
|   // specifies the strictest alignment requirement.
 | |
|   AlignedAttr *OldAlignasAttr = 0;
 | |
|   AlignedAttr *OldStrictestAlignAttr = 0;
 | |
|   unsigned OldAlign = 0;
 | |
|   for (specific_attr_iterator<AlignedAttr>
 | |
|          I = Old->specific_attr_begin<AlignedAttr>(),
 | |
|          E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
 | |
|     // FIXME: We have no way of representing inherited dependent alignments
 | |
|     // in a case like:
 | |
|     //   template<int A, int B> struct alignas(A) X;
 | |
|     //   template<int A, int B> struct alignas(B) X {};
 | |
|     // For now, we just ignore any alignas attributes which are not on the
 | |
|     // definition in such a case.
 | |
|     if (I->isAlignmentDependent())
 | |
|       return false;
 | |
| 
 | |
|     if (I->isAlignas())
 | |
|       OldAlignasAttr = *I;
 | |
| 
 | |
|     unsigned Align = I->getAlignment(S.Context);
 | |
|     if (Align > OldAlign) {
 | |
|       OldAlign = Align;
 | |
|       OldStrictestAlignAttr = *I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Look for alignas attributes on New.
 | |
|   AlignedAttr *NewAlignasAttr = 0;
 | |
|   unsigned NewAlign = 0;
 | |
|   for (specific_attr_iterator<AlignedAttr>
 | |
|          I = New->specific_attr_begin<AlignedAttr>(),
 | |
|          E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
 | |
|     if (I->isAlignmentDependent())
 | |
|       return false;
 | |
| 
 | |
|     if (I->isAlignas())
 | |
|       NewAlignasAttr = *I;
 | |
| 
 | |
|     unsigned Align = I->getAlignment(S.Context);
 | |
|     if (Align > NewAlign)
 | |
|       NewAlign = Align;
 | |
|   }
 | |
| 
 | |
|   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
 | |
|     // Both declarations have 'alignas' attributes. We require them to match.
 | |
|     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
 | |
|     // fall short. (If two declarations both have alignas, they must both match
 | |
|     // every definition, and so must match each other if there is a definition.)
 | |
| 
 | |
|     // If either declaration only contains 'alignas(0)' specifiers, then it
 | |
|     // specifies the natural alignment for the type.
 | |
|     if (OldAlign == 0 || NewAlign == 0) {
 | |
|       QualType Ty;
 | |
|       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
 | |
|         Ty = VD->getType();
 | |
|       else
 | |
|         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
 | |
| 
 | |
|       if (OldAlign == 0)
 | |
|         OldAlign = S.Context.getTypeAlign(Ty);
 | |
|       if (NewAlign == 0)
 | |
|         NewAlign = S.Context.getTypeAlign(Ty);
 | |
|     }
 | |
| 
 | |
|     if (OldAlign != NewAlign) {
 | |
|       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
 | |
|         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
 | |
|         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
 | |
|       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
 | |
|     // C++11 [dcl.align]p6:
 | |
|     //   if any declaration of an entity has an alignment-specifier,
 | |
|     //   every defining declaration of that entity shall specify an
 | |
|     //   equivalent alignment.
 | |
|     // C11 6.7.5/7:
 | |
|     //   If the definition of an object does not have an alignment
 | |
|     //   specifier, any other declaration of that object shall also
 | |
|     //   have no alignment specifier.
 | |
|     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
 | |
|       << OldAlignasAttr->isC11();
 | |
|     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
 | |
|       << OldAlignasAttr->isC11();
 | |
|   }
 | |
| 
 | |
|   bool AnyAdded = false;
 | |
| 
 | |
|   // Ensure we have an attribute representing the strictest alignment.
 | |
|   if (OldAlign > NewAlign) {
 | |
|     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
 | |
|     Clone->setInherited(true);
 | |
|     New->addAttr(Clone);
 | |
|     AnyAdded = true;
 | |
|   }
 | |
| 
 | |
|   // Ensure we have an alignas attribute if the old declaration had one.
 | |
|   if (OldAlignasAttr && !NewAlignasAttr &&
 | |
|       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
 | |
|     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
 | |
|     Clone->setInherited(true);
 | |
|     New->addAttr(Clone);
 | |
|     AnyAdded = true;
 | |
|   }
 | |
| 
 | |
|   return AnyAdded;
 | |
| }
 | |
| 
 | |
| static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
 | |
|                                bool Override) {
 | |
|   InheritableAttr *NewAttr = NULL;
 | |
|   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
 | |
|   if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
 | |
|     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
 | |
|                                       AA->getIntroduced(), AA->getDeprecated(),
 | |
|                                       AA->getObsoleted(), AA->getUnavailable(),
 | |
|                                       AA->getMessage(), Override,
 | |
|                                       AttrSpellingListIndex);
 | |
|   else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
 | |
|     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
 | |
|                                     AttrSpellingListIndex);
 | |
|   else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
 | |
|     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
 | |
|                                         AttrSpellingListIndex);
 | |
|   else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
 | |
|     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
 | |
|                                    AttrSpellingListIndex);
 | |
|   else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
 | |
|     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
 | |
|                                    AttrSpellingListIndex);
 | |
|   else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
 | |
|     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
 | |
|                                 FA->getFormatIdx(), FA->getFirstArg(),
 | |
|                                 AttrSpellingListIndex);
 | |
|   else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
 | |
|     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
 | |
|                                  AttrSpellingListIndex);
 | |
|   else if (isa<AlignedAttr>(Attr))
 | |
|     // AlignedAttrs are handled separately, because we need to handle all
 | |
|     // such attributes on a declaration at the same time.
 | |
|     NewAttr = 0;
 | |
|   else if (!DeclHasAttr(D, Attr))
 | |
|     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
 | |
| 
 | |
|   if (NewAttr) {
 | |
|     NewAttr->setInherited(true);
 | |
|     D->addAttr(NewAttr);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static const Decl *getDefinition(const Decl *D) {
 | |
|   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
 | |
|     return TD->getDefinition();
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|     return VD->getDefinition();
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     const FunctionDecl* Def;
 | |
|     if (FD->hasBody(Def))
 | |
|       return Def;
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| static bool hasAttribute(const Decl *D, attr::Kind Kind) {
 | |
|   for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
 | |
|        I != E; ++I) {
 | |
|     Attr *Attribute = *I;
 | |
|     if (Attribute->getKind() == Kind)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// checkNewAttributesAfterDef - If we already have a definition, check that
 | |
| /// there are no new attributes in this declaration.
 | |
| static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
 | |
|   if (!New->hasAttrs())
 | |
|     return;
 | |
| 
 | |
|   const Decl *Def = getDefinition(Old);
 | |
|   if (!Def || Def == New)
 | |
|     return;
 | |
| 
 | |
|   AttrVec &NewAttributes = New->getAttrs();
 | |
|   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
 | |
|     const Attr *NewAttribute = NewAttributes[I];
 | |
|     if (hasAttribute(Def, NewAttribute->getKind())) {
 | |
|       ++I;
 | |
|       continue; // regular attr merging will take care of validating this.
 | |
|     }
 | |
| 
 | |
|     if (isa<C11NoReturnAttr>(NewAttribute)) {
 | |
|       // C's _Noreturn is allowed to be added to a function after it is defined.
 | |
|       ++I;
 | |
|       continue;
 | |
|     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
 | |
|       if (AA->isAlignas()) { 
 | |
|         // C++11 [dcl.align]p6:
 | |
|         //   if any declaration of an entity has an alignment-specifier,
 | |
|         //   every defining declaration of that entity shall specify an
 | |
|         //   equivalent alignment.
 | |
|         // C11 6.7.5/7:
 | |
|         //   If the definition of an object does not have an alignment
 | |
|         //   specifier, any other declaration of that object shall also
 | |
|         //   have no alignment specifier.
 | |
|         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
 | |
|           << AA->isC11();
 | |
|         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
 | |
|           << AA->isC11();
 | |
|         NewAttributes.erase(NewAttributes.begin() + I);
 | |
|         --E;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     S.Diag(NewAttribute->getLocation(),
 | |
|            diag::warn_attribute_precede_definition);
 | |
|     S.Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|     NewAttributes.erase(NewAttributes.begin() + I);
 | |
|     --E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
 | |
| void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
 | |
|                                AvailabilityMergeKind AMK) {
 | |
|   if (!Old->hasAttrs() && !New->hasAttrs())
 | |
|     return;
 | |
| 
 | |
|   // attributes declared post-definition are currently ignored
 | |
|   checkNewAttributesAfterDef(*this, New, Old);
 | |
| 
 | |
|   if (!Old->hasAttrs())
 | |
|     return;
 | |
| 
 | |
|   bool foundAny = New->hasAttrs();
 | |
| 
 | |
|   // Ensure that any moving of objects within the allocated map is done before
 | |
|   // we process them.
 | |
|   if (!foundAny) New->setAttrs(AttrVec());
 | |
| 
 | |
|   for (specific_attr_iterator<InheritableAttr>
 | |
|          i = Old->specific_attr_begin<InheritableAttr>(),
 | |
|          e = Old->specific_attr_end<InheritableAttr>(); 
 | |
|        i != e; ++i) {
 | |
|     bool Override = false;
 | |
|     // Ignore deprecated/unavailable/availability attributes if requested.
 | |
|     if (isa<DeprecatedAttr>(*i) ||
 | |
|         isa<UnavailableAttr>(*i) ||
 | |
|         isa<AvailabilityAttr>(*i)) {
 | |
|       switch (AMK) {
 | |
|       case AMK_None:
 | |
|         continue;
 | |
| 
 | |
|       case AMK_Redeclaration:
 | |
|         break;
 | |
| 
 | |
|       case AMK_Override:
 | |
|         Override = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (mergeDeclAttribute(*this, New, *i, Override))
 | |
|       foundAny = true;
 | |
|   }
 | |
| 
 | |
|   if (mergeAlignedAttrs(*this, New, Old))
 | |
|     foundAny = true;
 | |
| 
 | |
|   if (!foundAny) New->dropAttrs();
 | |
| }
 | |
| 
 | |
| /// mergeParamDeclAttributes - Copy attributes from the old parameter
 | |
| /// to the new one.
 | |
| static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
 | |
|                                      const ParmVarDecl *oldDecl,
 | |
|                                      Sema &S) {
 | |
|   // C++11 [dcl.attr.depend]p2:
 | |
|   //   The first declaration of a function shall specify the
 | |
|   //   carries_dependency attribute for its declarator-id if any declaration
 | |
|   //   of the function specifies the carries_dependency attribute.
 | |
|   if (newDecl->hasAttr<CarriesDependencyAttr>() &&
 | |
|       !oldDecl->hasAttr<CarriesDependencyAttr>()) {
 | |
|     S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
 | |
|            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
 | |
|     // Find the first declaration of the parameter.
 | |
|     // FIXME: Should we build redeclaration chains for function parameters?
 | |
|     const FunctionDecl *FirstFD =
 | |
|       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
 | |
|     const ParmVarDecl *FirstVD =
 | |
|       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
 | |
|     S.Diag(FirstVD->getLocation(),
 | |
|            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
 | |
|   }
 | |
| 
 | |
|   if (!oldDecl->hasAttrs())
 | |
|     return;
 | |
| 
 | |
|   bool foundAny = newDecl->hasAttrs();
 | |
| 
 | |
|   // Ensure that any moving of objects within the allocated map is
 | |
|   // done before we process them.
 | |
|   if (!foundAny) newDecl->setAttrs(AttrVec());
 | |
| 
 | |
|   for (specific_attr_iterator<InheritableParamAttr>
 | |
|        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
 | |
|        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
 | |
|     if (!DeclHasAttr(newDecl, *i)) {
 | |
|       InheritableAttr *newAttr =
 | |
|         cast<InheritableParamAttr>((*i)->clone(S.Context));
 | |
|       newAttr->setInherited(true);
 | |
|       newDecl->addAttr(newAttr);
 | |
|       foundAny = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!foundAny) newDecl->dropAttrs();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Used in MergeFunctionDecl to keep track of function parameters in
 | |
| /// C.
 | |
| struct GNUCompatibleParamWarning {
 | |
|   ParmVarDecl *OldParm;
 | |
|   ParmVarDecl *NewParm;
 | |
|   QualType PromotedType;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// getSpecialMember - get the special member enum for a method.
 | |
| Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
 | |
|   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
 | |
|     if (Ctor->isDefaultConstructor())
 | |
|       return Sema::CXXDefaultConstructor;
 | |
| 
 | |
|     if (Ctor->isCopyConstructor())
 | |
|       return Sema::CXXCopyConstructor;
 | |
| 
 | |
|     if (Ctor->isMoveConstructor())
 | |
|       return Sema::CXXMoveConstructor;
 | |
|   } else if (isa<CXXDestructorDecl>(MD)) {
 | |
|     return Sema::CXXDestructor;
 | |
|   } else if (MD->isCopyAssignmentOperator()) {
 | |
|     return Sema::CXXCopyAssignment;
 | |
|   } else if (MD->isMoveAssignmentOperator()) {
 | |
|     return Sema::CXXMoveAssignment;
 | |
|   }
 | |
| 
 | |
|   return Sema::CXXInvalid;
 | |
| }
 | |
| 
 | |
| /// canRedefineFunction - checks if a function can be redefined. Currently,
 | |
| /// only extern inline functions can be redefined, and even then only in
 | |
| /// GNU89 mode.
 | |
| static bool canRedefineFunction(const FunctionDecl *FD,
 | |
|                                 const LangOptions& LangOpts) {
 | |
|   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
 | |
|           !LangOpts.CPlusPlus &&
 | |
|           FD->isInlineSpecified() &&
 | |
|           FD->getStorageClass() == SC_Extern);
 | |
| }
 | |
| 
 | |
| /// Is the given calling convention the ABI default for the given
 | |
| /// declaration?
 | |
| static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
 | |
|   CallingConv ABIDefaultCC;
 | |
|   if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
 | |
|     ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
 | |
|   } else {
 | |
|     // Free C function or a static method.
 | |
|     ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
 | |
|   }
 | |
|   return ABIDefaultCC == CC;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
 | |
|   const DeclContext *DC = Old->getDeclContext();
 | |
|   if (DC->isRecord())
 | |
|     return false;
 | |
| 
 | |
|   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
 | |
|   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
 | |
|     return true;
 | |
|   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MergeFunctionDecl - We just parsed a function 'New' from
 | |
| /// declarator D which has the same name and scope as a previous
 | |
| /// declaration 'Old'.  Figure out how to resolve this situation,
 | |
| /// merging decls or emitting diagnostics as appropriate.
 | |
| ///
 | |
| /// In C++, New and Old must be declarations that are not
 | |
| /// overloaded. Use IsOverload to determine whether New and Old are
 | |
| /// overloaded, and to select the Old declaration that New should be
 | |
| /// merged with.
 | |
| ///
 | |
| /// Returns true if there was an error, false otherwise.
 | |
| bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
 | |
|   // Verify the old decl was also a function.
 | |
|   FunctionDecl *Old = 0;
 | |
|   if (FunctionTemplateDecl *OldFunctionTemplate
 | |
|         = dyn_cast<FunctionTemplateDecl>(OldD))
 | |
|     Old = OldFunctionTemplate->getTemplatedDecl();
 | |
|   else
 | |
|     Old = dyn_cast<FunctionDecl>(OldD);
 | |
|   if (!Old) {
 | |
|     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
 | |
|       if (New->getFriendObjectKind()) {
 | |
|         Diag(New->getLocation(), diag::err_using_decl_friend);
 | |
|         Diag(Shadow->getTargetDecl()->getLocation(),
 | |
|              diag::note_using_decl_target);
 | |
|         Diag(Shadow->getUsingDecl()->getLocation(),
 | |
|              diag::note_using_decl) << 0;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
 | |
|       Diag(Shadow->getTargetDecl()->getLocation(),
 | |
|            diag::note_using_decl_target);
 | |
|       Diag(Shadow->getUsingDecl()->getLocation(),
 | |
|            diag::note_using_decl) << 0;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | |
|       << New->getDeclName();
 | |
|     Diag(OldD->getLocation(), diag::note_previous_definition);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If the old declaration is invalid, just give up here.
 | |
|   if (Old->isInvalidDecl())
 | |
|     return true;
 | |
| 
 | |
|   // Determine whether the previous declaration was a definition,
 | |
|   // implicit declaration, or a declaration.
 | |
|   diag::kind PrevDiag;
 | |
|   if (Old->isThisDeclarationADefinition())
 | |
|     PrevDiag = diag::note_previous_definition;
 | |
|   else if (Old->isImplicit())
 | |
|     PrevDiag = diag::note_previous_implicit_declaration;
 | |
|   else
 | |
|     PrevDiag = diag::note_previous_declaration;
 | |
| 
 | |
|   QualType OldQType = Context.getCanonicalType(Old->getType());
 | |
|   QualType NewQType = Context.getCanonicalType(New->getType());
 | |
| 
 | |
|   // Don't complain about this if we're in GNU89 mode and the old function
 | |
|   // is an extern inline function.
 | |
|   // Don't complain about specializations. They are not supposed to have
 | |
|   // storage classes.
 | |
|   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
 | |
|       New->getStorageClass() == SC_Static &&
 | |
|       Old->hasExternalFormalLinkage() &&
 | |
|       !New->getTemplateSpecializationInfo() &&
 | |
|       !canRedefineFunction(Old, getLangOpts())) {
 | |
|     if (getLangOpts().MicrosoftExt) {
 | |
|       Diag(New->getLocation(), diag::warn_static_non_static) << New;
 | |
|       Diag(Old->getLocation(), PrevDiag);
 | |
|     } else {
 | |
|       Diag(New->getLocation(), diag::err_static_non_static) << New;
 | |
|       Diag(Old->getLocation(), PrevDiag);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If a function is first declared with a calling convention, but is
 | |
|   // later declared or defined without one, the second decl assumes the
 | |
|   // calling convention of the first.
 | |
|   //
 | |
|   // It's OK if a function is first declared without a calling convention,
 | |
|   // but is later declared or defined with the default calling convention.
 | |
|   //
 | |
|   // For the new decl, we have to look at the NON-canonical type to tell the
 | |
|   // difference between a function that really doesn't have a calling
 | |
|   // convention and one that is declared cdecl. That's because in
 | |
|   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
 | |
|   // because it is the default calling convention.
 | |
|   //
 | |
|   // Note also that we DO NOT return at this point, because we still have
 | |
|   // other tests to run.
 | |
|   const FunctionType *OldType = cast<FunctionType>(OldQType);
 | |
|   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
 | |
|   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
 | |
|   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
 | |
|   bool RequiresAdjustment = false;
 | |
|   if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
 | |
|     // Fast path: nothing to do.
 | |
| 
 | |
|   // Inherit the CC from the previous declaration if it was specified
 | |
|   // there but not here.
 | |
|   } else if (NewTypeInfo.getCC() == CC_Default) {
 | |
|     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
 | |
|     RequiresAdjustment = true;
 | |
| 
 | |
|   // Don't complain about mismatches when the default CC is
 | |
|   // effectively the same as the explict one. Only Old decl contains correct
 | |
|   // information about storage class of CXXMethod.
 | |
|   } else if (OldTypeInfo.getCC() == CC_Default &&
 | |
|              isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
 | |
|     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
 | |
|     RequiresAdjustment = true;
 | |
| 
 | |
|   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
 | |
|                                      NewTypeInfo.getCC())) {
 | |
|     // Calling conventions really aren't compatible, so complain.
 | |
|     Diag(New->getLocation(), diag::err_cconv_change)
 | |
|       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
 | |
|       << (OldTypeInfo.getCC() == CC_Default)
 | |
|       << (OldTypeInfo.getCC() == CC_Default ? "" :
 | |
|           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
 | |
|     Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: diagnose the other way around?
 | |
|   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
 | |
|     NewTypeInfo = NewTypeInfo.withNoReturn(true);
 | |
|     RequiresAdjustment = true;
 | |
|   }
 | |
| 
 | |
|   // Merge regparm attribute.
 | |
|   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
 | |
|       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
 | |
|     if (NewTypeInfo.getHasRegParm()) {
 | |
|       Diag(New->getLocation(), diag::err_regparm_mismatch)
 | |
|         << NewType->getRegParmType()
 | |
|         << OldType->getRegParmType();
 | |
|       Diag(Old->getLocation(), diag::note_previous_declaration);      
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
 | |
|     RequiresAdjustment = true;
 | |
|   }
 | |
| 
 | |
|   // Merge ns_returns_retained attribute.
 | |
|   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
 | |
|     if (NewTypeInfo.getProducesResult()) {
 | |
|       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
 | |
|       Diag(Old->getLocation(), diag::note_previous_declaration);      
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     NewTypeInfo = NewTypeInfo.withProducesResult(true);
 | |
|     RequiresAdjustment = true;
 | |
|   }
 | |
|   
 | |
|   if (RequiresAdjustment) {
 | |
|     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
 | |
|     New->setType(QualType(NewType, 0));
 | |
|     NewQType = Context.getCanonicalType(New->getType());
 | |
|   }
 | |
| 
 | |
|   // If this redeclaration makes the function inline, we may need to add it to
 | |
|   // UndefinedButUsed.
 | |
|   if (!Old->isInlined() && New->isInlined() &&
 | |
|       !New->hasAttr<GNUInlineAttr>() &&
 | |
|       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
 | |
|       Old->isUsed(false) &&
 | |
|       !Old->isDefined() && !New->isThisDeclarationADefinition())
 | |
|     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
 | |
|                                            SourceLocation()));
 | |
| 
 | |
|   // If this redeclaration makes it newly gnu_inline, we don't want to warn
 | |
|   // about it.
 | |
|   if (New->hasAttr<GNUInlineAttr>() &&
 | |
|       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
 | |
|     UndefinedButUsed.erase(Old->getCanonicalDecl());
 | |
|   }
 | |
|   
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     // (C++98 13.1p2):
 | |
|     //   Certain function declarations cannot be overloaded:
 | |
|     //     -- Function declarations that differ only in the return type
 | |
|     //        cannot be overloaded.
 | |
| 
 | |
|     // Go back to the type source info to compare the declared return types,
 | |
|     // per C++1y [dcl.type.auto]p??:
 | |
|     //   Redeclarations or specializations of a function or function template
 | |
|     //   with a declared return type that uses a placeholder type shall also
 | |
|     //   use that placeholder, not a deduced type.
 | |
|     QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
 | |
|       ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
 | |
|       : OldType)->getResultType();
 | |
|     QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
 | |
|       ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
 | |
|       : NewType)->getResultType();
 | |
|     QualType ResQT;
 | |
|     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
 | |
|       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
 | |
|           OldDeclaredReturnType->isObjCObjectPointerType())
 | |
|         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
 | |
|       if (ResQT.isNull()) {
 | |
|         if (New->isCXXClassMember() && New->isOutOfLine())
 | |
|           Diag(New->getLocation(),
 | |
|                diag::err_member_def_does_not_match_ret_type) << New;
 | |
|         else
 | |
|           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
 | |
|         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | |
|         return true;
 | |
|       }
 | |
|       else
 | |
|         NewQType = ResQT;
 | |
|     }
 | |
| 
 | |
|     QualType OldReturnType = OldType->getResultType();
 | |
|     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
 | |
|     if (OldReturnType != NewReturnType) {
 | |
|       // If this function has a deduced return type and has already been
 | |
|       // defined, copy the deduced value from the old declaration.
 | |
|       AutoType *OldAT = Old->getResultType()->getContainedAutoType();
 | |
|       if (OldAT && OldAT->isDeduced()) {
 | |
|         New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
 | |
|         NewQType = Context.getCanonicalType(
 | |
|             SubstAutoType(NewQType, OldAT->getDeducedType()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
 | |
|     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
 | |
|     if (OldMethod && NewMethod) {
 | |
|       // Preserve triviality.
 | |
|       NewMethod->setTrivial(OldMethod->isTrivial());
 | |
| 
 | |
|       // MSVC allows explicit template specialization at class scope:
 | |
|       // 2 CXMethodDecls referring to the same function will be injected.
 | |
|       // We don't want a redeclartion error.
 | |
|       bool IsClassScopeExplicitSpecialization =
 | |
|                               OldMethod->isFunctionTemplateSpecialization() &&
 | |
|                               NewMethod->isFunctionTemplateSpecialization();
 | |
|       bool isFriend = NewMethod->getFriendObjectKind();
 | |
| 
 | |
|       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
 | |
|           !IsClassScopeExplicitSpecialization) {
 | |
|         //    -- Member function declarations with the same name and the
 | |
|         //       same parameter types cannot be overloaded if any of them
 | |
|         //       is a static member function declaration.
 | |
|         if (OldMethod->isStatic() != NewMethod->isStatic()) {
 | |
|           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
 | |
|           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         // C++ [class.mem]p1:
 | |
|         //   [...] A member shall not be declared twice in the
 | |
|         //   member-specification, except that a nested class or member
 | |
|         //   class template can be declared and then later defined.
 | |
|         if (ActiveTemplateInstantiations.empty()) {
 | |
|           unsigned NewDiag;
 | |
|           if (isa<CXXConstructorDecl>(OldMethod))
 | |
|             NewDiag = diag::err_constructor_redeclared;
 | |
|           else if (isa<CXXDestructorDecl>(NewMethod))
 | |
|             NewDiag = diag::err_destructor_redeclared;
 | |
|           else if (isa<CXXConversionDecl>(NewMethod))
 | |
|             NewDiag = diag::err_conv_function_redeclared;
 | |
|           else
 | |
|             NewDiag = diag::err_member_redeclared;
 | |
| 
 | |
|           Diag(New->getLocation(), NewDiag);
 | |
|         } else {
 | |
|           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
 | |
|             << New << New->getType();
 | |
|         }
 | |
|         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | |
| 
 | |
|       // Complain if this is an explicit declaration of a special
 | |
|       // member that was initially declared implicitly.
 | |
|       //
 | |
|       // As an exception, it's okay to befriend such methods in order
 | |
|       // to permit the implicit constructor/destructor/operator calls.
 | |
|       } else if (OldMethod->isImplicit()) {
 | |
|         if (isFriend) {
 | |
|           NewMethod->setImplicit();
 | |
|         } else {
 | |
|           Diag(NewMethod->getLocation(),
 | |
|                diag::err_definition_of_implicitly_declared_member) 
 | |
|             << New << getSpecialMember(OldMethod);
 | |
|           return true;
 | |
|         }
 | |
|       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
 | |
|         Diag(NewMethod->getLocation(),
 | |
|              diag::err_definition_of_explicitly_defaulted_member)
 | |
|           << getSpecialMember(OldMethod);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // C++11 [dcl.attr.noreturn]p1:
 | |
|     //   The first declaration of a function shall specify the noreturn
 | |
|     //   attribute if any declaration of that function specifies the noreturn
 | |
|     //   attribute.
 | |
|     if (New->hasAttr<CXX11NoReturnAttr>() &&
 | |
|         !Old->hasAttr<CXX11NoReturnAttr>()) {
 | |
|       Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
 | |
|            diag::err_noreturn_missing_on_first_decl);
 | |
|       Diag(Old->getFirstDeclaration()->getLocation(),
 | |
|            diag::note_noreturn_missing_first_decl);
 | |
|     }
 | |
| 
 | |
|     // C++11 [dcl.attr.depend]p2:
 | |
|     //   The first declaration of a function shall specify the
 | |
|     //   carries_dependency attribute for its declarator-id if any declaration
 | |
|     //   of the function specifies the carries_dependency attribute.
 | |
|     if (New->hasAttr<CarriesDependencyAttr>() &&
 | |
|         !Old->hasAttr<CarriesDependencyAttr>()) {
 | |
|       Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
 | |
|            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
 | |
|       Diag(Old->getFirstDeclaration()->getLocation(),
 | |
|            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
 | |
|     }
 | |
| 
 | |
|     // (C++98 8.3.5p3):
 | |
|     //   All declarations for a function shall agree exactly in both the
 | |
|     //   return type and the parameter-type-list.
 | |
|     // We also want to respect all the extended bits except noreturn.
 | |
| 
 | |
|     // noreturn should now match unless the old type info didn't have it.
 | |
|     QualType OldQTypeForComparison = OldQType;
 | |
|     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
 | |
|       assert(OldQType == QualType(OldType, 0));
 | |
|       const FunctionType *OldTypeForComparison
 | |
|         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
 | |
|       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
 | |
|       assert(OldQTypeForComparison.isCanonical());
 | |
|     }
 | |
| 
 | |
|     if (haveIncompatibleLanguageLinkages(Old, New)) {
 | |
|       Diag(New->getLocation(), diag::err_different_language_linkage) << New;
 | |
|       Diag(Old->getLocation(), PrevDiag);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (OldQTypeForComparison == NewQType)
 | |
|       return MergeCompatibleFunctionDecls(New, Old, S);
 | |
| 
 | |
|     // Fall through for conflicting redeclarations and redefinitions.
 | |
|   }
 | |
| 
 | |
|   // C: Function types need to be compatible, not identical. This handles
 | |
|   // duplicate function decls like "void f(int); void f(enum X);" properly.
 | |
|   if (!getLangOpts().CPlusPlus &&
 | |
|       Context.typesAreCompatible(OldQType, NewQType)) {
 | |
|     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
 | |
|     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
 | |
|     const FunctionProtoType *OldProto = 0;
 | |
|     if (isa<FunctionNoProtoType>(NewFuncType) &&
 | |
|         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
 | |
|       // The old declaration provided a function prototype, but the
 | |
|       // new declaration does not. Merge in the prototype.
 | |
|       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
 | |
|       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
 | |
|                                                  OldProto->arg_type_end());
 | |
|       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
 | |
|                                          ParamTypes,
 | |
|                                          OldProto->getExtProtoInfo());
 | |
|       New->setType(NewQType);
 | |
|       New->setHasInheritedPrototype();
 | |
| 
 | |
|       // Synthesize a parameter for each argument type.
 | |
|       SmallVector<ParmVarDecl*, 16> Params;
 | |
|       for (FunctionProtoType::arg_type_iterator
 | |
|              ParamType = OldProto->arg_type_begin(),
 | |
|              ParamEnd = OldProto->arg_type_end();
 | |
|            ParamType != ParamEnd; ++ParamType) {
 | |
|         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
 | |
|                                                  SourceLocation(),
 | |
|                                                  SourceLocation(), 0,
 | |
|                                                  *ParamType, /*TInfo=*/0,
 | |
|                                                  SC_None,
 | |
|                                                  0);
 | |
|         Param->setScopeInfo(0, Params.size());
 | |
|         Param->setImplicit();
 | |
|         Params.push_back(Param);
 | |
|       }
 | |
| 
 | |
|       New->setParams(Params);
 | |
|     }
 | |
| 
 | |
|     return MergeCompatibleFunctionDecls(New, Old, S);
 | |
|   }
 | |
| 
 | |
|   // GNU C permits a K&R definition to follow a prototype declaration
 | |
|   // if the declared types of the parameters in the K&R definition
 | |
|   // match the types in the prototype declaration, even when the
 | |
|   // promoted types of the parameters from the K&R definition differ
 | |
|   // from the types in the prototype. GCC then keeps the types from
 | |
|   // the prototype.
 | |
|   //
 | |
|   // If a variadic prototype is followed by a non-variadic K&R definition,
 | |
|   // the K&R definition becomes variadic.  This is sort of an edge case, but
 | |
|   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
 | |
|   // C99 6.9.1p8.
 | |
|   if (!getLangOpts().CPlusPlus &&
 | |
|       Old->hasPrototype() && !New->hasPrototype() &&
 | |
|       New->getType()->getAs<FunctionProtoType>() &&
 | |
|       Old->getNumParams() == New->getNumParams()) {
 | |
|     SmallVector<QualType, 16> ArgTypes;
 | |
|     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
 | |
|     const FunctionProtoType *OldProto
 | |
|       = Old->getType()->getAs<FunctionProtoType>();
 | |
|     const FunctionProtoType *NewProto
 | |
|       = New->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|     // Determine whether this is the GNU C extension.
 | |
|     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
 | |
|                                                NewProto->getResultType());
 | |
|     bool LooseCompatible = !MergedReturn.isNull();
 | |
|     for (unsigned Idx = 0, End = Old->getNumParams();
 | |
|          LooseCompatible && Idx != End; ++Idx) {
 | |
|       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
 | |
|       ParmVarDecl *NewParm = New->getParamDecl(Idx);
 | |
|       if (Context.typesAreCompatible(OldParm->getType(),
 | |
|                                      NewProto->getArgType(Idx))) {
 | |
|         ArgTypes.push_back(NewParm->getType());
 | |
|       } else if (Context.typesAreCompatible(OldParm->getType(),
 | |
|                                             NewParm->getType(),
 | |
|                                             /*CompareUnqualified=*/true)) {
 | |
|         GNUCompatibleParamWarning Warn
 | |
|           = { OldParm, NewParm, NewProto->getArgType(Idx) };
 | |
|         Warnings.push_back(Warn);
 | |
|         ArgTypes.push_back(NewParm->getType());
 | |
|       } else
 | |
|         LooseCompatible = false;
 | |
|     }
 | |
| 
 | |
|     if (LooseCompatible) {
 | |
|       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
 | |
|         Diag(Warnings[Warn].NewParm->getLocation(),
 | |
|              diag::ext_param_promoted_not_compatible_with_prototype)
 | |
|           << Warnings[Warn].PromotedType
 | |
|           << Warnings[Warn].OldParm->getType();
 | |
|         if (Warnings[Warn].OldParm->getLocation().isValid())
 | |
|           Diag(Warnings[Warn].OldParm->getLocation(),
 | |
|                diag::note_previous_declaration);
 | |
|       }
 | |
| 
 | |
|       New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
 | |
|                                            OldProto->getExtProtoInfo()));
 | |
|       return MergeCompatibleFunctionDecls(New, Old, S);
 | |
|     }
 | |
| 
 | |
|     // Fall through to diagnose conflicting types.
 | |
|   }
 | |
| 
 | |
|   // A function that has already been declared has been redeclared or
 | |
|   // defined with a different type; show an appropriate diagnostic.
 | |
| 
 | |
|   // If the previous declaration was an implicitly-generated builtin
 | |
|   // declaration, then at the very least we should use a specialized note.
 | |
|   unsigned BuiltinID;
 | |
|   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
 | |
|     // If it's actually a library-defined builtin function like 'malloc'
 | |
|     // or 'printf', just warn about the incompatible redeclaration.
 | |
|     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
 | |
|       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
 | |
|       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
 | |
|         << Old << Old->getType();
 | |
| 
 | |
|       // If this is a global redeclaration, just forget hereafter
 | |
|       // about the "builtin-ness" of the function.
 | |
|       //
 | |
|       // Doing this for local extern declarations is problematic.  If
 | |
|       // the builtin declaration remains visible, a second invalid
 | |
|       // local declaration will produce a hard error; if it doesn't
 | |
|       // remain visible, a single bogus local redeclaration (which is
 | |
|       // actually only a warning) could break all the downstream code.
 | |
|       if (!New->getDeclContext()->isFunctionOrMethod())
 | |
|         New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     PrevDiag = diag::note_previous_builtin_declaration;
 | |
|   }
 | |
| 
 | |
|   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
 | |
|   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Completes the merge of two function declarations that are
 | |
| /// known to be compatible.
 | |
| ///
 | |
| /// This routine handles the merging of attributes and other
 | |
| /// properties of function declarations form the old declaration to
 | |
| /// the new declaration, once we know that New is in fact a
 | |
| /// redeclaration of Old.
 | |
| ///
 | |
| /// \returns false
 | |
| bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
 | |
|                                         Scope *S) {
 | |
|   // Merge the attributes
 | |
|   mergeDeclAttributes(New, Old);
 | |
| 
 | |
|   // Merge "pure" flag.
 | |
|   if (Old->isPure())
 | |
|     New->setPure();
 | |
| 
 | |
|   // Merge "used" flag.
 | |
|   if (Old->isUsed(false))
 | |
|     New->setUsed();
 | |
| 
 | |
|   // Merge attributes from the parameters.  These can mismatch with K&R
 | |
|   // declarations.
 | |
|   if (New->getNumParams() == Old->getNumParams())
 | |
|     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
 | |
|       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
 | |
|                                *this);
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus)
 | |
|     return MergeCXXFunctionDecl(New, Old, S);
 | |
| 
 | |
|   // Merge the function types so the we get the composite types for the return
 | |
|   // and argument types.
 | |
|   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
 | |
|   if (!Merged.isNull())
 | |
|     New->setType(Merged);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
 | |
|                                 ObjCMethodDecl *oldMethod) {
 | |
| 
 | |
|   // Merge the attributes, including deprecated/unavailable
 | |
|   AvailabilityMergeKind MergeKind =
 | |
|     isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
 | |
|                                                    : AMK_Override;
 | |
|   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
 | |
| 
 | |
|   // Merge attributes from the parameters.
 | |
|   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
 | |
|                                        oe = oldMethod->param_end();
 | |
|   for (ObjCMethodDecl::param_iterator
 | |
|          ni = newMethod->param_begin(), ne = newMethod->param_end();
 | |
|        ni != ne && oi != oe; ++ni, ++oi)
 | |
|     mergeParamDeclAttributes(*ni, *oi, *this);
 | |
| 
 | |
|   CheckObjCMethodOverride(newMethod, oldMethod);
 | |
| }
 | |
| 
 | |
| /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
 | |
| /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
 | |
| /// emitting diagnostics as appropriate.
 | |
| ///
 | |
| /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
 | |
| /// to here in AddInitializerToDecl. We can't check them before the initializer
 | |
| /// is attached.
 | |
| void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
 | |
|   if (New->isInvalidDecl() || Old->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   QualType MergedT;
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     if (New->getType()->isUndeducedType()) {
 | |
|       // We don't know what the new type is until the initializer is attached.
 | |
|       return;
 | |
|     } else if (Context.hasSameType(New->getType(), Old->getType())) {
 | |
|       // These could still be something that needs exception specs checked.
 | |
|       return MergeVarDeclExceptionSpecs(New, Old);
 | |
|     }
 | |
|     // C++ [basic.link]p10:
 | |
|     //   [...] the types specified by all declarations referring to a given
 | |
|     //   object or function shall be identical, except that declarations for an
 | |
|     //   array object can specify array types that differ by the presence or
 | |
|     //   absence of a major array bound (8.3.4).
 | |
|     else if (Old->getType()->isIncompleteArrayType() &&
 | |
|              New->getType()->isArrayType()) {
 | |
|       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
 | |
|       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
 | |
|       if (Context.hasSameType(OldArray->getElementType(),
 | |
|                               NewArray->getElementType()))
 | |
|         MergedT = New->getType();
 | |
|     } else if (Old->getType()->isArrayType() &&
 | |
|              New->getType()->isIncompleteArrayType()) {
 | |
|       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
 | |
|       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
 | |
|       if (Context.hasSameType(OldArray->getElementType(),
 | |
|                               NewArray->getElementType()))
 | |
|         MergedT = Old->getType();
 | |
|     } else if (New->getType()->isObjCObjectPointerType()
 | |
|                && Old->getType()->isObjCObjectPointerType()) {
 | |
|         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
 | |
|                                                         Old->getType());
 | |
|     }
 | |
|   } else {
 | |
|     MergedT = Context.mergeTypes(New->getType(), Old->getType());
 | |
|   }
 | |
|   if (MergedT.isNull()) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_type)
 | |
|       << New->getDeclName() << New->getType() << Old->getType();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Don't actually update the type on the new declaration if the old
 | |
|   // declaration was a extern declaration in a different scope.
 | |
|   if (!OldWasHidden)
 | |
|     New->setType(MergedT);
 | |
| }
 | |
| 
 | |
| /// MergeVarDecl - We just parsed a variable 'New' which has the same name
 | |
| /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
 | |
| /// situation, merging decls or emitting diagnostics as appropriate.
 | |
| ///
 | |
| /// Tentative definition rules (C99 6.9.2p2) are checked by
 | |
| /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
 | |
| /// definitions here, since the initializer hasn't been attached.
 | |
| ///
 | |
| void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
 | |
|                         bool PreviousWasHidden) {
 | |
|   // If the new decl is already invalid, don't do any other checking.
 | |
|   if (New->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   // Verify the old decl was also a variable.
 | |
|   VarDecl *Old = 0;
 | |
|   if (!Previous.isSingleResult() ||
 | |
|       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | |
|       << New->getDeclName();
 | |
|     Diag(Previous.getRepresentativeDecl()->getLocation(),
 | |
|          diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (!shouldLinkPossiblyHiddenDecl(Old, New))
 | |
|     return;
 | |
| 
 | |
|   // C++ [class.mem]p1:
 | |
|   //   A member shall not be declared twice in the member-specification [...]
 | |
|   // 
 | |
|   // Here, we need only consider static data members.
 | |
|   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
 | |
|     Diag(New->getLocation(), diag::err_duplicate_member) 
 | |
|       << New->getIdentifier();
 | |
|     Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     New->setInvalidDecl();
 | |
|   }
 | |
|   
 | |
|   mergeDeclAttributes(New, Old);
 | |
|   // Warn if an already-declared variable is made a weak_import in a subsequent 
 | |
|   // declaration
 | |
|   if (New->getAttr<WeakImportAttr>() &&
 | |
|       Old->getStorageClass() == SC_None &&
 | |
|       !Old->getAttr<WeakImportAttr>()) {
 | |
|     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     // Remove weak_import attribute on new declaration.
 | |
|     New->dropAttr<WeakImportAttr>();
 | |
|   }
 | |
| 
 | |
|   // Merge the types.
 | |
|   MergeVarDeclTypes(New, Old, PreviousWasHidden);
 | |
|   if (New->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
 | |
|   if (New->getStorageClass() == SC_Static &&
 | |
|       !New->isStaticDataMember() &&
 | |
|       Old->hasExternalFormalLinkage()) {
 | |
|     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
|   // C99 6.2.2p4:
 | |
|   //   For an identifier declared with the storage-class specifier
 | |
|   //   extern in a scope in which a prior declaration of that
 | |
|   //   identifier is visible,23) if the prior declaration specifies
 | |
|   //   internal or external linkage, the linkage of the identifier at
 | |
|   //   the later declaration is the same as the linkage specified at
 | |
|   //   the prior declaration. If no prior declaration is visible, or
 | |
|   //   if the prior declaration specifies no linkage, then the
 | |
|   //   identifier has external linkage.
 | |
|   if (New->hasExternalStorage() && Old->hasLinkage())
 | |
|     /* Okay */;
 | |
|   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
 | |
|            !New->isStaticDataMember() &&
 | |
|            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
 | |
|     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Check if extern is followed by non-extern and vice-versa.
 | |
|   if (New->hasExternalStorage() &&
 | |
|       !Old->hasLinkage() && Old->isLocalVarDecl()) {
 | |
|     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
|   if (Old->hasLinkage() && New->isLocalVarDecl() &&
 | |
|       !New->hasExternalStorage()) {
 | |
|     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
 | |
| 
 | |
|   // FIXME: The test for external storage here seems wrong? We still
 | |
|   // need to check for mismatches.
 | |
|   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
 | |
|       // Don't complain about out-of-line definitions of static members.
 | |
|       !(Old->getLexicalDeclContext()->isRecord() &&
 | |
|         !New->getLexicalDeclContext()->isRecord())) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (New->getTLSKind() != Old->getTLSKind()) {
 | |
|     if (!Old->getTLSKind()) {
 | |
|       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
 | |
|       Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     } else if (!New->getTLSKind()) {
 | |
|       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
 | |
|       Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     } else {
 | |
|       // Do not allow redeclaration to change the variable between requiring
 | |
|       // static and dynamic initialization.
 | |
|       // FIXME: GCC allows this, but uses the TLS keyword on the first
 | |
|       // declaration to determine the kind. Do we need to be compatible here?
 | |
|       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
 | |
|         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
 | |
|       Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ doesn't have tentative definitions, so go right ahead and check here.
 | |
|   const VarDecl *Def;
 | |
|   if (getLangOpts().CPlusPlus &&
 | |
|       New->isThisDeclarationADefinition() == VarDecl::Definition &&
 | |
|       (Def = Old->getDefinition())) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition) << New;
 | |
|     Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|     New->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (haveIncompatibleLanguageLinkages(Old, New)) {
 | |
|     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     New->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Merge "used" flag.
 | |
|   if (Old->isUsed(false))
 | |
|     New->setUsed();
 | |
| 
 | |
|   // Keep a chain of previous declarations.
 | |
|   New->setPreviousDeclaration(Old);
 | |
| 
 | |
|   // Inherit access appropriately.
 | |
|   New->setAccess(Old->getAccess());
 | |
| }
 | |
| 
 | |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
 | |
| /// no declarator (e.g. "struct foo;") is parsed.
 | |
| Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
 | |
|                                        DeclSpec &DS) {
 | |
|   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
 | |
| }
 | |
| 
 | |
| static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
 | |
|   if (isa<CXXRecordDecl>(Tag->getParent())) {
 | |
|     // If this tag is the direct child of a class, number it if
 | |
|     // it is anonymous.
 | |
|     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
 | |
|       return;
 | |
|     MangleNumberingContext &MCtx =
 | |
|         S.Context.getManglingNumberContext(Tag->getParent());
 | |
|     S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this tag isn't a direct child of a class, number it if it is local.
 | |
|   Decl *ManglingContextDecl;
 | |
|   if (MangleNumberingContext *MCtx =
 | |
|           S.getCurrentMangleNumberContext(Tag->getDeclContext(),
 | |
|                                           ManglingContextDecl)) {
 | |
|     S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
 | |
| /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
 | |
| /// parameters to cope with template friend declarations.
 | |
| Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
 | |
|                                        DeclSpec &DS,
 | |
|                                        MultiTemplateParamsArg TemplateParams,
 | |
|                                        bool IsExplicitInstantiation) {
 | |
|   Decl *TagD = 0;
 | |
|   TagDecl *Tag = 0;
 | |
|   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
 | |
|       DS.getTypeSpecType() == DeclSpec::TST_struct ||
 | |
|       DS.getTypeSpecType() == DeclSpec::TST_interface ||
 | |
|       DS.getTypeSpecType() == DeclSpec::TST_union ||
 | |
|       DS.getTypeSpecType() == DeclSpec::TST_enum) {
 | |
|     TagD = DS.getRepAsDecl();
 | |
| 
 | |
|     if (!TagD) // We probably had an error
 | |
|       return 0;
 | |
| 
 | |
|     // Note that the above type specs guarantee that the
 | |
|     // type rep is a Decl, whereas in many of the others
 | |
|     // it's a Type.
 | |
|     if (isa<TagDecl>(TagD))
 | |
|       Tag = cast<TagDecl>(TagD);
 | |
|     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
 | |
|       Tag = CTD->getTemplatedDecl();
 | |
|   }
 | |
| 
 | |
|   if (Tag) {
 | |
|     HandleTagNumbering(*this, Tag);
 | |
|     Tag->setFreeStanding();
 | |
|     if (Tag->isInvalidDecl())
 | |
|       return Tag;
 | |
|   }
 | |
| 
 | |
|   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
 | |
|     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
 | |
|     // or incomplete types shall not be restrict-qualified."
 | |
|     if (TypeQuals & DeclSpec::TQ_restrict)
 | |
|       Diag(DS.getRestrictSpecLoc(),
 | |
|            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
 | |
|            << DS.getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (DS.isConstexprSpecified()) {
 | |
|     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
 | |
|     // and definitions of functions and variables.
 | |
|     if (Tag)
 | |
|       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
 | |
|         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
 | |
|             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
 | |
|             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
 | |
|             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
 | |
|     else
 | |
|       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
 | |
|     // Don't emit warnings after this error.
 | |
|     return TagD;
 | |
|   }
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(DS);
 | |
| 
 | |
|   if (DS.isFriendSpecified()) {
 | |
|     // If we're dealing with a decl but not a TagDecl, assume that
 | |
|     // whatever routines created it handled the friendship aspect.
 | |
|     if (TagD && !Tag)
 | |
|       return 0;
 | |
|     return ActOnFriendTypeDecl(S, DS, TemplateParams);
 | |
|   }
 | |
| 
 | |
|   CXXScopeSpec &SS = DS.getTypeSpecScope();
 | |
|   bool IsExplicitSpecialization =
 | |
|     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
 | |
|   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
 | |
|       !IsExplicitInstantiation && !IsExplicitSpecialization) {
 | |
|     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
 | |
|     // nested-name-specifier unless it is an explicit instantiation
 | |
|     // or an explicit specialization.
 | |
|     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
 | |
|     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
 | |
|       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
 | |
|           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
 | |
|           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
 | |
|           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
 | |
|       << SS.getRange();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Track whether this decl-specifier declares anything.
 | |
|   bool DeclaresAnything = true;
 | |
| 
 | |
|   // Handle anonymous struct definitions.
 | |
|   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
 | |
|     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
 | |
|         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
 | |
|       if (getLangOpts().CPlusPlus ||
 | |
|           Record->getDeclContext()->isRecord())
 | |
|         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
 | |
| 
 | |
|       DeclaresAnything = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for Microsoft C extension: anonymous struct member.
 | |
|   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
 | |
|       CurContext->isRecord() &&
 | |
|       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
 | |
|     // Handle 2 kinds of anonymous struct:
 | |
|     //   struct STRUCT;
 | |
|     // and
 | |
|     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
 | |
|     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
 | |
|     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
 | |
|         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
 | |
|          DS.getRepAsType().get()->isStructureType())) {
 | |
|       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
 | |
|         << DS.getSourceRange();
 | |
|       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Skip all the checks below if we have a type error.
 | |
|   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
 | |
|       (TagD && TagD->isInvalidDecl()))
 | |
|     return TagD;
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus &&
 | |
|       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
 | |
|     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
 | |
|       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
 | |
|           !Enum->getIdentifier() && !Enum->isInvalidDecl())
 | |
|         DeclaresAnything = false;
 | |
| 
 | |
|   if (!DS.isMissingDeclaratorOk()) {
 | |
|     // Customize diagnostic for a typedef missing a name.
 | |
|     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
 | |
|       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
 | |
|         << DS.getSourceRange();
 | |
|     else
 | |
|       DeclaresAnything = false;
 | |
|   }
 | |
| 
 | |
|   if (DS.isModulePrivateSpecified() &&
 | |
|       Tag && Tag->getDeclContext()->isFunctionOrMethod())
 | |
|     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
 | |
|       << Tag->getTagKind()
 | |
|       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
 | |
| 
 | |
|   ActOnDocumentableDecl(TagD);
 | |
| 
 | |
|   // C 6.7/2:
 | |
|   //   A declaration [...] shall declare at least a declarator [...], a tag,
 | |
|   //   or the members of an enumeration.
 | |
|   // C++ [dcl.dcl]p3:
 | |
|   //   [If there are no declarators], and except for the declaration of an
 | |
|   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
 | |
|   //   names into the program, or shall redeclare a name introduced by a
 | |
|   //   previous declaration.
 | |
|   if (!DeclaresAnything) {
 | |
|     // In C, we allow this as a (popular) extension / bug. Don't bother
 | |
|     // producing further diagnostics for redundant qualifiers after this.
 | |
|     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
 | |
|     return TagD;
 | |
|   }
 | |
| 
 | |
|   // C++ [dcl.stc]p1:
 | |
|   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
 | |
|   //   init-declarator-list of the declaration shall not be empty.
 | |
|   // C++ [dcl.fct.spec]p1:
 | |
|   //   If a cv-qualifier appears in a decl-specifier-seq, the
 | |
|   //   init-declarator-list of the declaration shall not be empty.
 | |
|   //
 | |
|   // Spurious qualifiers here appear to be valid in C.
 | |
|   unsigned DiagID = diag::warn_standalone_specifier;
 | |
|   if (getLangOpts().CPlusPlus)
 | |
|     DiagID = diag::ext_standalone_specifier;
 | |
| 
 | |
|   // Note that a linkage-specification sets a storage class, but
 | |
|   // 'extern "C" struct foo;' is actually valid and not theoretically
 | |
|   // useless.
 | |
|   if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
 | |
|     if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
 | |
|       Diag(DS.getStorageClassSpecLoc(), DiagID)
 | |
|         << DeclSpec::getSpecifierName(SCS);
 | |
| 
 | |
|   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
 | |
|     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
 | |
|       << DeclSpec::getSpecifierName(TSCS);
 | |
|   if (DS.getTypeQualifiers()) {
 | |
|     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
 | |
|       Diag(DS.getConstSpecLoc(), DiagID) << "const";
 | |
|     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
 | |
|       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
 | |
|     // Restrict is covered above.
 | |
|     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
 | |
|       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
 | |
|   }
 | |
| 
 | |
|   // Warn about ignored type attributes, for example:
 | |
|   // __attribute__((aligned)) struct A;
 | |
|   // Attributes should be placed after tag to apply to type declaration.
 | |
|   if (!DS.getAttributes().empty()) {
 | |
|     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
 | |
|     if (TypeSpecType == DeclSpec::TST_class ||
 | |
|         TypeSpecType == DeclSpec::TST_struct ||
 | |
|         TypeSpecType == DeclSpec::TST_interface ||
 | |
|         TypeSpecType == DeclSpec::TST_union ||
 | |
|         TypeSpecType == DeclSpec::TST_enum) {
 | |
|       AttributeList* attrs = DS.getAttributes().getList();
 | |
|       while (attrs) {
 | |
|         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
 | |
|         << attrs->getName()
 | |
|         << (TypeSpecType == DeclSpec::TST_class ? 0 :
 | |
|             TypeSpecType == DeclSpec::TST_struct ? 1 :
 | |
|             TypeSpecType == DeclSpec::TST_union ? 2 :
 | |
|             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
 | |
|         attrs = attrs->getNext();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TagD;
 | |
| }
 | |
| 
 | |
| /// We are trying to inject an anonymous member into the given scope;
 | |
| /// check if there's an existing declaration that can't be overloaded.
 | |
| ///
 | |
| /// \return true if this is a forbidden redeclaration
 | |
| static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
 | |
|                                          Scope *S,
 | |
|                                          DeclContext *Owner,
 | |
|                                          DeclarationName Name,
 | |
|                                          SourceLocation NameLoc,
 | |
|                                          unsigned diagnostic) {
 | |
|   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
 | |
|                  Sema::ForRedeclaration);
 | |
|   if (!SemaRef.LookupName(R, S)) return false;
 | |
| 
 | |
|   if (R.getAsSingle<TagDecl>())
 | |
|     return false;
 | |
| 
 | |
|   // Pick a representative declaration.
 | |
|   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
 | |
|   assert(PrevDecl && "Expected a non-null Decl");
 | |
| 
 | |
|   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
 | |
|     return false;
 | |
| 
 | |
|   SemaRef.Diag(NameLoc, diagnostic) << Name;
 | |
|   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// InjectAnonymousStructOrUnionMembers - Inject the members of the
 | |
| /// anonymous struct or union AnonRecord into the owning context Owner
 | |
| /// and scope S. This routine will be invoked just after we realize
 | |
| /// that an unnamed union or struct is actually an anonymous union or
 | |
| /// struct, e.g.,
 | |
| ///
 | |
| /// @code
 | |
| /// union {
 | |
| ///   int i;
 | |
| ///   float f;
 | |
| /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
 | |
| ///    // f into the surrounding scope.x
 | |
| /// @endcode
 | |
| ///
 | |
| /// This routine is recursive, injecting the names of nested anonymous
 | |
| /// structs/unions into the owning context and scope as well.
 | |
| static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
 | |
|                                          DeclContext *Owner,
 | |
|                                          RecordDecl *AnonRecord,
 | |
|                                          AccessSpecifier AS,
 | |
|                                          SmallVectorImpl<NamedDecl *> &Chaining,
 | |
|                                          bool MSAnonStruct) {
 | |
|   unsigned diagKind
 | |
|     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
 | |
|                             : diag::err_anonymous_struct_member_redecl;
 | |
| 
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // Look every FieldDecl and IndirectFieldDecl with a name.
 | |
|   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
 | |
|                                DEnd = AnonRecord->decls_end();
 | |
|        D != DEnd; ++D) {
 | |
|     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
 | |
|         cast<NamedDecl>(*D)->getDeclName()) {
 | |
|       ValueDecl *VD = cast<ValueDecl>(*D);
 | |
|       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
 | |
|                                        VD->getLocation(), diagKind)) {
 | |
|         // C++ [class.union]p2:
 | |
|         //   The names of the members of an anonymous union shall be
 | |
|         //   distinct from the names of any other entity in the
 | |
|         //   scope in which the anonymous union is declared.
 | |
|         Invalid = true;
 | |
|       } else {
 | |
|         // C++ [class.union]p2:
 | |
|         //   For the purpose of name lookup, after the anonymous union
 | |
|         //   definition, the members of the anonymous union are
 | |
|         //   considered to have been defined in the scope in which the
 | |
|         //   anonymous union is declared.
 | |
|         unsigned OldChainingSize = Chaining.size();
 | |
|         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
 | |
|           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
 | |
|                PE = IF->chain_end(); PI != PE; ++PI)
 | |
|             Chaining.push_back(*PI);
 | |
|         else
 | |
|           Chaining.push_back(VD);
 | |
| 
 | |
|         assert(Chaining.size() >= 2);
 | |
|         NamedDecl **NamedChain =
 | |
|           new (SemaRef.Context)NamedDecl*[Chaining.size()];
 | |
|         for (unsigned i = 0; i < Chaining.size(); i++)
 | |
|           NamedChain[i] = Chaining[i];
 | |
| 
 | |
|         IndirectFieldDecl* IndirectField =
 | |
|           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
 | |
|                                     VD->getIdentifier(), VD->getType(),
 | |
|                                     NamedChain, Chaining.size());
 | |
| 
 | |
|         IndirectField->setAccess(AS);
 | |
|         IndirectField->setImplicit();
 | |
|         SemaRef.PushOnScopeChains(IndirectField, S);
 | |
| 
 | |
|         // That includes picking up the appropriate access specifier.
 | |
|         if (AS != AS_none) IndirectField->setAccess(AS);
 | |
| 
 | |
|         Chaining.resize(OldChainingSize);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
 | |
| /// a VarDecl::StorageClass. Any error reporting is up to the caller:
 | |
| /// illegal input values are mapped to SC_None.
 | |
| static StorageClass
 | |
| StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
 | |
|   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
 | |
|   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
 | |
|          "Parser allowed 'typedef' as storage class VarDecl.");
 | |
|   switch (StorageClassSpec) {
 | |
|   case DeclSpec::SCS_unspecified:    return SC_None;
 | |
|   case DeclSpec::SCS_extern:
 | |
|     if (DS.isExternInLinkageSpec())
 | |
|       return SC_None;
 | |
|     return SC_Extern;
 | |
|   case DeclSpec::SCS_static:         return SC_Static;
 | |
|   case DeclSpec::SCS_auto:           return SC_Auto;
 | |
|   case DeclSpec::SCS_register:       return SC_Register;
 | |
|   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
 | |
|     // Illegal SCSs map to None: error reporting is up to the caller.
 | |
|   case DeclSpec::SCS_mutable:        // Fall through.
 | |
|   case DeclSpec::SCS_typedef:        return SC_None;
 | |
|   }
 | |
|   llvm_unreachable("unknown storage class specifier");
 | |
| }
 | |
| 
 | |
| /// BuildAnonymousStructOrUnion - Handle the declaration of an
 | |
| /// anonymous structure or union. Anonymous unions are a C++ feature
 | |
| /// (C++ [class.union]) and a C11 feature; anonymous structures
 | |
| /// are a C11 feature and GNU C++ extension.
 | |
| Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
 | |
|                                              AccessSpecifier AS,
 | |
|                                              RecordDecl *Record) {
 | |
|   DeclContext *Owner = Record->getDeclContext();
 | |
| 
 | |
|   // Diagnose whether this anonymous struct/union is an extension.
 | |
|   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
 | |
|     Diag(Record->getLocation(), diag::ext_anonymous_union);
 | |
|   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
 | |
|     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
 | |
|   else if (!Record->isUnion() && !getLangOpts().C11)
 | |
|     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
 | |
| 
 | |
|   // C and C++ require different kinds of checks for anonymous
 | |
|   // structs/unions.
 | |
|   bool Invalid = false;
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     const char* PrevSpec = 0;
 | |
|     unsigned DiagID;
 | |
|     if (Record->isUnion()) {
 | |
|       // C++ [class.union]p6:
 | |
|       //   Anonymous unions declared in a named namespace or in the
 | |
|       //   global namespace shall be declared static.
 | |
|       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
 | |
|           (isa<TranslationUnitDecl>(Owner) ||
 | |
|            (isa<NamespaceDecl>(Owner) &&
 | |
|             cast<NamespaceDecl>(Owner)->getDeclName()))) {
 | |
|         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
 | |
|           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
 | |
|   
 | |
|         // Recover by adding 'static'.
 | |
|         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
 | |
|                                PrevSpec, DiagID);
 | |
|       }
 | |
|       // C++ [class.union]p6:
 | |
|       //   A storage class is not allowed in a declaration of an
 | |
|       //   anonymous union in a class scope.
 | |
|       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
 | |
|                isa<RecordDecl>(Owner)) {
 | |
|         Diag(DS.getStorageClassSpecLoc(),
 | |
|              diag::err_anonymous_union_with_storage_spec)
 | |
|           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
 | |
|   
 | |
|         // Recover by removing the storage specifier.
 | |
|         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 
 | |
|                                SourceLocation(),
 | |
|                                PrevSpec, DiagID);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Ignore const/volatile/restrict qualifiers.
 | |
|     if (DS.getTypeQualifiers()) {
 | |
|       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
 | |
|         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
 | |
|           << Record->isUnion() << "const"
 | |
|           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
 | |
|       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
 | |
|         Diag(DS.getVolatileSpecLoc(),
 | |
|              diag::ext_anonymous_struct_union_qualified)
 | |
|           << Record->isUnion() << "volatile"
 | |
|           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
 | |
|       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
 | |
|         Diag(DS.getRestrictSpecLoc(),
 | |
|              diag::ext_anonymous_struct_union_qualified)
 | |
|           << Record->isUnion() << "restrict"
 | |
|           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
 | |
|       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
 | |
|         Diag(DS.getAtomicSpecLoc(),
 | |
|              diag::ext_anonymous_struct_union_qualified)
 | |
|           << Record->isUnion() << "_Atomic"
 | |
|           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
 | |
| 
 | |
|       DS.ClearTypeQualifiers();
 | |
|     }
 | |
| 
 | |
|     // C++ [class.union]p2:
 | |
|     //   The member-specification of an anonymous union shall only
 | |
|     //   define non-static data members. [Note: nested types and
 | |
|     //   functions cannot be declared within an anonymous union. ]
 | |
|     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
 | |
|                                  MemEnd = Record->decls_end();
 | |
|          Mem != MemEnd; ++Mem) {
 | |
|       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
 | |
|         // C++ [class.union]p3:
 | |
|         //   An anonymous union shall not have private or protected
 | |
|         //   members (clause 11).
 | |
|         assert(FD->getAccess() != AS_none);
 | |
|         if (FD->getAccess() != AS_public) {
 | |
|           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
 | |
|             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
 | |
|           Invalid = true;
 | |
|         }
 | |
| 
 | |
|         // C++ [class.union]p1
 | |
|         //   An object of a class with a non-trivial constructor, a non-trivial
 | |
|         //   copy constructor, a non-trivial destructor, or a non-trivial copy
 | |
|         //   assignment operator cannot be a member of a union, nor can an
 | |
|         //   array of such objects.
 | |
|         if (CheckNontrivialField(FD))
 | |
|           Invalid = true;
 | |
|       } else if ((*Mem)->isImplicit()) {
 | |
|         // Any implicit members are fine.
 | |
|       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
 | |
|         // This is a type that showed up in an
 | |
|         // elaborated-type-specifier inside the anonymous struct or
 | |
|         // union, but which actually declares a type outside of the
 | |
|         // anonymous struct or union. It's okay.
 | |
|       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
 | |
|         if (!MemRecord->isAnonymousStructOrUnion() &&
 | |
|             MemRecord->getDeclName()) {
 | |
|           // Visual C++ allows type definition in anonymous struct or union.
 | |
|           if (getLangOpts().MicrosoftExt)
 | |
|             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
 | |
|               << (int)Record->isUnion();
 | |
|           else {
 | |
|             // This is a nested type declaration.
 | |
|             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
 | |
|               << (int)Record->isUnion();
 | |
|             Invalid = true;
 | |
|           }
 | |
|         } else {
 | |
|           // This is an anonymous type definition within another anonymous type.
 | |
|           // This is a popular extension, provided by Plan9, MSVC and GCC, but
 | |
|           // not part of standard C++.
 | |
|           Diag(MemRecord->getLocation(),
 | |
|                diag::ext_anonymous_record_with_anonymous_type)
 | |
|             << (int)Record->isUnion();
 | |
|         }
 | |
|       } else if (isa<AccessSpecDecl>(*Mem)) {
 | |
|         // Any access specifier is fine.
 | |
|       } else {
 | |
|         // We have something that isn't a non-static data
 | |
|         // member. Complain about it.
 | |
|         unsigned DK = diag::err_anonymous_record_bad_member;
 | |
|         if (isa<TypeDecl>(*Mem))
 | |
|           DK = diag::err_anonymous_record_with_type;
 | |
|         else if (isa<FunctionDecl>(*Mem))
 | |
|           DK = diag::err_anonymous_record_with_function;
 | |
|         else if (isa<VarDecl>(*Mem))
 | |
|           DK = diag::err_anonymous_record_with_static;
 | |
|         
 | |
|         // Visual C++ allows type definition in anonymous struct or union.
 | |
|         if (getLangOpts().MicrosoftExt &&
 | |
|             DK == diag::err_anonymous_record_with_type)
 | |
|           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
 | |
|             << (int)Record->isUnion();
 | |
|         else {
 | |
|           Diag((*Mem)->getLocation(), DK)
 | |
|               << (int)Record->isUnion();
 | |
|           Invalid = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Record->isUnion() && !Owner->isRecord()) {
 | |
|     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
 | |
|       << (int)getLangOpts().CPlusPlus;
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   // Mock up a declarator.
 | |
|   Declarator Dc(DS, Declarator::MemberContext);
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
 | |
|   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
 | |
| 
 | |
|   // Create a declaration for this anonymous struct/union.
 | |
|   NamedDecl *Anon = 0;
 | |
|   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
 | |
|     Anon = FieldDecl::Create(Context, OwningClass,
 | |
|                              DS.getLocStart(),
 | |
|                              Record->getLocation(),
 | |
|                              /*IdentifierInfo=*/0,
 | |
|                              Context.getTypeDeclType(Record),
 | |
|                              TInfo,
 | |
|                              /*BitWidth=*/0, /*Mutable=*/false,
 | |
|                              /*InitStyle=*/ICIS_NoInit);
 | |
|     Anon->setAccess(AS);
 | |
|     if (getLangOpts().CPlusPlus)
 | |
|       FieldCollector->Add(cast<FieldDecl>(Anon));
 | |
|   } else {
 | |
|     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
 | |
|     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
 | |
|     if (SCSpec == DeclSpec::SCS_mutable) {
 | |
|       // mutable can only appear on non-static class members, so it's always
 | |
|       // an error here
 | |
|       Diag(Record->getLocation(), diag::err_mutable_nonmember);
 | |
|       Invalid = true;
 | |
|       SC = SC_None;
 | |
|     }
 | |
| 
 | |
|     Anon = VarDecl::Create(Context, Owner,
 | |
|                            DS.getLocStart(),
 | |
|                            Record->getLocation(), /*IdentifierInfo=*/0,
 | |
|                            Context.getTypeDeclType(Record),
 | |
|                            TInfo, SC);
 | |
| 
 | |
|     // Default-initialize the implicit variable. This initialization will be
 | |
|     // trivial in almost all cases, except if a union member has an in-class
 | |
|     // initializer:
 | |
|     //   union { int n = 0; };
 | |
|     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
 | |
|   }
 | |
|   Anon->setImplicit();
 | |
| 
 | |
|   // Add the anonymous struct/union object to the current
 | |
|   // context. We'll be referencing this object when we refer to one of
 | |
|   // its members.
 | |
|   Owner->addDecl(Anon);
 | |
|   
 | |
|   // Inject the members of the anonymous struct/union into the owning
 | |
|   // context and into the identifier resolver chain for name lookup
 | |
|   // purposes.
 | |
|   SmallVector<NamedDecl*, 2> Chain;
 | |
|   Chain.push_back(Anon);
 | |
| 
 | |
|   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
 | |
|                                           Chain, false))
 | |
|     Invalid = true;
 | |
| 
 | |
|   // Mark this as an anonymous struct/union type. Note that we do not
 | |
|   // do this until after we have already checked and injected the
 | |
|   // members of this anonymous struct/union type, because otherwise
 | |
|   // the members could be injected twice: once by DeclContext when it
 | |
|   // builds its lookup table, and once by
 | |
|   // InjectAnonymousStructOrUnionMembers.
 | |
|   Record->setAnonymousStructOrUnion(true);
 | |
| 
 | |
|   if (Invalid)
 | |
|     Anon->setInvalidDecl();
 | |
| 
 | |
|   return Anon;
 | |
| }
 | |
| 
 | |
| /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
 | |
| /// Microsoft C anonymous structure.
 | |
| /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
 | |
| /// Example:
 | |
| ///
 | |
| /// struct A { int a; };
 | |
| /// struct B { struct A; int b; };
 | |
| ///
 | |
| /// void foo() {
 | |
| ///   B var;
 | |
| ///   var.a = 3; 
 | |
| /// }
 | |
| ///
 | |
| Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
 | |
|                                            RecordDecl *Record) {
 | |
|   
 | |
|   // If there is no Record, get the record via the typedef.
 | |
|   if (!Record)
 | |
|     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
 | |
| 
 | |
|   // Mock up a declarator.
 | |
|   Declarator Dc(DS, Declarator::TypeNameContext);
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
 | |
|   assert(TInfo && "couldn't build declarator info for anonymous struct");
 | |
| 
 | |
|   // Create a declaration for this anonymous struct.
 | |
|   NamedDecl* Anon = FieldDecl::Create(Context,
 | |
|                              cast<RecordDecl>(CurContext),
 | |
|                              DS.getLocStart(),
 | |
|                              DS.getLocStart(),
 | |
|                              /*IdentifierInfo=*/0,
 | |
|                              Context.getTypeDeclType(Record),
 | |
|                              TInfo,
 | |
|                              /*BitWidth=*/0, /*Mutable=*/false,
 | |
|                              /*InitStyle=*/ICIS_NoInit);
 | |
|   Anon->setImplicit();
 | |
| 
 | |
|   // Add the anonymous struct object to the current context.
 | |
|   CurContext->addDecl(Anon);
 | |
| 
 | |
|   // Inject the members of the anonymous struct into the current
 | |
|   // context and into the identifier resolver chain for name lookup
 | |
|   // purposes.
 | |
|   SmallVector<NamedDecl*, 2> Chain;
 | |
|   Chain.push_back(Anon);
 | |
| 
 | |
|   RecordDecl *RecordDef = Record->getDefinition();
 | |
|   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
 | |
|                                                         RecordDef, AS_none,
 | |
|                                                         Chain, true))
 | |
|     Anon->setInvalidDecl();
 | |
| 
 | |
|   return Anon;
 | |
| }
 | |
| 
 | |
| /// GetNameForDeclarator - Determine the full declaration name for the
 | |
| /// given Declarator.
 | |
| DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
 | |
|   return GetNameFromUnqualifiedId(D.getName());
 | |
| }
 | |
| 
 | |
| /// \brief Retrieves the declaration name from a parsed unqualified-id.
 | |
| DeclarationNameInfo
 | |
| Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
 | |
|   DeclarationNameInfo NameInfo;
 | |
|   NameInfo.setLoc(Name.StartLocation);
 | |
| 
 | |
|   switch (Name.getKind()) {
 | |
| 
 | |
|   case UnqualifiedId::IK_ImplicitSelfParam:
 | |
|   case UnqualifiedId::IK_Identifier:
 | |
|     NameInfo.setName(Name.Identifier);
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     return NameInfo;
 | |
| 
 | |
|   case UnqualifiedId::IK_OperatorFunctionId:
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
 | |
|                                            Name.OperatorFunctionId.Operator));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
 | |
|       = Name.OperatorFunctionId.SymbolLocations[0];
 | |
|     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
 | |
|       = Name.EndLocation.getRawEncoding();
 | |
|     return NameInfo;
 | |
| 
 | |
|   case UnqualifiedId::IK_LiteralOperatorId:
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
 | |
|                                                            Name.Identifier));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
 | |
|     return NameInfo;
 | |
| 
 | |
|   case UnqualifiedId::IK_ConversionFunctionId: {
 | |
|     TypeSourceInfo *TInfo;
 | |
|     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
 | |
|     if (Ty.isNull())
 | |
|       return DeclarationNameInfo();
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
 | |
|                                                Context.getCanonicalType(Ty)));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.setNamedTypeInfo(TInfo);
 | |
|     return NameInfo;
 | |
|   }
 | |
| 
 | |
|   case UnqualifiedId::IK_ConstructorName: {
 | |
|     TypeSourceInfo *TInfo;
 | |
|     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
 | |
|     if (Ty.isNull())
 | |
|       return DeclarationNameInfo();
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
 | |
|                                               Context.getCanonicalType(Ty)));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.setNamedTypeInfo(TInfo);
 | |
|     return NameInfo;
 | |
|   }
 | |
| 
 | |
|   case UnqualifiedId::IK_ConstructorTemplateId: {
 | |
|     // In well-formed code, we can only have a constructor
 | |
|     // template-id that refers to the current context, so go there
 | |
|     // to find the actual type being constructed.
 | |
|     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
 | |
|     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
 | |
|       return DeclarationNameInfo();
 | |
| 
 | |
|     // Determine the type of the class being constructed.
 | |
|     QualType CurClassType = Context.getTypeDeclType(CurClass);
 | |
| 
 | |
|     // FIXME: Check two things: that the template-id names the same type as
 | |
|     // CurClassType, and that the template-id does not occur when the name
 | |
|     // was qualified.
 | |
| 
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
 | |
|                                     Context.getCanonicalType(CurClassType)));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     // FIXME: should we retrieve TypeSourceInfo?
 | |
|     NameInfo.setNamedTypeInfo(0);
 | |
|     return NameInfo;
 | |
|   }
 | |
| 
 | |
|   case UnqualifiedId::IK_DestructorName: {
 | |
|     TypeSourceInfo *TInfo;
 | |
|     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
 | |
|     if (Ty.isNull())
 | |
|       return DeclarationNameInfo();
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
 | |
|                                               Context.getCanonicalType(Ty)));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.setNamedTypeInfo(TInfo);
 | |
|     return NameInfo;
 | |
|   }
 | |
| 
 | |
|   case UnqualifiedId::IK_TemplateId: {
 | |
|     TemplateName TName = Name.TemplateId->Template.get();
 | |
|     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
 | |
|     return Context.getNameForTemplate(TName, TNameLoc);
 | |
|   }
 | |
| 
 | |
|   } // switch (Name.getKind())
 | |
| 
 | |
|   llvm_unreachable("Unknown name kind");
 | |
| }
 | |
| 
 | |
| static QualType getCoreType(QualType Ty) {
 | |
|   do {
 | |
|     if (Ty->isPointerType() || Ty->isReferenceType())
 | |
|       Ty = Ty->getPointeeType();
 | |
|     else if (Ty->isArrayType())
 | |
|       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
 | |
|     else
 | |
|       return Ty.withoutLocalFastQualifiers();
 | |
|   } while (true);
 | |
| }
 | |
| 
 | |
| /// hasSimilarParameters - Determine whether the C++ functions Declaration
 | |
| /// and Definition have "nearly" matching parameters. This heuristic is
 | |
| /// used to improve diagnostics in the case where an out-of-line function
 | |
| /// definition doesn't match any declaration within the class or namespace.
 | |
| /// Also sets Params to the list of indices to the parameters that differ
 | |
| /// between the declaration and the definition. If hasSimilarParameters
 | |
| /// returns true and Params is empty, then all of the parameters match.
 | |
| static bool hasSimilarParameters(ASTContext &Context,
 | |
|                                      FunctionDecl *Declaration,
 | |
|                                      FunctionDecl *Definition,
 | |
|                                      SmallVectorImpl<unsigned> &Params) {
 | |
|   Params.clear();
 | |
|   if (Declaration->param_size() != Definition->param_size())
 | |
|     return false;
 | |
|   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
 | |
|     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
 | |
|     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
 | |
| 
 | |
|     // The parameter types are identical
 | |
|     if (Context.hasSameType(DefParamTy, DeclParamTy))
 | |
|       continue;
 | |
| 
 | |
|     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
 | |
|     QualType DefParamBaseTy = getCoreType(DefParamTy);
 | |
|     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
 | |
|     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
 | |
| 
 | |
|     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
 | |
|         (DeclTyName && DeclTyName == DefTyName))
 | |
|       Params.push_back(Idx);
 | |
|     else  // The two parameters aren't even close
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
 | |
| /// declarator needs to be rebuilt in the current instantiation.
 | |
| /// Any bits of declarator which appear before the name are valid for
 | |
| /// consideration here.  That's specifically the type in the decl spec
 | |
| /// and the base type in any member-pointer chunks.
 | |
| static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
 | |
|                                                     DeclarationName Name) {
 | |
|   // The types we specifically need to rebuild are:
 | |
|   //   - typenames, typeofs, and decltypes
 | |
|   //   - types which will become injected class names
 | |
|   // Of course, we also need to rebuild any type referencing such a
 | |
|   // type.  It's safest to just say "dependent", but we call out a
 | |
|   // few cases here.
 | |
| 
 | |
|   DeclSpec &DS = D.getMutableDeclSpec();
 | |
|   switch (DS.getTypeSpecType()) {
 | |
|   case DeclSpec::TST_typename:
 | |
|   case DeclSpec::TST_typeofType:
 | |
|   case DeclSpec::TST_underlyingType:
 | |
|   case DeclSpec::TST_atomic: {
 | |
|     // Grab the type from the parser.
 | |
|     TypeSourceInfo *TSI = 0;
 | |
|     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
 | |
|     if (T.isNull() || !T->isDependentType()) break;
 | |
| 
 | |
|     // Make sure there's a type source info.  This isn't really much
 | |
|     // of a waste; most dependent types should have type source info
 | |
|     // attached already.
 | |
|     if (!TSI)
 | |
|       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
 | |
| 
 | |
|     // Rebuild the type in the current instantiation.
 | |
|     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
 | |
|     if (!TSI) return true;
 | |
| 
 | |
|     // Store the new type back in the decl spec.
 | |
|     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
 | |
|     DS.UpdateTypeRep(LocType);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case DeclSpec::TST_decltype:
 | |
|   case DeclSpec::TST_typeofExpr: {
 | |
|     Expr *E = DS.getRepAsExpr();
 | |
|     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
 | |
|     if (Result.isInvalid()) return true;
 | |
|     DS.UpdateExprRep(Result.get());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     // Nothing to do for these decl specs.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // It doesn't matter what order we do this in.
 | |
|   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
 | |
|     DeclaratorChunk &Chunk = D.getTypeObject(I);
 | |
| 
 | |
|     // The only type information in the declarator which can come
 | |
|     // before the declaration name is the base type of a member
 | |
|     // pointer.
 | |
|     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
 | |
|       continue;
 | |
| 
 | |
|     // Rebuild the scope specifier in-place.
 | |
|     CXXScopeSpec &SS = Chunk.Mem.Scope();
 | |
|     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
 | |
|   D.setFunctionDefinitionKind(FDK_Declaration);
 | |
|   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
 | |
| 
 | |
|   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
 | |
|       Dcl && Dcl->getDeclContext()->isFileContext())
 | |
|     Dcl->setTopLevelDeclInObjCContainer();
 | |
| 
 | |
|   return Dcl;
 | |
| }
 | |
| 
 | |
| /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
 | |
| ///   If T is the name of a class, then each of the following shall have a 
 | |
| ///   name different from T:
 | |
| ///     - every static data member of class T;
 | |
| ///     - every member function of class T
 | |
| ///     - every member of class T that is itself a type;
 | |
| /// \returns true if the declaration name violates these rules.
 | |
| bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
 | |
|                                    DeclarationNameInfo NameInfo) {
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
| 
 | |
|   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 
 | |
|     if (Record->getIdentifier() && Record->getDeclName() == Name) {
 | |
|       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Diagnose a declaration whose declarator-id has the given 
 | |
| /// nested-name-specifier.
 | |
| ///
 | |
| /// \param SS The nested-name-specifier of the declarator-id.
 | |
| ///
 | |
| /// \param DC The declaration context to which the nested-name-specifier 
 | |
| /// resolves.
 | |
| ///
 | |
| /// \param Name The name of the entity being declared.
 | |
| ///
 | |
| /// \param Loc The location of the name of the entity being declared.
 | |
| ///
 | |
| /// \returns true if we cannot safely recover from this error, false otherwise.
 | |
| bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
 | |
|                                         DeclarationName Name,
 | |
|                                       SourceLocation Loc) {
 | |
|   DeclContext *Cur = CurContext;
 | |
|   while (isa<LinkageSpecDecl>(Cur))
 | |
|     Cur = Cur->getParent();
 | |
|   
 | |
|   // C++ [dcl.meaning]p1:
 | |
|   //   A declarator-id shall not be qualified except for the definition
 | |
|   //   of a member function (9.3) or static data member (9.4) outside of
 | |
|   //   its class, the definition or explicit instantiation of a function 
 | |
|   //   or variable member of a namespace outside of its namespace, or the
 | |
|   //   definition of an explicit specialization outside of its namespace,
 | |
|   //   or the declaration of a friend function that is a member of 
 | |
|   //   another class or namespace (11.3). [...]
 | |
|     
 | |
|   // The user provided a superfluous scope specifier that refers back to the
 | |
|   // class or namespaces in which the entity is already declared.
 | |
|   //
 | |
|   // class X {
 | |
|   //   void X::f();
 | |
|   // };
 | |
|   if (Cur->Equals(DC)) {
 | |
|     Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
 | |
|                                    : diag::err_member_extra_qualification)
 | |
|       << Name << FixItHint::CreateRemoval(SS.getRange());
 | |
|     SS.clear();
 | |
|     return false;
 | |
|   } 
 | |
| 
 | |
|   // Check whether the qualifying scope encloses the scope of the original
 | |
|   // declaration.
 | |
|   if (!Cur->Encloses(DC)) {
 | |
|     if (Cur->isRecord())
 | |
|       Diag(Loc, diag::err_member_qualification)
 | |
|         << Name << SS.getRange();
 | |
|     else if (isa<TranslationUnitDecl>(DC))
 | |
|       Diag(Loc, diag::err_invalid_declarator_global_scope)
 | |
|         << Name << SS.getRange();
 | |
|     else if (isa<FunctionDecl>(Cur))
 | |
|       Diag(Loc, diag::err_invalid_declarator_in_function) 
 | |
|         << Name << SS.getRange();
 | |
|     else
 | |
|       Diag(Loc, diag::err_invalid_declarator_scope)
 | |
|       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
 | |
|     
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Cur->isRecord()) {
 | |
|     // Cannot qualify members within a class.
 | |
|     Diag(Loc, diag::err_member_qualification)
 | |
|       << Name << SS.getRange();
 | |
|     SS.clear();
 | |
|     
 | |
|     // C++ constructors and destructors with incorrect scopes can break
 | |
|     // our AST invariants by having the wrong underlying types. If
 | |
|     // that's the case, then drop this declaration entirely.
 | |
|     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
 | |
|          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
 | |
|         !Context.hasSameType(Name.getCXXNameType(),
 | |
|                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
 | |
|       return true;
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // C++11 [dcl.meaning]p1:
 | |
|   //   [...] "The nested-name-specifier of the qualified declarator-id shall
 | |
|   //   not begin with a decltype-specifer"
 | |
|   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
 | |
|   while (SpecLoc.getPrefix())
 | |
|     SpecLoc = SpecLoc.getPrefix();
 | |
|   if (dyn_cast_or_null<DecltypeType>(
 | |
|         SpecLoc.getNestedNameSpecifier()->getAsType()))
 | |
|     Diag(Loc, diag::err_decltype_in_declarator)
 | |
|       << SpecLoc.getTypeLoc().getSourceRange();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
 | |
|                                   MultiTemplateParamsArg TemplateParamLists) {
 | |
|   // TODO: consider using NameInfo for diagnostic.
 | |
|   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
| 
 | |
|   // All of these full declarators require an identifier.  If it doesn't have
 | |
|   // one, the ParsedFreeStandingDeclSpec action should be used.
 | |
|   if (!Name) {
 | |
|     if (!D.isInvalidType())  // Reject this if we think it is valid.
 | |
|       Diag(D.getDeclSpec().getLocStart(),
 | |
|            diag::err_declarator_need_ident)
 | |
|         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
 | |
|     return 0;
 | |
|   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
 | |
|     return 0;
 | |
| 
 | |
|   // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | |
|   // we find one that is.
 | |
|   while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | |
|          (S->getFlags() & Scope::TemplateParamScope) != 0)
 | |
|     S = S->getParent();
 | |
| 
 | |
|   DeclContext *DC = CurContext;
 | |
|   if (D.getCXXScopeSpec().isInvalid())
 | |
|     D.setInvalidType();
 | |
|   else if (D.getCXXScopeSpec().isSet()) {
 | |
|     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 
 | |
|                                         UPPC_DeclarationQualifier))
 | |
|       return 0;
 | |
| 
 | |
|     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
 | |
|     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
 | |
|     if (!DC) {
 | |
|       // If we could not compute the declaration context, it's because the
 | |
|       // declaration context is dependent but does not refer to a class,
 | |
|       // class template, or class template partial specialization. Complain
 | |
|       // and return early, to avoid the coming semantic disaster.
 | |
|       Diag(D.getIdentifierLoc(),
 | |
|            diag::err_template_qualified_declarator_no_match)
 | |
|         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
 | |
|         << D.getCXXScopeSpec().getRange();
 | |
|       return 0;
 | |
|     }
 | |
|     bool IsDependentContext = DC->isDependentContext();
 | |
| 
 | |
|     if (!IsDependentContext && 
 | |
|         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
 | |
|       return 0;
 | |
| 
 | |
|     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
 | |
|       Diag(D.getIdentifierLoc(),
 | |
|            diag::err_member_def_undefined_record)
 | |
|         << Name << DC << D.getCXXScopeSpec().getRange();
 | |
|       D.setInvalidType();
 | |
|     } else if (!D.getDeclSpec().isFriendSpecified()) {
 | |
|       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
 | |
|                                       Name, D.getIdentifierLoc())) {
 | |
|         if (DC->isRecord())
 | |
|           return 0;
 | |
|         
 | |
|         D.setInvalidType();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check whether we need to rebuild the type of the given
 | |
|     // declaration in the current instantiation.
 | |
|     if (EnteringContext && IsDependentContext &&
 | |
|         TemplateParamLists.size() != 0) {
 | |
|       ContextRAII SavedContext(*this, DC);
 | |
|       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
 | |
|         D.setInvalidType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DiagnoseClassNameShadow(DC, NameInfo))
 | |
|     // If this is a typedef, we'll end up spewing multiple diagnostics.
 | |
|     // Just return early; it's safer.
 | |
|     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
 | |
|       return 0;
 | |
|   
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType R = TInfo->getType();
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | |
|                                       UPPC_DeclarationType))
 | |
|     D.setInvalidType();
 | |
| 
 | |
|   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
 | |
|                         ForRedeclaration);
 | |
| 
 | |
|   // See if this is a redefinition of a variable in the same scope.
 | |
|   if (!D.getCXXScopeSpec().isSet()) {
 | |
|     bool IsLinkageLookup = false;
 | |
| 
 | |
|     // If the declaration we're planning to build will be a function
 | |
|     // or object with linkage, then look for another declaration with
 | |
|     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
 | |
|     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
 | |
|       /* Do nothing*/;
 | |
|     else if (R->isFunctionType()) {
 | |
|       if (CurContext->isFunctionOrMethod() ||
 | |
|           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
 | |
|         IsLinkageLookup = true;
 | |
|     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
 | |
|       IsLinkageLookup = true;
 | |
|     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
 | |
|              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
 | |
|       IsLinkageLookup = true;
 | |
| 
 | |
|     if (IsLinkageLookup)
 | |
|       Previous.clear(LookupRedeclarationWithLinkage);
 | |
| 
 | |
|     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
 | |
|   } else { // Something like "int foo::x;"
 | |
|     LookupQualifiedName(Previous, DC);
 | |
| 
 | |
|     // C++ [dcl.meaning]p1:
 | |
|     //   When the declarator-id is qualified, the declaration shall refer to a 
 | |
|     //  previously declared member of the class or namespace to which the 
 | |
|     //  qualifier refers (or, in the case of a namespace, of an element of the
 | |
|     //  inline namespace set of that namespace (7.3.1)) or to a specialization
 | |
|     //  thereof; [...] 
 | |
|     //
 | |
|     // Note that we already checked the context above, and that we do not have
 | |
|     // enough information to make sure that Previous contains the declaration
 | |
|     // we want to match. For example, given:
 | |
|     //
 | |
|     //   class X {
 | |
|     //     void f();
 | |
|     //     void f(float);
 | |
|     //   };
 | |
|     //
 | |
|     //   void X::f(int) { } // ill-formed
 | |
|     //
 | |
|     // In this case, Previous will point to the overload set
 | |
|     // containing the two f's declared in X, but neither of them
 | |
|     // matches.
 | |
|     
 | |
|     // C++ [dcl.meaning]p1:
 | |
|     //   [...] the member shall not merely have been introduced by a 
 | |
|     //   using-declaration in the scope of the class or namespace nominated by 
 | |
|     //   the nested-name-specifier of the declarator-id.
 | |
|     RemoveUsingDecls(Previous);
 | |
|   }
 | |
| 
 | |
|   if (Previous.isSingleResult() &&
 | |
|       Previous.getFoundDecl()->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     if (!D.isInvalidType())
 | |
|       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
 | |
|                                       Previous.getFoundDecl());
 | |
| 
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     Previous.clear();
 | |
|   }
 | |
| 
 | |
|   // In C++, the previous declaration we find might be a tag type
 | |
|   // (class or enum). In this case, the new declaration will hide the
 | |
|   // tag type. Note that this does does not apply if we're declaring a
 | |
|   // typedef (C++ [dcl.typedef]p4).
 | |
|   if (Previous.isSingleTagDecl() &&
 | |
|       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
 | |
|     Previous.clear();
 | |
| 
 | |
|   // Check that there are no default arguments other than in the parameters
 | |
|   // of a function declaration (C++ only).
 | |
|   if (getLangOpts().CPlusPlus)
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
| 
 | |
|   NamedDecl *New;
 | |
| 
 | |
|   bool AddToScope = true;
 | |
|   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
 | |
|     if (TemplateParamLists.size()) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
 | |
|   } else if (R->isFunctionType()) {
 | |
|     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
 | |
|                                   TemplateParamLists,
 | |
|                                   AddToScope);
 | |
|   } else {
 | |
|     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
 | |
|                                   AddToScope);
 | |
|   }
 | |
| 
 | |
|   if (New == 0)
 | |
|     return 0;
 | |
| 
 | |
|   // If this has an identifier and is not an invalid redeclaration or 
 | |
|   // function template specialization, add it to the scope stack.
 | |
|   if (New->getDeclName() && AddToScope &&
 | |
|        !(D.isRedeclaration() && New->isInvalidDecl()))
 | |
|     PushOnScopeChains(New, S);
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// Helper method to turn variable array types into constant array
 | |
| /// types in certain situations which would otherwise be errors (for
 | |
| /// GCC compatibility).
 | |
| static QualType TryToFixInvalidVariablyModifiedType(QualType T,
 | |
|                                                     ASTContext &Context,
 | |
|                                                     bool &SizeIsNegative,
 | |
|                                                     llvm::APSInt &Oversized) {
 | |
|   // This method tries to turn a variable array into a constant
 | |
|   // array even when the size isn't an ICE.  This is necessary
 | |
|   // for compatibility with code that depends on gcc's buggy
 | |
|   // constant expression folding, like struct {char x[(int)(char*)2];}
 | |
|   SizeIsNegative = false;
 | |
|   Oversized = 0;
 | |
|   
 | |
|   if (T->isDependentType())
 | |
|     return QualType();
 | |
|   
 | |
|   QualifierCollector Qs;
 | |
|   const Type *Ty = Qs.strip(T);
 | |
| 
 | |
|   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
 | |
|     QualType Pointee = PTy->getPointeeType();
 | |
|     QualType FixedType =
 | |
|         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
 | |
|                                             Oversized);
 | |
|     if (FixedType.isNull()) return FixedType;
 | |
|     FixedType = Context.getPointerType(FixedType);
 | |
|     return Qs.apply(Context, FixedType);
 | |
|   }
 | |
|   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
 | |
|     QualType Inner = PTy->getInnerType();
 | |
|     QualType FixedType =
 | |
|         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
 | |
|                                             Oversized);
 | |
|     if (FixedType.isNull()) return FixedType;
 | |
|     FixedType = Context.getParenType(FixedType);
 | |
|     return Qs.apply(Context, FixedType);
 | |
|   }
 | |
| 
 | |
|   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
 | |
|   if (!VLATy)
 | |
|     return QualType();
 | |
|   // FIXME: We should probably handle this case
 | |
|   if (VLATy->getElementType()->isVariablyModifiedType())
 | |
|     return QualType();
 | |
| 
 | |
|   llvm::APSInt Res;
 | |
|   if (!VLATy->getSizeExpr() ||
 | |
|       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
 | |
|     return QualType();
 | |
| 
 | |
|   // Check whether the array size is negative.
 | |
|   if (Res.isSigned() && Res.isNegative()) {
 | |
|     SizeIsNegative = true;
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // Check whether the array is too large to be addressed.
 | |
|   unsigned ActiveSizeBits
 | |
|     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
 | |
|                                               Res);
 | |
|   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
 | |
|     Oversized = Res;
 | |
|     return QualType();
 | |
|   }
 | |
|   
 | |
|   return Context.getConstantArrayType(VLATy->getElementType(),
 | |
|                                       Res, ArrayType::Normal, 0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
 | |
|   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
 | |
|     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
 | |
|     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
 | |
|                                       DstPTL.getPointeeLoc());
 | |
|     DstPTL.setStarLoc(SrcPTL.getStarLoc());
 | |
|     return;
 | |
|   }
 | |
|   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
 | |
|     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
 | |
|     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
 | |
|                                       DstPTL.getInnerLoc());
 | |
|     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
 | |
|     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
 | |
|     return;
 | |
|   }
 | |
|   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
 | |
|   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
 | |
|   TypeLoc SrcElemTL = SrcATL.getElementLoc();
 | |
|   TypeLoc DstElemTL = DstATL.getElementLoc();
 | |
|   DstElemTL.initializeFullCopy(SrcElemTL);
 | |
|   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
 | |
|   DstATL.setSizeExpr(SrcATL.getSizeExpr());
 | |
|   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
 | |
| }
 | |
| 
 | |
| /// Helper method to turn variable array types into constant array
 | |
| /// types in certain situations which would otherwise be errors (for
 | |
| /// GCC compatibility).
 | |
| static TypeSourceInfo*
 | |
| TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
 | |
|                                               ASTContext &Context,
 | |
|                                               bool &SizeIsNegative,
 | |
|                                               llvm::APSInt &Oversized) {
 | |
|   QualType FixedTy
 | |
|     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
 | |
|                                           SizeIsNegative, Oversized);
 | |
|   if (FixedTy.isNull())
 | |
|     return 0;
 | |
|   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
 | |
|   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
 | |
|                                     FixedTInfo->getTypeLoc());
 | |
|   return FixedTInfo;
 | |
| }
 | |
| 
 | |
| /// \brief Register the given locally-scoped extern "C" declaration so
 | |
| /// that it can be found later for redeclarations. We include any extern "C"
 | |
| /// declaration that is not visible in the translation unit here, not just
 | |
| /// function-scope declarations.
 | |
| void
 | |
| Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
 | |
|   if (!getLangOpts().CPlusPlus &&
 | |
|       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
 | |
|     // Don't need to track declarations in the TU in C.
 | |
|     return;
 | |
| 
 | |
|   // Note that we have a locally-scoped external with this name.
 | |
|   // FIXME: There can be multiple such declarations if they are functions marked
 | |
|   // __attribute__((overloadable)) declared in function scope in C.
 | |
|   LocallyScopedExternCDecls[ND->getDeclName()] = ND;
 | |
| }
 | |
| 
 | |
| NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
 | |
|   if (ExternalSource) {
 | |
|     // Load locally-scoped external decls from the external source.
 | |
|     // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
 | |
|     SmallVector<NamedDecl *, 4> Decls;
 | |
|     ExternalSource->ReadLocallyScopedExternCDecls(Decls);
 | |
|     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
 | |
|       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
 | |
|         = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
 | |
|       if (Pos == LocallyScopedExternCDecls.end())
 | |
|         LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
 | |
|   return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
 | |
| }
 | |
| 
 | |
| /// \brief Diagnose function specifiers on a declaration of an identifier that
 | |
| /// does not identify a function.
 | |
| void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
 | |
|   // FIXME: We should probably indicate the identifier in question to avoid
 | |
|   // confusion for constructs like "inline int a(), b;"
 | |
|   if (DS.isInlineSpecified())
 | |
|     Diag(DS.getInlineSpecLoc(),
 | |
|          diag::err_inline_non_function);
 | |
| 
 | |
|   if (DS.isVirtualSpecified())
 | |
|     Diag(DS.getVirtualSpecLoc(),
 | |
|          diag::err_virtual_non_function);
 | |
| 
 | |
|   if (DS.isExplicitSpecified())
 | |
|     Diag(DS.getExplicitSpecLoc(),
 | |
|          diag::err_explicit_non_function);
 | |
| 
 | |
|   if (DS.isNoreturnSpecified())
 | |
|     Diag(DS.getNoreturnSpecLoc(),
 | |
|          diag::err_noreturn_non_function);
 | |
| }
 | |
| 
 | |
| NamedDecl*
 | |
| Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
 | |
|                              TypeSourceInfo *TInfo, LookupResult &Previous) {
 | |
|   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
 | |
|   if (D.getCXXScopeSpec().isSet()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
 | |
|       << D.getCXXScopeSpec().getRange();
 | |
|     D.setInvalidType();
 | |
|     // Pretend we didn't see the scope specifier.
 | |
|     DC = CurContext;
 | |
|     Previous.clear();
 | |
|   }
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D.getDeclSpec());
 | |
| 
 | |
|   if (D.getDeclSpec().isConstexprSpecified())
 | |
|     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
 | |
|       << 1;
 | |
| 
 | |
|   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
 | |
|     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
 | |
|       << D.getName().getSourceRange();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
 | |
|   if (!NewTD) return 0;
 | |
| 
 | |
|   // Handle attributes prior to checking for duplicates in MergeVarDecl
 | |
|   ProcessDeclAttributes(S, NewTD, D);
 | |
| 
 | |
|   CheckTypedefForVariablyModifiedType(S, NewTD);
 | |
| 
 | |
|   bool Redeclaration = D.isRedeclaration();
 | |
|   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
 | |
|   D.setRedeclaration(Redeclaration);
 | |
|   return ND;
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
 | |
|   // C99 6.7.7p2: If a typedef name specifies a variably modified type
 | |
|   // then it shall have block scope.
 | |
|   // Note that variably modified types must be fixed before merging the decl so
 | |
|   // that redeclarations will match.
 | |
|   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
 | |
|   QualType T = TInfo->getType();
 | |
|   if (T->isVariablyModifiedType()) {
 | |
|     getCurFunction()->setHasBranchProtectedScope();
 | |
| 
 | |
|     if (S->getFnParent() == 0) {
 | |
|       bool SizeIsNegative;
 | |
|       llvm::APSInt Oversized;
 | |
|       TypeSourceInfo *FixedTInfo =
 | |
|         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
 | |
|                                                       SizeIsNegative,
 | |
|                                                       Oversized);
 | |
|       if (FixedTInfo) {
 | |
|         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
 | |
|         NewTD->setTypeSourceInfo(FixedTInfo);
 | |
|       } else {
 | |
|         if (SizeIsNegative)
 | |
|           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
 | |
|         else if (T->isVariableArrayType())
 | |
|           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
 | |
|         else if (Oversized.getBoolValue())
 | |
|           Diag(NewTD->getLocation(), diag::err_array_too_large) 
 | |
|             << Oversized.toString(10);
 | |
|         else
 | |
|           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
 | |
|         NewTD->setInvalidDecl();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
 | |
| /// declares a typedef-name, either using the 'typedef' type specifier or via
 | |
| /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
 | |
| NamedDecl*
 | |
| Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
 | |
|                            LookupResult &Previous, bool &Redeclaration) {
 | |
|   // Merge the decl with the existing one if appropriate. If the decl is
 | |
|   // in an outer scope, it isn't the same thing.
 | |
|   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
 | |
|                        /*ExplicitInstantiationOrSpecialization=*/false);
 | |
|   filterNonConflictingPreviousDecls(Context, NewTD, Previous);
 | |
|   if (!Previous.empty()) {
 | |
|     Redeclaration = true;
 | |
|     MergeTypedefNameDecl(NewTD, Previous);
 | |
|   }
 | |
| 
 | |
|   // If this is the C FILE type, notify the AST context.
 | |
|   if (IdentifierInfo *II = NewTD->getIdentifier())
 | |
|     if (!NewTD->isInvalidDecl() &&
 | |
|         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | |
|       if (II->isStr("FILE"))
 | |
|         Context.setFILEDecl(NewTD);
 | |
|       else if (II->isStr("jmp_buf"))
 | |
|         Context.setjmp_bufDecl(NewTD);
 | |
|       else if (II->isStr("sigjmp_buf"))
 | |
|         Context.setsigjmp_bufDecl(NewTD);
 | |
|       else if (II->isStr("ucontext_t"))
 | |
|         Context.setucontext_tDecl(NewTD);
 | |
|     }
 | |
| 
 | |
|   return NewTD;
 | |
| }
 | |
| 
 | |
| /// \brief Determines whether the given declaration is an out-of-scope
 | |
| /// previous declaration.
 | |
| ///
 | |
| /// This routine should be invoked when name lookup has found a
 | |
| /// previous declaration (PrevDecl) that is not in the scope where a
 | |
| /// new declaration by the same name is being introduced. If the new
 | |
| /// declaration occurs in a local scope, previous declarations with
 | |
| /// linkage may still be considered previous declarations (C99
 | |
| /// 6.2.2p4-5, C++ [basic.link]p6).
 | |
| ///
 | |
| /// \param PrevDecl the previous declaration found by name
 | |
| /// lookup
 | |
| ///
 | |
| /// \param DC the context in which the new declaration is being
 | |
| /// declared.
 | |
| ///
 | |
| /// \returns true if PrevDecl is an out-of-scope previous declaration
 | |
| /// for a new delcaration with the same name.
 | |
| static bool
 | |
| isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
 | |
|                                 ASTContext &Context) {
 | |
|   if (!PrevDecl)
 | |
|     return false;
 | |
| 
 | |
|   if (!PrevDecl->hasLinkage())
 | |
|     return false;
 | |
| 
 | |
|   if (Context.getLangOpts().CPlusPlus) {
 | |
|     // C++ [basic.link]p6:
 | |
|     //   If there is a visible declaration of an entity with linkage
 | |
|     //   having the same name and type, ignoring entities declared
 | |
|     //   outside the innermost enclosing namespace scope, the block
 | |
|     //   scope declaration declares that same entity and receives the
 | |
|     //   linkage of the previous declaration.
 | |
|     DeclContext *OuterContext = DC->getRedeclContext();
 | |
|     if (!OuterContext->isFunctionOrMethod())
 | |
|       // This rule only applies to block-scope declarations.
 | |
|       return false;
 | |
|     
 | |
|     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
 | |
|     if (PrevOuterContext->isRecord())
 | |
|       // We found a member function: ignore it.
 | |
|       return false;
 | |
|     
 | |
|     // Find the innermost enclosing namespace for the new and
 | |
|     // previous declarations.
 | |
|     OuterContext = OuterContext->getEnclosingNamespaceContext();
 | |
|     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
 | |
| 
 | |
|     // The previous declaration is in a different namespace, so it
 | |
|     // isn't the same function.
 | |
|     if (!OuterContext->Equals(PrevOuterContext))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
 | |
|   CXXScopeSpec &SS = D.getCXXScopeSpec();
 | |
|   if (!SS.isSet()) return;
 | |
|   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
 | |
| }
 | |
| 
 | |
| bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
 | |
|   QualType type = decl->getType();
 | |
|   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
 | |
|   if (lifetime == Qualifiers::OCL_Autoreleasing) {
 | |
|     // Various kinds of declaration aren't allowed to be __autoreleasing.
 | |
|     unsigned kind = -1U;
 | |
|     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
 | |
|       if (var->hasAttr<BlocksAttr>())
 | |
|         kind = 0; // __block
 | |
|       else if (!var->hasLocalStorage())
 | |
|         kind = 1; // global
 | |
|     } else if (isa<ObjCIvarDecl>(decl)) {
 | |
|       kind = 3; // ivar
 | |
|     } else if (isa<FieldDecl>(decl)) {
 | |
|       kind = 2; // field
 | |
|     }
 | |
| 
 | |
|     if (kind != -1U) {
 | |
|       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
 | |
|         << kind;
 | |
|     }
 | |
|   } else if (lifetime == Qualifiers::OCL_None) {
 | |
|     // Try to infer lifetime.
 | |
|     if (!type->isObjCLifetimeType())
 | |
|       return false;
 | |
| 
 | |
|     lifetime = type->getObjCARCImplicitLifetime();
 | |
|     type = Context.getLifetimeQualifiedType(type, lifetime);
 | |
|     decl->setType(type);
 | |
|   }
 | |
|   
 | |
|   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
 | |
|     // Thread-local variables cannot have lifetime.
 | |
|     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
 | |
|         var->getTLSKind()) {
 | |
|       Diag(var->getLocation(), diag::err_arc_thread_ownership)
 | |
|         << var->getType();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
 | |
|   // 'weak' only applies to declarations with external linkage.
 | |
|   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
 | |
|     if (!ND.isExternallyVisible()) {
 | |
|       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
 | |
|       ND.dropAttr<WeakAttr>();
 | |
|     }
 | |
|   }
 | |
|   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
 | |
|     if (ND.isExternallyVisible()) {
 | |
|       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
 | |
|       ND.dropAttr<WeakRefAttr>();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // 'selectany' only applies to externally visible varable declarations.
 | |
|   // It does not apply to functions.
 | |
|   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
 | |
|     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
 | |
|       S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
 | |
|       ND.dropAttr<SelectAnyAttr>();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given that we are within the definition of the given function,
 | |
| /// will that definition behave like C99's 'inline', where the
 | |
| /// definition is discarded except for optimization purposes?
 | |
| static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
 | |
|   // Try to avoid calling GetGVALinkageForFunction.
 | |
| 
 | |
|   // All cases of this require the 'inline' keyword.
 | |
|   if (!FD->isInlined()) return false;
 | |
| 
 | |
|   // This is only possible in C++ with the gnu_inline attribute.
 | |
|   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
 | |
|     return false;
 | |
| 
 | |
|   // Okay, go ahead and call the relatively-more-expensive function.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // AST quite reasonably asserts that it's working on a function
 | |
|   // definition.  We don't really have a way to tell it that we're
 | |
|   // currently defining the function, so just lie to it in +Asserts
 | |
|   // builds.  This is an awful hack.
 | |
|   FD->setLazyBody(1);
 | |
| #endif
 | |
| 
 | |
|   bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   FD->setLazyBody(0);
 | |
| #endif
 | |
| 
 | |
|   return isC99Inline;
 | |
| }
 | |
| 
 | |
| /// Determine whether a variable is extern "C" prior to attaching
 | |
| /// an initializer. We can't just call isExternC() here, because that
 | |
| /// will also compute and cache whether the declaration is externally
 | |
| /// visible, which might change when we attach the initializer.
 | |
| ///
 | |
| /// This can only be used if the declaration is known to not be a
 | |
| /// redeclaration of an internal linkage declaration.
 | |
| ///
 | |
| /// For instance:
 | |
| ///
 | |
| ///   auto x = []{};
 | |
| ///
 | |
| /// Attaching the initializer here makes this declaration not externally
 | |
| /// visible, because its type has internal linkage.
 | |
| ///
 | |
| /// FIXME: This is a hack.
 | |
| template<typename T>
 | |
| static bool isIncompleteDeclExternC(Sema &S, const T *D) {
 | |
|   if (S.getLangOpts().CPlusPlus) {
 | |
|     // In C++, the overloadable attribute negates the effects of extern "C".
 | |
|     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
 | |
|       return false;
 | |
|   }
 | |
|   return D->isExternC();
 | |
| }
 | |
| 
 | |
| static bool shouldConsiderLinkage(const VarDecl *VD) {
 | |
|   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
 | |
|   if (DC->isFunctionOrMethod())
 | |
|     return VD->hasExternalStorage();
 | |
|   if (DC->isFileContext())
 | |
|     return true;
 | |
|   if (DC->isRecord())
 | |
|     return false;
 | |
|   llvm_unreachable("Unexpected context");
 | |
| }
 | |
| 
 | |
| static bool shouldConsiderLinkage(const FunctionDecl *FD) {
 | |
|   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
 | |
|   if (DC->isFileContext() || DC->isFunctionOrMethod())
 | |
|     return true;
 | |
|   if (DC->isRecord())
 | |
|     return false;
 | |
|   llvm_unreachable("Unexpected context");
 | |
| }
 | |
| 
 | |
| bool Sema::HandleVariableRedeclaration(Decl *D, CXXScopeSpec &SS) {
 | |
|   // If this is a redeclaration of a variable template or a forward
 | |
|   // declaration of a variable template partial specialization 
 | |
|   // with nested name specifier, complain.
 | |
| 
 | |
|   if (D && SS.isNotEmpty() &&
 | |
|       (isa<VarTemplateDecl>(D) ||
 | |
|        isa<VarTemplatePartialSpecializationDecl>(D))) {
 | |
|     Diag(SS.getBeginLoc(), diag::err_forward_var_nested_name_specifier)
 | |
|       << isa<VarTemplatePartialSpecializationDecl>(D) << SS.getRange();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| NamedDecl *
 | |
| Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
 | |
|                               TypeSourceInfo *TInfo, LookupResult &Previous,
 | |
|                               MultiTemplateParamsArg TemplateParamLists,
 | |
|                               bool &AddToScope) {
 | |
|   QualType R = TInfo->getType();
 | |
|   DeclarationName Name = GetNameForDeclarator(D).getName();
 | |
| 
 | |
|   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
 | |
|   VarDecl::StorageClass SC =
 | |
|     StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
 | |
| 
 | |
|   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
 | |
|     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
 | |
|     // half array type (unless the cl_khr_fp16 extension is enabled).
 | |
|     if (Context.getBaseElementType(R)->isHalfType()) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
 | |
|       D.setInvalidType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (SCSpec == DeclSpec::SCS_mutable) {
 | |
|     // mutable can only appear on non-static class members, so it's always
 | |
|     // an error here
 | |
|     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
 | |
|     D.setInvalidType();
 | |
|     SC = SC_None;
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
 | |
|       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
 | |
|                               D.getDeclSpec().getStorageClassSpecLoc())) {
 | |
|     // In C++11, the 'register' storage class specifier is deprecated.
 | |
|     // Suppress the warning in system macros, it's used in macros in some
 | |
|     // popular C system headers, such as in glibc's htonl() macro.
 | |
|     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|          diag::warn_deprecated_register)
 | |
|       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | |
|   }
 | |
| 
 | |
|   IdentifierInfo *II = Name.getAsIdentifierInfo();
 | |
|   if (!II) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
 | |
|       << Name;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D.getDeclSpec());
 | |
| 
 | |
|   if (!DC->isRecord() && S->getFnParent() == 0) {
 | |
|     // C99 6.9p2: The storage-class specifiers auto and register shall not
 | |
|     // appear in the declaration specifiers in an external declaration.
 | |
|     if (SC == SC_Auto || SC == SC_Register) {
 | |
|       // If this is a register variable with an asm label specified, then this
 | |
|       // is a GNU extension.
 | |
|       if (SC == SC_Register && D.getAsmLabel())
 | |
|         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
 | |
|       else
 | |
|         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
 | |
|       D.setInvalidType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().OpenCL) {
 | |
|     // Set up the special work-group-local storage class for variables in the
 | |
|     // OpenCL __local address space.
 | |
|     if (R.getAddressSpace() == LangAS::opencl_local) {
 | |
|       SC = SC_OpenCLWorkGroupLocal;
 | |
|     }
 | |
| 
 | |
|     // OpenCL v1.2 s6.9.b p4:
 | |
|     // The sampler type cannot be used with the __local and __global address
 | |
|     // space qualifiers.
 | |
|     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
 | |
|       R.getAddressSpace() == LangAS::opencl_global)) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
 | |
|     }
 | |
| 
 | |
|     // OpenCL 1.2 spec, p6.9 r:
 | |
|     // The event type cannot be used to declare a program scope variable.
 | |
|     // The event type cannot be used with the __local, __constant and __global
 | |
|     // address space qualifiers.
 | |
|     if (R->isEventT()) {
 | |
|       if (S->getParent() == 0) {
 | |
|         Diag(D.getLocStart(), diag::err_event_t_global_var);
 | |
|         D.setInvalidType();
 | |
|       }
 | |
| 
 | |
|       if (R.getAddressSpace()) {
 | |
|         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
 | |
|         D.setInvalidType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool IsExplicitSpecialization = false;
 | |
|   bool IsVariableTemplateSpecialization = false;
 | |
|   bool IsPartialSpecialization = false;
 | |
|   bool Invalid = false; // TODO: Can we remove this (error-prone)?
 | |
|   TemplateParameterList *TemplateParams = 0;
 | |
|   VarTemplateDecl *PrevVarTemplate = 0;
 | |
|   VarDecl *NewVD;
 | |
|   if (!getLangOpts().CPlusPlus) {
 | |
|     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
 | |
|                             D.getIdentifierLoc(), II,
 | |
|                             R, TInfo, SC);
 | |
|   
 | |
|     if (D.isInvalidType())
 | |
|       NewVD->setInvalidDecl();
 | |
|   } else {
 | |
|     if (DC->isRecord() && !CurContext->isRecord()) {
 | |
|       // This is an out-of-line definition of a static data member.
 | |
|       switch (SC) {
 | |
|       case SC_None:
 | |
|         break;
 | |
|       case SC_Static:
 | |
|         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|              diag::err_static_out_of_line)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | |
|         break;
 | |
|       case SC_Auto:
 | |
|       case SC_Register:
 | |
|       case SC_Extern:
 | |
|         // [dcl.stc] p2: The auto or register specifiers shall be applied only
 | |
|         // to names of variables declared in a block or to function parameters.
 | |
|         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
 | |
|         // of class members
 | |
| 
 | |
|         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|              diag::err_storage_class_for_static_member)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | |
|         break;
 | |
|       case SC_PrivateExtern:
 | |
|         llvm_unreachable("C storage class in c++!");
 | |
|       case SC_OpenCLWorkGroupLocal:
 | |
|         llvm_unreachable("OpenCL storage class in c++!");
 | |
|       }
 | |
|     }    
 | |
| 
 | |
|     if (SC == SC_Static && CurContext->isRecord()) {
 | |
|       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
 | |
|         if (RD->isLocalClass())
 | |
|           Diag(D.getIdentifierLoc(),
 | |
|                diag::err_static_data_member_not_allowed_in_local_class)
 | |
|             << Name << RD->getDeclName();
 | |
| 
 | |
|         // C++98 [class.union]p1: If a union contains a static data member,
 | |
|         // the program is ill-formed. C++11 drops this restriction.
 | |
|         if (RD->isUnion())
 | |
|           Diag(D.getIdentifierLoc(),
 | |
|                getLangOpts().CPlusPlus11
 | |
|                  ? diag::warn_cxx98_compat_static_data_member_in_union
 | |
|                  : diag::ext_static_data_member_in_union) << Name;
 | |
|         // We conservatively disallow static data members in anonymous structs.
 | |
|         else if (!RD->getDeclName())
 | |
|           Diag(D.getIdentifierLoc(),
 | |
|                diag::err_static_data_member_not_allowed_in_anon_struct)
 | |
|             << Name << RD->isUnion();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     NamedDecl *PrevDecl = 0;
 | |
|     if (Previous.begin() != Previous.end())
 | |
|       PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | |
|     PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
 | |
| 
 | |
|     // Match up the template parameter lists with the scope specifier, then
 | |
|     // determine whether we have a template or a template specialization.
 | |
|     TemplateParams = MatchTemplateParametersToScopeSpecifier(
 | |
|         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
 | |
|         D.getCXXScopeSpec(), TemplateParamLists,
 | |
|         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
 | |
|     if (TemplateParams) {
 | |
|       if (!TemplateParams->size() &&
 | |
|           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
 | |
|         // There is an extraneous 'template<>' for this variable. Complain
 | |
|         // about it, but allow the declaration of the variable.
 | |
|         Diag(TemplateParams->getTemplateLoc(),
 | |
|              diag::err_template_variable_noparams)
 | |
|           << II
 | |
|           << SourceRange(TemplateParams->getTemplateLoc(),
 | |
|                          TemplateParams->getRAngleLoc());
 | |
|       } else {
 | |
|         // Only C++1y supports variable templates (N3651).
 | |
|         Diag(D.getIdentifierLoc(),
 | |
|              getLangOpts().CPlusPlus1y
 | |
|                  ? diag::warn_cxx11_compat_variable_template
 | |
|                  : diag::ext_variable_template);
 | |
| 
 | |
|         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
 | |
|           // This is an explicit specialization or a partial specialization.
 | |
|           // Check that we can declare a specialization here
 | |
| 
 | |
|           IsVariableTemplateSpecialization = true;
 | |
|           IsPartialSpecialization = TemplateParams->size() > 0;
 | |
| 
 | |
|         } else { // if (TemplateParams->size() > 0)
 | |
|           // This is a template declaration.
 | |
| 
 | |
|           // Check that we can declare a template here.
 | |
|           if (CheckTemplateDeclScope(S, TemplateParams))
 | |
|             return 0;
 | |
| 
 | |
|           // If there is a previous declaration with the same name, check
 | |
|           // whether this is a valid redeclaration.
 | |
|           if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
 | |
|             PrevDecl = PrevVarTemplate = 0;
 | |
| 
 | |
|           if (PrevVarTemplate) {
 | |
|             // Ensure that the template parameter lists are compatible.
 | |
|             if (!TemplateParameterListsAreEqual(
 | |
|                     TemplateParams, PrevVarTemplate->getTemplateParameters(),
 | |
|                     /*Complain=*/true, TPL_TemplateMatch))
 | |
|               return 0;
 | |
|           } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | |
|             // Maybe we will complain about the shadowed template parameter.
 | |
|             DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | |
| 
 | |
|             // Just pretend that we didn't see the previous declaration.
 | |
|             PrevDecl = 0;
 | |
|           } else if (PrevDecl) {
 | |
|             // C++ [temp]p5:
 | |
|             // ... a template name declared in namespace scope or in class
 | |
|             // scope shall be unique in that scope.
 | |
|             Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
 | |
|                 << Name;
 | |
|             Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|             return 0;
 | |
|           }
 | |
| 
 | |
|           // Check the template parameter list of this declaration, possibly
 | |
|           // merging in the template parameter list from the previous variable
 | |
|           // template declaration.
 | |
|           if (CheckTemplateParameterList(
 | |
|                   TemplateParams,
 | |
|                   PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
 | |
|                                   : 0,
 | |
|                   (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
 | |
|                    DC->isDependentContext())
 | |
|                       ? TPC_ClassTemplateMember
 | |
|                       : TPC_VarTemplate))
 | |
|             Invalid = true;
 | |
| 
 | |
|           if (D.getCXXScopeSpec().isSet()) {
 | |
|             // If the name of the template was qualified, we must be defining
 | |
|             // the template out-of-line.
 | |
|             if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
 | |
|                 !PrevVarTemplate) {
 | |
|               Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
 | |
|                   << Name << DC << D.getCXXScopeSpec().getRange();
 | |
|               Invalid = true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
 | |
|       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
 | |
| 
 | |
|       // We have encountered something that the user meant to be a
 | |
|       // specialization (because it has explicitly-specified template
 | |
|       // arguments) but that was not introduced with a "template<>" (or had
 | |
|       // too few of them).
 | |
|       // FIXME: Differentiate between attempts for explicit instantiations
 | |
|       // (starting with "template") and the rest.
 | |
|       Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
 | |
|           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
 | |
|           << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
 | |
|                                         "template<> ");
 | |
|       IsVariableTemplateSpecialization = true;
 | |
|     }
 | |
| 
 | |
|     if (IsVariableTemplateSpecialization) {
 | |
|       if (!PrevVarTemplate) {
 | |
|         Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
 | |
|             << IsPartialSpecialization;
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       SourceLocation TemplateKWLoc =
 | |
|           TemplateParamLists.size() > 0
 | |
|               ? TemplateParamLists[0]->getTemplateLoc()
 | |
|               : SourceLocation();
 | |
|       DeclResult Res = ActOnVarTemplateSpecialization(
 | |
|           S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
 | |
|           IsPartialSpecialization);
 | |
|       if (Res.isInvalid())
 | |
|         return 0;
 | |
|       NewVD = cast<VarDecl>(Res.get());
 | |
|       AddToScope = false;
 | |
|     } else
 | |
|       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
 | |
|                               D.getIdentifierLoc(), II, R, TInfo, SC);
 | |
| 
 | |
|     // If this decl has an auto type in need of deduction, make a note of the
 | |
|     // Decl so we can diagnose uses of it in its own initializer.
 | |
|     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
 | |
|       ParsingInitForAutoVars.insert(NewVD);
 | |
| 
 | |
|     if (D.isInvalidType() || Invalid)
 | |
|       NewVD->setInvalidDecl();
 | |
| 
 | |
|     SetNestedNameSpecifier(NewVD, D);
 | |
| 
 | |
|     // FIXME: Do we need D.getCXXScopeSpec().isSet()?
 | |
|     if (TemplateParams && TemplateParamLists.size() > 1 &&
 | |
|         (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
 | |
|       NewVD->setTemplateParameterListsInfo(
 | |
|           Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
 | |
|     } else if (IsVariableTemplateSpecialization ||
 | |
|                (!TemplateParams && TemplateParamLists.size() > 0 &&
 | |
|                 (D.getCXXScopeSpec().isSet()))) {
 | |
|       NewVD->setTemplateParameterListsInfo(Context,
 | |
|                                            TemplateParamLists.size(),
 | |
|                                            TemplateParamLists.data());
 | |
|     }
 | |
| 
 | |
|     if (D.getDeclSpec().isConstexprSpecified())
 | |
|       NewVD->setConstexpr(true);
 | |
|   }
 | |
| 
 | |
|   // Set the lexical context. If the declarator has a C++ scope specifier, the
 | |
|   // lexical context will be different from the semantic context.
 | |
|   NewVD->setLexicalDeclContext(CurContext);
 | |
| 
 | |
|   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
 | |
|     if (NewVD->hasLocalStorage()) {
 | |
|       // C++11 [dcl.stc]p4:
 | |
|       //   When thread_local is applied to a variable of block scope the
 | |
|       //   storage-class-specifier static is implied if it does not appear
 | |
|       //   explicitly.
 | |
|       // Core issue: 'static' is not implied if the variable is declared
 | |
|       //   'extern'.
 | |
|       if (SCSpec == DeclSpec::SCS_unspecified &&
 | |
|           TSCS == DeclSpec::TSCS_thread_local &&
 | |
|           DC->isFunctionOrMethod())
 | |
|         NewVD->setTSCSpec(TSCS);
 | |
|       else
 | |
|         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | |
|              diag::err_thread_non_global)
 | |
|           << DeclSpec::getSpecifierName(TSCS);
 | |
|     } else if (!Context.getTargetInfo().isTLSSupported())
 | |
|       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | |
|            diag::err_thread_unsupported);
 | |
|     else
 | |
|       NewVD->setTSCSpec(TSCS);
 | |
|   }
 | |
| 
 | |
|   // C99 6.7.4p3
 | |
|   //   An inline definition of a function with external linkage shall
 | |
|   //   not contain a definition of a modifiable object with static or
 | |
|   //   thread storage duration...
 | |
|   // We only apply this when the function is required to be defined
 | |
|   // elsewhere, i.e. when the function is not 'extern inline'.  Note
 | |
|   // that a local variable with thread storage duration still has to
 | |
|   // be marked 'static'.  Also note that it's possible to get these
 | |
|   // semantics in C++ using __attribute__((gnu_inline)).
 | |
|   if (SC == SC_Static && S->getFnParent() != 0 &&
 | |
|       !NewVD->getType().isConstQualified()) {
 | |
|     FunctionDecl *CurFD = getCurFunctionDecl();
 | |
|     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
 | |
|       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|            diag::warn_static_local_in_extern_inline);
 | |
|       MaybeSuggestAddingStaticToDecl(CurFD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (D.getDeclSpec().isModulePrivateSpecified()) {
 | |
|     if (IsVariableTemplateSpecialization)
 | |
|       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
 | |
|           << (IsPartialSpecialization ? 1 : 0)
 | |
|           << FixItHint::CreateRemoval(
 | |
|                  D.getDeclSpec().getModulePrivateSpecLoc());
 | |
|     else if (IsExplicitSpecialization)
 | |
|       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
 | |
|         << 2
 | |
|         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | |
|     else if (NewVD->hasLocalStorage())
 | |
|       Diag(NewVD->getLocation(), diag::err_module_private_local)
 | |
|         << 0 << NewVD->getDeclName()
 | |
|         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
 | |
|         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | |
|     else
 | |
|       NewVD->setModulePrivate();
 | |
|   }
 | |
| 
 | |
|   // Handle attributes prior to checking for duplicates in MergeVarDecl
 | |
|   ProcessDeclAttributes(S, NewVD, D);
 | |
| 
 | |
|   if (NewVD->hasAttrs())
 | |
|     CheckAlignasUnderalignment(NewVD);
 | |
| 
 | |
|   if (getLangOpts().CUDA) {
 | |
|     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
 | |
|     // storage [duration]."
 | |
|     if (SC == SC_None && S->getFnParent() != 0 &&
 | |
|         (NewVD->hasAttr<CUDASharedAttr>() ||
 | |
|          NewVD->hasAttr<CUDAConstantAttr>())) {
 | |
|       NewVD->setStorageClass(SC_Static);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In auto-retain/release, infer strong retension for variables of
 | |
|   // retainable type.
 | |
|   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
 | |
|     NewVD->setInvalidDecl();
 | |
| 
 | |
|   // Handle GNU asm-label extension (encoded as an attribute).
 | |
|   if (Expr *E = (Expr*)D.getAsmLabel()) {
 | |
|     // The parser guarantees this is a string.
 | |
|     StringLiteral *SE = cast<StringLiteral>(E);
 | |
|     StringRef Label = SE->getString();
 | |
|     if (S->getFnParent() != 0) {
 | |
|       switch (SC) {
 | |
|       case SC_None:
 | |
|       case SC_Auto:
 | |
|         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
 | |
|         break;
 | |
|       case SC_Register:
 | |
|         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
 | |
|           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
 | |
|         break;
 | |
|       case SC_Static:
 | |
|       case SC_Extern:
 | |
|       case SC_PrivateExtern:
 | |
|       case SC_OpenCLWorkGroupLocal:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
 | |
|                                                 Context, Label));
 | |
|   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
 | |
|     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
 | |
|       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
 | |
|     if (I != ExtnameUndeclaredIdentifiers.end()) {
 | |
|       NewVD->addAttr(I->second);
 | |
|       ExtnameUndeclaredIdentifiers.erase(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Diagnose shadowed variables before filtering for scope.
 | |
|   // FIXME: Special treatment for static variable template members (?).
 | |
|   if (!D.getCXXScopeSpec().isSet())
 | |
|     CheckShadow(S, NewVD, Previous);
 | |
| 
 | |
|   // Don't consider existing declarations that are in a different
 | |
|   // scope and are out-of-semantic-context declarations (if the new
 | |
|   // declaration has linkage).
 | |
|   FilterLookupForScope(
 | |
|       Previous, DC, S, shouldConsiderLinkage(NewVD),
 | |
|       IsExplicitSpecialization || IsVariableTemplateSpecialization);
 | |
| 
 | |
|   if (!getLangOpts().CPlusPlus) {
 | |
|     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
 | |
|   } else {
 | |
|     // Merge the decl with the existing one if appropriate.
 | |
|     if (!Previous.empty()) {
 | |
|       if (Previous.isSingleResult() &&
 | |
|           isa<FieldDecl>(Previous.getFoundDecl()) &&
 | |
|           D.getCXXScopeSpec().isSet()) {
 | |
|         // The user tried to define a non-static data member
 | |
|         // out-of-line (C++ [dcl.meaning]p1).
 | |
|         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
 | |
|           << D.getCXXScopeSpec().getRange();
 | |
|         Previous.clear();
 | |
|         NewVD->setInvalidDecl();
 | |
|       }
 | |
|     } else if (D.getCXXScopeSpec().isSet()) {
 | |
|       // No previous declaration in the qualifying scope.
 | |
|       Diag(D.getIdentifierLoc(), diag::err_no_member)
 | |
|         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
 | |
|         << D.getCXXScopeSpec().getRange();
 | |
|       NewVD->setInvalidDecl();
 | |
|     }
 | |
| 
 | |
|     if (!IsVariableTemplateSpecialization) {
 | |
|       if (PrevVarTemplate) {
 | |
|         LookupResult PrevDecl(*this, GetNameForDeclarator(D),
 | |
|                               LookupOrdinaryName, ForRedeclaration);
 | |
|         PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
 | |
|         D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
 | |
|       } else
 | |
|         D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
 | |
|     }
 | |
| 
 | |
|     // This is an explicit specialization of a static data member. Check it.
 | |
|     // FIXME: Special treatment for static variable template members (?).
 | |
|     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
 | |
|         CheckMemberSpecialization(NewVD, Previous))
 | |
|       NewVD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   ProcessPragmaWeak(S, NewVD);
 | |
|   checkAttributesAfterMerging(*this, *NewVD);
 | |
| 
 | |
|   // If this is the first declaration of an extern C variable, update
 | |
|   // the map of such variables.
 | |
|   if (!NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
 | |
|       isIncompleteDeclExternC(*this, NewVD))
 | |
|     RegisterLocallyScopedExternCDecl(NewVD, S);
 | |
| 
 | |
|   if (NewVD->isStaticLocal()) {
 | |
|     Decl *ManglingContextDecl;
 | |
|     if (MangleNumberingContext *MCtx =
 | |
|             getCurrentMangleNumberContext(NewVD->getDeclContext(),
 | |
|                                           ManglingContextDecl)) {
 | |
|       Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is not a variable template, return it now
 | |
|   if (!TemplateParams || IsVariableTemplateSpecialization)
 | |
|     return NewVD;
 | |
| 
 | |
|   // If this is supposed to be a variable template, create it as such.
 | |
|   VarTemplateDecl *NewTemplate =
 | |
|       VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
 | |
|                               TemplateParams, NewVD, PrevVarTemplate);
 | |
|   NewVD->setDescribedVarTemplate(NewTemplate);
 | |
| 
 | |
|   if (D.getDeclSpec().isModulePrivateSpecified())
 | |
|     NewTemplate->setModulePrivate();
 | |
| 
 | |
|   // If we are providing an explicit specialization of a static variable
 | |
|   // template, make a note of that.
 | |
|   if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
 | |
|     NewTemplate->setMemberSpecialization();
 | |
| 
 | |
|   // Set the lexical context of this template
 | |
|   NewTemplate->setLexicalDeclContext(CurContext);
 | |
|   if (NewVD->isStaticDataMember() && NewVD->isOutOfLine())
 | |
|     NewTemplate->setAccess(NewVD->getAccess());
 | |
| 
 | |
|   if (PrevVarTemplate)
 | |
|     mergeDeclAttributes(NewVD, PrevVarTemplate->getTemplatedDecl());
 | |
| 
 | |
|   AddPushedVisibilityAttribute(NewVD);
 | |
| 
 | |
|   PushOnScopeChains(NewTemplate, S);
 | |
|   AddToScope = false;
 | |
| 
 | |
|   if (Invalid) {
 | |
|     NewTemplate->setInvalidDecl();
 | |
|     NewVD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   ActOnDocumentableDecl(NewTemplate);
 | |
| 
 | |
|   return NewTemplate;
 | |
| }
 | |
| 
 | |
| /// \brief Diagnose variable or built-in function shadowing.  Implements
 | |
| /// -Wshadow.
 | |
| ///
 | |
| /// This method is called whenever a VarDecl is added to a "useful"
 | |
| /// scope.
 | |
| ///
 | |
| /// \param S the scope in which the shadowing name is being declared
 | |
| /// \param R the lookup of the name
 | |
| ///
 | |
| void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
 | |
|   // Return if warning is ignored.
 | |
|   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
 | |
|         DiagnosticsEngine::Ignored)
 | |
|     return;
 | |
| 
 | |
|   // Don't diagnose declarations at file scope.
 | |
|   if (D->hasGlobalStorage())
 | |
|     return;
 | |
| 
 | |
|   DeclContext *NewDC = D->getDeclContext();
 | |
| 
 | |
|   // Only diagnose if we're shadowing an unambiguous field or variable.
 | |
|   if (R.getResultKind() != LookupResult::Found)
 | |
|     return;
 | |
| 
 | |
|   NamedDecl* ShadowedDecl = R.getFoundDecl();
 | |
|   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
 | |
|     return;
 | |
| 
 | |
|   // Fields are not shadowed by variables in C++ static methods.
 | |
|   if (isa<FieldDecl>(ShadowedDecl))
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
 | |
|       if (MD->isStatic())
 | |
|         return;
 | |
| 
 | |
|   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
 | |
|     if (shadowedVar->isExternC()) {
 | |
|       // For shadowing external vars, make sure that we point to the global
 | |
|       // declaration, not a locally scoped extern declaration.
 | |
|       for (VarDecl::redecl_iterator
 | |
|              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
 | |
|            I != E; ++I)
 | |
|         if (I->isFileVarDecl()) {
 | |
|           ShadowedDecl = *I;
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   DeclContext *OldDC = ShadowedDecl->getDeclContext();
 | |
| 
 | |
|   // Only warn about certain kinds of shadowing for class members.
 | |
|   if (NewDC && NewDC->isRecord()) {
 | |
|     // In particular, don't warn about shadowing non-class members.
 | |
|     if (!OldDC->isRecord())
 | |
|       return;
 | |
| 
 | |
|     // TODO: should we warn about static data members shadowing
 | |
|     // static data members from base classes?
 | |
|     
 | |
|     // TODO: don't diagnose for inaccessible shadowed members.
 | |
|     // This is hard to do perfectly because we might friend the
 | |
|     // shadowing context, but that's just a false negative.
 | |
|   }
 | |
| 
 | |
|   // Determine what kind of declaration we're shadowing.
 | |
|   unsigned Kind;
 | |
|   if (isa<RecordDecl>(OldDC)) {
 | |
|     if (isa<FieldDecl>(ShadowedDecl))
 | |
|       Kind = 3; // field
 | |
|     else
 | |
|       Kind = 2; // static data member
 | |
|   } else if (OldDC->isFileContext())
 | |
|     Kind = 1; // global
 | |
|   else
 | |
|     Kind = 0; // local
 | |
| 
 | |
|   DeclarationName Name = R.getLookupName();
 | |
| 
 | |
|   // Emit warning and note.
 | |
|   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
 | |
|   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
 | |
| }
 | |
| 
 | |
| /// \brief Check -Wshadow without the advantage of a previous lookup.
 | |
| void Sema::CheckShadow(Scope *S, VarDecl *D) {
 | |
|   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
 | |
|         DiagnosticsEngine::Ignored)
 | |
|     return;
 | |
| 
 | |
|   LookupResult R(*this, D->getDeclName(), D->getLocation(),
 | |
|                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
 | |
|   LookupName(R, S);
 | |
|   CheckShadow(S, D, R);
 | |
| }
 | |
| 
 | |
| /// Check for conflict between this global or extern "C" declaration and
 | |
| /// previous global or extern "C" declarations. This is only used in C++.
 | |
| template<typename T>
 | |
| static bool checkGlobalOrExternCConflict(
 | |
|     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
 | |
|   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
 | |
|   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
 | |
| 
 | |
|   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
 | |
|     // The common case: this global doesn't conflict with any extern "C"
 | |
|     // declaration.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Prev) {
 | |
|     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
 | |
|       // Both the old and new declarations have C language linkage. This is a
 | |
|       // redeclaration.
 | |
|       Previous.clear();
 | |
|       Previous.addDecl(Prev);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // This is a global, non-extern "C" declaration, and there is a previous
 | |
|     // non-global extern "C" declaration. Diagnose if this is a variable
 | |
|     // declaration.
 | |
|     if (!isa<VarDecl>(ND))
 | |
|       return false;
 | |
|   } else {
 | |
|     // The declaration is extern "C". Check for any declaration in the
 | |
|     // translation unit which might conflict.
 | |
|     if (IsGlobal) {
 | |
|       // We have already performed the lookup into the translation unit.
 | |
|       IsGlobal = false;
 | |
|       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | |
|            I != E; ++I) {
 | |
|         if (isa<VarDecl>(*I)) {
 | |
|           Prev = *I;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       DeclContext::lookup_result R =
 | |
|           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
 | |
|       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
 | |
|            I != E; ++I) {
 | |
|         if (isa<VarDecl>(*I)) {
 | |
|           Prev = *I;
 | |
|           break;
 | |
|         }
 | |
|         // FIXME: If we have any other entity with this name in global scope,
 | |
|         // the declaration is ill-formed, but that is a defect: it breaks the
 | |
|         // 'stat' hack, for instance. Only variables can have mangled name
 | |
|         // clashes with extern "C" declarations, so only they deserve a
 | |
|         // diagnostic.
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!Prev)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Use the first declaration's location to ensure we point at something which
 | |
|   // is lexically inside an extern "C" linkage-spec.
 | |
|   assert(Prev && "should have found a previous declaration to diagnose");
 | |
|   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
 | |
|     Prev = FD->getFirstDeclaration();
 | |
|   else
 | |
|     Prev = cast<VarDecl>(Prev)->getFirstDeclaration();
 | |
| 
 | |
|   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
 | |
|     << IsGlobal << ND;
 | |
|   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
 | |
|     << IsGlobal;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Apply special rules for handling extern "C" declarations. Returns \c true
 | |
| /// if we have found that this is a redeclaration of some prior entity.
 | |
| ///
 | |
| /// Per C++ [dcl.link]p6:
 | |
| ///   Two declarations [for a function or variable] with C language linkage
 | |
| ///   with the same name that appear in different scopes refer to the same
 | |
| ///   [entity]. An entity with C language linkage shall not be declared with
 | |
| ///   the same name as an entity in global scope.
 | |
| template<typename T>
 | |
| static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
 | |
|                                                   LookupResult &Previous) {
 | |
|   if (!S.getLangOpts().CPlusPlus) {
 | |
|     // In C, when declaring a global variable, look for a corresponding 'extern'
 | |
|     // variable declared in function scope.
 | |
|     //
 | |
|     // FIXME: The corresponding case in C++ does not work.  We should instead
 | |
|     // set the semantic DC for an extern local variable to be the innermost
 | |
|     // enclosing namespace, and ensure they are only found by redeclaration
 | |
|     // lookup.
 | |
|     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | |
|       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
 | |
|         Previous.clear();
 | |
|         Previous.addDecl(Prev);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // A declaration in the translation unit can conflict with an extern "C"
 | |
|   // declaration.
 | |
|   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
 | |
|     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
 | |
| 
 | |
|   // An extern "C" declaration can conflict with a declaration in the
 | |
|   // translation unit or can be a redeclaration of an extern "C" declaration
 | |
|   // in another scope.
 | |
|   if (isIncompleteDeclExternC(S,ND))
 | |
|     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
 | |
| 
 | |
|   // Neither global nor extern "C": nothing to do.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
 | |
|   // If the decl is already known invalid, don't check it.
 | |
|   if (NewVD->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
 | |
|   QualType T = TInfo->getType();
 | |
| 
 | |
|   // Defer checking an 'auto' type until its initializer is attached.
 | |
|   if (T->isUndeducedType())
 | |
|     return;
 | |
| 
 | |
|   if (T->isObjCObjectType()) {
 | |
|     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
 | |
|       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
 | |
|     T = Context.getObjCObjectPointerType(T);
 | |
|     NewVD->setType(T);
 | |
|   }
 | |
| 
 | |
|   // Emit an error if an address space was applied to decl with local storage.
 | |
|   // This includes arrays of objects with address space qualifiers, but not
 | |
|   // automatic variables that point to other address spaces.
 | |
|   // ISO/IEC TR 18037 S5.1.2
 | |
|   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
 | |
|     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
 | |
|     NewVD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
 | |
|   // __constant address space.
 | |
|   if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
 | |
|       && T.getAddressSpace() != LangAS::opencl_constant
 | |
|       && !T->isSamplerT()){
 | |
|     Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
 | |
|     NewVD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
 | |
|   // scope.
 | |
|   if ((getLangOpts().OpenCLVersion >= 120)
 | |
|       && NewVD->isStaticLocal()) {
 | |
|     Diag(NewVD->getLocation(), diag::err_static_function_scope);
 | |
|     NewVD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
 | |
|       && !NewVD->hasAttr<BlocksAttr>()) {
 | |
|     if (getLangOpts().getGC() != LangOptions::NonGC)
 | |
|       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
 | |
|     else {
 | |
|       assert(!getLangOpts().ObjCAutoRefCount);
 | |
|       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   bool isVM = T->isVariablyModifiedType();
 | |
|   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
 | |
|       NewVD->hasAttr<BlocksAttr>())
 | |
|     getCurFunction()->setHasBranchProtectedScope();
 | |
| 
 | |
|   if ((isVM && NewVD->hasLinkage()) ||
 | |
|       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
 | |
|     bool SizeIsNegative;
 | |
|     llvm::APSInt Oversized;
 | |
|     TypeSourceInfo *FixedTInfo =
 | |
|       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
 | |
|                                                     SizeIsNegative, Oversized);
 | |
|     if (FixedTInfo == 0 && T->isVariableArrayType()) {
 | |
|       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
 | |
|       // FIXME: This won't give the correct result for
 | |
|       // int a[10][n];
 | |
|       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
 | |
| 
 | |
|       if (NewVD->isFileVarDecl())
 | |
|         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
 | |
|         << SizeRange;
 | |
|       else if (NewVD->isStaticLocal())
 | |
|         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
 | |
|         << SizeRange;
 | |
|       else
 | |
|         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
 | |
|         << SizeRange;
 | |
|       NewVD->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (FixedTInfo == 0) {
 | |
|       if (NewVD->isFileVarDecl())
 | |
|         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
 | |
|       else
 | |
|         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
 | |
|       NewVD->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
 | |
|     NewVD->setType(FixedTInfo->getType());
 | |
|     NewVD->setTypeSourceInfo(FixedTInfo);
 | |
|   }
 | |
| 
 | |
|   if (T->isVoidType()) {
 | |
|     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
 | |
|     //                    of objects and functions.
 | |
|     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
 | |
|       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
 | |
|         << T;
 | |
|       NewVD->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
 | |
|     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
 | |
|     NewVD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
 | |
|     Diag(NewVD->getLocation(), diag::err_block_on_vm);
 | |
|     NewVD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (NewVD->isConstexpr() && !T->isDependentType() &&
 | |
|       RequireLiteralType(NewVD->getLocation(), T,
 | |
|                          diag::err_constexpr_var_non_literal)) {
 | |
|     // Can't perform this check until the type is deduced.
 | |
|     NewVD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic checking on a newly-created variable
 | |
| /// declaration.
 | |
| ///
 | |
| /// This routine performs all of the type-checking required for a
 | |
| /// variable declaration once it has been built. It is used both to
 | |
| /// check variables after they have been parsed and their declarators
 | |
| /// have been translated into a declaration, and to check variables
 | |
| /// that have been instantiated from a template.
 | |
| ///
 | |
| /// Sets NewVD->isInvalidDecl() if an error was encountered.
 | |
| ///
 | |
| /// Returns true if the variable declaration is a redeclaration.
 | |
| bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
 | |
|                                     LookupResult &Previous) {
 | |
|   CheckVariableDeclarationType(NewVD);
 | |
| 
 | |
|   // If the decl is already known invalid, don't check it.
 | |
|   if (NewVD->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // If we did not find anything by this name, look for a non-visible
 | |
|   // extern "C" declaration with the same name.
 | |
|   //
 | |
|   // Clang has a lot of problems with extern local declarations.
 | |
|   // The actual standards text here is:
 | |
|   //
 | |
|   // C++11 [basic.link]p6:
 | |
|   //   The name of a function declared in block scope and the name
 | |
|   //   of a variable declared by a block scope extern declaration
 | |
|   //   have linkage. If there is a visible declaration of an entity
 | |
|   //   with linkage having the same name and type, ignoring entities
 | |
|   //   declared outside the innermost enclosing namespace scope, the
 | |
|   //   block scope declaration declares that same entity and
 | |
|   //   receives the linkage of the previous declaration.
 | |
|   //
 | |
|   // C11 6.2.7p4:
 | |
|   //   For an identifier with internal or external linkage declared
 | |
|   //   in a scope in which a prior declaration of that identifier is
 | |
|   //   visible, if the prior declaration specifies internal or
 | |
|   //   external linkage, the type of the identifier at the later
 | |
|   //   declaration becomes the composite type.
 | |
|   //
 | |
|   // The most important point here is that we're not allowed to
 | |
|   // update our understanding of the type according to declarations
 | |
|   // not in scope.
 | |
|   bool PreviousWasHidden =
 | |
|       Previous.empty() &&
 | |
|       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous);
 | |
| 
 | |
|   // Filter out any non-conflicting previous declarations.
 | |
|   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
 | |
| 
 | |
|   if (!Previous.empty()) {
 | |
|     MergeVarDecl(NewVD, Previous, PreviousWasHidden);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Data used with FindOverriddenMethod
 | |
| struct FindOverriddenMethodData {
 | |
|   Sema *S;
 | |
|   CXXMethodDecl *Method;
 | |
| };
 | |
| 
 | |
| /// \brief Member lookup function that determines whether a given C++
 | |
| /// method overrides a method in a base class, to be used with
 | |
| /// CXXRecordDecl::lookupInBases().
 | |
| static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
 | |
|                                  CXXBasePath &Path,
 | |
|                                  void *UserData) {
 | |
|   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
 | |
| 
 | |
|   FindOverriddenMethodData *Data 
 | |
|     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
 | |
|   
 | |
|   DeclarationName Name = Data->Method->getDeclName();
 | |
|   
 | |
|   // FIXME: Do we care about other names here too?
 | |
|   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | |
|     // We really want to find the base class destructor here.
 | |
|     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
 | |
|     CanQualType CT = Data->S->Context.getCanonicalType(T);
 | |
|     
 | |
|     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
 | |
|   }    
 | |
|   
 | |
|   for (Path.Decls = BaseRecord->lookup(Name);
 | |
|        !Path.Decls.empty();
 | |
|        Path.Decls = Path.Decls.slice(1)) {
 | |
|     NamedDecl *D = Path.Decls.front();
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
 | |
|       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
 | |
| }
 | |
| /// \brief Report an error regarding overriding, along with any relevant
 | |
| /// overriden methods.
 | |
| ///
 | |
| /// \param DiagID the primary error to report.
 | |
| /// \param MD the overriding method.
 | |
| /// \param OEK which overrides to include as notes.
 | |
| static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
 | |
|                             OverrideErrorKind OEK = OEK_All) {
 | |
|   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
 | |
|   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
 | |
|                                       E = MD->end_overridden_methods();
 | |
|        I != E; ++I) {
 | |
|     // This check (& the OEK parameter) could be replaced by a predicate, but
 | |
|     // without lambdas that would be overkill. This is still nicer than writing
 | |
|     // out the diag loop 3 times.
 | |
|     if ((OEK == OEK_All) ||
 | |
|         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
 | |
|         (OEK == OEK_Deleted && (*I)->isDeleted()))
 | |
|       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddOverriddenMethods - See if a method overrides any in the base classes,
 | |
| /// and if so, check that it's a valid override and remember it.
 | |
| bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
 | |
|   // Look for virtual methods in base classes that this method might override.
 | |
|   CXXBasePaths Paths;
 | |
|   FindOverriddenMethodData Data;
 | |
|   Data.Method = MD;
 | |
|   Data.S = this;
 | |
|   bool hasDeletedOverridenMethods = false;
 | |
|   bool hasNonDeletedOverridenMethods = false;
 | |
|   bool AddedAny = false;
 | |
|   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
 | |
|     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
 | |
|          E = Paths.found_decls_end(); I != E; ++I) {
 | |
|       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
 | |
|         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
 | |
|         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
 | |
|             !CheckOverridingFunctionAttributes(MD, OldMD) &&
 | |
|             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
 | |
|             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
 | |
|           hasDeletedOverridenMethods |= OldMD->isDeleted();
 | |
|           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
 | |
|           AddedAny = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
 | |
|     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
 | |
|   }
 | |
|   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
 | |
|     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
 | |
|   }
 | |
| 
 | |
|   return AddedAny;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // Struct for holding all of the extra arguments needed by
 | |
|   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
 | |
|   struct ActOnFDArgs {
 | |
|     Scope *S;
 | |
|     Declarator &D;
 | |
|     MultiTemplateParamsArg TemplateParamLists;
 | |
|     bool AddToScope;
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Callback to only accept typo corrections that have a non-zero edit distance.
 | |
| // Also only accept corrections that have the same parent decl.
 | |
| class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
 | |
|  public:
 | |
|   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
 | |
|                             CXXRecordDecl *Parent)
 | |
|       : Context(Context), OriginalFD(TypoFD),
 | |
|         ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
 | |
| 
 | |
|   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | |
|     if (candidate.getEditDistance() == 0)
 | |
|       return false;
 | |
| 
 | |
|     SmallVector<unsigned, 1> MismatchedParams;
 | |
|     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
 | |
|                                           CDeclEnd = candidate.end();
 | |
|          CDecl != CDeclEnd; ++CDecl) {
 | |
|       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
 | |
| 
 | |
|       if (FD && !FD->hasBody() &&
 | |
|           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
 | |
|         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | |
|           CXXRecordDecl *Parent = MD->getParent();
 | |
|           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
 | |
|             return true;
 | |
|         } else if (!ExpectedParent) {
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ASTContext &Context;
 | |
|   FunctionDecl *OriginalFD;
 | |
|   CXXRecordDecl *ExpectedParent;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// \brief Generate diagnostics for an invalid function redeclaration.
 | |
| ///
 | |
| /// This routine handles generating the diagnostic messages for an invalid
 | |
| /// function redeclaration, including finding possible similar declarations
 | |
| /// or performing typo correction if there are no previous declarations with
 | |
| /// the same name.
 | |
| ///
 | |
| /// Returns a NamedDecl iff typo correction was performed and substituting in
 | |
| /// the new declaration name does not cause new errors.
 | |
| static NamedDecl* DiagnoseInvalidRedeclaration(
 | |
|     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
 | |
|     ActOnFDArgs &ExtraArgs) {
 | |
|   NamedDecl *Result = NULL;
 | |
|   DeclarationName Name = NewFD->getDeclName();
 | |
|   DeclContext *NewDC = NewFD->getDeclContext();
 | |
|   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
 | |
|                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
 | |
|   SmallVector<unsigned, 1> MismatchedParams;
 | |
|   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
 | |
|   TypoCorrection Correction;
 | |
|   bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
 | |
|                        ExtraArgs.D.getDeclSpec().isFriendSpecified());
 | |
|   unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
 | |
|                                   : diag::err_member_def_does_not_match;
 | |
| 
 | |
|   NewFD->setInvalidDecl();
 | |
|   SemaRef.LookupQualifiedName(Prev, NewDC);
 | |
|   assert(!Prev.isAmbiguous() &&
 | |
|          "Cannot have an ambiguity in previous-declaration lookup");
 | |
|   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
 | |
|   DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
 | |
|                                       MD ? MD->getParent() : 0);
 | |
|   if (!Prev.empty()) {
 | |
|     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
 | |
|          Func != FuncEnd; ++Func) {
 | |
|       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
 | |
|       if (FD &&
 | |
|           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
 | |
|         // Add 1 to the index so that 0 can mean the mismatch didn't
 | |
|         // involve a parameter
 | |
|         unsigned ParamNum =
 | |
|             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
 | |
|         NearMatches.push_back(std::make_pair(FD, ParamNum));
 | |
|       }
 | |
|     }
 | |
|   // If the qualified name lookup yielded nothing, try typo correction
 | |
|   } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
 | |
|                                          Prev.getLookupKind(), 0, 0,
 | |
|                                          Validator, NewDC))) {
 | |
|     // Trap errors.
 | |
|     Sema::SFINAETrap Trap(SemaRef);
 | |
| 
 | |
|     // Set up everything for the call to ActOnFunctionDeclarator
 | |
|     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
 | |
|                               ExtraArgs.D.getIdentifierLoc());
 | |
|     Previous.clear();
 | |
|     Previous.setLookupName(Correction.getCorrection());
 | |
|     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
 | |
|                                     CDeclEnd = Correction.end();
 | |
|          CDecl != CDeclEnd; ++CDecl) {
 | |
|       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
 | |
|       if (FD && !FD->hasBody() &&
 | |
|           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
 | |
|         Previous.addDecl(FD);
 | |
|       }
 | |
|     }
 | |
|     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
 | |
|     // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
 | |
|     // pieces need to verify the typo-corrected C++ declaraction and hopefully
 | |
|     // eliminate the need for the parameter pack ExtraArgs.
 | |
|     Result = SemaRef.ActOnFunctionDeclarator(
 | |
|         ExtraArgs.S, ExtraArgs.D,
 | |
|         Correction.getCorrectionDecl()->getDeclContext(),
 | |
|         NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
 | |
|         ExtraArgs.AddToScope);
 | |
|     if (Trap.hasErrorOccurred()) {
 | |
|       // Pretend the typo correction never occurred
 | |
|       ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
 | |
|                                 ExtraArgs.D.getIdentifierLoc());
 | |
|       ExtraArgs.D.setRedeclaration(wasRedeclaration);
 | |
|       Previous.clear();
 | |
|       Previous.setLookupName(Name);
 | |
|       Result = NULL;
 | |
|     } else {
 | |
|       for (LookupResult::iterator Func = Previous.begin(),
 | |
|                                FuncEnd = Previous.end();
 | |
|            Func != FuncEnd; ++Func) {
 | |
|         if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
 | |
|           NearMatches.push_back(std::make_pair(FD, 0));
 | |
|       }
 | |
|     }
 | |
|     if (NearMatches.empty()) {
 | |
|       // Ignore the correction if it didn't yield any close FunctionDecl matches
 | |
|       Correction = TypoCorrection();
 | |
|     } else {
 | |
|       DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
 | |
|                              : diag::err_member_def_does_not_match_suggest;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Correction) {
 | |
|     // FIXME: use Correction.getCorrectionRange() instead of computing the range
 | |
|     // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
 | |
|     // turn causes the correction to fully qualify the name. If we fix
 | |
|     // CorrectTypo to minimally qualify then this change should be good.
 | |
|     SourceRange FixItLoc(NewFD->getLocation());
 | |
|     CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
 | |
|     if (Correction.getCorrectionSpecifier() && SS.isValid())
 | |
|       FixItLoc.setBegin(SS.getBeginLoc());
 | |
|     SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
 | |
|         << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
 | |
|         << FixItHint::CreateReplacement(
 | |
|             FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
 | |
|   } else {
 | |
|     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
 | |
|         << Name << NewDC << NewFD->getLocation();
 | |
|   }
 | |
| 
 | |
|   bool NewFDisConst = false;
 | |
|   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
 | |
|     NewFDisConst = NewMD->isConst();
 | |
| 
 | |
|   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
 | |
|        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
 | |
|        NearMatch != NearMatchEnd; ++NearMatch) {
 | |
|     FunctionDecl *FD = NearMatch->first;
 | |
|     bool FDisConst = false;
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
 | |
|       FDisConst = MD->isConst();
 | |
| 
 | |
|     if (unsigned Idx = NearMatch->second) {
 | |
|       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
 | |
|       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
 | |
|       if (Loc.isInvalid()) Loc = FD->getLocation();
 | |
|       SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
 | |
|           << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
 | |
|     } else if (Correction) {
 | |
|       SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
 | |
|           << Correction.getQuoted(SemaRef.getLangOpts());
 | |
|     } else if (FDisConst != NewFDisConst) {
 | |
|       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
 | |
|           << NewFDisConst << FD->getSourceRange().getEnd();
 | |
|     } else
 | |
|       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef, 
 | |
|                                                           Declarator &D) {
 | |
|   switch (D.getDeclSpec().getStorageClassSpec()) {
 | |
|   default: llvm_unreachable("Unknown storage class!");
 | |
|   case DeclSpec::SCS_auto:
 | |
|   case DeclSpec::SCS_register:
 | |
|   case DeclSpec::SCS_mutable:
 | |
|     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|                  diag::err_typecheck_sclass_func);
 | |
|     D.setInvalidType();
 | |
|     break;
 | |
|   case DeclSpec::SCS_unspecified: break;
 | |
|   case DeclSpec::SCS_extern:
 | |
|     if (D.getDeclSpec().isExternInLinkageSpec())
 | |
|       return SC_None;
 | |
|     return SC_Extern;
 | |
|   case DeclSpec::SCS_static: {
 | |
|     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
 | |
|       // C99 6.7.1p5:
 | |
|       //   The declaration of an identifier for a function that has
 | |
|       //   block scope shall have no explicit storage-class specifier
 | |
|       //   other than extern
 | |
|       // See also (C++ [dcl.stc]p4).
 | |
|       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|                    diag::err_static_block_func);
 | |
|       break;
 | |
|     } else
 | |
|       return SC_Static;
 | |
|   }
 | |
|   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
 | |
|   }
 | |
| 
 | |
|   // No explicit storage class has already been returned
 | |
|   return SC_None;
 | |
| }
 | |
| 
 | |
| static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
 | |
|                                            DeclContext *DC, QualType &R,
 | |
|                                            TypeSourceInfo *TInfo,
 | |
|                                            FunctionDecl::StorageClass SC,
 | |
|                                            bool &IsVirtualOkay) {
 | |
|   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
| 
 | |
|   FunctionDecl *NewFD = 0;
 | |
|   bool isInline = D.getDeclSpec().isInlineSpecified();
 | |
| 
 | |
|   if (!SemaRef.getLangOpts().CPlusPlus) {
 | |
|     // Determine whether the function was written with a
 | |
|     // prototype. This true when:
 | |
|     //   - there is a prototype in the declarator, or
 | |
|     //   - the type R of the function is some kind of typedef or other reference
 | |
|     //     to a type name (which eventually refers to a function type).
 | |
|     bool HasPrototype =
 | |
|       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
 | |
|       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
 | |
| 
 | |
|     NewFD = FunctionDecl::Create(SemaRef.Context, DC, 
 | |
|                                  D.getLocStart(), NameInfo, R, 
 | |
|                                  TInfo, SC, isInline, 
 | |
|                                  HasPrototype, false);
 | |
|     if (D.isInvalidType())
 | |
|       NewFD->setInvalidDecl();
 | |
| 
 | |
|     // Set the lexical context.
 | |
|     NewFD->setLexicalDeclContext(SemaRef.CurContext);
 | |
| 
 | |
|     return NewFD;
 | |
|   }
 | |
| 
 | |
|   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
 | |
|   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
 | |
| 
 | |
|   // Check that the return type is not an abstract class type.
 | |
|   // For record types, this is done by the AbstractClassUsageDiagnoser once
 | |
|   // the class has been completely parsed.
 | |
|   if (!DC->isRecord() &&
 | |
|       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
 | |
|                                      R->getAs<FunctionType>()->getResultType(),
 | |
|                                      diag::err_abstract_type_in_decl,
 | |
|                                      SemaRef.AbstractReturnType))
 | |
|     D.setInvalidType();
 | |
| 
 | |
|   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
 | |
|     // This is a C++ constructor declaration.
 | |
|     assert(DC->isRecord() &&
 | |
|            "Constructors can only be declared in a member context");
 | |
| 
 | |
|     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
 | |
|     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
 | |
|                                       D.getLocStart(), NameInfo,
 | |
|                                       R, TInfo, isExplicit, isInline,
 | |
|                                       /*isImplicitlyDeclared=*/false,
 | |
|                                       isConstexpr);
 | |
| 
 | |
|   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | |
|     // This is a C++ destructor declaration.
 | |
|     if (DC->isRecord()) {
 | |
|       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
 | |
|       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
 | |
|       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
 | |
|                                         SemaRef.Context, Record,
 | |
|                                         D.getLocStart(),
 | |
|                                         NameInfo, R, TInfo, isInline,
 | |
|                                         /*isImplicitlyDeclared=*/false);
 | |
| 
 | |
|       // If the class is complete, then we now create the implicit exception
 | |
|       // specification. If the class is incomplete or dependent, we can't do
 | |
|       // it yet.
 | |
|       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
 | |
|           Record->getDefinition() && !Record->isBeingDefined() &&
 | |
|           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
 | |
|         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
 | |
|       }
 | |
| 
 | |
|       // The Microsoft ABI requires that we perform the destructor body
 | |
|       // checks (i.e. operator delete() lookup) at every declaration, as
 | |
|       // any translation unit may need to emit a deleting destructor.
 | |
|       if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
 | |
|           !Record->isDependentType() && Record->getDefinition() &&
 | |
|           !Record->isBeingDefined()) {
 | |
|         SemaRef.CheckDestructor(NewDD);
 | |
|       }
 | |
| 
 | |
|       IsVirtualOkay = true;
 | |
|       return NewDD;
 | |
| 
 | |
|     } else {
 | |
|       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
 | |
|       D.setInvalidType();
 | |
| 
 | |
|       // Create a FunctionDecl to satisfy the function definition parsing
 | |
|       // code path.
 | |
|       return FunctionDecl::Create(SemaRef.Context, DC,
 | |
|                                   D.getLocStart(),
 | |
|                                   D.getIdentifierLoc(), Name, R, TInfo,
 | |
|                                   SC, isInline,
 | |
|                                   /*hasPrototype=*/true, isConstexpr);
 | |
|     }
 | |
| 
 | |
|   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
 | |
|     if (!DC->isRecord()) {
 | |
|       SemaRef.Diag(D.getIdentifierLoc(),
 | |
|            diag::err_conv_function_not_member);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     SemaRef.CheckConversionDeclarator(D, R, SC);
 | |
|     IsVirtualOkay = true;
 | |
|     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
 | |
|                                      D.getLocStart(), NameInfo,
 | |
|                                      R, TInfo, isInline, isExplicit,
 | |
|                                      isConstexpr, SourceLocation());
 | |
| 
 | |
|   } else if (DC->isRecord()) {
 | |
|     // If the name of the function is the same as the name of the record,
 | |
|     // then this must be an invalid constructor that has a return type.
 | |
|     // (The parser checks for a return type and makes the declarator a
 | |
|     // constructor if it has no return type).
 | |
|     if (Name.getAsIdentifierInfo() &&
 | |
|         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
 | |
|       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
 | |
|         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
 | |
|         << SourceRange(D.getIdentifierLoc());
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // This is a C++ method declaration.
 | |
|     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
 | |
|                                                cast<CXXRecordDecl>(DC),
 | |
|                                                D.getLocStart(), NameInfo, R,
 | |
|                                                TInfo, SC, isInline,
 | |
|                                                isConstexpr, SourceLocation());
 | |
|     IsVirtualOkay = !Ret->isStatic();
 | |
|     return Ret;
 | |
|   } else {
 | |
|     // Determine whether the function was written with a
 | |
|     // prototype. This true when:
 | |
|     //   - we're in C++ (where every function has a prototype),
 | |
|     return FunctionDecl::Create(SemaRef.Context, DC,
 | |
|                                 D.getLocStart(),
 | |
|                                 NameInfo, R, TInfo, SC, isInline,
 | |
|                                 true/*HasPrototype*/, isConstexpr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
 | |
|   // In C++, the empty parameter-type-list must be spelled "void"; a
 | |
|   // typedef of void is not permitted.
 | |
|   if (getLangOpts().CPlusPlus &&
 | |
|       Param->getType().getUnqualifiedType() != Context.VoidTy) {
 | |
|     bool IsTypeAlias = false;
 | |
|     if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
 | |
|       IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
 | |
|     else if (const TemplateSpecializationType *TST =
 | |
|                Param->getType()->getAs<TemplateSpecializationType>())
 | |
|       IsTypeAlias = TST->isTypeAlias();
 | |
|     Diag(Param->getLocation(), diag::err_param_typedef_of_void)
 | |
|       << IsTypeAlias;
 | |
|   }
 | |
| }
 | |
| 
 | |
| enum OpenCLParamType {
 | |
|   ValidKernelParam,
 | |
|   PtrPtrKernelParam,
 | |
|   PtrKernelParam,
 | |
|   InvalidKernelParam,
 | |
|   RecordKernelParam
 | |
| };
 | |
| 
 | |
| static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
 | |
|   if (PT->isPointerType()) {
 | |
|     QualType PointeeType = PT->getPointeeType();
 | |
|     return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
 | |
|   }
 | |
| 
 | |
|   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
 | |
|   // be used as builtin types.
 | |
| 
 | |
|   if (PT->isImageType())
 | |
|     return PtrKernelParam;
 | |
| 
 | |
|   if (PT->isBooleanType())
 | |
|     return InvalidKernelParam;
 | |
| 
 | |
|   if (PT->isEventT())
 | |
|     return InvalidKernelParam;
 | |
| 
 | |
|   if (PT->isHalfType())
 | |
|     return InvalidKernelParam;
 | |
| 
 | |
|   if (PT->isRecordType())
 | |
|     return RecordKernelParam;
 | |
| 
 | |
|   return ValidKernelParam;
 | |
| }
 | |
| 
 | |
| static void checkIsValidOpenCLKernelParameter(
 | |
|   Sema &S,
 | |
|   Declarator &D,
 | |
|   ParmVarDecl *Param,
 | |
|   llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
 | |
|   QualType PT = Param->getType();
 | |
| 
 | |
|   // Cache the valid types we encounter to avoid rechecking structs that are
 | |
|   // used again
 | |
|   if (ValidTypes.count(PT.getTypePtr()))
 | |
|     return;
 | |
| 
 | |
|   switch (getOpenCLKernelParameterType(PT)) {
 | |
|   case PtrPtrKernelParam:
 | |
|     // OpenCL v1.2 s6.9.a:
 | |
|     // A kernel function argument cannot be declared as a
 | |
|     // pointer to a pointer type.
 | |
|     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
 | |
|     D.setInvalidType();
 | |
|     return;
 | |
| 
 | |
|     // OpenCL v1.2 s6.9.k:
 | |
|     // Arguments to kernel functions in a program cannot be declared with the
 | |
|     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
 | |
|     // uintptr_t or a struct and/or union that contain fields declared to be
 | |
|     // one of these built-in scalar types.
 | |
| 
 | |
|   case InvalidKernelParam:
 | |
|     // OpenCL v1.2 s6.8 n:
 | |
|     // A kernel function argument cannot be declared
 | |
|     // of event_t type.
 | |
|     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
 | |
|     D.setInvalidType();
 | |
|     return;
 | |
| 
 | |
|   case PtrKernelParam:
 | |
|   case ValidKernelParam:
 | |
|     ValidTypes.insert(PT.getTypePtr());
 | |
|     return;
 | |
| 
 | |
|   case RecordKernelParam:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Track nested structs we will inspect
 | |
|   SmallVector<const Decl *, 4> VisitStack;
 | |
| 
 | |
|   // Track where we are in the nested structs. Items will migrate from
 | |
|   // VisitStack to HistoryStack as we do the DFS for bad field.
 | |
|   SmallVector<const FieldDecl *, 4> HistoryStack;
 | |
|   HistoryStack.push_back((const FieldDecl *) 0);
 | |
| 
 | |
|   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
 | |
|   VisitStack.push_back(PD);
 | |
| 
 | |
|   assert(VisitStack.back() && "First decl null?");
 | |
| 
 | |
|   do {
 | |
|     const Decl *Next = VisitStack.pop_back_val();
 | |
|     if (!Next) {
 | |
|       assert(!HistoryStack.empty());
 | |
|       // Found a marker, we have gone up a level
 | |
|       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
 | |
|         ValidTypes.insert(Hist->getType().getTypePtr());
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Adds everything except the original parameter declaration (which is not a
 | |
|     // field itself) to the history stack.
 | |
|     const RecordDecl *RD;
 | |
|     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
 | |
|       HistoryStack.push_back(Field);
 | |
|       RD = Field->getType()->castAs<RecordType>()->getDecl();
 | |
|     } else {
 | |
|       RD = cast<RecordDecl>(Next);
 | |
|     }
 | |
| 
 | |
|     // Add a null marker so we know when we've gone back up a level
 | |
|     VisitStack.push_back((const Decl *) 0);
 | |
| 
 | |
|     for (RecordDecl::field_iterator I = RD->field_begin(),
 | |
|            E = RD->field_end(); I != E; ++I) {
 | |
|       const FieldDecl *FD = *I;
 | |
|       QualType QT = FD->getType();
 | |
| 
 | |
|       if (ValidTypes.count(QT.getTypePtr()))
 | |
|         continue;
 | |
| 
 | |
|       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
 | |
|       if (ParamType == ValidKernelParam)
 | |
|         continue;
 | |
| 
 | |
|       if (ParamType == RecordKernelParam) {
 | |
|         VisitStack.push_back(FD);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // OpenCL v1.2 s6.9.p:
 | |
|       // Arguments to kernel functions that are declared to be a struct or union
 | |
|       // do not allow OpenCL objects to be passed as elements of the struct or
 | |
|       // union.
 | |
|       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
 | |
|         S.Diag(Param->getLocation(),
 | |
|                diag::err_record_with_pointers_kernel_param)
 | |
|           << PT->isUnionType()
 | |
|           << PT;
 | |
|       } else {
 | |
|         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
 | |
|       }
 | |
| 
 | |
|       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
 | |
|         << PD->getDeclName();
 | |
| 
 | |
|       // We have an error, now let's go back up through history and show where
 | |
|       // the offending field came from
 | |
|       for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
 | |
|              E = HistoryStack.end(); I != E; ++I) {
 | |
|         const FieldDecl *OuterField = *I;
 | |
|         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
 | |
|           << OuterField->getType();
 | |
|       }
 | |
| 
 | |
|       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
 | |
|         << QT->isPointerType()
 | |
|         << QT;
 | |
|       D.setInvalidType();
 | |
|       return;
 | |
|     }
 | |
|   } while (!VisitStack.empty());
 | |
| }
 | |
| 
 | |
| NamedDecl*
 | |
| Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
 | |
|                               TypeSourceInfo *TInfo, LookupResult &Previous,
 | |
|                               MultiTemplateParamsArg TemplateParamLists,
 | |
|                               bool &AddToScope) {
 | |
|   QualType R = TInfo->getType();
 | |
| 
 | |
|   assert(R.getTypePtr()->isFunctionType());
 | |
| 
 | |
|   // TODO: consider using NameInfo for diagnostic.
 | |
|   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
 | |
| 
 | |
|   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
 | |
|     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | |
|          diag::err_invalid_thread)
 | |
|       << DeclSpec::getSpecifierName(TSCS);
 | |
| 
 | |
|   bool isFriend = false;
 | |
|   FunctionTemplateDecl *FunctionTemplate = 0;
 | |
|   bool isExplicitSpecialization = false;
 | |
|   bool isFunctionTemplateSpecialization = false;
 | |
| 
 | |
|   bool isDependentClassScopeExplicitSpecialization = false;
 | |
|   bool HasExplicitTemplateArgs = false;
 | |
|   TemplateArgumentListInfo TemplateArgs;
 | |
| 
 | |
|   bool isVirtualOkay = false;
 | |
| 
 | |
|   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
 | |
|                                               isVirtualOkay);
 | |
|   if (!NewFD) return 0;
 | |
| 
 | |
|   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
 | |
|     NewFD->setTopLevelDeclInObjCContainer();
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     bool isInline = D.getDeclSpec().isInlineSpecified();
 | |
|     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
 | |
|     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
 | |
|     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
 | |
|     isFriend = D.getDeclSpec().isFriendSpecified();
 | |
|     if (isFriend && !isInline && D.isFunctionDefinition()) {
 | |
|       // C++ [class.friend]p5
 | |
|       //   A function can be defined in a friend declaration of a
 | |
|       //   class . . . . Such a function is implicitly inline.
 | |
|       NewFD->setImplicitlyInline();
 | |
|     }
 | |
| 
 | |
|     // If this is a method defined in an __interface, and is not a constructor
 | |
|     // or an overloaded operator, then set the pure flag (isVirtual will already
 | |
|     // return true).
 | |
|     if (const CXXRecordDecl *Parent =
 | |
|           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
 | |
|       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
 | |
|         NewFD->setPure(true);
 | |
|     }
 | |
| 
 | |
|     SetNestedNameSpecifier(NewFD, D);
 | |
|     isExplicitSpecialization = false;
 | |
|     isFunctionTemplateSpecialization = false;
 | |
|     if (D.isInvalidType())
 | |
|       NewFD->setInvalidDecl();
 | |
|     
 | |
|     // Set the lexical context. If the declarator has a C++
 | |
|     // scope specifier, or is the object of a friend declaration, the
 | |
|     // lexical context will be different from the semantic context.
 | |
|     NewFD->setLexicalDeclContext(CurContext);
 | |
|         
 | |
|     // Match up the template parameter lists with the scope specifier, then
 | |
|     // determine whether we have a template or a template specialization.
 | |
|     bool Invalid = false;
 | |
|     if (TemplateParameterList *TemplateParams =
 | |
|             MatchTemplateParametersToScopeSpecifier(
 | |
|                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
 | |
|                 D.getCXXScopeSpec(), TemplateParamLists, isFriend,
 | |
|                 isExplicitSpecialization, Invalid)) {
 | |
|       if (TemplateParams->size() > 0) {
 | |
|         // This is a function template
 | |
| 
 | |
|         // Check that we can declare a template here.
 | |
|         if (CheckTemplateDeclScope(S, TemplateParams))
 | |
|           return 0;
 | |
| 
 | |
|         // A destructor cannot be a template.
 | |
|         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | |
|           Diag(NewFD->getLocation(), diag::err_destructor_template);
 | |
|           return 0;
 | |
|         }
 | |
|         
 | |
|         // If we're adding a template to a dependent context, we may need to 
 | |
|         // rebuilding some of the types used within the template parameter list,
 | |
|         // now that we know what the current instantiation is.
 | |
|         if (DC->isDependentContext()) {
 | |
|           ContextRAII SavedContext(*this, DC);
 | |
|           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
 | |
|             Invalid = true;
 | |
|         }
 | |
|         
 | |
| 
 | |
|         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
 | |
|                                                         NewFD->getLocation(),
 | |
|                                                         Name, TemplateParams,
 | |
|                                                         NewFD);
 | |
|         FunctionTemplate->setLexicalDeclContext(CurContext);
 | |
|         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
 | |
| 
 | |
|         // For source fidelity, store the other template param lists.
 | |
|         if (TemplateParamLists.size() > 1) {
 | |
|           NewFD->setTemplateParameterListsInfo(Context,
 | |
|                                                TemplateParamLists.size() - 1,
 | |
|                                                TemplateParamLists.data());
 | |
|         }
 | |
|       } else {
 | |
|         // This is a function template specialization.
 | |
|         isFunctionTemplateSpecialization = true;
 | |
|         // For source fidelity, store all the template param lists.
 | |
|         NewFD->setTemplateParameterListsInfo(Context,
 | |
|                                              TemplateParamLists.size(),
 | |
|                                              TemplateParamLists.data());
 | |
| 
 | |
|         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
 | |
|         if (isFriend) {
 | |
|           // We want to remove the "template<>", found here.
 | |
|           SourceRange RemoveRange = TemplateParams->getSourceRange();
 | |
| 
 | |
|           // If we remove the template<> and the name is not a
 | |
|           // template-id, we're actually silently creating a problem:
 | |
|           // the friend declaration will refer to an untemplated decl,
 | |
|           // and clearly the user wants a template specialization.  So
 | |
|           // we need to insert '<>' after the name.
 | |
|           SourceLocation InsertLoc;
 | |
|           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
 | |
|             InsertLoc = D.getName().getSourceRange().getEnd();
 | |
|             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
 | |
|           }
 | |
| 
 | |
|           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
 | |
|             << Name << RemoveRange
 | |
|             << FixItHint::CreateRemoval(RemoveRange)
 | |
|             << FixItHint::CreateInsertion(InsertLoc, "<>");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       // All template param lists were matched against the scope specifier:
 | |
|       // this is NOT (an explicit specialization of) a template.
 | |
|       if (TemplateParamLists.size() > 0)
 | |
|         // For source fidelity, store all the template param lists.
 | |
|         NewFD->setTemplateParameterListsInfo(Context,
 | |
|                                              TemplateParamLists.size(),
 | |
|                                              TemplateParamLists.data());
 | |
|     }
 | |
| 
 | |
|     if (Invalid) {
 | |
|       NewFD->setInvalidDecl();
 | |
|       if (FunctionTemplate)
 | |
|         FunctionTemplate->setInvalidDecl();
 | |
|     }
 | |
| 
 | |
|     // C++ [dcl.fct.spec]p5:
 | |
|     //   The virtual specifier shall only be used in declarations of
 | |
|     //   nonstatic class member functions that appear within a
 | |
|     //   member-specification of a class declaration; see 10.3.
 | |
|     //
 | |
|     if (isVirtual && !NewFD->isInvalidDecl()) {
 | |
|       if (!isVirtualOkay) {
 | |
|         Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | |
|              diag::err_virtual_non_function);
 | |
|       } else if (!CurContext->isRecord()) {
 | |
|         // 'virtual' was specified outside of the class.
 | |
|         Diag(D.getDeclSpec().getVirtualSpecLoc(), 
 | |
|              diag::err_virtual_out_of_class)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
 | |
|       } else if (NewFD->getDescribedFunctionTemplate()) {
 | |
|         // C++ [temp.mem]p3:
 | |
|         //  A member function template shall not be virtual.
 | |
|         Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | |
|              diag::err_virtual_member_function_template)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
 | |
|       } else {
 | |
|         // Okay: Add virtual to the method.
 | |
|         NewFD->setVirtualAsWritten(true);
 | |
|       }
 | |
| 
 | |
|       if (getLangOpts().CPlusPlus1y &&
 | |
|           NewFD->getResultType()->isUndeducedType())
 | |
|         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
 | |
|     }
 | |
| 
 | |
|     // C++ [dcl.fct.spec]p3:
 | |
|     //  The inline specifier shall not appear on a block scope function 
 | |
|     //  declaration.
 | |
|     if (isInline && !NewFD->isInvalidDecl()) {
 | |
|       if (CurContext->isFunctionOrMethod()) {
 | |
|         // 'inline' is not allowed on block scope function declaration.
 | |
|         Diag(D.getDeclSpec().getInlineSpecLoc(), 
 | |
|              diag::err_inline_declaration_block_scope) << Name
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // C++ [dcl.fct.spec]p6:
 | |
|     //  The explicit specifier shall be used only in the declaration of a
 | |
|     //  constructor or conversion function within its class definition; 
 | |
|     //  see 12.3.1 and 12.3.2.
 | |
|     if (isExplicit && !NewFD->isInvalidDecl()) {
 | |
|       if (!CurContext->isRecord()) {
 | |
|         // 'explicit' was specified outside of the class.
 | |
|         Diag(D.getDeclSpec().getExplicitSpecLoc(), 
 | |
|              diag::err_explicit_out_of_class)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
 | |
|       } else if (!isa<CXXConstructorDecl>(NewFD) && 
 | |
|                  !isa<CXXConversionDecl>(NewFD)) {
 | |
|         // 'explicit' was specified on a function that wasn't a constructor
 | |
|         // or conversion function.
 | |
|         Diag(D.getDeclSpec().getExplicitSpecLoc(),
 | |
|              diag::err_explicit_non_ctor_or_conv_function)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
 | |
|       }      
 | |
|     }
 | |
| 
 | |
|     if (isConstexpr) {
 | |
|       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
 | |
|       // are implicitly inline.
 | |
|       NewFD->setImplicitlyInline();
 | |
| 
 | |
|       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
 | |
|       // be either constructors or to return a literal type. Therefore,
 | |
|       // destructors cannot be declared constexpr.
 | |
|       if (isa<CXXDestructorDecl>(NewFD))
 | |
|         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
 | |
|     }
 | |
| 
 | |
|     // If __module_private__ was specified, mark the function accordingly.
 | |
|     if (D.getDeclSpec().isModulePrivateSpecified()) {
 | |
|       if (isFunctionTemplateSpecialization) {
 | |
|         SourceLocation ModulePrivateLoc
 | |
|           = D.getDeclSpec().getModulePrivateSpecLoc();
 | |
|         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
 | |
|           << 0
 | |
|           << FixItHint::CreateRemoval(ModulePrivateLoc);
 | |
|       } else {
 | |
|         NewFD->setModulePrivate();
 | |
|         if (FunctionTemplate)
 | |
|           FunctionTemplate->setModulePrivate();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isFriend) {
 | |
|       if (FunctionTemplate) {
 | |
|         FunctionTemplate->setObjectOfFriendDecl();
 | |
|         FunctionTemplate->setAccess(AS_public);
 | |
|       }
 | |
|       NewFD->setObjectOfFriendDecl();
 | |
|       NewFD->setAccess(AS_public);
 | |
|     }
 | |
| 
 | |
|     // If a function is defined as defaulted or deleted, mark it as such now.
 | |
|     switch (D.getFunctionDefinitionKind()) {
 | |
|       case FDK_Declaration:
 | |
|       case FDK_Definition:
 | |
|         break;
 | |
|         
 | |
|       case FDK_Defaulted:
 | |
|         NewFD->setDefaulted();
 | |
|         break;
 | |
|         
 | |
|       case FDK_Deleted:
 | |
|         NewFD->setDeletedAsWritten();
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
 | |
|         D.isFunctionDefinition()) {
 | |
|       // C++ [class.mfct]p2:
 | |
|       //   A member function may be defined (8.4) in its class definition, in 
 | |
|       //   which case it is an inline member function (7.1.2)
 | |
|       NewFD->setImplicitlyInline();
 | |
|     }
 | |
| 
 | |
|     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
 | |
|         !CurContext->isRecord()) {
 | |
|       // C++ [class.static]p1:
 | |
|       //   A data or function member of a class may be declared static
 | |
|       //   in a class definition, in which case it is a static member of
 | |
|       //   the class.
 | |
| 
 | |
|       // Complain about the 'static' specifier if it's on an out-of-line
 | |
|       // member function definition.
 | |
|       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|            diag::err_static_out_of_line)
 | |
|         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | |
|     }
 | |
| 
 | |
|     // C++11 [except.spec]p15:
 | |
|     //   A deallocation function with no exception-specification is treated
 | |
|     //   as if it were specified with noexcept(true).
 | |
|     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
 | |
|     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
 | |
|          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
 | |
|         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
 | |
|       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | |
|       EPI.ExceptionSpecType = EST_BasicNoexcept;
 | |
|       NewFD->setType(Context.getFunctionType(FPT->getResultType(),
 | |
|                                              FPT->getArgTypes(), EPI));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Filter out previous declarations that don't match the scope.
 | |
|   FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
 | |
|                        isExplicitSpecialization ||
 | |
|                        isFunctionTemplateSpecialization);
 | |
|   
 | |
|   // Handle GNU asm-label extension (encoded as an attribute).
 | |
|   if (Expr *E = (Expr*) D.getAsmLabel()) {
 | |
|     // The parser guarantees this is a string.
 | |
|     StringLiteral *SE = cast<StringLiteral>(E);
 | |
|     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
 | |
|                                                 SE->getString()));
 | |
|   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
 | |
|     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
 | |
|       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
 | |
|     if (I != ExtnameUndeclaredIdentifiers.end()) {
 | |
|       NewFD->addAttr(I->second);
 | |
|       ExtnameUndeclaredIdentifiers.erase(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Copy the parameter declarations from the declarator D to the function
 | |
|   // declaration NewFD, if they are available.  First scavenge them into Params.
 | |
|   SmallVector<ParmVarDecl*, 16> Params;
 | |
|   if (D.isFunctionDeclarator()) {
 | |
|     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | |
| 
 | |
|     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
 | |
|     // function that takes no arguments, not a function that takes a
 | |
|     // single void argument.
 | |
|     // We let through "const void" here because Sema::GetTypeForDeclarator
 | |
|     // already checks for that case.
 | |
|     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
 | |
|         FTI.ArgInfo[0].Param &&
 | |
|         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
 | |
|       // Empty arg list, don't push any params.
 | |
|       checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
 | |
|     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
 | |
|       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
 | |
|         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
 | |
|         assert(Param->getDeclContext() != NewFD && "Was set before ?");
 | |
|         Param->setDeclContext(NewFD);
 | |
|         Params.push_back(Param);
 | |
| 
 | |
|         if (Param->isInvalidDecl())
 | |
|           NewFD->setInvalidDecl();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
 | |
|     // When we're declaring a function with a typedef, typeof, etc as in the
 | |
|     // following example, we'll need to synthesize (unnamed)
 | |
|     // parameters for use in the declaration.
 | |
|     //
 | |
|     // @code
 | |
|     // typedef void fn(int);
 | |
|     // fn f;
 | |
|     // @endcode
 | |
| 
 | |
|     // Synthesize a parameter for each argument type.
 | |
|     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
 | |
|          AE = FT->arg_type_end(); AI != AE; ++AI) {
 | |
|       ParmVarDecl *Param =
 | |
|         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
 | |
|       Param->setScopeInfo(0, Params.size());
 | |
|       Params.push_back(Param);
 | |
|     }
 | |
|   } else {
 | |
|     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
 | |
|            "Should not need args for typedef of non-prototype fn");
 | |
|   }
 | |
| 
 | |
|   // Finally, we know we have the right number of parameters, install them.
 | |
|   NewFD->setParams(Params);
 | |
| 
 | |
|   // Find all anonymous symbols defined during the declaration of this function
 | |
|   // and add to NewFD. This lets us track decls such 'enum Y' in:
 | |
|   //
 | |
|   //   void f(enum Y {AA} x) {}
 | |
|   //
 | |
|   // which would otherwise incorrectly end up in the translation unit scope.
 | |
|   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
 | |
|   DeclsInPrototypeScope.clear();
 | |
| 
 | |
|   if (D.getDeclSpec().isNoreturnSpecified())
 | |
|     NewFD->addAttr(
 | |
|         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
 | |
|                                        Context));
 | |
| 
 | |
|   // Process the non-inheritable attributes on this declaration.
 | |
|   ProcessDeclAttributes(S, NewFD, D,
 | |
|                         /*NonInheritable=*/true, /*Inheritable=*/false);
 | |
| 
 | |
|   // Functions returning a variably modified type violate C99 6.7.5.2p2
 | |
|   // because all functions have linkage.
 | |
|   if (!NewFD->isInvalidDecl() &&
 | |
|       NewFD->getResultType()->isVariablyModifiedType()) {
 | |
|     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
 | |
|     NewFD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Handle attributes.
 | |
|   ProcessDeclAttributes(S, NewFD, D,
 | |
|                         /*NonInheritable=*/false, /*Inheritable=*/true);
 | |
| 
 | |
|   QualType RetType = NewFD->getResultType();
 | |
|   const CXXRecordDecl *Ret = RetType->isRecordType() ?
 | |
|       RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
 | |
|   if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
 | |
|       Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
 | |
|     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
 | |
|     if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
 | |
|       NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
 | |
|                                                         Context));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!getLangOpts().CPlusPlus) {
 | |
|     // Perform semantic checking on the function declaration.
 | |
|     bool isExplicitSpecialization=false;
 | |
|     if (!NewFD->isInvalidDecl() && NewFD->isMain())
 | |
|       CheckMain(NewFD, D.getDeclSpec());
 | |
| 
 | |
|     if (!NewFD->isInvalidDecl())
 | |
|       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
 | |
|                                                   isExplicitSpecialization));
 | |
|     // Make graceful recovery from an invalid redeclaration.
 | |
|     else if (!Previous.empty())
 | |
|            D.setRedeclaration(true);
 | |
|     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
 | |
|             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
 | |
|            "previous declaration set still overloaded");
 | |
|   } else {
 | |
|     // If the declarator is a template-id, translate the parser's template 
 | |
|     // argument list into our AST format.
 | |
|     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
 | |
|       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
 | |
|       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
 | |
|       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
 | |
|       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
 | |
|                                          TemplateId->NumArgs);
 | |
|       translateTemplateArguments(TemplateArgsPtr,
 | |
|                                  TemplateArgs);
 | |
|     
 | |
|       HasExplicitTemplateArgs = true;
 | |
|     
 | |
|       if (NewFD->isInvalidDecl()) {
 | |
|         HasExplicitTemplateArgs = false;
 | |
|       } else if (FunctionTemplate) {
 | |
|         // Function template with explicit template arguments.
 | |
|         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
 | |
|           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
 | |
| 
 | |
|         HasExplicitTemplateArgs = false;
 | |
|       } else if (!isFunctionTemplateSpecialization && 
 | |
|                  !D.getDeclSpec().isFriendSpecified()) {
 | |
|         // We have encountered something that the user meant to be a 
 | |
|         // specialization (because it has explicitly-specified template
 | |
|         // arguments) but that was not introduced with a "template<>" (or had
 | |
|         // too few of them).
 | |
|         // FIXME: Differentiate between attempts for explicit instantiations
 | |
|         // (starting with "template") and the rest.
 | |
|         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
 | |
|           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
 | |
|           << FixItHint::CreateInsertion(
 | |
|                                     D.getDeclSpec().getLocStart(),
 | |
|                                         "template<> ");
 | |
|         isFunctionTemplateSpecialization = true;
 | |
|       } else {
 | |
|         // "friend void foo<>(int);" is an implicit specialization decl.
 | |
|         isFunctionTemplateSpecialization = true;
 | |
|       }
 | |
|     } else if (isFriend && isFunctionTemplateSpecialization) {
 | |
|       // This combination is only possible in a recovery case;  the user
 | |
|       // wrote something like:
 | |
|       //   template <> friend void foo(int);
 | |
|       // which we're recovering from as if the user had written:
 | |
|       //   friend void foo<>(int);
 | |
|       // Go ahead and fake up a template id.
 | |
|       HasExplicitTemplateArgs = true;
 | |
|         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
 | |
|       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
 | |
|     }
 | |
| 
 | |
|     // If it's a friend (and only if it's a friend), it's possible
 | |
|     // that either the specialized function type or the specialized
 | |
|     // template is dependent, and therefore matching will fail.  In
 | |
|     // this case, don't check the specialization yet.
 | |
|     bool InstantiationDependent = false;
 | |
|     if (isFunctionTemplateSpecialization && isFriend &&
 | |
|         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
 | |
|          TemplateSpecializationType::anyDependentTemplateArguments(
 | |
|             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
 | |
|             InstantiationDependent))) {
 | |
|       assert(HasExplicitTemplateArgs &&
 | |
|              "friend function specialization without template args");
 | |
|       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
 | |
|                                                        Previous))
 | |
|         NewFD->setInvalidDecl();
 | |
|     } else if (isFunctionTemplateSpecialization) {
 | |
|       if (CurContext->isDependentContext() && CurContext->isRecord() 
 | |
|           && !isFriend) {
 | |
|         isDependentClassScopeExplicitSpecialization = true;
 | |
|         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 
 | |
|           diag::ext_function_specialization_in_class :
 | |
|           diag::err_function_specialization_in_class)
 | |
|           << NewFD->getDeclName();
 | |
|       } else if (CheckFunctionTemplateSpecialization(NewFD,
 | |
|                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
 | |
|                                                      Previous))
 | |
|         NewFD->setInvalidDecl();
 | |
|       
 | |
|       // C++ [dcl.stc]p1:
 | |
|       //   A storage-class-specifier shall not be specified in an explicit
 | |
|       //   specialization (14.7.3)
 | |
|       FunctionTemplateSpecializationInfo *Info =
 | |
|           NewFD->getTemplateSpecializationInfo();
 | |
|       if (Info && SC != SC_None) {
 | |
|         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
 | |
|           Diag(NewFD->getLocation(),
 | |
|                diag::err_explicit_specialization_inconsistent_storage_class)
 | |
|             << SC
 | |
|             << FixItHint::CreateRemoval(
 | |
|                                       D.getDeclSpec().getStorageClassSpecLoc());
 | |
|             
 | |
|         else
 | |
|           Diag(NewFD->getLocation(), 
 | |
|                diag::ext_explicit_specialization_storage_class)
 | |
|             << FixItHint::CreateRemoval(
 | |
|                                       D.getDeclSpec().getStorageClassSpecLoc());
 | |
|       }
 | |
|       
 | |
|     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
 | |
|       if (CheckMemberSpecialization(NewFD, Previous))
 | |
|           NewFD->setInvalidDecl();
 | |
|     }
 | |
| 
 | |
|     // Perform semantic checking on the function declaration.
 | |
|     if (!isDependentClassScopeExplicitSpecialization) {
 | |
|       if (!NewFD->isInvalidDecl() && NewFD->isMain())
 | |
|         CheckMain(NewFD, D.getDeclSpec());
 | |
| 
 | |
|       if (NewFD->isInvalidDecl()) {
 | |
|         // If this is a class member, mark the class invalid immediately.
 | |
|         // This avoids some consistency errors later.
 | |
|         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
 | |
|           methodDecl->getParent()->setInvalidDecl();
 | |
|       } else
 | |
|         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
 | |
|                                                     isExplicitSpecialization));
 | |
|     }
 | |
| 
 | |
|     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
 | |
|             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
 | |
|            "previous declaration set still overloaded");
 | |
| 
 | |
|     NamedDecl *PrincipalDecl = (FunctionTemplate
 | |
|                                 ? cast<NamedDecl>(FunctionTemplate)
 | |
|                                 : NewFD);
 | |
| 
 | |
|     if (isFriend && D.isRedeclaration()) {
 | |
|       AccessSpecifier Access = AS_public;
 | |
|       if (!NewFD->isInvalidDecl())
 | |
|         Access = NewFD->getPreviousDecl()->getAccess();
 | |
| 
 | |
|       NewFD->setAccess(Access);
 | |
|       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
 | |
|     }
 | |
| 
 | |
|     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
 | |
|         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
 | |
|       PrincipalDecl->setNonMemberOperator();
 | |
| 
 | |
|     // If we have a function template, check the template parameter
 | |
|     // list. This will check and merge default template arguments.
 | |
|     if (FunctionTemplate) {
 | |
|       FunctionTemplateDecl *PrevTemplate = 
 | |
|                                      FunctionTemplate->getPreviousDecl();
 | |
|       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
 | |
|                        PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
 | |
|                             D.getDeclSpec().isFriendSpecified()
 | |
|                               ? (D.isFunctionDefinition()
 | |
|                                    ? TPC_FriendFunctionTemplateDefinition
 | |
|                                    : TPC_FriendFunctionTemplate)
 | |
|                               : (D.getCXXScopeSpec().isSet() && 
 | |
|                                  DC && DC->isRecord() && 
 | |
|                                  DC->isDependentContext())
 | |
|                                   ? TPC_ClassTemplateMember
 | |
|                                   : TPC_FunctionTemplate);
 | |
|     }
 | |
| 
 | |
|     if (NewFD->isInvalidDecl()) {
 | |
|       // Ignore all the rest of this.
 | |
|     } else if (!D.isRedeclaration()) {
 | |
|       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
 | |
|                                        AddToScope };
 | |
|       // Fake up an access specifier if it's supposed to be a class member.
 | |
|       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
 | |
|         NewFD->setAccess(AS_public);
 | |
| 
 | |
|       // Qualified decls generally require a previous declaration.
 | |
|       if (D.getCXXScopeSpec().isSet()) {
 | |
|         // ...with the major exception of templated-scope or
 | |
|         // dependent-scope friend declarations.
 | |
| 
 | |
|         // TODO: we currently also suppress this check in dependent
 | |
|         // contexts because (1) the parameter depth will be off when
 | |
|         // matching friend templates and (2) we might actually be
 | |
|         // selecting a friend based on a dependent factor.  But there
 | |
|         // are situations where these conditions don't apply and we
 | |
|         // can actually do this check immediately.
 | |
|         if (isFriend &&
 | |
|             (TemplateParamLists.size() ||
 | |
|              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
 | |
|              CurContext->isDependentContext())) {
 | |
|           // ignore these
 | |
|         } else {
 | |
|           // The user tried to provide an out-of-line definition for a
 | |
|           // function that is a member of a class or namespace, but there
 | |
|           // was no such member function declared (C++ [class.mfct]p2,
 | |
|           // C++ [namespace.memdef]p2). For example:
 | |
|           //
 | |
|           // class X {
 | |
|           //   void f() const;
 | |
|           // };
 | |
|           //
 | |
|           // void X::f() { } // ill-formed
 | |
|           //
 | |
|           // Complain about this problem, and attempt to suggest close
 | |
|           // matches (e.g., those that differ only in cv-qualifiers and
 | |
|           // whether the parameter types are references).
 | |
| 
 | |
|           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
 | |
|                                                                NewFD,
 | |
|                                                                ExtraArgs)) {
 | |
|             AddToScope = ExtraArgs.AddToScope;
 | |
|             return Result;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Unqualified local friend declarations are required to resolve
 | |
|         // to something.
 | |
|       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
 | |
|         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
 | |
|                                                              NewFD,
 | |
|                                                              ExtraArgs)) {
 | |
|           AddToScope = ExtraArgs.AddToScope;
 | |
|           return Result;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
 | |
|                !isFriend && !isFunctionTemplateSpecialization &&
 | |
|                !isExplicitSpecialization) {
 | |
|       // An out-of-line member function declaration must also be a
 | |
|       // definition (C++ [dcl.meaning]p1).
 | |
|       // Note that this is not the case for explicit specializations of
 | |
|       // function templates or member functions of class templates, per
 | |
|       // C++ [temp.expl.spec]p2. We also allow these declarations as an 
 | |
|       // extension for compatibility with old SWIG code which likes to 
 | |
|       // generate them.
 | |
|       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
 | |
|         << D.getCXXScopeSpec().getRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ProcessPragmaWeak(S, NewFD);
 | |
|   checkAttributesAfterMerging(*this, *NewFD);
 | |
| 
 | |
|   AddKnownFunctionAttributes(NewFD);
 | |
| 
 | |
|   if (NewFD->hasAttr<OverloadableAttr>() && 
 | |
|       !NewFD->getType()->getAs<FunctionProtoType>()) {
 | |
|     Diag(NewFD->getLocation(),
 | |
|          diag::err_attribute_overloadable_no_prototype)
 | |
|       << NewFD;
 | |
| 
 | |
|     // Turn this into a variadic function with no parameters.
 | |
|     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
 | |
|     FunctionProtoType::ExtProtoInfo EPI;
 | |
|     EPI.Variadic = true;
 | |
|     EPI.ExtInfo = FT->getExtInfo();
 | |
| 
 | |
|     QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
 | |
|     NewFD->setType(R);
 | |
|   }
 | |
| 
 | |
|   // If there's a #pragma GCC visibility in scope, and this isn't a class
 | |
|   // member, set the visibility of this function.
 | |
|   if (!DC->isRecord() && NewFD->isExternallyVisible())
 | |
|     AddPushedVisibilityAttribute(NewFD);
 | |
| 
 | |
|   // If there's a #pragma clang arc_cf_code_audited in scope, consider
 | |
|   // marking the function.
 | |
|   AddCFAuditedAttribute(NewFD);
 | |
| 
 | |
|   // If this is the first declaration of an extern C variable, update
 | |
|   // the map of such variables.
 | |
|   if (!NewFD->getPreviousDecl() && !NewFD->isInvalidDecl() &&
 | |
|       isIncompleteDeclExternC(*this, NewFD))
 | |
|     RegisterLocallyScopedExternCDecl(NewFD, S);
 | |
| 
 | |
|   // Set this FunctionDecl's range up to the right paren.
 | |
|   NewFD->setRangeEnd(D.getSourceRange().getEnd());
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     if (FunctionTemplate) {
 | |
|       if (NewFD->isInvalidDecl())
 | |
|         FunctionTemplate->setInvalidDecl();
 | |
|       return FunctionTemplate;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
 | |
|     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
 | |
|     if ((getLangOpts().OpenCLVersion >= 120)
 | |
|         && (SC == SC_Static)) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
 | |
|       D.setInvalidType();
 | |
|     }
 | |
|     
 | |
|     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
 | |
|     if (!NewFD->getResultType()->isVoidType()) {
 | |
|       Diag(D.getIdentifierLoc(),
 | |
|            diag::err_expected_kernel_void_return_type);
 | |
|       D.setInvalidType();
 | |
|     }
 | |
| 
 | |
|     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
 | |
|     for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
 | |
|          PE = NewFD->param_end(); PI != PE; ++PI) {
 | |
|       ParmVarDecl *Param = *PI;
 | |
|       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MarkUnusedFileScopedDecl(NewFD);
 | |
| 
 | |
|   if (getLangOpts().CUDA)
 | |
|     if (IdentifierInfo *II = NewFD->getIdentifier())
 | |
|       if (!NewFD->isInvalidDecl() &&
 | |
|           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | |
|         if (II->isStr("cudaConfigureCall")) {
 | |
|           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
 | |
|             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
 | |
| 
 | |
|           Context.setcudaConfigureCallDecl(NewFD);
 | |
|         }
 | |
|       }
 | |
|   
 | |
|   // Here we have an function template explicit specialization at class scope.
 | |
|   // The actually specialization will be postponed to template instatiation
 | |
|   // time via the ClassScopeFunctionSpecializationDecl node.
 | |
|   if (isDependentClassScopeExplicitSpecialization) {
 | |
|     ClassScopeFunctionSpecializationDecl *NewSpec =
 | |
|                          ClassScopeFunctionSpecializationDecl::Create(
 | |
|                                 Context, CurContext, SourceLocation(), 
 | |
|                                 cast<CXXMethodDecl>(NewFD),
 | |
|                                 HasExplicitTemplateArgs, TemplateArgs);
 | |
|     CurContext->addDecl(NewSpec);
 | |
|     AddToScope = false;
 | |
|   }
 | |
| 
 | |
|   return NewFD;
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic checking of a new function declaration.
 | |
| ///
 | |
| /// Performs semantic analysis of the new function declaration
 | |
| /// NewFD. This routine performs all semantic checking that does not
 | |
| /// require the actual declarator involved in the declaration, and is
 | |
| /// used both for the declaration of functions as they are parsed
 | |
| /// (called via ActOnDeclarator) and for the declaration of functions
 | |
| /// that have been instantiated via C++ template instantiation (called
 | |
| /// via InstantiateDecl).
 | |
| ///
 | |
| /// \param IsExplicitSpecialization whether this new function declaration is
 | |
| /// an explicit specialization of the previous declaration.
 | |
| ///
 | |
| /// This sets NewFD->isInvalidDecl() to true if there was an error.
 | |
| ///
 | |
| /// \returns true if the function declaration is a redeclaration.
 | |
| bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
 | |
|                                     LookupResult &Previous,
 | |
|                                     bool IsExplicitSpecialization) {
 | |
|   assert(!NewFD->getResultType()->isVariablyModifiedType() 
 | |
|          && "Variably modified return types are not handled here");
 | |
| 
 | |
|   // Filter out any non-conflicting previous declarations.
 | |
|   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
 | |
| 
 | |
|   bool Redeclaration = false;
 | |
|   NamedDecl *OldDecl = 0;
 | |
| 
 | |
|   // Merge or overload the declaration with an existing declaration of
 | |
|   // the same name, if appropriate.
 | |
|   if (!Previous.empty()) {
 | |
|     // Determine whether NewFD is an overload of PrevDecl or
 | |
|     // a declaration that requires merging. If it's an overload,
 | |
|     // there's no more work to do here; we'll just add the new
 | |
|     // function to the scope.
 | |
|     if (!AllowOverloadingOfFunction(Previous, Context)) {
 | |
|       NamedDecl *Candidate = Previous.getFoundDecl();
 | |
|       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
 | |
|         Redeclaration = true;
 | |
|         OldDecl = Candidate;
 | |
|       }
 | |
|     } else {
 | |
|       switch (CheckOverload(S, NewFD, Previous, OldDecl,
 | |
|                             /*NewIsUsingDecl*/ false)) {
 | |
|       case Ovl_Match:
 | |
|         Redeclaration = true;
 | |
|         break;
 | |
| 
 | |
|       case Ovl_NonFunction:
 | |
|         Redeclaration = true;
 | |
|         break;
 | |
| 
 | |
|       case Ovl_Overload:
 | |
|         Redeclaration = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
 | |
|         // If a function name is overloadable in C, then every function
 | |
|         // with that name must be marked "overloadable".
 | |
|         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
 | |
|           << Redeclaration << NewFD;
 | |
|         NamedDecl *OverloadedDecl = 0;
 | |
|         if (Redeclaration)
 | |
|           OverloadedDecl = OldDecl;
 | |
|         else if (!Previous.empty())
 | |
|           OverloadedDecl = Previous.getRepresentativeDecl();
 | |
|         if (OverloadedDecl)
 | |
|           Diag(OverloadedDecl->getLocation(),
 | |
|                diag::note_attribute_overloadable_prev_overload);
 | |
|         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
 | |
|                                                         Context));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for a previous extern "C" declaration with this name.
 | |
|   if (!Redeclaration &&
 | |
|       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
 | |
|     filterNonConflictingPreviousDecls(Context, NewFD, Previous);
 | |
|     if (!Previous.empty()) {
 | |
|       // This is an extern "C" declaration with the same name as a previous
 | |
|       // declaration, and thus redeclares that entity...
 | |
|       Redeclaration = true;
 | |
|       OldDecl = Previous.getFoundDecl();
 | |
| 
 | |
|       // ... except in the presence of __attribute__((overloadable)).
 | |
|       if (OldDecl->hasAttr<OverloadableAttr>()) {
 | |
|         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
 | |
|           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
 | |
|             << Redeclaration << NewFD;
 | |
|           Diag(Previous.getFoundDecl()->getLocation(),
 | |
|                diag::note_attribute_overloadable_prev_overload);
 | |
|           NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
 | |
|                                                           Context));
 | |
|         }
 | |
|         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
 | |
|           Redeclaration = false;
 | |
|           OldDecl = 0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++11 [dcl.constexpr]p8:
 | |
|   //   A constexpr specifier for a non-static member function that is not
 | |
|   //   a constructor declares that member function to be const.
 | |
|   //
 | |
|   // This needs to be delayed until we know whether this is an out-of-line
 | |
|   // definition of a static member function.
 | |
|   //
 | |
|   // This rule is not present in C++1y, so we produce a backwards
 | |
|   // compatibility warning whenever it happens in C++11.
 | |
|   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
 | |
|   if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
 | |
|       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
 | |
|       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
 | |
|     CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
 | |
|     if (FunctionTemplateDecl *OldTD =
 | |
|           dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
 | |
|       OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
 | |
|     if (!OldMD || !OldMD->isStatic()) {
 | |
|       const FunctionProtoType *FPT =
 | |
|         MD->getType()->castAs<FunctionProtoType>();
 | |
|       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | |
|       EPI.TypeQuals |= Qualifiers::Const;
 | |
|       MD->setType(Context.getFunctionType(FPT->getResultType(),
 | |
|                                           FPT->getArgTypes(), EPI));
 | |
| 
 | |
|       // Warn that we did this, if we're not performing template instantiation.
 | |
|       // In that case, we'll have warned already when the template was defined.
 | |
|       if (ActiveTemplateInstantiations.empty()) {
 | |
|         SourceLocation AddConstLoc;
 | |
|         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
 | |
|                 .IgnoreParens().getAs<FunctionTypeLoc>())
 | |
|           AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
 | |
| 
 | |
|         Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
 | |
|           << FixItHint::CreateInsertion(AddConstLoc, " const");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Redeclaration) {
 | |
|     // NewFD and OldDecl represent declarations that need to be
 | |
|     // merged.
 | |
|     if (MergeFunctionDecl(NewFD, OldDecl, S)) {
 | |
|       NewFD->setInvalidDecl();
 | |
|       return Redeclaration;
 | |
|     }
 | |
| 
 | |
|     Previous.clear();
 | |
|     Previous.addDecl(OldDecl);
 | |
| 
 | |
|     if (FunctionTemplateDecl *OldTemplateDecl
 | |
|                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
 | |
|       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
 | |
|       FunctionTemplateDecl *NewTemplateDecl
 | |
|         = NewFD->getDescribedFunctionTemplate();
 | |
|       assert(NewTemplateDecl && "Template/non-template mismatch");
 | |
|       if (CXXMethodDecl *Method 
 | |
|             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
 | |
|         Method->setAccess(OldTemplateDecl->getAccess());
 | |
|         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
 | |
|       }
 | |
|       
 | |
|       // If this is an explicit specialization of a member that is a function
 | |
|       // template, mark it as a member specialization.
 | |
|       if (IsExplicitSpecialization && 
 | |
|           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
 | |
|         NewTemplateDecl->setMemberSpecialization();
 | |
|         assert(OldTemplateDecl->isMemberSpecialization());
 | |
|       }
 | |
|       
 | |
|     } else {
 | |
|       // This needs to happen first so that 'inline' propagates.
 | |
|       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
 | |
| 
 | |
|       if (isa<CXXMethodDecl>(NewFD)) {
 | |
|         // A valid redeclaration of a C++ method must be out-of-line,
 | |
|         // but (unfortunately) it's not necessarily a definition
 | |
|         // because of templates, which means that the previous
 | |
|         // declaration is not necessarily from the class definition.
 | |
| 
 | |
|         // For just setting the access, that doesn't matter.
 | |
|         CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
 | |
|         NewFD->setAccess(oldMethod->getAccess());
 | |
| 
 | |
|         // Update the key-function state if necessary for this ABI.
 | |
|         if (NewFD->isInlined() &&
 | |
|             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
 | |
|           // setNonKeyFunction needs to work with the original
 | |
|           // declaration from the class definition, and isVirtual() is
 | |
|           // just faster in that case, so map back to that now.
 | |
|           oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
 | |
|           if (oldMethod->isVirtual()) {
 | |
|             Context.setNonKeyFunction(oldMethod);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Semantic checking for this function declaration (in isolation).
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     // C++-specific checks.
 | |
|     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
 | |
|       CheckConstructor(Constructor);
 | |
|     } else if (CXXDestructorDecl *Destructor = 
 | |
|                 dyn_cast<CXXDestructorDecl>(NewFD)) {
 | |
|       CXXRecordDecl *Record = Destructor->getParent();
 | |
|       QualType ClassType = Context.getTypeDeclType(Record);
 | |
|       
 | |
|       // FIXME: Shouldn't we be able to perform this check even when the class
 | |
|       // type is dependent? Both gcc and edg can handle that.
 | |
|       if (!ClassType->isDependentType()) {
 | |
|         DeclarationName Name
 | |
|           = Context.DeclarationNames.getCXXDestructorName(
 | |
|                                         Context.getCanonicalType(ClassType));
 | |
|         if (NewFD->getDeclName() != Name) {
 | |
|           Diag(NewFD->getLocation(), diag::err_destructor_name);
 | |
|           NewFD->setInvalidDecl();
 | |
|           return Redeclaration;
 | |
|         }
 | |
|       }
 | |
|     } else if (CXXConversionDecl *Conversion
 | |
|                = dyn_cast<CXXConversionDecl>(NewFD)) {
 | |
|       ActOnConversionDeclarator(Conversion);
 | |
|     }
 | |
| 
 | |
|     // Find any virtual functions that this function overrides.
 | |
|     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
 | |
|       if (!Method->isFunctionTemplateSpecialization() && 
 | |
|           !Method->getDescribedFunctionTemplate() &&
 | |
|           Method->isCanonicalDecl()) {
 | |
|         if (AddOverriddenMethods(Method->getParent(), Method)) {
 | |
|           // If the function was marked as "static", we have a problem.
 | |
|           if (NewFD->getStorageClass() == SC_Static) {
 | |
|             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       if (Method->isStatic())
 | |
|         checkThisInStaticMemberFunctionType(Method);
 | |
|     }
 | |
| 
 | |
|     // Extra checking for C++ overloaded operators (C++ [over.oper]).
 | |
|     if (NewFD->isOverloadedOperator() &&
 | |
|         CheckOverloadedOperatorDeclaration(NewFD)) {
 | |
|       NewFD->setInvalidDecl();
 | |
|       return Redeclaration;
 | |
|     }
 | |
| 
 | |
|     // Extra checking for C++0x literal operators (C++0x [over.literal]).
 | |
|     if (NewFD->getLiteralIdentifier() &&
 | |
|         CheckLiteralOperatorDeclaration(NewFD)) {
 | |
|       NewFD->setInvalidDecl();
 | |
|       return Redeclaration;
 | |
|     }
 | |
| 
 | |
|     // In C++, check default arguments now that we have merged decls. Unless
 | |
|     // the lexical context is the class, because in this case this is done
 | |
|     // during delayed parsing anyway.
 | |
|     if (!CurContext->isRecord())
 | |
|       CheckCXXDefaultArguments(NewFD);
 | |
|     
 | |
|     // If this function declares a builtin function, check the type of this
 | |
|     // declaration against the expected type for the builtin. 
 | |
|     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
 | |
|       ASTContext::GetBuiltinTypeError Error;
 | |
|       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
 | |
|       QualType T = Context.GetBuiltinType(BuiltinID, Error);
 | |
|       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
 | |
|         // The type of this function differs from the type of the builtin,
 | |
|         // so forget about the builtin entirely.
 | |
|         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     // If this function is declared as being extern "C", then check to see if 
 | |
|     // the function returns a UDT (class, struct, or union type) that is not C
 | |
|     // compatible, and if it does, warn the user.
 | |
|     // But, issue any diagnostic on the first declaration only.
 | |
|     if (NewFD->isExternC() && Previous.empty()) {
 | |
|       QualType R = NewFD->getResultType();
 | |
|       if (R->isIncompleteType() && !R->isVoidType())
 | |
|         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
 | |
|             << NewFD << R;
 | |
|       else if (!R.isPODType(Context) && !R->isVoidType() &&
 | |
|                !R->isObjCObjectPointerType())
 | |
|         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
 | |
|     }
 | |
|   }
 | |
|   return Redeclaration;
 | |
| }
 | |
| 
 | |
| static SourceRange getResultSourceRange(const FunctionDecl *FD) {
 | |
|   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
 | |
|   if (!TSI)
 | |
|     return SourceRange();
 | |
| 
 | |
|   TypeLoc TL = TSI->getTypeLoc();
 | |
|   FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
 | |
|   if (!FunctionTL)
 | |
|     return SourceRange();
 | |
| 
 | |
|   TypeLoc ResultTL = FunctionTL.getResultLoc();
 | |
|   if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
 | |
|     return ResultTL.getSourceRange();
 | |
| 
 | |
|   return SourceRange();
 | |
| }
 | |
| 
 | |
| void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
 | |
|   // C++11 [basic.start.main]p3:  A program that declares main to be inline,
 | |
|   //   static or constexpr is ill-formed.
 | |
|   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
 | |
|   //   appear in a declaration of main.
 | |
|   // static main is not an error under C99, but we should warn about it.
 | |
|   // We accept _Noreturn main as an extension.
 | |
|   if (FD->getStorageClass() == SC_Static)
 | |
|     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus 
 | |
|          ? diag::err_static_main : diag::warn_static_main) 
 | |
|       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
 | |
|   if (FD->isInlineSpecified())
 | |
|     Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 
 | |
|       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
 | |
|   if (DS.isNoreturnSpecified()) {
 | |
|     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
 | |
|     SourceRange NoreturnRange(NoreturnLoc,
 | |
|                               PP.getLocForEndOfToken(NoreturnLoc));
 | |
|     Diag(NoreturnLoc, diag::ext_noreturn_main);
 | |
|     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
 | |
|       << FixItHint::CreateRemoval(NoreturnRange);
 | |
|   }
 | |
|   if (FD->isConstexpr()) {
 | |
|     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
 | |
|       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
 | |
|     FD->setConstexpr(false);
 | |
|   }
 | |
| 
 | |
|   QualType T = FD->getType();
 | |
|   assert(T->isFunctionType() && "function decl is not of function type");
 | |
|   const FunctionType* FT = T->castAs<FunctionType>();
 | |
| 
 | |
|   // All the standards say that main() should should return 'int'.
 | |
|   if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
 | |
|     // In C and C++, main magically returns 0 if you fall off the end;
 | |
|     // set the flag which tells us that.
 | |
|     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
 | |
|     FD->setHasImplicitReturnZero(true);
 | |
| 
 | |
|   // In C with GNU extensions we allow main() to have non-integer return
 | |
|   // type, but we should warn about the extension, and we disable the
 | |
|   // implicit-return-zero rule.
 | |
|   } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
 | |
|     Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
 | |
| 
 | |
|     SourceRange ResultRange = getResultSourceRange(FD);
 | |
|     if (ResultRange.isValid())
 | |
|       Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
 | |
|           << FixItHint::CreateReplacement(ResultRange, "int");
 | |
| 
 | |
|   // Otherwise, this is just a flat-out error.
 | |
|   } else {
 | |
|     SourceRange ResultRange = getResultSourceRange(FD);
 | |
|     if (ResultRange.isValid())
 | |
|       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
 | |
|           << FixItHint::CreateReplacement(ResultRange, "int");
 | |
|     else
 | |
|       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
 | |
| 
 | |
|     FD->setInvalidDecl(true);
 | |
|   }
 | |
| 
 | |
|   // Treat protoless main() as nullary.
 | |
|   if (isa<FunctionNoProtoType>(FT)) return;
 | |
| 
 | |
|   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
 | |
|   unsigned nparams = FTP->getNumArgs();
 | |
|   assert(FD->getNumParams() == nparams);
 | |
| 
 | |
|   bool HasExtraParameters = (nparams > 3);
 | |
| 
 | |
|   // Darwin passes an undocumented fourth argument of type char**.  If
 | |
|   // other platforms start sprouting these, the logic below will start
 | |
|   // getting shifty.
 | |
|   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
 | |
|     HasExtraParameters = false;
 | |
| 
 | |
|   if (HasExtraParameters) {
 | |
|     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
 | |
|     FD->setInvalidDecl(true);
 | |
|     nparams = 3;
 | |
|   }
 | |
| 
 | |
|   // FIXME: a lot of the following diagnostics would be improved
 | |
|   // if we had some location information about types.
 | |
| 
 | |
|   QualType CharPP =
 | |
|     Context.getPointerType(Context.getPointerType(Context.CharTy));
 | |
|   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
 | |
| 
 | |
|   for (unsigned i = 0; i < nparams; ++i) {
 | |
|     QualType AT = FTP->getArgType(i);
 | |
| 
 | |
|     bool mismatch = true;
 | |
| 
 | |
|     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
 | |
|       mismatch = false;
 | |
|     else if (Expected[i] == CharPP) {
 | |
|       // As an extension, the following forms are okay:
 | |
|       //   char const **
 | |
|       //   char const * const *
 | |
|       //   char * const *
 | |
| 
 | |
|       QualifierCollector qs;
 | |
|       const PointerType* PT;
 | |
|       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
 | |
|           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
 | |
|           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
 | |
|                               Context.CharTy)) {
 | |
|         qs.removeConst();
 | |
|         mismatch = !qs.empty();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (mismatch) {
 | |
|       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
 | |
|       // TODO: suggest replacing given type with expected type
 | |
|       FD->setInvalidDecl(true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (nparams == 1 && !FD->isInvalidDecl()) {
 | |
|     Diag(FD->getLocation(), diag::warn_main_one_arg);
 | |
|   }
 | |
|   
 | |
|   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
 | |
|     Diag(FD->getLocation(), diag::err_main_template_decl);
 | |
|     FD->setInvalidDecl();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
 | |
|   // FIXME: Need strict checking.  In C89, we need to check for
 | |
|   // any assignment, increment, decrement, function-calls, or
 | |
|   // commas outside of a sizeof.  In C99, it's the same list,
 | |
|   // except that the aforementioned are allowed in unevaluated
 | |
|   // expressions.  Everything else falls under the
 | |
|   // "may accept other forms of constant expressions" exception.
 | |
|   // (We never end up here for C++, so the constant expression
 | |
|   // rules there don't matter.)
 | |
|   if (Init->isConstantInitializer(Context, false))
 | |
|     return false;
 | |
|   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
 | |
|     << Init->getSourceRange();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // Visits an initialization expression to see if OrigDecl is evaluated in
 | |
|   // its own initialization and throws a warning if it does.
 | |
|   class SelfReferenceChecker
 | |
|       : public EvaluatedExprVisitor<SelfReferenceChecker> {
 | |
|     Sema &S;
 | |
|     Decl *OrigDecl;
 | |
|     bool isRecordType;
 | |
|     bool isPODType;
 | |
|     bool isReferenceType;
 | |
| 
 | |
|   public:
 | |
|     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
 | |
| 
 | |
|     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
 | |
|                                                     S(S), OrigDecl(OrigDecl) {
 | |
|       isPODType = false;
 | |
|       isRecordType = false;
 | |
|       isReferenceType = false;
 | |
|       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
 | |
|         isPODType = VD->getType().isPODType(S.Context);
 | |
|         isRecordType = VD->getType()->isRecordType();
 | |
|         isReferenceType = VD->getType()->isReferenceType();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // For most expressions, the cast is directly above the DeclRefExpr.
 | |
|     // For conditional operators, the cast can be outside the conditional
 | |
|     // operator if both expressions are DeclRefExpr's.
 | |
|     void HandleValue(Expr *E) {
 | |
|       if (isReferenceType)
 | |
|         return;
 | |
|       E = E->IgnoreParenImpCasts();
 | |
|       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
 | |
|         HandleDeclRefExpr(DRE);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
 | |
|         HandleValue(CO->getTrueExpr());
 | |
|         HandleValue(CO->getFalseExpr());
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (isa<MemberExpr>(E)) {
 | |
|         Expr *Base = E->IgnoreParenImpCasts();
 | |
|         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
 | |
|           // Check for static member variables and don't warn on them.
 | |
|           if (!isa<FieldDecl>(ME->getMemberDecl()))
 | |
|             return;
 | |
|           Base = ME->getBase()->IgnoreParenImpCasts();
 | |
|         }
 | |
|         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
 | |
|           HandleDeclRefExpr(DRE);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Reference types are handled here since all uses of references are
 | |
|     // bad, not just r-value uses.
 | |
|     void VisitDeclRefExpr(DeclRefExpr *E) {
 | |
|       if (isReferenceType)
 | |
|         HandleDeclRefExpr(E);
 | |
|     }
 | |
| 
 | |
|     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
 | |
|       if (E->getCastKind() == CK_LValueToRValue ||
 | |
|           (isRecordType && E->getCastKind() == CK_NoOp))
 | |
|         HandleValue(E->getSubExpr());
 | |
| 
 | |
|       Inherited::VisitImplicitCastExpr(E);
 | |
|     }
 | |
| 
 | |
|     void VisitMemberExpr(MemberExpr *E) {
 | |
|       // Don't warn on arrays since they can be treated as pointers.
 | |
|       if (E->getType()->canDecayToPointerType()) return;
 | |
| 
 | |
|       // Warn when a non-static method call is followed by non-static member
 | |
|       // field accesses, which is followed by a DeclRefExpr.
 | |
|       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
 | |
|       bool Warn = (MD && !MD->isStatic());
 | |
|       Expr *Base = E->getBase()->IgnoreParenImpCasts();
 | |
|       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
 | |
|         if (!isa<FieldDecl>(ME->getMemberDecl()))
 | |
|           Warn = false;
 | |
|         Base = ME->getBase()->IgnoreParenImpCasts();
 | |
|       }
 | |
| 
 | |
|       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
 | |
|         if (Warn)
 | |
|           HandleDeclRefExpr(DRE);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
 | |
|       // Visit that expression.
 | |
|       Visit(Base);
 | |
|     }
 | |
| 
 | |
|     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
 | |
|       if (E->getNumArgs() > 0)
 | |
|         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
 | |
|           HandleDeclRefExpr(DRE);
 | |
| 
 | |
|       Inherited::VisitCXXOperatorCallExpr(E);
 | |
|     }
 | |
| 
 | |
|     void VisitUnaryOperator(UnaryOperator *E) {
 | |
|       // For POD record types, addresses of its own members are well-defined.
 | |
|       if (E->getOpcode() == UO_AddrOf && isRecordType &&
 | |
|           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
 | |
|         if (!isPODType)
 | |
|           HandleValue(E->getSubExpr());
 | |
|         return;
 | |
|       }
 | |
|       Inherited::VisitUnaryOperator(E);
 | |
|     }
 | |
| 
 | |
|     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
 | |
| 
 | |
|     void HandleDeclRefExpr(DeclRefExpr *DRE) {
 | |
|       Decl* ReferenceDecl = DRE->getDecl();
 | |
|       if (OrigDecl != ReferenceDecl) return;
 | |
|       unsigned diag;
 | |
|       if (isReferenceType) {
 | |
|         diag = diag::warn_uninit_self_reference_in_reference_init;
 | |
|       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
 | |
|         diag = diag::warn_static_self_reference_in_init;
 | |
|       } else {
 | |
|         diag = diag::warn_uninit_self_reference_in_init;
 | |
|       }
 | |
| 
 | |
|       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
 | |
|                             S.PDiag(diag)
 | |
|                               << DRE->getNameInfo().getName()
 | |
|                               << OrigDecl->getLocation()
 | |
|                               << DRE->getSourceRange());
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
 | |
|   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
 | |
|                                  bool DirectInit) {
 | |
|     // Parameters arguments are occassionially constructed with itself,
 | |
|     // for instance, in recursive functions.  Skip them.
 | |
|     if (isa<ParmVarDecl>(OrigDecl))
 | |
|       return;
 | |
| 
 | |
|     E = E->IgnoreParens();
 | |
| 
 | |
|     // Skip checking T a = a where T is not a record or reference type.
 | |
|     // Doing so is a way to silence uninitialized warnings.
 | |
|     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
 | |
|       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
 | |
|         if (ICE->getCastKind() == CK_LValueToRValue)
 | |
|           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
 | |
|             if (DRE->getDecl() == OrigDecl)
 | |
|               return;
 | |
| 
 | |
|     SelfReferenceChecker(S, OrigDecl).Visit(E);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddInitializerToDecl - Adds the initializer Init to the
 | |
| /// declaration dcl. If DirectInit is true, this is C++ direct
 | |
| /// initialization rather than copy initialization.
 | |
| void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
 | |
|                                 bool DirectInit, bool TypeMayContainAuto) {
 | |
|   // If there is no declaration, there was an error parsing it.  Just ignore
 | |
|   // the initializer.
 | |
|   if (RealDecl == 0 || RealDecl->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
 | |
|     // With declarators parsed the way they are, the parser cannot
 | |
|     // distinguish between a normal initializer and a pure-specifier.
 | |
|     // Thus this grotesque test.
 | |
|     IntegerLiteral *IL;
 | |
|     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
 | |
|         Context.getCanonicalType(IL->getType()) == Context.IntTy)
 | |
|       CheckPureMethod(Method, Init->getSourceRange());
 | |
|     else {
 | |
|       Diag(Method->getLocation(), diag::err_member_function_initialization)
 | |
|         << Method->getDeclName() << Init->getSourceRange();
 | |
|       Method->setInvalidDecl();
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
 | |
|   if (!VDecl) {
 | |
|     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
 | |
|     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
 | |
|     RealDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
|   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
 | |
| 
 | |
|   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
 | |
|   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
 | |
|     Expr *DeduceInit = Init;
 | |
|     // Initializer could be a C++ direct-initializer. Deduction only works if it
 | |
|     // contains exactly one expression.
 | |
|     if (CXXDirectInit) {
 | |
|       if (CXXDirectInit->getNumExprs() == 0) {
 | |
|         // It isn't possible to write this directly, but it is possible to
 | |
|         // end up in this situation with "auto x(some_pack...);"
 | |
|         Diag(CXXDirectInit->getLocStart(),
 | |
|              diag::err_auto_var_init_no_expression)
 | |
|           << VDecl->getDeclName() << VDecl->getType()
 | |
|           << VDecl->getSourceRange();
 | |
|         RealDecl->setInvalidDecl();
 | |
|         return;
 | |
|       } else if (CXXDirectInit->getNumExprs() > 1) {
 | |
|         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
 | |
|              diag::err_auto_var_init_multiple_expressions)
 | |
|           << VDecl->getDeclName() << VDecl->getType()
 | |
|           << VDecl->getSourceRange();
 | |
|         RealDecl->setInvalidDecl();
 | |
|         return;
 | |
|       } else {
 | |
|         DeduceInit = CXXDirectInit->getExpr(0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Expressions default to 'id' when we're in a debugger.
 | |
|     bool DefaultedToAuto = false;
 | |
|     if (getLangOpts().DebuggerCastResultToId &&
 | |
|         Init->getType() == Context.UnknownAnyTy) {
 | |
|       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
 | |
|       if (Result.isInvalid()) {
 | |
|         VDecl->setInvalidDecl();
 | |
|         return;
 | |
|       }
 | |
|       Init = Result.take();
 | |
|       DefaultedToAuto = true;
 | |
|     }
 | |
| 
 | |
|     QualType DeducedType;
 | |
|     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
 | |
|             DAR_Failed)
 | |
|       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
 | |
|     if (DeducedType.isNull()) {
 | |
|       RealDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|     VDecl->setType(DeducedType);
 | |
|     assert(VDecl->isLinkageValid());
 | |
| 
 | |
|     // In ARC, infer lifetime.
 | |
|     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
 | |
|       VDecl->setInvalidDecl();
 | |
| 
 | |
|     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
 | |
|     // 'id' instead of a specific object type prevents most of our usual checks.
 | |
|     // We only want to warn outside of template instantiations, though:
 | |
|     // inside a template, the 'id' could have come from a parameter.
 | |
|     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
 | |
|         DeducedType->isObjCIdType()) {
 | |
|       SourceLocation Loc =
 | |
|           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
 | |
|       Diag(Loc, diag::warn_auto_var_is_id)
 | |
|         << VDecl->getDeclName() << DeduceInit->getSourceRange();
 | |
|     }
 | |
| 
 | |
|     // If this is a redeclaration, check that the type we just deduced matches
 | |
|     // the previously declared type.
 | |
|     if (VarDecl *Old = VDecl->getPreviousDecl())
 | |
|       MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
 | |
| 
 | |
|     // Check the deduced type is valid for a variable declaration.
 | |
|     CheckVariableDeclarationType(VDecl);
 | |
|     if (VDecl->isInvalidDecl())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
 | |
|     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
 | |
|     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
 | |
|     VDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!VDecl->getType()->isDependentType()) {
 | |
|     // A definition must end up with a complete type, which means it must be
 | |
|     // complete with the restriction that an array type might be completed by
 | |
|     // the initializer; note that later code assumes this restriction.
 | |
|     QualType BaseDeclType = VDecl->getType();
 | |
|     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
 | |
|       BaseDeclType = Array->getElementType();
 | |
|     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
 | |
|                             diag::err_typecheck_decl_incomplete_type)) {
 | |
|       RealDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // The variable can not have an abstract class type.
 | |
|     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
 | |
|                                diag::err_abstract_type_in_decl,
 | |
|                                AbstractVariableType))
 | |
|       VDecl->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   const VarDecl *Def;
 | |
|   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
 | |
|     Diag(VDecl->getLocation(), diag::err_redefinition)
 | |
|       << VDecl->getDeclName();
 | |
|     Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|     VDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   const VarDecl* PrevInit = 0;
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     // C++ [class.static.data]p4
 | |
|     //   If a static data member is of const integral or const
 | |
|     //   enumeration type, its declaration in the class definition can
 | |
|     //   specify a constant-initializer which shall be an integral
 | |
|     //   constant expression (5.19). In that case, the member can appear
 | |
|     //   in integral constant expressions. The member shall still be
 | |
|     //   defined in a namespace scope if it is used in the program and the
 | |
|     //   namespace scope definition shall not contain an initializer.
 | |
|     //
 | |
|     // We already performed a redefinition check above, but for static
 | |
|     // data members we also need to check whether there was an in-class
 | |
|     // declaration with an initializer.
 | |
|     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
 | |
|       Diag(VDecl->getLocation(), diag::err_redefinition) 
 | |
|         << VDecl->getDeclName();
 | |
|       Diag(PrevInit->getLocation(), diag::note_previous_definition);
 | |
|       return;
 | |
|     }  
 | |
| 
 | |
|     if (VDecl->hasLocalStorage())
 | |
|       getCurFunction()->setHasBranchProtectedScope();
 | |
| 
 | |
|     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
 | |
|       VDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
 | |
|   // a kernel function cannot be initialized."
 | |
|   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
 | |
|     Diag(VDecl->getLocation(), diag::err_local_cant_init);
 | |
|     VDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Get the decls type and save a reference for later, since
 | |
|   // CheckInitializerTypes may change it.
 | |
|   QualType DclT = VDecl->getType(), SavT = DclT;
 | |
|   
 | |
|   // Expressions default to 'id' when we're in a debugger
 | |
|   // and we are assigning it to a variable of Objective-C pointer type.
 | |
|   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
 | |
|       Init->getType() == Context.UnknownAnyTy) {
 | |
|     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
 | |
|     if (Result.isInvalid()) {
 | |
|       VDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|     Init = Result.take();
 | |
|   }
 | |
| 
 | |
|   // Perform the initialization.
 | |
|   if (!VDecl->isInvalidDecl()) {
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
 | |
|     InitializationKind Kind
 | |
|       = DirectInit ?
 | |
|           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
 | |
|                                                            Init->getLocStart(),
 | |
|                                                            Init->getLocEnd())
 | |
|                         : InitializationKind::CreateDirectList(
 | |
|                                                           VDecl->getLocation())
 | |
|                    : InitializationKind::CreateCopy(VDecl->getLocation(),
 | |
|                                                     Init->getLocStart());
 | |
| 
 | |
|     MultiExprArg Args = Init;
 | |
|     if (CXXDirectInit)
 | |
|       Args = MultiExprArg(CXXDirectInit->getExprs(),
 | |
|                           CXXDirectInit->getNumExprs());
 | |
| 
 | |
|     InitializationSequence InitSeq(*this, Entity, Kind, Args);
 | |
|     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
 | |
|     if (Result.isInvalid()) {
 | |
|       VDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Init = Result.takeAs<Expr>();
 | |
|   }
 | |
| 
 | |
|   // Check for self-references within variable initializers.
 | |
|   // Variables declared within a function/method body (except for references)
 | |
|   // are handled by a dataflow analysis.
 | |
|   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
 | |
|       VDecl->getType()->isReferenceType()) {
 | |
|     CheckSelfReference(*this, RealDecl, Init, DirectInit);
 | |
|   }
 | |
| 
 | |
|   // If the type changed, it means we had an incomplete type that was
 | |
|   // completed by the initializer. For example:
 | |
|   //   int ary[] = { 1, 3, 5 };
 | |
|   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
 | |
|   if (!VDecl->isInvalidDecl() && (DclT != SavT))
 | |
|     VDecl->setType(DclT);
 | |
| 
 | |
|   if (!VDecl->isInvalidDecl()) {
 | |
|     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
 | |
| 
 | |
|     if (VDecl->hasAttr<BlocksAttr>())
 | |
|       checkRetainCycles(VDecl, Init);
 | |
| 
 | |
|     // It is safe to assign a weak reference into a strong variable.
 | |
|     // Although this code can still have problems:
 | |
|     //   id x = self.weakProp;
 | |
|     //   id y = self.weakProp;
 | |
|     // we do not warn to warn spuriously when 'x' and 'y' are on separate
 | |
|     // paths through the function. This should be revisited if
 | |
|     // -Wrepeated-use-of-weak is made flow-sensitive.
 | |
|     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
 | |
|       DiagnosticsEngine::Level Level =
 | |
|         Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
 | |
|                                  Init->getLocStart());
 | |
|       if (Level != DiagnosticsEngine::Ignored)
 | |
|         getCurFunction()->markSafeWeakUse(Init);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The initialization is usually a full-expression.
 | |
|   //
 | |
|   // FIXME: If this is a braced initialization of an aggregate, it is not
 | |
|   // an expression, and each individual field initializer is a separate
 | |
|   // full-expression. For instance, in:
 | |
|   //
 | |
|   //   struct Temp { ~Temp(); };
 | |
|   //   struct S { S(Temp); };
 | |
|   //   struct T { S a, b; } t = { Temp(), Temp() }
 | |
|   //
 | |
|   // we should destroy the first Temp before constructing the second.
 | |
|   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
 | |
|                                           false,
 | |
|                                           VDecl->isConstexpr());
 | |
|   if (Result.isInvalid()) {
 | |
|     VDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
|   Init = Result.take();
 | |
| 
 | |
|   // Attach the initializer to the decl.
 | |
|   VDecl->setInit(Init);
 | |
| 
 | |
|   if (VDecl->isLocalVarDecl()) {
 | |
|     // C99 6.7.8p4: All the expressions in an initializer for an object that has
 | |
|     // static storage duration shall be constant expressions or string literals.
 | |
|     // C++ does not have this restriction.
 | |
|     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
 | |
|       if (VDecl->getStorageClass() == SC_Static)
 | |
|         CheckForConstantInitializer(Init, DclT);
 | |
|       // C89 is stricter than C99 for non-static aggregate types.
 | |
|       // C89 6.5.7p3: All the expressions [...] in an initializer list
 | |
|       // for an object that has aggregate or union type shall be
 | |
|       // constant expressions.
 | |
|       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
 | |
|                isa<InitListExpr>(Init) &&
 | |
|                !Init->isConstantInitializer(Context, false))
 | |
|         Diag(Init->getExprLoc(),
 | |
|              diag::ext_aggregate_init_not_constant)
 | |
|           << Init->getSourceRange();
 | |
|     }
 | |
|   } else if (VDecl->isStaticDataMember() &&
 | |
|              VDecl->getLexicalDeclContext()->isRecord()) {
 | |
|     // This is an in-class initialization for a static data member, e.g.,
 | |
|     //
 | |
|     // struct S {
 | |
|     //   static const int value = 17;
 | |
|     // };
 | |
| 
 | |
|     // C++ [class.mem]p4:
 | |
|     //   A member-declarator can contain a constant-initializer only
 | |
|     //   if it declares a static member (9.4) of const integral or
 | |
|     //   const enumeration type, see 9.4.2.
 | |
|     //
 | |
|     // C++11 [class.static.data]p3:
 | |
|     //   If a non-volatile const static data member is of integral or
 | |
|     //   enumeration type, its declaration in the class definition can
 | |
|     //   specify a brace-or-equal-initializer in which every initalizer-clause
 | |
|     //   that is an assignment-expression is a constant expression. A static
 | |
|     //   data member of literal type can be declared in the class definition
 | |
|     //   with the constexpr specifier; if so, its declaration shall specify a
 | |
|     //   brace-or-equal-initializer in which every initializer-clause that is
 | |
|     //   an assignment-expression is a constant expression.
 | |
| 
 | |
|     // Do nothing on dependent types.
 | |
|     if (DclT->isDependentType()) {
 | |
| 
 | |
|     // Allow any 'static constexpr' members, whether or not they are of literal
 | |
|     // type. We separately check that every constexpr variable is of literal
 | |
|     // type.
 | |
|     } else if (VDecl->isConstexpr()) {
 | |
| 
 | |
|     // Require constness.
 | |
|     } else if (!DclT.isConstQualified()) {
 | |
|       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
 | |
|         << Init->getSourceRange();
 | |
|       VDecl->setInvalidDecl();
 | |
| 
 | |
|     // We allow integer constant expressions in all cases.
 | |
|     } else if (DclT->isIntegralOrEnumerationType()) {
 | |
|       // Check whether the expression is a constant expression.
 | |
|       SourceLocation Loc;
 | |
|       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
 | |
|         // In C++11, a non-constexpr const static data member with an
 | |
|         // in-class initializer cannot be volatile.
 | |
|         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
 | |
|       else if (Init->isValueDependent())
 | |
|         ; // Nothing to check.
 | |
|       else if (Init->isIntegerConstantExpr(Context, &Loc))
 | |
|         ; // Ok, it's an ICE!
 | |
|       else if (Init->isEvaluatable(Context)) {
 | |
|         // If we can constant fold the initializer through heroics, accept it,
 | |
|         // but report this as a use of an extension for -pedantic.
 | |
|         Diag(Loc, diag::ext_in_class_initializer_non_constant)
 | |
|           << Init->getSourceRange();
 | |
|       } else {
 | |
|         // Otherwise, this is some crazy unknown case.  Report the issue at the
 | |
|         // location provided by the isIntegerConstantExpr failed check.
 | |
|         Diag(Loc, diag::err_in_class_initializer_non_constant)
 | |
|           << Init->getSourceRange();
 | |
|         VDecl->setInvalidDecl();
 | |
|       }
 | |
| 
 | |
|     // We allow foldable floating-point constants as an extension.
 | |
|     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
 | |
|       // In C++98, this is a GNU extension. In C++11, it is not, but we support
 | |
|       // it anyway and provide a fixit to add the 'constexpr'.
 | |
|       if (getLangOpts().CPlusPlus11) {
 | |
|         Diag(VDecl->getLocation(),
 | |
|              diag::ext_in_class_initializer_float_type_cxx11)
 | |
|             << DclT << Init->getSourceRange();
 | |
|         Diag(VDecl->getLocStart(),
 | |
|              diag::note_in_class_initializer_float_type_cxx11)
 | |
|             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
 | |
|       } else {
 | |
|         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
 | |
|           << DclT << Init->getSourceRange();
 | |
| 
 | |
|         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
 | |
|           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
 | |
|             << Init->getSourceRange();
 | |
|           VDecl->setInvalidDecl();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Suggest adding 'constexpr' in C++11 for literal types.
 | |
|     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
 | |
|       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
 | |
|         << DclT << Init->getSourceRange()
 | |
|         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
 | |
|       VDecl->setConstexpr(true);
 | |
| 
 | |
|     } else {
 | |
|       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
 | |
|         << DclT << Init->getSourceRange();
 | |
|       VDecl->setInvalidDecl();
 | |
|     }
 | |
|   } else if (VDecl->isFileVarDecl()) {
 | |
|     if (VDecl->getStorageClass() == SC_Extern &&
 | |
|         (!getLangOpts().CPlusPlus ||
 | |
|          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
 | |
|            VDecl->isExternC())))
 | |
|       Diag(VDecl->getLocation(), diag::warn_extern_init);
 | |
| 
 | |
|     // C99 6.7.8p4. All file scoped initializers need to be constant.
 | |
|     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
 | |
|       CheckForConstantInitializer(Init, DclT);
 | |
|     else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
 | |
|              !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
 | |
|              !Init->isValueDependent() && !VDecl->isConstexpr() &&
 | |
|              !Init->isConstantInitializer(
 | |
|                  Context, VDecl->getType()->isReferenceType())) {
 | |
|       // GNU C++98 edits for __thread, [basic.start.init]p4:
 | |
|       //   An object of thread storage duration shall not require dynamic
 | |
|       //   initialization.
 | |
|       // FIXME: Need strict checking here.
 | |
|       Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
 | |
|       if (getLangOpts().CPlusPlus11)
 | |
|         Diag(VDecl->getLocation(), diag::note_use_thread_local);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We will represent direct-initialization similarly to copy-initialization:
 | |
|   //    int x(1);  -as-> int x = 1;
 | |
|   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
 | |
|   //
 | |
|   // Clients that want to distinguish between the two forms, can check for
 | |
|   // direct initializer using VarDecl::getInitStyle().
 | |
|   // A major benefit is that clients that don't particularly care about which
 | |
|   // exactly form was it (like the CodeGen) can handle both cases without
 | |
|   // special case code.
 | |
| 
 | |
|   // C++ 8.5p11:
 | |
|   // The form of initialization (using parentheses or '=') is generally
 | |
|   // insignificant, but does matter when the entity being initialized has a
 | |
|   // class type.
 | |
|   if (CXXDirectInit) {
 | |
|     assert(DirectInit && "Call-style initializer must be direct init.");
 | |
|     VDecl->setInitStyle(VarDecl::CallInit);
 | |
|   } else if (DirectInit) {
 | |
|     // This must be list-initialization. No other way is direct-initialization.
 | |
|     VDecl->setInitStyle(VarDecl::ListInit);
 | |
|   }
 | |
| 
 | |
|   CheckCompleteVariableDeclaration(VDecl);
 | |
| }
 | |
| 
 | |
| /// ActOnInitializerError - Given that there was an error parsing an
 | |
| /// initializer for the given declaration, try to return to some form
 | |
| /// of sanity.
 | |
| void Sema::ActOnInitializerError(Decl *D) {
 | |
|   // Our main concern here is re-establishing invariants like "a
 | |
|   // variable's type is either dependent or complete".
 | |
|   if (!D || D->isInvalidDecl()) return;
 | |
| 
 | |
|   VarDecl *VD = dyn_cast<VarDecl>(D);
 | |
|   if (!VD) return;
 | |
| 
 | |
|   // Auto types are meaningless if we can't make sense of the initializer.
 | |
|   if (ParsingInitForAutoVars.count(D)) {
 | |
|     D->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   QualType Ty = VD->getType();
 | |
|   if (Ty->isDependentType()) return;
 | |
| 
 | |
|   // Require a complete type.
 | |
|   if (RequireCompleteType(VD->getLocation(), 
 | |
|                           Context.getBaseElementType(Ty),
 | |
|                           diag::err_typecheck_decl_incomplete_type)) {
 | |
|     VD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Require an abstract type.
 | |
|   if (RequireNonAbstractType(VD->getLocation(), Ty,
 | |
|                              diag::err_abstract_type_in_decl,
 | |
|                              AbstractVariableType)) {
 | |
|     VD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Don't bother complaining about constructors or destructors,
 | |
|   // though.
 | |
| }
 | |
| 
 | |
| void Sema::ActOnUninitializedDecl(Decl *RealDecl,
 | |
|                                   bool TypeMayContainAuto) {
 | |
|   // If there is no declaration, there was an error parsing it. Just ignore it.
 | |
|   if (RealDecl == 0)
 | |
|     return;
 | |
| 
 | |
|   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
 | |
|     QualType Type = Var->getType();
 | |
| 
 | |
|     // C++11 [dcl.spec.auto]p3
 | |
|     if (TypeMayContainAuto && Type->getContainedAutoType()) {
 | |
|       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
 | |
|         << Var->getDeclName() << Type;
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // C++11 [class.static.data]p3: A static data member can be declared with
 | |
|     // the constexpr specifier; if so, its declaration shall specify
 | |
|     // a brace-or-equal-initializer.
 | |
|     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
 | |
|     // the definition of a variable [...] or the declaration of a static data
 | |
|     // member.
 | |
|     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
 | |
|       if (Var->isStaticDataMember())
 | |
|         Diag(Var->getLocation(),
 | |
|              diag::err_constexpr_static_mem_var_requires_init)
 | |
|           << Var->getDeclName();
 | |
|       else
 | |
|         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     switch (Var->isThisDeclarationADefinition()) {
 | |
|     case VarDecl::Definition:
 | |
|       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
 | |
|         break;
 | |
| 
 | |
|       // We have an out-of-line definition of a static data member
 | |
|       // that has an in-class initializer, so we type-check this like
 | |
|       // a declaration. 
 | |
|       //
 | |
|       // Fall through
 | |
|       
 | |
|     case VarDecl::DeclarationOnly:
 | |
|       // It's only a declaration. 
 | |
| 
 | |
|       // Block scope. C99 6.7p7: If an identifier for an object is
 | |
|       // declared with no linkage (C99 6.2.2p6), the type for the
 | |
|       // object shall be complete.
 | |
|       if (!Type->isDependentType() && Var->isLocalVarDecl() && 
 | |
|           !Var->hasLinkage() && !Var->isInvalidDecl() &&
 | |
|           RequireCompleteType(Var->getLocation(), Type,
 | |
|                               diag::err_typecheck_decl_incomplete_type))
 | |
|         Var->setInvalidDecl();
 | |
| 
 | |
|       // Make sure that the type is not abstract.
 | |
|       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
 | |
|           RequireNonAbstractType(Var->getLocation(), Type,
 | |
|                                  diag::err_abstract_type_in_decl,
 | |
|                                  AbstractVariableType))
 | |
|         Var->setInvalidDecl();
 | |
|       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
 | |
|           Var->getStorageClass() == SC_PrivateExtern) {
 | |
|         Diag(Var->getLocation(), diag::warn_private_extern);
 | |
|         Diag(Var->getLocation(), diag::note_private_extern);
 | |
|       }
 | |
|         
 | |
|       return;
 | |
| 
 | |
|     case VarDecl::TentativeDefinition:
 | |
|       // File scope. C99 6.9.2p2: A declaration of an identifier for an
 | |
|       // object that has file scope without an initializer, and without a
 | |
|       // storage-class specifier or with the storage-class specifier "static",
 | |
|       // constitutes a tentative definition. Note: A tentative definition with
 | |
|       // external linkage is valid (C99 6.2.2p5).
 | |
|       if (!Var->isInvalidDecl()) {
 | |
|         if (const IncompleteArrayType *ArrayT
 | |
|                                     = Context.getAsIncompleteArrayType(Type)) {
 | |
|           if (RequireCompleteType(Var->getLocation(),
 | |
|                                   ArrayT->getElementType(),
 | |
|                                   diag::err_illegal_decl_array_incomplete_type))
 | |
|             Var->setInvalidDecl();
 | |
|         } else if (Var->getStorageClass() == SC_Static) {
 | |
|           // C99 6.9.2p3: If the declaration of an identifier for an object is
 | |
|           // a tentative definition and has internal linkage (C99 6.2.2p3), the
 | |
|           // declared type shall not be an incomplete type.
 | |
|           // NOTE: code such as the following
 | |
|           //     static struct s;
 | |
|           //     struct s { int a; };
 | |
|           // is accepted by gcc. Hence here we issue a warning instead of
 | |
|           // an error and we do not invalidate the static declaration.
 | |
|           // NOTE: to avoid multiple warnings, only check the first declaration.
 | |
|           if (Var->getPreviousDecl() == 0)
 | |
|             RequireCompleteType(Var->getLocation(), Type,
 | |
|                                 diag::ext_typecheck_decl_incomplete_type);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Record the tentative definition; we're done.
 | |
|       if (!Var->isInvalidDecl())
 | |
|         TentativeDefinitions.push_back(Var);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Provide a specific diagnostic for uninitialized variable
 | |
|     // definitions with incomplete array type.
 | |
|     if (Type->isIncompleteArrayType()) {
 | |
|       Diag(Var->getLocation(),
 | |
|            diag::err_typecheck_incomplete_array_needs_initializer);
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Provide a specific diagnostic for uninitialized variable
 | |
|     // definitions with reference type.
 | |
|     if (Type->isReferenceType()) {
 | |
|       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
 | |
|         << Var->getDeclName()
 | |
|         << SourceRange(Var->getLocation(), Var->getLocation());
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Do not attempt to type-check the default initializer for a
 | |
|     // variable with dependent type.
 | |
|     if (Type->isDependentType())
 | |
|       return;
 | |
| 
 | |
|     if (Var->isInvalidDecl())
 | |
|       return;
 | |
| 
 | |
|     if (RequireCompleteType(Var->getLocation(), 
 | |
|                             Context.getBaseElementType(Type),
 | |
|                             diag::err_typecheck_decl_incomplete_type)) {
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // The variable can not have an abstract class type.
 | |
|     if (RequireNonAbstractType(Var->getLocation(), Type,
 | |
|                                diag::err_abstract_type_in_decl,
 | |
|                                AbstractVariableType)) {
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Check for jumps past the implicit initializer.  C++0x
 | |
|     // clarifies that this applies to a "variable with automatic
 | |
|     // storage duration", not a "local variable".
 | |
|     // C++11 [stmt.dcl]p3
 | |
|     //   A program that jumps from a point where a variable with automatic
 | |
|     //   storage duration is not in scope to a point where it is in scope is
 | |
|     //   ill-formed unless the variable has scalar type, class type with a
 | |
|     //   trivial default constructor and a trivial destructor, a cv-qualified
 | |
|     //   version of one of these types, or an array of one of the preceding
 | |
|     //   types and is declared without an initializer.
 | |
|     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
 | |
|       if (const RecordType *Record
 | |
|             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
 | |
|         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
 | |
|         // Mark the function for further checking even if the looser rules of
 | |
|         // C++11 do not require such checks, so that we can diagnose
 | |
|         // incompatibilities with C++98.
 | |
|         if (!CXXRecord->isPOD())
 | |
|           getCurFunction()->setHasBranchProtectedScope();
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // C++03 [dcl.init]p9:
 | |
|     //   If no initializer is specified for an object, and the
 | |
|     //   object is of (possibly cv-qualified) non-POD class type (or
 | |
|     //   array thereof), the object shall be default-initialized; if
 | |
|     //   the object is of const-qualified type, the underlying class
 | |
|     //   type shall have a user-declared default
 | |
|     //   constructor. Otherwise, if no initializer is specified for
 | |
|     //   a non- static object, the object and its subobjects, if
 | |
|     //   any, have an indeterminate initial value); if the object
 | |
|     //   or any of its subobjects are of const-qualified type, the
 | |
|     //   program is ill-formed.
 | |
|     // C++0x [dcl.init]p11:
 | |
|     //   If no initializer is specified for an object, the object is
 | |
|     //   default-initialized; [...].
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
 | |
|     InitializationKind Kind
 | |
|       = InitializationKind::CreateDefault(Var->getLocation());
 | |
| 
 | |
|     InitializationSequence InitSeq(*this, Entity, Kind, None);
 | |
|     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
 | |
|     if (Init.isInvalid())
 | |
|       Var->setInvalidDecl();
 | |
|     else if (Init.get()) {
 | |
|       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
 | |
|       // This is important for template substitution.
 | |
|       Var->setInitStyle(VarDecl::CallInit);
 | |
|     }
 | |
| 
 | |
|     CheckCompleteVariableDeclaration(Var);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnCXXForRangeDecl(Decl *D) {
 | |
|   VarDecl *VD = dyn_cast<VarDecl>(D);
 | |
|   if (!VD) {
 | |
|     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
 | |
|     D->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   VD->setCXXForRangeDecl(true);
 | |
| 
 | |
|   // for-range-declaration cannot be given a storage class specifier.
 | |
|   int Error = -1;
 | |
|   switch (VD->getStorageClass()) {
 | |
|   case SC_None:
 | |
|     break;
 | |
|   case SC_Extern:
 | |
|     Error = 0;
 | |
|     break;
 | |
|   case SC_Static:
 | |
|     Error = 1;
 | |
|     break;
 | |
|   case SC_PrivateExtern:
 | |
|     Error = 2;
 | |
|     break;
 | |
|   case SC_Auto:
 | |
|     Error = 3;
 | |
|     break;
 | |
|   case SC_Register:
 | |
|     Error = 4;
 | |
|     break;
 | |
|   case SC_OpenCLWorkGroupLocal:
 | |
|     llvm_unreachable("Unexpected storage class");
 | |
|   }
 | |
|   if (VD->isConstexpr())
 | |
|     Error = 5;
 | |
|   if (Error != -1) {
 | |
|     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
 | |
|       << VD->getDeclName() << Error;
 | |
|     D->setInvalidDecl();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
 | |
|   if (var->isInvalidDecl()) return;
 | |
| 
 | |
|   // In ARC, don't allow jumps past the implicit initialization of a
 | |
|   // local retaining variable.
 | |
|   if (getLangOpts().ObjCAutoRefCount &&
 | |
|       var->hasLocalStorage()) {
 | |
|     switch (var->getType().getObjCLifetime()) {
 | |
|     case Qualifiers::OCL_None:
 | |
|     case Qualifiers::OCL_ExplicitNone:
 | |
|     case Qualifiers::OCL_Autoreleasing:
 | |
|       break;
 | |
| 
 | |
|     case Qualifiers::OCL_Weak:
 | |
|     case Qualifiers::OCL_Strong:
 | |
|       getCurFunction()->setHasBranchProtectedScope();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (var->isThisDeclarationADefinition() &&
 | |
|       var->isExternallyVisible() &&
 | |
|       getDiagnostics().getDiagnosticLevel(
 | |
|                        diag::warn_missing_variable_declarations,
 | |
|                        var->getLocation())) {
 | |
|     // Find a previous declaration that's not a definition.
 | |
|     VarDecl *prev = var->getPreviousDecl();
 | |
|     while (prev && prev->isThisDeclarationADefinition())
 | |
|       prev = prev->getPreviousDecl();
 | |
| 
 | |
|     if (!prev)
 | |
|       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
 | |
|   }
 | |
| 
 | |
|   if (var->getTLSKind() == VarDecl::TLS_Static &&
 | |
|       var->getType().isDestructedType()) {
 | |
|     // GNU C++98 edits for __thread, [basic.start.term]p3:
 | |
|     //   The type of an object with thread storage duration shall not
 | |
|     //   have a non-trivial destructor.
 | |
|     Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
 | |
|     if (getLangOpts().CPlusPlus11)
 | |
|       Diag(var->getLocation(), diag::note_use_thread_local);
 | |
|   }
 | |
| 
 | |
|   // All the following checks are C++ only.
 | |
|   if (!getLangOpts().CPlusPlus) return;
 | |
| 
 | |
|   QualType type = var->getType();
 | |
|   if (type->isDependentType()) return;
 | |
| 
 | |
|   // __block variables might require us to capture a copy-initializer.
 | |
|   if (var->hasAttr<BlocksAttr>()) {
 | |
|     // It's currently invalid to ever have a __block variable with an
 | |
|     // array type; should we diagnose that here?
 | |
| 
 | |
|     // Regardless, we don't want to ignore array nesting when
 | |
|     // constructing this copy.
 | |
|     if (type->isStructureOrClassType()) {
 | |
|       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
 | |
|       SourceLocation poi = var->getLocation();
 | |
|       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
 | |
|       ExprResult result
 | |
|         = PerformMoveOrCopyInitialization(
 | |
|             InitializedEntity::InitializeBlock(poi, type, false),
 | |
|             var, var->getType(), varRef, /*AllowNRVO=*/true);
 | |
|       if (!result.isInvalid()) {
 | |
|         result = MaybeCreateExprWithCleanups(result);
 | |
|         Expr *init = result.takeAs<Expr>();
 | |
|         Context.setBlockVarCopyInits(var, init);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Expr *Init = var->getInit();
 | |
|   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
 | |
|   QualType baseType = Context.getBaseElementType(type);
 | |
| 
 | |
|   if (!var->getDeclContext()->isDependentContext() &&
 | |
|       Init && !Init->isValueDependent()) {
 | |
|     if (IsGlobal && !var->isConstexpr() &&
 | |
|         getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
 | |
|                                             var->getLocation())
 | |
|           != DiagnosticsEngine::Ignored) {
 | |
|       // Warn about globals which don't have a constant initializer.  Don't
 | |
|       // warn about globals with a non-trivial destructor because we already
 | |
|       // warned about them.
 | |
|       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
 | |
|       if (!(RD && !RD->hasTrivialDestructor()) &&
 | |
|           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
 | |
|         Diag(var->getLocation(), diag::warn_global_constructor)
 | |
|           << Init->getSourceRange();
 | |
|     }
 | |
| 
 | |
|     if (var->isConstexpr()) {
 | |
|       SmallVector<PartialDiagnosticAt, 8> Notes;
 | |
|       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
 | |
|         SourceLocation DiagLoc = var->getLocation();
 | |
|         // If the note doesn't add any useful information other than a source
 | |
|         // location, fold it into the primary diagnostic.
 | |
|         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
 | |
|               diag::note_invalid_subexpr_in_const_expr) {
 | |
|           DiagLoc = Notes[0].first;
 | |
|           Notes.clear();
 | |
|         }
 | |
|         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
 | |
|           << var << Init->getSourceRange();
 | |
|         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
 | |
|           Diag(Notes[I].first, Notes[I].second);
 | |
|       }
 | |
|     } else if (var->isUsableInConstantExpressions(Context)) {
 | |
|       // Check whether the initializer of a const variable of integral or
 | |
|       // enumeration type is an ICE now, since we can't tell whether it was
 | |
|       // initialized by a constant expression if we check later.
 | |
|       var->checkInitIsICE();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Require the destructor.
 | |
|   if (const RecordType *recordType = baseType->getAs<RecordType>())
 | |
|     FinalizeVarWithDestructor(var, recordType);
 | |
| }
 | |
| 
 | |
| /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
 | |
| /// any semantic actions necessary after any initializer has been attached.
 | |
| void
 | |
| Sema::FinalizeDeclaration(Decl *ThisDecl) {
 | |
|   // Note that we are no longer parsing the initializer for this declaration.
 | |
|   ParsingInitForAutoVars.erase(ThisDecl);
 | |
| 
 | |
|   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
 | |
|   if (!VD)
 | |
|     return;
 | |
| 
 | |
|   const DeclContext *DC = VD->getDeclContext();
 | |
|   // If there's a #pragma GCC visibility in scope, and this isn't a class
 | |
|   // member, set the visibility of this variable.
 | |
|   if (!DC->isRecord() && VD->isExternallyVisible())
 | |
|     AddPushedVisibilityAttribute(VD);
 | |
| 
 | |
|   if (VD->isFileVarDecl())
 | |
|     MarkUnusedFileScopedDecl(VD);
 | |
| 
 | |
|   // Now we have parsed the initializer and can update the table of magic
 | |
|   // tag values.
 | |
|   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
 | |
|       !VD->getType()->isIntegralOrEnumerationType())
 | |
|     return;
 | |
| 
 | |
|   for (specific_attr_iterator<TypeTagForDatatypeAttr>
 | |
|          I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
 | |
|          E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
 | |
|        I != E; ++I) {
 | |
|     const Expr *MagicValueExpr = VD->getInit();
 | |
|     if (!MagicValueExpr) {
 | |
|       continue;
 | |
|     }
 | |
|     llvm::APSInt MagicValueInt;
 | |
|     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
 | |
|       Diag(I->getRange().getBegin(),
 | |
|            diag::err_type_tag_for_datatype_not_ice)
 | |
|         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
 | |
|       continue;
 | |
|     }
 | |
|     if (MagicValueInt.getActiveBits() > 64) {
 | |
|       Diag(I->getRange().getBegin(),
 | |
|            diag::err_type_tag_for_datatype_too_large)
 | |
|         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
 | |
|       continue;
 | |
|     }
 | |
|     uint64_t MagicValue = MagicValueInt.getZExtValue();
 | |
|     RegisterTypeTagForDatatype(I->getArgumentKind(),
 | |
|                                MagicValue,
 | |
|                                I->getMatchingCType(),
 | |
|                                I->getLayoutCompatible(),
 | |
|                                I->getMustBeNull());
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
 | |
|                                                    ArrayRef<Decl *> Group) {
 | |
|   SmallVector<Decl*, 8> Decls;
 | |
| 
 | |
|   if (DS.isTypeSpecOwned())
 | |
|     Decls.push_back(DS.getRepAsDecl());
 | |
| 
 | |
|   for (unsigned i = 0, e = Group.size(); i != e; ++i)
 | |
|     if (Decl *D = Group[i])
 | |
|       Decls.push_back(D);
 | |
| 
 | |
|   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
 | |
|     if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
 | |
|       HandleTagNumbering(*this, Tag);
 | |
|   }
 | |
| 
 | |
|   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
 | |
| }
 | |
| 
 | |
| /// BuildDeclaratorGroup - convert a list of declarations into a declaration
 | |
| /// group, performing any necessary semantic checking.
 | |
| Sema::DeclGroupPtrTy
 | |
| Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
 | |
|                            bool TypeMayContainAuto) {
 | |
|   // C++0x [dcl.spec.auto]p7:
 | |
|   //   If the type deduced for the template parameter U is not the same in each
 | |
|   //   deduction, the program is ill-formed.
 | |
|   // FIXME: When initializer-list support is added, a distinction is needed
 | |
|   // between the deduced type U and the deduced type which 'auto' stands for.
 | |
|   //   auto a = 0, b = { 1, 2, 3 };
 | |
|   // is legal because the deduced type U is 'int' in both cases.
 | |
|   if (TypeMayContainAuto && Group.size() > 1) {
 | |
|     QualType Deduced;
 | |
|     CanQualType DeducedCanon;
 | |
|     VarDecl *DeducedDecl = 0;
 | |
|     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
 | |
|       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
 | |
|         AutoType *AT = D->getType()->getContainedAutoType();
 | |
|         // Don't reissue diagnostics when instantiating a template.
 | |
|         if (AT && D->isInvalidDecl())
 | |
|           break;
 | |
|         QualType U = AT ? AT->getDeducedType() : QualType();
 | |
|         if (!U.isNull()) {
 | |
|           CanQualType UCanon = Context.getCanonicalType(U);
 | |
|           if (Deduced.isNull()) {
 | |
|             Deduced = U;
 | |
|             DeducedCanon = UCanon;
 | |
|             DeducedDecl = D;
 | |
|           } else if (DeducedCanon != UCanon) {
 | |
|             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
 | |
|                  diag::err_auto_different_deductions)
 | |
|               << (AT->isDecltypeAuto() ? 1 : 0)
 | |
|               << Deduced << DeducedDecl->getDeclName()
 | |
|               << U << D->getDeclName()
 | |
|               << DeducedDecl->getInit()->getSourceRange()
 | |
|               << D->getInit()->getSourceRange();
 | |
|             D->setInvalidDecl();
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ActOnDocumentableDecls(Group);
 | |
| 
 | |
|   return DeclGroupPtrTy::make(
 | |
|       DeclGroupRef::Create(Context, Group.data(), Group.size()));
 | |
| }
 | |
| 
 | |
| void Sema::ActOnDocumentableDecl(Decl *D) {
 | |
|   ActOnDocumentableDecls(D);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
 | |
|   // Don't parse the comment if Doxygen diagnostics are ignored.
 | |
|   if (Group.empty() || !Group[0])
 | |
|    return;
 | |
| 
 | |
|   if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
 | |
|                                Group[0]->getLocation())
 | |
|         == DiagnosticsEngine::Ignored)
 | |
|     return;
 | |
| 
 | |
|   if (Group.size() >= 2) {
 | |
|     // This is a decl group.  Normally it will contain only declarations
 | |
|     // produced from declarator list.  But in case we have any definitions or
 | |
|     // additional declaration references:
 | |
|     //   'typedef struct S {} S;'
 | |
|     //   'typedef struct S *S;'
 | |
|     //   'struct S *pS;'
 | |
|     // FinalizeDeclaratorGroup adds these as separate declarations.
 | |
|     Decl *MaybeTagDecl = Group[0];
 | |
|     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
 | |
|       Group = Group.slice(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if there are any new comments that are not attached to a decl.
 | |
|   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
 | |
|   if (!Comments.empty() &&
 | |
|       !Comments.back()->isAttached()) {
 | |
|     // There is at least one comment that not attached to a decl.
 | |
|     // Maybe it should be attached to one of these decls?
 | |
|     //
 | |
|     // Note that this way we pick up not only comments that precede the
 | |
|     // declaration, but also comments that *follow* the declaration -- thanks to
 | |
|     // the lookahead in the lexer: we've consumed the semicolon and looked
 | |
|     // ahead through comments.
 | |
|     for (unsigned i = 0, e = Group.size(); i != e; ++i)
 | |
|       Context.getCommentForDecl(Group[i], &PP);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
 | |
| /// to introduce parameters into function prototype scope.
 | |
| Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
 | |
|   const DeclSpec &DS = D.getDeclSpec();
 | |
| 
 | |
|   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
 | |
|   // C++03 [dcl.stc]p2 also permits 'auto'.
 | |
|   VarDecl::StorageClass StorageClass = SC_None;
 | |
|   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
 | |
|     StorageClass = SC_Register;
 | |
|   } else if (getLangOpts().CPlusPlus &&
 | |
|              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
 | |
|     StorageClass = SC_Auto;
 | |
|   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
 | |
|     Diag(DS.getStorageClassSpecLoc(),
 | |
|          diag::err_invalid_storage_class_in_func_decl);
 | |
|     D.getMutableDeclSpec().ClearStorageClassSpecs();
 | |
|   }
 | |
| 
 | |
|   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
 | |
|     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
 | |
|       << DeclSpec::getSpecifierName(TSCS);
 | |
|   if (DS.isConstexprSpecified())
 | |
|     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
 | |
|       << 0;
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(DS);
 | |
| 
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType parmDeclType = TInfo->getType();
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     // Check that there are no default arguments inside the type of this
 | |
|     // parameter.
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
|     
 | |
|     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
 | |
|     if (D.getCXXScopeSpec().isSet()) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
 | |
|         << D.getCXXScopeSpec().getRange();
 | |
|       D.getCXXScopeSpec().clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ensure we have a valid name
 | |
|   IdentifierInfo *II = 0;
 | |
|   if (D.hasName()) {
 | |
|     II = D.getIdentifier();
 | |
|     if (!II) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
 | |
|         << GetNameForDeclarator(D).getName().getAsString();
 | |
|       D.setInvalidType(true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
 | |
|   if (II) {
 | |
|     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
 | |
|                    ForRedeclaration);
 | |
|     LookupName(R, S);
 | |
|     if (R.isSingleResult()) {
 | |
|       NamedDecl *PrevDecl = R.getFoundDecl();
 | |
|       if (PrevDecl->isTemplateParameter()) {
 | |
|         // Maybe we will complain about the shadowed template parameter.
 | |
|         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | |
|         // Just pretend that we didn't see the previous declaration.
 | |
|         PrevDecl = 0;
 | |
|       } else if (S->isDeclScope(PrevDecl)) {
 | |
|         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | |
| 
 | |
|         // Recover by removing the name
 | |
|         II = 0;
 | |
|         D.SetIdentifier(0, D.getIdentifierLoc());
 | |
|         D.setInvalidType(true);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Temporarily put parameter variables in the translation unit, not
 | |
|   // the enclosing context.  This prevents them from accidentally
 | |
|   // looking like class members in C++.
 | |
|   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
 | |
|                                     D.getLocStart(),
 | |
|                                     D.getIdentifierLoc(), II,
 | |
|                                     parmDeclType, TInfo,
 | |
|                                     StorageClass);
 | |
| 
 | |
|   if (D.isInvalidType())
 | |
|     New->setInvalidDecl();
 | |
| 
 | |
|   assert(S->isFunctionPrototypeScope());
 | |
|   assert(S->getFunctionPrototypeDepth() >= 1);
 | |
|   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
 | |
|                     S->getNextFunctionPrototypeIndex());
 | |
|   
 | |
|   // Add the parameter declaration into this scope.
 | |
|   S->AddDecl(New);
 | |
|   if (II)
 | |
|     IdResolver.AddDecl(New);
 | |
| 
 | |
|   ProcessDeclAttributes(S, New, D);
 | |
| 
 | |
|   if (D.getDeclSpec().isModulePrivateSpecified())
 | |
|     Diag(New->getLocation(), diag::err_module_private_local)
 | |
|       << 1 << New->getDeclName()
 | |
|       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
 | |
|       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | |
| 
 | |
|   if (New->hasAttr<BlocksAttr>()) {
 | |
|     Diag(New->getLocation(), diag::err_block_on_nonlocal);
 | |
|   }
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// \brief Synthesizes a variable for a parameter arising from a
 | |
| /// typedef.
 | |
| ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
 | |
|                                               SourceLocation Loc,
 | |
|                                               QualType T) {
 | |
|   /* FIXME: setting StartLoc == Loc.
 | |
|      Would it be worth to modify callers so as to provide proper source
 | |
|      location for the unnamed parameters, embedding the parameter's type? */
 | |
|   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
 | |
|                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
 | |
|                                            SC_None, 0);
 | |
|   Param->setImplicit();
 | |
|   return Param;
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
 | |
|                                     ParmVarDecl * const *ParamEnd) {
 | |
|   // Don't diagnose unused-parameter errors in template instantiations; we
 | |
|   // will already have done so in the template itself.
 | |
|   if (!ActiveTemplateInstantiations.empty())
 | |
|     return;
 | |
| 
 | |
|   for (; Param != ParamEnd; ++Param) {
 | |
|     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
 | |
|         !(*Param)->hasAttr<UnusedAttr>()) {
 | |
|       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
 | |
|         << (*Param)->getDeclName();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
 | |
|                                                   ParmVarDecl * const *ParamEnd,
 | |
|                                                   QualType ReturnTy,
 | |
|                                                   NamedDecl *D) {
 | |
|   if (LangOpts.NumLargeByValueCopy == 0) // No check.
 | |
|     return;
 | |
| 
 | |
|   // Warn if the return value is pass-by-value and larger than the specified
 | |
|   // threshold.
 | |
|   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
 | |
|     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
 | |
|     if (Size > LangOpts.NumLargeByValueCopy)
 | |
|       Diag(D->getLocation(), diag::warn_return_value_size)
 | |
|           << D->getDeclName() << Size;
 | |
|   }
 | |
| 
 | |
|   // Warn if any parameter is pass-by-value and larger than the specified
 | |
|   // threshold.
 | |
|   for (; Param != ParamEnd; ++Param) {
 | |
|     QualType T = (*Param)->getType();
 | |
|     if (T->isDependentType() || !T.isPODType(Context))
 | |
|       continue;
 | |
|     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
 | |
|     if (Size > LangOpts.NumLargeByValueCopy)
 | |
|       Diag((*Param)->getLocation(), diag::warn_parameter_size)
 | |
|           << (*Param)->getDeclName() << Size;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
 | |
|                                   SourceLocation NameLoc, IdentifierInfo *Name,
 | |
|                                   QualType T, TypeSourceInfo *TSInfo,
 | |
|                                   VarDecl::StorageClass StorageClass) {
 | |
|   // In ARC, infer a lifetime qualifier for appropriate parameter types.
 | |
|   if (getLangOpts().ObjCAutoRefCount &&
 | |
|       T.getObjCLifetime() == Qualifiers::OCL_None &&
 | |
|       T->isObjCLifetimeType()) {
 | |
| 
 | |
|     Qualifiers::ObjCLifetime lifetime;
 | |
| 
 | |
|     // Special cases for arrays:
 | |
|     //   - if it's const, use __unsafe_unretained
 | |
|     //   - otherwise, it's an error
 | |
|     if (T->isArrayType()) {
 | |
|       if (!T.isConstQualified()) {
 | |
|         DelayedDiagnostics.add(
 | |
|             sema::DelayedDiagnostic::makeForbiddenType(
 | |
|             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
 | |
|       }
 | |
|       lifetime = Qualifiers::OCL_ExplicitNone;
 | |
|     } else {
 | |
|       lifetime = T->getObjCARCImplicitLifetime();
 | |
|     }
 | |
|     T = Context.getLifetimeQualifiedType(T, lifetime);
 | |
|   }
 | |
| 
 | |
|   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
 | |
|                                          Context.getAdjustedParameterType(T), 
 | |
|                                          TSInfo,
 | |
|                                          StorageClass, 0);
 | |
| 
 | |
|   // Parameters can not be abstract class types.
 | |
|   // For record types, this is done by the AbstractClassUsageDiagnoser once
 | |
|   // the class has been completely parsed.
 | |
|   if (!CurContext->isRecord() &&
 | |
|       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
 | |
|                              AbstractParamType))
 | |
|     New->setInvalidDecl();
 | |
| 
 | |
|   // Parameter declarators cannot be interface types. All ObjC objects are
 | |
|   // passed by reference.
 | |
|   if (T->isObjCObjectType()) {
 | |
|     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
 | |
|     Diag(NameLoc,
 | |
|          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
 | |
|       << FixItHint::CreateInsertion(TypeEndLoc, "*");
 | |
|     T = Context.getObjCObjectPointerType(T);
 | |
|     New->setType(T);
 | |
|   }
 | |
| 
 | |
|   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 
 | |
|   // duration shall not be qualified by an address-space qualifier."
 | |
|   // Since all parameters have automatic store duration, they can not have
 | |
|   // an address space.
 | |
|   if (T.getAddressSpace() != 0) {
 | |
|     Diag(NameLoc, diag::err_arg_with_address_space);
 | |
|     New->setInvalidDecl();
 | |
|   }   
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
 | |
|                                            SourceLocation LocAfterDecls) {
 | |
|   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | |
| 
 | |
|   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
 | |
|   // for a K&R function.
 | |
|   if (!FTI.hasPrototype) {
 | |
|     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
 | |
|       --i;
 | |
|       if (FTI.ArgInfo[i].Param == 0) {
 | |
|         SmallString<256> Code;
 | |
|         llvm::raw_svector_ostream(Code) << "  int "
 | |
|                                         << FTI.ArgInfo[i].Ident->getName()
 | |
|                                         << ";\n";
 | |
|         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
 | |
|           << FTI.ArgInfo[i].Ident
 | |
|           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
 | |
| 
 | |
|         // Implicitly declare the argument as type 'int' for lack of a better
 | |
|         // type.
 | |
|         AttributeFactory attrs;
 | |
|         DeclSpec DS(attrs);
 | |
|         const char* PrevSpec; // unused
 | |
|         unsigned DiagID; // unused
 | |
|         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
 | |
|                            PrevSpec, DiagID);
 | |
|         // Use the identifier location for the type source range.
 | |
|         DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
 | |
|         DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
 | |
|         Declarator ParamD(DS, Declarator::KNRTypeListContext);
 | |
|         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
 | |
|         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
 | |
|   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
 | |
|   assert(D.isFunctionDeclarator() && "Not a function declarator!");
 | |
|   Scope *ParentScope = FnBodyScope->getParent();
 | |
| 
 | |
|   D.setFunctionDefinitionKind(FDK_Definition);
 | |
|   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
 | |
|   return ActOnStartOfFunctionDef(FnBodyScope, DP);
 | |
| }
 | |
| 
 | |
| static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, 
 | |
|                              const FunctionDecl*& PossibleZeroParamPrototype) {
 | |
|   // Don't warn about invalid declarations.
 | |
|   if (FD->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // Or declarations that aren't global.
 | |
|   if (!FD->isGlobal())
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about C++ member functions.
 | |
|   if (isa<CXXMethodDecl>(FD))
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about 'main'.
 | |
|   if (FD->isMain())
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about inline functions.
 | |
|   if (FD->isInlined())
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about function templates.
 | |
|   if (FD->getDescribedFunctionTemplate())
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about function template specializations.
 | |
|   if (FD->isFunctionTemplateSpecialization())
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn for OpenCL kernels.
 | |
|   if (FD->hasAttr<OpenCLKernelAttr>())
 | |
|     return false;
 | |
|   
 | |
|   bool MissingPrototype = true;
 | |
|   for (const FunctionDecl *Prev = FD->getPreviousDecl();
 | |
|        Prev; Prev = Prev->getPreviousDecl()) {
 | |
|     // Ignore any declarations that occur in function or method
 | |
|     // scope, because they aren't visible from the header.
 | |
|     if (Prev->getDeclContext()->isFunctionOrMethod())
 | |
|       continue;
 | |
|       
 | |
|     MissingPrototype = !Prev->getType()->isFunctionProtoType();
 | |
|     if (FD->getNumParams() == 0)
 | |
|       PossibleZeroParamPrototype = Prev;
 | |
|     break;
 | |
|   }
 | |
|     
 | |
|   return MissingPrototype;
 | |
| }
 | |
| 
 | |
| void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
 | |
|   // Don't complain if we're in GNU89 mode and the previous definition
 | |
|   // was an extern inline function.
 | |
|   const FunctionDecl *Definition;
 | |
|   if (FD->isDefined(Definition) &&
 | |
|       !canRedefineFunction(Definition, getLangOpts())) {
 | |
|     if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
 | |
|         Definition->getStorageClass() == SC_Extern)
 | |
|       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
 | |
|         << FD->getDeclName() << getLangOpts().CPlusPlus;
 | |
|     else
 | |
|       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
 | |
|     Diag(Definition->getLocation(), diag::note_previous_definition);
 | |
|     FD->setInvalidDecl();
 | |
|   }
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
 | |
|   // Clear the last template instantiation error context.
 | |
|   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
 | |
|   
 | |
|   if (!D)
 | |
|     return D;
 | |
|   FunctionDecl *FD = 0;
 | |
| 
 | |
|   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
 | |
|     FD = FunTmpl->getTemplatedDecl();
 | |
|   else
 | |
|     FD = cast<FunctionDecl>(D);
 | |
| 
 | |
|   // Enter a new function scope
 | |
|   PushFunctionScope();
 | |
| 
 | |
|   // See if this is a redefinition.
 | |
|   if (!FD->isLateTemplateParsed())
 | |
|     CheckForFunctionRedefinition(FD);
 | |
| 
 | |
|   // Builtin functions cannot be defined.
 | |
|   if (unsigned BuiltinID = FD->getBuiltinID()) {
 | |
|     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
 | |
|         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
 | |
|       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
 | |
|       FD->setInvalidDecl();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The return type of a function definition must be complete
 | |
|   // (C99 6.9.1p3, C++ [dcl.fct]p6).
 | |
|   QualType ResultType = FD->getResultType();
 | |
|   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
 | |
|       !FD->isInvalidDecl() &&
 | |
|       RequireCompleteType(FD->getLocation(), ResultType,
 | |
|                           diag::err_func_def_incomplete_result))
 | |
|     FD->setInvalidDecl();
 | |
| 
 | |
|   // GNU warning -Wmissing-prototypes:
 | |
|   //   Warn if a global function is defined without a previous
 | |
|   //   prototype declaration. This warning is issued even if the
 | |
|   //   definition itself provides a prototype. The aim is to detect
 | |
|   //   global functions that fail to be declared in header files.
 | |
|   const FunctionDecl *PossibleZeroParamPrototype = 0;
 | |
|   if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
 | |
|     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
 | |
| 
 | |
|     if (PossibleZeroParamPrototype) {
 | |
|       // We found a declaration that is not a prototype,
 | |
|       // but that could be a zero-parameter prototype
 | |
|       if (TypeSourceInfo *TI =
 | |
|               PossibleZeroParamPrototype->getTypeSourceInfo()) {
 | |
|         TypeLoc TL = TI->getTypeLoc();
 | |
|         if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
 | |
|           Diag(PossibleZeroParamPrototype->getLocation(),
 | |
|                diag::note_declaration_not_a_prototype)
 | |
|             << PossibleZeroParamPrototype
 | |
|             << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FnBodyScope)
 | |
|     PushDeclContext(FnBodyScope, FD);
 | |
| 
 | |
|   // Check the validity of our function parameters
 | |
|   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
 | |
|                            /*CheckParameterNames=*/true);
 | |
| 
 | |
|   // Introduce our parameters into the function scope
 | |
|   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
 | |
|     ParmVarDecl *Param = FD->getParamDecl(p);
 | |
|     Param->setOwningFunction(FD);
 | |
| 
 | |
|     // If this has an identifier, add it to the scope stack.
 | |
|     if (Param->getIdentifier() && FnBodyScope) {
 | |
|       CheckShadow(FnBodyScope, Param);
 | |
| 
 | |
|       PushOnScopeChains(Param, FnBodyScope);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we had any tags defined in the function prototype,
 | |
|   // introduce them into the function scope.
 | |
|   if (FnBodyScope) {
 | |
|     for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
 | |
|            E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
 | |
|       NamedDecl *D = *I;
 | |
| 
 | |
|       // Some of these decls (like enums) may have been pinned to the translation unit
 | |
|       // for lack of a real context earlier. If so, remove from the translation unit
 | |
|       // and reattach to the current context.
 | |
|       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
 | |
|         // Is the decl actually in the context?
 | |
|         for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
 | |
|                DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
 | |
|           if (*DI == D) {  
 | |
|             Context.getTranslationUnitDecl()->removeDecl(D);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         // Either way, reassign the lexical decl context to our FunctionDecl.
 | |
|         D->setLexicalDeclContext(CurContext);
 | |
|       }
 | |
| 
 | |
|       // If the decl has a non-null name, make accessible in the current scope.
 | |
|       if (!D->getName().empty())
 | |
|         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
 | |
| 
 | |
|       // Similarly, dive into enums and fish their constants out, making them
 | |
|       // accessible in this scope.
 | |
|       if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
 | |
|         for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
 | |
|                EE = ED->enumerator_end(); EI != EE; ++EI)
 | |
|           PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ensure that the function's exception specification is instantiated.
 | |
|   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
 | |
|     ResolveExceptionSpec(D->getLocation(), FPT);
 | |
| 
 | |
|   // Checking attributes of current function definition
 | |
|   // dllimport attribute.
 | |
|   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
 | |
|   if (DA && (!FD->getAttr<DLLExportAttr>())) {
 | |
|     // dllimport attribute cannot be directly applied to definition.
 | |
|     // Microsoft accepts dllimport for functions defined within class scope. 
 | |
|     if (!DA->isInherited() &&
 | |
|         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
 | |
|       Diag(FD->getLocation(),
 | |
|            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
 | |
|         << "dllimport";
 | |
|       FD->setInvalidDecl();
 | |
|       return D;
 | |
|     }
 | |
| 
 | |
|     // Visual C++ appears to not think this is an issue, so only issue
 | |
|     // a warning when Microsoft extensions are disabled.
 | |
|     if (!LangOpts.MicrosoftExt) {
 | |
|       // If a symbol previously declared dllimport is later defined, the
 | |
|       // attribute is ignored in subsequent references, and a warning is
 | |
|       // emitted.
 | |
|       Diag(FD->getLocation(),
 | |
|            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
 | |
|         << FD->getName() << "dllimport";
 | |
|     }
 | |
|   }
 | |
|   // We want to attach documentation to original Decl (which might be
 | |
|   // a function template).
 | |
|   ActOnDocumentableDecl(D);
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| /// \brief Given the set of return statements within a function body,
 | |
| /// compute the variables that are subject to the named return value 
 | |
| /// optimization.
 | |
| ///
 | |
| /// Each of the variables that is subject to the named return value 
 | |
| /// optimization will be marked as NRVO variables in the AST, and any
 | |
| /// return statement that has a marked NRVO variable as its NRVO candidate can
 | |
| /// use the named return value optimization.
 | |
| ///
 | |
| /// This function applies a very simplistic algorithm for NRVO: if every return
 | |
| /// statement in the function has the same NRVO candidate, that candidate is
 | |
| /// the NRVO variable.
 | |
| ///
 | |
| /// FIXME: Employ a smarter algorithm that accounts for multiple return 
 | |
| /// statements and the lifetimes of the NRVO candidates. We should be able to
 | |
| /// find a maximal set of NRVO variables.
 | |
| void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
 | |
|   ReturnStmt **Returns = Scope->Returns.data();
 | |
| 
 | |
|   const VarDecl *NRVOCandidate = 0;
 | |
|   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
 | |
|     if (!Returns[I]->getNRVOCandidate())
 | |
|       return;
 | |
|     
 | |
|     if (!NRVOCandidate)
 | |
|       NRVOCandidate = Returns[I]->getNRVOCandidate();
 | |
|     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
 | |
|       return;
 | |
|   }
 | |
|   
 | |
|   if (NRVOCandidate)
 | |
|     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
 | |
| }
 | |
| 
 | |
| bool Sema::canSkipFunctionBody(Decl *D) {
 | |
|   if (!Consumer.shouldSkipFunctionBody(D))
 | |
|     return false;
 | |
| 
 | |
|   if (isa<ObjCMethodDecl>(D))
 | |
|     return true;
 | |
| 
 | |
|   FunctionDecl *FD = 0;
 | |
|   if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
 | |
|     FD = FTD->getTemplatedDecl();
 | |
|   else
 | |
|     FD = cast<FunctionDecl>(D);
 | |
| 
 | |
|   // We cannot skip the body of a function (or function template) which is
 | |
|   // constexpr, since we may need to evaluate its body in order to parse the
 | |
|   // rest of the file.
 | |
|   // We cannot skip the body of a function with an undeduced return type,
 | |
|   // because any callers of that function need to know the type.
 | |
|   return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
 | |
|   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
 | |
|     FD->setHasSkippedBody();
 | |
|   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
 | |
|     MD->setHasSkippedBody();
 | |
|   return ActOnFinishFunctionBody(Decl, 0);
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
 | |
|   return ActOnFinishFunctionBody(D, BodyArg, false);
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
 | |
|                                     bool IsInstantiation) {
 | |
|   FunctionDecl *FD = 0;
 | |
|   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
 | |
|   if (FunTmpl)
 | |
|     FD = FunTmpl->getTemplatedDecl();
 | |
|   else
 | |
|     FD = dyn_cast_or_null<FunctionDecl>(dcl);
 | |
| 
 | |
|   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
 | |
|   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
 | |
| 
 | |
|   if (FD) {
 | |
|     FD->setBody(Body);
 | |
| 
 | |
|     if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
 | |
|         !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
 | |
|       // If the function has a deduced result type but contains no 'return'
 | |
|       // statements, the result type as written must be exactly 'auto', and
 | |
|       // the deduced result type is 'void'.
 | |
|       if (!FD->getResultType()->getAs<AutoType>()) {
 | |
|         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
 | |
|           << FD->getResultType();
 | |
|         FD->setInvalidDecl();
 | |
|       } else {
 | |
|         // Substitute 'void' for the 'auto' in the type.
 | |
|         TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
 | |
|             IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
 | |
|         Context.adjustDeducedFunctionResultType(
 | |
|             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The only way to be included in UndefinedButUsed is if there is an
 | |
|     // ODR use before the definition. Avoid the expensive map lookup if this
 | |
|     // is the first declaration.
 | |
|     if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
 | |
|       if (!FD->isExternallyVisible())
 | |
|         UndefinedButUsed.erase(FD);
 | |
|       else if (FD->isInlined() &&
 | |
|                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
 | |
|                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
 | |
|         UndefinedButUsed.erase(FD);
 | |
|     }
 | |
| 
 | |
|     // If the function implicitly returns zero (like 'main') or is naked,
 | |
|     // don't complain about missing return statements.
 | |
|     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
 | |
|       WP.disableCheckFallThrough();
 | |
| 
 | |
|     // MSVC permits the use of pure specifier (=0) on function definition,
 | |
|     // defined at class scope, warn about this non standard construct.
 | |
|     if (getLangOpts().MicrosoftExt && FD->isPure())
 | |
|       Diag(FD->getLocation(), diag::warn_pure_function_definition);
 | |
| 
 | |
|     if (!FD->isInvalidDecl()) {
 | |
|       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
 | |
|       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
 | |
|                                              FD->getResultType(), FD);
 | |
|       
 | |
|       // If this is a constructor, we need a vtable.
 | |
|       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
 | |
|         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
 | |
|       
 | |
|       // Try to apply the named return value optimization. We have to check
 | |
|       // if we can do this here because lambdas keep return statements around
 | |
|       // to deduce an implicit return type.
 | |
|       if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
 | |
|           !FD->isDependentContext())
 | |
|         computeNRVO(Body, getCurFunction());
 | |
|     }
 | |
|     
 | |
|     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
 | |
|            "Function parsing confused");
 | |
|   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
 | |
|     assert(MD == getCurMethodDecl() && "Method parsing confused");
 | |
|     MD->setBody(Body);
 | |
|     if (!MD->isInvalidDecl()) {
 | |
|       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
 | |
|       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
 | |
|                                              MD->getResultType(), MD);
 | |
|       
 | |
|       if (Body)
 | |
|         computeNRVO(Body, getCurFunction());
 | |
|     }
 | |
|     if (getCurFunction()->ObjCShouldCallSuper) {
 | |
|       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
 | |
|         << MD->getSelector().getAsString();
 | |
|       getCurFunction()->ObjCShouldCallSuper = false;
 | |
|     }
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   assert(!getCurFunction()->ObjCShouldCallSuper &&
 | |
|          "This should only be set for ObjC methods, which should have been "
 | |
|          "handled in the block above.");
 | |
| 
 | |
|   // Verify and clean out per-function state.
 | |
|   if (Body) {
 | |
|     // C++ constructors that have function-try-blocks can't have return
 | |
|     // statements in the handlers of that block. (C++ [except.handle]p14)
 | |
|     // Verify this.
 | |
|     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
 | |
|       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
 | |
|     
 | |
|     // Verify that gotos and switch cases don't jump into scopes illegally.
 | |
|     if (getCurFunction()->NeedsScopeChecking() &&
 | |
|         !dcl->isInvalidDecl() &&
 | |
|         !hasAnyUnrecoverableErrorsInThisFunction() &&
 | |
|         !PP.isCodeCompletionEnabled())
 | |
|       DiagnoseInvalidJumps(Body);
 | |
| 
 | |
|     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
 | |
|       if (!Destructor->getParent()->isDependentType())
 | |
|         CheckDestructor(Destructor);
 | |
| 
 | |
|       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
 | |
|                                              Destructor->getParent());
 | |
|     }
 | |
|     
 | |
|     // If any errors have occurred, clear out any temporaries that may have
 | |
|     // been leftover. This ensures that these temporaries won't be picked up for
 | |
|     // deletion in some later function.
 | |
|     if (PP.getDiagnostics().hasErrorOccurred() ||
 | |
|         PP.getDiagnostics().getSuppressAllDiagnostics()) {
 | |
|       DiscardCleanupsInEvaluationContext();
 | |
|     }
 | |
|     if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
 | |
|         !isa<FunctionTemplateDecl>(dcl)) {
 | |
|       // Since the body is valid, issue any analysis-based warnings that are
 | |
|       // enabled.
 | |
|       ActivePolicy = &WP;
 | |
|     }
 | |
| 
 | |
|     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
 | |
|         (!CheckConstexprFunctionDecl(FD) ||
 | |
|          !CheckConstexprFunctionBody(FD, Body)))
 | |
|       FD->setInvalidDecl();
 | |
| 
 | |
|     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
 | |
|     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
 | |
|     assert(MaybeODRUseExprs.empty() &&
 | |
|            "Leftover expressions for odr-use checking");
 | |
|   }
 | |
|   
 | |
|   if (!IsInstantiation)
 | |
|     PopDeclContext();
 | |
| 
 | |
|   PopFunctionScopeInfo(ActivePolicy, dcl);
 | |
|   
 | |
|   // If any errors have occurred, clear out any temporaries that may have
 | |
|   // been leftover. This ensures that these temporaries won't be picked up for
 | |
|   // deletion in some later function.
 | |
|   if (getDiagnostics().hasErrorOccurred()) {
 | |
|     DiscardCleanupsInEvaluationContext();
 | |
|   }
 | |
| 
 | |
|   return dcl;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// When we finish delayed parsing of an attribute, we must attach it to the
 | |
| /// relevant Decl.
 | |
| void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
 | |
|                                        ParsedAttributes &Attrs) {
 | |
|   // Always attach attributes to the underlying decl.
 | |
|   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
 | |
|     D = TD->getTemplatedDecl();
 | |
|   ProcessDeclAttributeList(S, D, Attrs.getList());  
 | |
|   
 | |
|   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
 | |
|     if (Method->isStatic())
 | |
|       checkThisInStaticMemberFunctionAttributes(Method);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
 | |
| /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
 | |
| NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
 | |
|                                           IdentifierInfo &II, Scope *S) {
 | |
|   // Before we produce a declaration for an implicitly defined
 | |
|   // function, see whether there was a locally-scoped declaration of
 | |
|   // this name as a function or variable. If so, use that
 | |
|   // (non-visible) declaration, and complain about it.
 | |
|   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
 | |
|     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
 | |
|     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
 | |
|     return ExternCPrev;
 | |
|   }
 | |
| 
 | |
|   // Extension in C99.  Legal in C90, but warn about it.
 | |
|   unsigned diag_id;
 | |
|   if (II.getName().startswith("__builtin_"))
 | |
|     diag_id = diag::warn_builtin_unknown;
 | |
|   else if (getLangOpts().C99)
 | |
|     diag_id = diag::ext_implicit_function_decl;
 | |
|   else
 | |
|     diag_id = diag::warn_implicit_function_decl;
 | |
|   Diag(Loc, diag_id) << &II;
 | |
| 
 | |
|   // Because typo correction is expensive, only do it if the implicit
 | |
|   // function declaration is going to be treated as an error.
 | |
|   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
 | |
|     TypoCorrection Corrected;
 | |
|     DeclFilterCCC<FunctionDecl> Validator;
 | |
|     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
 | |
|                                       LookupOrdinaryName, S, 0, Validator))) {
 | |
|       std::string CorrectedStr = Corrected.getAsString(getLangOpts());
 | |
|       std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
 | |
|       FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
 | |
| 
 | |
|       Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
 | |
|           << FixItHint::CreateReplacement(Loc, CorrectedStr);
 | |
| 
 | |
|       if (Func->getLocation().isValid()
 | |
|           && !II.getName().startswith("__builtin_"))
 | |
|         Diag(Func->getLocation(), diag::note_previous_decl)
 | |
|             << CorrectedQuotedStr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Set a Declarator for the implicit definition: int foo();
 | |
|   const char *Dummy;
 | |
|   AttributeFactory attrFactory;
 | |
|   DeclSpec DS(attrFactory);
 | |
|   unsigned DiagID;
 | |
|   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
 | |
|   (void)Error; // Silence warning.
 | |
|   assert(!Error && "Error setting up implicit decl!");
 | |
|   SourceLocation NoLoc;
 | |
|   Declarator D(DS, Declarator::BlockContext);
 | |
|   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
 | |
|                                              /*IsAmbiguous=*/false,
 | |
|                                              /*RParenLoc=*/NoLoc,
 | |
|                                              /*ArgInfo=*/0,
 | |
|                                              /*NumArgs=*/0,
 | |
|                                              /*EllipsisLoc=*/NoLoc,
 | |
|                                              /*RParenLoc=*/NoLoc,
 | |
|                                              /*TypeQuals=*/0,
 | |
|                                              /*RefQualifierIsLvalueRef=*/true,
 | |
|                                              /*RefQualifierLoc=*/NoLoc,
 | |
|                                              /*ConstQualifierLoc=*/NoLoc,
 | |
|                                              /*VolatileQualifierLoc=*/NoLoc,
 | |
|                                              /*MutableLoc=*/NoLoc,
 | |
|                                              EST_None,
 | |
|                                              /*ESpecLoc=*/NoLoc,
 | |
|                                              /*Exceptions=*/0,
 | |
|                                              /*ExceptionRanges=*/0,
 | |
|                                              /*NumExceptions=*/0,
 | |
|                                              /*NoexceptExpr=*/0,
 | |
|                                              Loc, Loc, D),
 | |
|                 DS.getAttributes(),
 | |
|                 SourceLocation());
 | |
|   D.SetIdentifier(&II, Loc);
 | |
| 
 | |
|   // Insert this function into translation-unit scope.
 | |
| 
 | |
|   DeclContext *PrevDC = CurContext;
 | |
|   CurContext = Context.getTranslationUnitDecl();
 | |
| 
 | |
|   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
 | |
|   FD->setImplicit();
 | |
| 
 | |
|   CurContext = PrevDC;
 | |
| 
 | |
|   AddKnownFunctionAttributes(FD);
 | |
| 
 | |
|   return FD;
 | |
| }
 | |
| 
 | |
| /// \brief Adds any function attributes that we know a priori based on
 | |
| /// the declaration of this function.
 | |
| ///
 | |
| /// These attributes can apply both to implicitly-declared builtins
 | |
| /// (like __builtin___printf_chk) or to library-declared functions
 | |
| /// like NSLog or printf.
 | |
| ///
 | |
| /// We need to check for duplicate attributes both here and where user-written
 | |
| /// attributes are applied to declarations.
 | |
| void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
 | |
|   if (FD->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   // If this is a built-in function, map its builtin attributes to
 | |
|   // actual attributes.
 | |
|   if (unsigned BuiltinID = FD->getBuiltinID()) {
 | |
|     // Handle printf-formatting attributes.
 | |
|     unsigned FormatIdx;
 | |
|     bool HasVAListArg;
 | |
|     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
 | |
|       if (!FD->getAttr<FormatAttr>()) {
 | |
|         const char *fmt = "printf";
 | |
|         unsigned int NumParams = FD->getNumParams();
 | |
|         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
 | |
|             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
 | |
|           fmt = "NSString";
 | |
|         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | |
|                                                fmt, FormatIdx+1,
 | |
|                                                HasVAListArg ? 0 : FormatIdx+2));
 | |
|       }
 | |
|     }
 | |
|     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
 | |
|                                              HasVAListArg)) {
 | |
|      if (!FD->getAttr<FormatAttr>())
 | |
|        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | |
|                                               "scanf", FormatIdx+1,
 | |
|                                               HasVAListArg ? 0 : FormatIdx+2));
 | |
|     }
 | |
| 
 | |
|     // Mark const if we don't care about errno and that is the only
 | |
|     // thing preventing the function from being const. This allows
 | |
|     // IRgen to use LLVM intrinsics for such functions.
 | |
|     if (!getLangOpts().MathErrno &&
 | |
|         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
 | |
|       if (!FD->getAttr<ConstAttr>())
 | |
|         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
 | |
|     }
 | |
| 
 | |
|     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
 | |
|         !FD->getAttr<ReturnsTwiceAttr>())
 | |
|       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
 | |
|     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
 | |
|       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
 | |
|     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
 | |
|       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
 | |
|   }
 | |
| 
 | |
|   IdentifierInfo *Name = FD->getIdentifier();
 | |
|   if (!Name)
 | |
|     return;
 | |
|   if ((!getLangOpts().CPlusPlus &&
 | |
|        FD->getDeclContext()->isTranslationUnit()) ||
 | |
|       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
 | |
|        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
 | |
|        LinkageSpecDecl::lang_c)) {
 | |
|     // Okay: this could be a libc/libm/Objective-C function we know
 | |
|     // about.
 | |
|   } else
 | |
|     return;
 | |
| 
 | |
|   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
 | |
|     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
 | |
|     // target-specific builtins, perhaps?
 | |
|     if (!FD->getAttr<FormatAttr>())
 | |
|       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | |
|                                              "printf", 2,
 | |
|                                              Name->isStr("vasprintf") ? 0 : 3));
 | |
|   }
 | |
| 
 | |
|   if (Name->isStr("__CFStringMakeConstantString")) {
 | |
|     // We already have a __builtin___CFStringMakeConstantString,
 | |
|     // but builds that use -fno-constant-cfstrings don't go through that.
 | |
|     if (!FD->getAttr<FormatArgAttr>())
 | |
|       FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
 | |
|                                     TypeSourceInfo *TInfo) {
 | |
|   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
 | |
|   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
 | |
| 
 | |
|   if (!TInfo) {
 | |
|     assert(D.isInvalidType() && "no declarator info for valid type");
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(T);
 | |
|   }
 | |
| 
 | |
|   // Scope manipulation handled by caller.
 | |
|   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
 | |
|                                            D.getLocStart(),
 | |
|                                            D.getIdentifierLoc(),
 | |
|                                            D.getIdentifier(),
 | |
|                                            TInfo);
 | |
| 
 | |
|   // Bail out immediately if we have an invalid declaration.
 | |
|   if (D.isInvalidType()) {
 | |
|     NewTD->setInvalidDecl();
 | |
|     return NewTD;
 | |
|   }
 | |
| 
 | |
|   if (D.getDeclSpec().isModulePrivateSpecified()) {
 | |
|     if (CurContext->isFunctionOrMethod())
 | |
|       Diag(NewTD->getLocation(), diag::err_module_private_local)
 | |
|         << 2 << NewTD->getDeclName()
 | |
|         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
 | |
|         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | |
|     else
 | |
|       NewTD->setModulePrivate();
 | |
|   }
 | |
|   
 | |
|   // C++ [dcl.typedef]p8:
 | |
|   //   If the typedef declaration defines an unnamed class (or
 | |
|   //   enum), the first typedef-name declared by the declaration
 | |
|   //   to be that class type (or enum type) is used to denote the
 | |
|   //   class type (or enum type) for linkage purposes only.
 | |
|   // We need to check whether the type was declared in the declaration.
 | |
|   switch (D.getDeclSpec().getTypeSpecType()) {
 | |
|   case TST_enum:
 | |
|   case TST_struct:
 | |
|   case TST_interface:
 | |
|   case TST_union:
 | |
|   case TST_class: {
 | |
|     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
 | |
| 
 | |
|     // Do nothing if the tag is not anonymous or already has an
 | |
|     // associated typedef (from an earlier typedef in this decl group).
 | |
|     if (tagFromDeclSpec->getIdentifier()) break;
 | |
|     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
 | |
| 
 | |
|     // A well-formed anonymous tag must always be a TUK_Definition.
 | |
|     assert(tagFromDeclSpec->isThisDeclarationADefinition());
 | |
| 
 | |
|     // The type must match the tag exactly;  no qualifiers allowed.
 | |
|     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
 | |
|       break;
 | |
| 
 | |
|     // Otherwise, set this is the anon-decl typedef for the tag.
 | |
|     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
 | |
|     break;
 | |
|   }
 | |
|     
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return NewTD;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Check that this is a valid underlying type for an enum declaration.
 | |
| bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
 | |
|   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
 | |
|   QualType T = TI->getType();
 | |
| 
 | |
|   if (T->isDependentType())
 | |
|     return false;
 | |
| 
 | |
|   if (const BuiltinType *BT = T->getAs<BuiltinType>())
 | |
|     if (BT->isInteger())
 | |
|       return false;
 | |
| 
 | |
|   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check whether this is a valid redeclaration of a previous enumeration.
 | |
| /// \return true if the redeclaration was invalid.
 | |
| bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
 | |
|                                   QualType EnumUnderlyingTy,
 | |
|                                   const EnumDecl *Prev) {
 | |
|   bool IsFixed = !EnumUnderlyingTy.isNull();
 | |
| 
 | |
|   if (IsScoped != Prev->isScoped()) {
 | |
|     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
 | |
|       << Prev->isScoped();
 | |
|     Diag(Prev->getLocation(), diag::note_previous_use);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (IsFixed && Prev->isFixed()) {
 | |
|     if (!EnumUnderlyingTy->isDependentType() &&
 | |
|         !Prev->getIntegerType()->isDependentType() &&
 | |
|         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
 | |
|                                         Prev->getIntegerType())) {
 | |
|       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
 | |
|         << EnumUnderlyingTy << Prev->getIntegerType();
 | |
|       Diag(Prev->getLocation(), diag::note_previous_use);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (IsFixed != Prev->isFixed()) {
 | |
|     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
 | |
|       << Prev->isFixed();
 | |
|     Diag(Prev->getLocation(), diag::note_previous_use);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Get diagnostic %select index for tag kind for
 | |
| /// redeclaration diagnostic message.
 | |
| /// WARNING: Indexes apply to particular diagnostics only!
 | |
| ///
 | |
| /// \returns diagnostic %select index.
 | |
| static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
 | |
|   switch (Tag) {
 | |
|   case TTK_Struct: return 0;
 | |
|   case TTK_Interface: return 1;
 | |
|   case TTK_Class:  return 2;
 | |
|   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Determine if tag kind is a class-key compatible with
 | |
| /// class for redeclaration (class, struct, or __interface).
 | |
| ///
 | |
| /// \returns true iff the tag kind is compatible.
 | |
| static bool isClassCompatTagKind(TagTypeKind Tag)
 | |
| {
 | |
|   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether a tag with a given kind is acceptable
 | |
| /// as a redeclaration of the given tag declaration.
 | |
| ///
 | |
| /// \returns true if the new tag kind is acceptable, false otherwise.
 | |
| bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
 | |
|                                         TagTypeKind NewTag, bool isDefinition,
 | |
|                                         SourceLocation NewTagLoc,
 | |
|                                         const IdentifierInfo &Name) {
 | |
|   // C++ [dcl.type.elab]p3:
 | |
|   //   The class-key or enum keyword present in the
 | |
|   //   elaborated-type-specifier shall agree in kind with the
 | |
|   //   declaration to which the name in the elaborated-type-specifier
 | |
|   //   refers. This rule also applies to the form of
 | |
|   //   elaborated-type-specifier that declares a class-name or
 | |
|   //   friend class since it can be construed as referring to the
 | |
|   //   definition of the class. Thus, in any
 | |
|   //   elaborated-type-specifier, the enum keyword shall be used to
 | |
|   //   refer to an enumeration (7.2), the union class-key shall be
 | |
|   //   used to refer to a union (clause 9), and either the class or
 | |
|   //   struct class-key shall be used to refer to a class (clause 9)
 | |
|   //   declared using the class or struct class-key.
 | |
|   TagTypeKind OldTag = Previous->getTagKind();
 | |
|   if (!isDefinition || !isClassCompatTagKind(NewTag))
 | |
|     if (OldTag == NewTag)
 | |
|       return true;
 | |
| 
 | |
|   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
 | |
|     // Warn about the struct/class tag mismatch.
 | |
|     bool isTemplate = false;
 | |
|     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
 | |
|       isTemplate = Record->getDescribedClassTemplate();
 | |
| 
 | |
|     if (!ActiveTemplateInstantiations.empty()) {
 | |
|       // In a template instantiation, do not offer fix-its for tag mismatches
 | |
|       // since they usually mess up the template instead of fixing the problem.
 | |
|       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
 | |
|         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
 | |
|         << getRedeclDiagFromTagKind(OldTag);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (isDefinition) {
 | |
|       // On definitions, check previous tags and issue a fix-it for each
 | |
|       // one that doesn't match the current tag.
 | |
|       if (Previous->getDefinition()) {
 | |
|         // Don't suggest fix-its for redefinitions.
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       bool previousMismatch = false;
 | |
|       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
 | |
|            E(Previous->redecls_end()); I != E; ++I) {
 | |
|         if (I->getTagKind() != NewTag) {
 | |
|           if (!previousMismatch) {
 | |
|             previousMismatch = true;
 | |
|             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
 | |
|               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
 | |
|               << getRedeclDiagFromTagKind(I->getTagKind());
 | |
|           }
 | |
|           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
 | |
|             << getRedeclDiagFromTagKind(NewTag)
 | |
|             << FixItHint::CreateReplacement(I->getInnerLocStart(),
 | |
|                  TypeWithKeyword::getTagTypeKindName(NewTag));
 | |
|         }
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Check for a previous definition.  If current tag and definition
 | |
|     // are same type, do nothing.  If no definition, but disagree with
 | |
|     // with previous tag type, give a warning, but no fix-it.
 | |
|     const TagDecl *Redecl = Previous->getDefinition() ?
 | |
|                             Previous->getDefinition() : Previous;
 | |
|     if (Redecl->getTagKind() == NewTag) {
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
 | |
|       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
 | |
|       << getRedeclDiagFromTagKind(OldTag);
 | |
|     Diag(Redecl->getLocation(), diag::note_previous_use);
 | |
| 
 | |
|     // If there is a previous defintion, suggest a fix-it.
 | |
|     if (Previous->getDefinition()) {
 | |
|         Diag(NewTagLoc, diag::note_struct_class_suggestion)
 | |
|           << getRedeclDiagFromTagKind(Redecl->getTagKind())
 | |
|           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
 | |
|                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
 | |
| /// former case, Name will be non-null.  In the later case, Name will be null.
 | |
| /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
 | |
| /// reference/declaration/definition of a tag.
 | |
| Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | |
|                      SourceLocation KWLoc, CXXScopeSpec &SS,
 | |
|                      IdentifierInfo *Name, SourceLocation NameLoc,
 | |
|                      AttributeList *Attr, AccessSpecifier AS,
 | |
|                      SourceLocation ModulePrivateLoc,
 | |
|                      MultiTemplateParamsArg TemplateParameterLists,
 | |
|                      bool &OwnedDecl, bool &IsDependent,
 | |
|                      SourceLocation ScopedEnumKWLoc,
 | |
|                      bool ScopedEnumUsesClassTag,
 | |
|                      TypeResult UnderlyingType) {
 | |
|   // If this is not a definition, it must have a name.
 | |
|   IdentifierInfo *OrigName = Name;
 | |
|   assert((Name != 0 || TUK == TUK_Definition) &&
 | |
|          "Nameless record must be a definition!");
 | |
|   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
 | |
| 
 | |
|   OwnedDecl = false;
 | |
|   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | |
|   bool ScopedEnum = ScopedEnumKWLoc.isValid();
 | |
| 
 | |
|   // FIXME: Check explicit specializations more carefully.
 | |
|   bool isExplicitSpecialization = false;
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // We only need to do this matching if we have template parameters
 | |
|   // or a scope specifier, which also conveniently avoids this work
 | |
|   // for non-C++ cases.
 | |
|   if (TemplateParameterLists.size() > 0 ||
 | |
|       (SS.isNotEmpty() && TUK != TUK_Reference)) {
 | |
|     if (TemplateParameterList *TemplateParams =
 | |
|             MatchTemplateParametersToScopeSpecifier(
 | |
|                 KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
 | |
|                 isExplicitSpecialization, Invalid)) {
 | |
|       if (Kind == TTK_Enum) {
 | |
|         Diag(KWLoc, diag::err_enum_template);
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       if (TemplateParams->size() > 0) {
 | |
|         // This is a declaration or definition of a class template (which may
 | |
|         // be a member of another template).
 | |
| 
 | |
|         if (Invalid)
 | |
|           return 0;
 | |
| 
 | |
|         OwnedDecl = false;
 | |
|         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
 | |
|                                                SS, Name, NameLoc, Attr,
 | |
|                                                TemplateParams, AS,
 | |
|                                                ModulePrivateLoc,
 | |
|                                                TemplateParameterLists.size()-1,
 | |
|                                                TemplateParameterLists.data());
 | |
|         return Result.get();
 | |
|       } else {
 | |
|         // The "template<>" header is extraneous.
 | |
|         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
 | |
|           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
 | |
|         isExplicitSpecialization = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Figure out the underlying type if this a enum declaration. We need to do
 | |
|   // this early, because it's needed to detect if this is an incompatible
 | |
|   // redeclaration.
 | |
|   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
 | |
| 
 | |
|   if (Kind == TTK_Enum) {
 | |
|     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
 | |
|       // No underlying type explicitly specified, or we failed to parse the
 | |
|       // type, default to int.
 | |
|       EnumUnderlying = Context.IntTy.getTypePtr();
 | |
|     else if (UnderlyingType.get()) {
 | |
|       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
 | |
|       // integral type; any cv-qualification is ignored.
 | |
|       TypeSourceInfo *TI = 0;
 | |
|       GetTypeFromParser(UnderlyingType.get(), &TI);
 | |
|       EnumUnderlying = TI;
 | |
| 
 | |
|       if (CheckEnumUnderlyingType(TI))
 | |
|         // Recover by falling back to int.
 | |
|         EnumUnderlying = Context.IntTy.getTypePtr();
 | |
| 
 | |
|       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
 | |
|                                           UPPC_FixedUnderlyingType))
 | |
|         EnumUnderlying = Context.IntTy.getTypePtr();
 | |
| 
 | |
|     } else if (getLangOpts().MicrosoftMode)
 | |
|       // Microsoft enums are always of int type.
 | |
|       EnumUnderlying = Context.IntTy.getTypePtr();
 | |
|   }
 | |
| 
 | |
|   DeclContext *SearchDC = CurContext;
 | |
|   DeclContext *DC = CurContext;
 | |
|   bool isStdBadAlloc = false;
 | |
| 
 | |
|   RedeclarationKind Redecl = ForRedeclaration;
 | |
|   if (TUK == TUK_Friend || TUK == TUK_Reference)
 | |
|     Redecl = NotForRedeclaration;
 | |
| 
 | |
|   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
 | |
|   bool FriendSawTagOutsideEnclosingNamespace = false;
 | |
|   if (Name && SS.isNotEmpty()) {
 | |
|     // We have a nested-name tag ('struct foo::bar').
 | |
| 
 | |
|     // Check for invalid 'foo::'.
 | |
|     if (SS.isInvalid()) {
 | |
|       Name = 0;
 | |
|       goto CreateNewDecl;
 | |
|     }
 | |
| 
 | |
|     // If this is a friend or a reference to a class in a dependent
 | |
|     // context, don't try to make a decl for it.
 | |
|     if (TUK == TUK_Friend || TUK == TUK_Reference) {
 | |
|       DC = computeDeclContext(SS, false);
 | |
|       if (!DC) {
 | |
|         IsDependent = true;
 | |
|         return 0;
 | |
|       }
 | |
|     } else {
 | |
|       DC = computeDeclContext(SS, true);
 | |
|       if (!DC) {
 | |
|         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
 | |
|           << SS.getRange();
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (RequireCompleteDeclContext(SS, DC))
 | |
|       return 0;
 | |
| 
 | |
|     SearchDC = DC;
 | |
|     // Look-up name inside 'foo::'.
 | |
|     LookupQualifiedName(Previous, DC);
 | |
| 
 | |
|     if (Previous.isAmbiguous())
 | |
|       return 0;
 | |
| 
 | |
|     if (Previous.empty()) {
 | |
|       // Name lookup did not find anything. However, if the
 | |
|       // nested-name-specifier refers to the current instantiation,
 | |
|       // and that current instantiation has any dependent base
 | |
|       // classes, we might find something at instantiation time: treat
 | |
|       // this as a dependent elaborated-type-specifier.
 | |
|       // But this only makes any sense for reference-like lookups.
 | |
|       if (Previous.wasNotFoundInCurrentInstantiation() &&
 | |
|           (TUK == TUK_Reference || TUK == TUK_Friend)) {
 | |
|         IsDependent = true;
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       // A tag 'foo::bar' must already exist.
 | |
|       Diag(NameLoc, diag::err_not_tag_in_scope) 
 | |
|         << Kind << Name << DC << SS.getRange();
 | |
|       Name = 0;
 | |
|       Invalid = true;
 | |
|       goto CreateNewDecl;
 | |
|     }
 | |
|   } else if (Name) {
 | |
|     // If this is a named struct, check to see if there was a previous forward
 | |
|     // declaration or definition.
 | |
|     // FIXME: We're looking into outer scopes here, even when we
 | |
|     // shouldn't be. Doing so can result in ambiguities that we
 | |
|     // shouldn't be diagnosing.
 | |
|     LookupName(Previous, S);
 | |
| 
 | |
|     // When declaring or defining a tag, ignore ambiguities introduced
 | |
|     // by types using'ed into this scope.
 | |
|     if (Previous.isAmbiguous() && 
 | |
|         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
 | |
|       LookupResult::Filter F = Previous.makeFilter();
 | |
|       while (F.hasNext()) {
 | |
|         NamedDecl *ND = F.next();
 | |
|         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
 | |
|           F.erase();
 | |
|       }
 | |
|       F.done();
 | |
|     }
 | |
| 
 | |
|     // C++11 [namespace.memdef]p3:
 | |
|     //   If the name in a friend declaration is neither qualified nor
 | |
|     //   a template-id and the declaration is a function or an
 | |
|     //   elaborated-type-specifier, the lookup to determine whether
 | |
|     //   the entity has been previously declared shall not consider
 | |
|     //   any scopes outside the innermost enclosing namespace.
 | |
|     //
 | |
|     // Does it matter that this should be by scope instead of by
 | |
|     // semantic context?
 | |
|     if (!Previous.empty() && TUK == TUK_Friend) {
 | |
|       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
 | |
|       LookupResult::Filter F = Previous.makeFilter();
 | |
|       while (F.hasNext()) {
 | |
|         NamedDecl *ND = F.next();
 | |
|         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
 | |
|         if (DC->isFileContext() &&
 | |
|             !EnclosingNS->Encloses(ND->getDeclContext())) {
 | |
|           F.erase();
 | |
|           FriendSawTagOutsideEnclosingNamespace = true;
 | |
|         }
 | |
|       }
 | |
|       F.done();
 | |
|     }
 | |
|     
 | |
|     // Note:  there used to be some attempt at recovery here.
 | |
|     if (Previous.isAmbiguous())
 | |
|       return 0;
 | |
| 
 | |
|     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
 | |
|       // FIXME: This makes sure that we ignore the contexts associated
 | |
|       // with C structs, unions, and enums when looking for a matching
 | |
|       // tag declaration or definition. See the similar lookup tweak
 | |
|       // in Sema::LookupName; is there a better way to deal with this?
 | |
|       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
 | |
|         SearchDC = SearchDC->getParent();
 | |
|     }
 | |
|   } else if (S->isFunctionPrototypeScope()) {
 | |
|     // If this is an enum declaration in function prototype scope, set its
 | |
|     // initial context to the translation unit.
 | |
|     // FIXME: [citation needed]
 | |
|     SearchDC = Context.getTranslationUnitDecl();
 | |
|   }
 | |
| 
 | |
|   if (Previous.isSingleResult() &&
 | |
|       Previous.getFoundDecl()->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     Previous.clear();
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
 | |
|       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
 | |
|     // This is a declaration of or a reference to "std::bad_alloc".
 | |
|     isStdBadAlloc = true;
 | |
|     
 | |
|     if (Previous.empty() && StdBadAlloc) {
 | |
|       // std::bad_alloc has been implicitly declared (but made invisible to
 | |
|       // name lookup). Fill in this implicit declaration as the previous 
 | |
|       // declaration, so that the declarations get chained appropriately.
 | |
|       Previous.addDecl(getStdBadAlloc());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we didn't find a previous declaration, and this is a reference
 | |
|   // (or friend reference), move to the correct scope.  In C++, we
 | |
|   // also need to do a redeclaration lookup there, just in case
 | |
|   // there's a shadow friend decl.
 | |
|   if (Name && Previous.empty() &&
 | |
|       (TUK == TUK_Reference || TUK == TUK_Friend)) {
 | |
|     if (Invalid) goto CreateNewDecl;
 | |
|     assert(SS.isEmpty());
 | |
| 
 | |
|     if (TUK == TUK_Reference) {
 | |
|       // C++ [basic.scope.pdecl]p5:
 | |
|       //   -- for an elaborated-type-specifier of the form
 | |
|       //
 | |
|       //          class-key identifier
 | |
|       //
 | |
|       //      if the elaborated-type-specifier is used in the
 | |
|       //      decl-specifier-seq or parameter-declaration-clause of a
 | |
|       //      function defined in namespace scope, the identifier is
 | |
|       //      declared as a class-name in the namespace that contains
 | |
|       //      the declaration; otherwise, except as a friend
 | |
|       //      declaration, the identifier is declared in the smallest
 | |
|       //      non-class, non-function-prototype scope that contains the
 | |
|       //      declaration.
 | |
|       //
 | |
|       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
 | |
|       // C structs and unions.
 | |
|       //
 | |
|       // It is an error in C++ to declare (rather than define) an enum
 | |
|       // type, including via an elaborated type specifier.  We'll
 | |
|       // diagnose that later; for now, declare the enum in the same
 | |
|       // scope as we would have picked for any other tag type.
 | |
|       //
 | |
|       // GNU C also supports this behavior as part of its incomplete
 | |
|       // enum types extension, while GNU C++ does not.
 | |
|       //
 | |
|       // Find the context where we'll be declaring the tag.
 | |
|       // FIXME: We would like to maintain the current DeclContext as the
 | |
|       // lexical context,
 | |
|       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
 | |
|         SearchDC = SearchDC->getParent();
 | |
| 
 | |
|       // Find the scope where we'll be declaring the tag.
 | |
|       while (S->isClassScope() ||
 | |
|              (getLangOpts().CPlusPlus &&
 | |
|               S->isFunctionPrototypeScope()) ||
 | |
|              ((S->getFlags() & Scope::DeclScope) == 0) ||
 | |
|              (S->getEntity() &&
 | |
|               ((DeclContext *)S->getEntity())->isTransparentContext()))
 | |
|         S = S->getParent();
 | |
|     } else {
 | |
|       assert(TUK == TUK_Friend);
 | |
|       // C++ [namespace.memdef]p3:
 | |
|       //   If a friend declaration in a non-local class first declares a
 | |
|       //   class or function, the friend class or function is a member of
 | |
|       //   the innermost enclosing namespace.
 | |
|       SearchDC = SearchDC->getEnclosingNamespaceContext();
 | |
|     }
 | |
| 
 | |
|     // In C++, we need to do a redeclaration lookup to properly
 | |
|     // diagnose some problems.
 | |
|     if (getLangOpts().CPlusPlus) {
 | |
|       Previous.setRedeclarationKind(ForRedeclaration);
 | |
|       LookupQualifiedName(Previous, SearchDC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Previous.empty()) {
 | |
|     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | |
| 
 | |
|     // It's okay to have a tag decl in the same scope as a typedef
 | |
|     // which hides a tag decl in the same scope.  Finding this
 | |
|     // insanity with a redeclaration lookup can only actually happen
 | |
|     // in C++.
 | |
|     //
 | |
|     // This is also okay for elaborated-type-specifiers, which is
 | |
|     // technically forbidden by the current standard but which is
 | |
|     // okay according to the likely resolution of an open issue;
 | |
|     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
 | |
|     if (getLangOpts().CPlusPlus) {
 | |
|       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
 | |
|         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
 | |
|           TagDecl *Tag = TT->getDecl();
 | |
|           if (Tag->getDeclName() == Name &&
 | |
|               Tag->getDeclContext()->getRedeclContext()
 | |
|                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
 | |
|             PrevDecl = Tag;
 | |
|             Previous.clear();
 | |
|             Previous.addDecl(Tag);
 | |
|             Previous.resolveKind();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
 | |
|       // If this is a use of a previous tag, or if the tag is already declared
 | |
|       // in the same scope (so that the definition/declaration completes or
 | |
|       // rementions the tag), reuse the decl.
 | |
|       if (TUK == TUK_Reference || TUK == TUK_Friend ||
 | |
|           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
 | |
|         // Make sure that this wasn't declared as an enum and now used as a
 | |
|         // struct or something similar.
 | |
|         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
 | |
|                                           TUK == TUK_Definition, KWLoc,
 | |
|                                           *Name)) {
 | |
|           bool SafeToContinue
 | |
|             = (PrevTagDecl->getTagKind() != TTK_Enum &&
 | |
|                Kind != TTK_Enum);
 | |
|           if (SafeToContinue)
 | |
|             Diag(KWLoc, diag::err_use_with_wrong_tag)
 | |
|               << Name
 | |
|               << FixItHint::CreateReplacement(SourceRange(KWLoc),
 | |
|                                               PrevTagDecl->getKindName());
 | |
|           else
 | |
|             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
 | |
|           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | |
| 
 | |
|           if (SafeToContinue)
 | |
|             Kind = PrevTagDecl->getTagKind();
 | |
|           else {
 | |
|             // Recover by making this an anonymous redefinition.
 | |
|             Name = 0;
 | |
|             Previous.clear();
 | |
|             Invalid = true;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
 | |
|           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
 | |
| 
 | |
|           // If this is an elaborated-type-specifier for a scoped enumeration,
 | |
|           // the 'class' keyword is not necessary and not permitted.
 | |
|           if (TUK == TUK_Reference || TUK == TUK_Friend) {
 | |
|             if (ScopedEnum)
 | |
|               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
 | |
|                 << PrevEnum->isScoped()
 | |
|                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
 | |
|             return PrevTagDecl;
 | |
|           }
 | |
| 
 | |
|           QualType EnumUnderlyingTy;
 | |
|           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
 | |
|             EnumUnderlyingTy = TI->getType();
 | |
|           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
 | |
|             EnumUnderlyingTy = QualType(T, 0);
 | |
| 
 | |
|           // All conflicts with previous declarations are recovered by
 | |
|           // returning the previous declaration, unless this is a definition,
 | |
|           // in which case we want the caller to bail out.
 | |
|           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
 | |
|                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
 | |
|             return TUK == TUK_Declaration ? PrevTagDecl : 0;
 | |
|         }
 | |
| 
 | |
|         // C++11 [class.mem]p1:
 | |
|         //   A member shall not be declared twice in the member-specification,
 | |
|         //   except that a nested class or member class template can be declared
 | |
|         //   and then later defined.
 | |
|         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
 | |
|             S->isDeclScope(PrevDecl)) {
 | |
|           Diag(NameLoc, diag::ext_member_redeclared);
 | |
|           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
 | |
|         }
 | |
| 
 | |
|         if (!Invalid) {
 | |
|           // If this is a use, just return the declaration we found.
 | |
| 
 | |
|           // FIXME: In the future, return a variant or some other clue
 | |
|           // for the consumer of this Decl to know it doesn't own it.
 | |
|           // For our current ASTs this shouldn't be a problem, but will
 | |
|           // need to be changed with DeclGroups.
 | |
|           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
 | |
|                getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
 | |
|             return PrevTagDecl;
 | |
| 
 | |
|           // Diagnose attempts to redefine a tag.
 | |
|           if (TUK == TUK_Definition) {
 | |
|             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
 | |
|               // If we're defining a specialization and the previous definition
 | |
|               // is from an implicit instantiation, don't emit an error
 | |
|               // here; we'll catch this in the general case below.
 | |
|               bool IsExplicitSpecializationAfterInstantiation = false;
 | |
|               if (isExplicitSpecialization) {
 | |
|                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
 | |
|                   IsExplicitSpecializationAfterInstantiation =
 | |
|                     RD->getTemplateSpecializationKind() !=
 | |
|                     TSK_ExplicitSpecialization;
 | |
|                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
 | |
|                   IsExplicitSpecializationAfterInstantiation =
 | |
|                     ED->getTemplateSpecializationKind() !=
 | |
|                     TSK_ExplicitSpecialization;
 | |
|               }
 | |
| 
 | |
|               if (!IsExplicitSpecializationAfterInstantiation) {
 | |
|                 // A redeclaration in function prototype scope in C isn't
 | |
|                 // visible elsewhere, so merely issue a warning.
 | |
|                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
 | |
|                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
 | |
|                 else
 | |
|                   Diag(NameLoc, diag::err_redefinition) << Name;
 | |
|                 Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|                 // If this is a redefinition, recover by making this
 | |
|                 // struct be anonymous, which will make any later
 | |
|                 // references get the previous definition.
 | |
|                 Name = 0;
 | |
|                 Previous.clear();
 | |
|                 Invalid = true;
 | |
|               }
 | |
|             } else {
 | |
|               // If the type is currently being defined, complain
 | |
|               // about a nested redefinition.
 | |
|               const TagType *Tag
 | |
|                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
 | |
|               if (Tag->isBeingDefined()) {
 | |
|                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
 | |
|                 Diag(PrevTagDecl->getLocation(),
 | |
|                      diag::note_previous_definition);
 | |
|                 Name = 0;
 | |
|                 Previous.clear();
 | |
|                 Invalid = true;
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             // Okay, this is definition of a previously declared or referenced
 | |
|             // tag PrevDecl. We're going to create a new Decl for it.
 | |
|           }
 | |
|         }
 | |
|         // If we get here we have (another) forward declaration or we
 | |
|         // have a definition.  Just create a new decl.
 | |
| 
 | |
|       } else {
 | |
|         // If we get here, this is a definition of a new tag type in a nested
 | |
|         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
 | |
|         // new decl/type.  We set PrevDecl to NULL so that the entities
 | |
|         // have distinct types.
 | |
|         Previous.clear();
 | |
|       }
 | |
|       // If we get here, we're going to create a new Decl. If PrevDecl
 | |
|       // is non-NULL, it's a definition of the tag declared by
 | |
|       // PrevDecl. If it's NULL, we have a new definition.
 | |
| 
 | |
| 
 | |
|     // Otherwise, PrevDecl is not a tag, but was found with tag
 | |
|     // lookup.  This is only actually possible in C++, where a few
 | |
|     // things like templates still live in the tag namespace.
 | |
|     } else {
 | |
|       // Use a better diagnostic if an elaborated-type-specifier
 | |
|       // found the wrong kind of type on the first
 | |
|       // (non-redeclaration) lookup.
 | |
|       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
 | |
|           !Previous.isForRedeclaration()) {
 | |
|         unsigned Kind = 0;
 | |
|         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
 | |
|         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
 | |
|         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
 | |
|         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
 | |
|         Diag(PrevDecl->getLocation(), diag::note_declared_at);
 | |
|         Invalid = true;
 | |
| 
 | |
|       // Otherwise, only diagnose if the declaration is in scope.
 | |
|       } else if (!isDeclInScope(PrevDecl, SearchDC, S, 
 | |
|                                 isExplicitSpecialization)) {
 | |
|         // do nothing
 | |
| 
 | |
|       // Diagnose implicit declarations introduced by elaborated types.
 | |
|       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
 | |
|         unsigned Kind = 0;
 | |
|         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
 | |
|         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
 | |
|         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
 | |
|         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
 | |
|         Invalid = true;
 | |
| 
 | |
|       // Otherwise it's a declaration.  Call out a particularly common
 | |
|       // case here.
 | |
|       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
 | |
|         unsigned Kind = 0;
 | |
|         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
 | |
|         Diag(NameLoc, diag::err_tag_definition_of_typedef)
 | |
|           << Name << Kind << TND->getUnderlyingType();
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
 | |
|         Invalid = true;
 | |
| 
 | |
|       // Otherwise, diagnose.
 | |
|       } else {
 | |
|         // The tag name clashes with something else in the target scope,
 | |
|         // issue an error and recover by making this tag be anonymous.
 | |
|         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|         Name = 0;
 | |
|         Invalid = true;
 | |
|       }
 | |
| 
 | |
|       // The existing declaration isn't relevant to us; we're in a
 | |
|       // new scope, so clear out the previous declaration.
 | |
|       Previous.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
| CreateNewDecl:
 | |
| 
 | |
|   TagDecl *PrevDecl = 0;
 | |
|   if (Previous.isSingleResult())
 | |
|     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
 | |
| 
 | |
|   // If there is an identifier, use the location of the identifier as the
 | |
|   // location of the decl, otherwise use the location of the struct/union
 | |
|   // keyword.
 | |
|   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
 | |
| 
 | |
|   // Otherwise, create a new declaration. If there is a previous
 | |
|   // declaration of the same entity, the two will be linked via
 | |
|   // PrevDecl.
 | |
|   TagDecl *New;
 | |
| 
 | |
|   bool IsForwardReference = false;
 | |
|   if (Kind == TTK_Enum) {
 | |
|     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
 | |
|     // enum X { A, B, C } D;    D should chain to X.
 | |
|     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
 | |
|                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
 | |
|                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
 | |
|     // If this is an undefined enum, warn.
 | |
|     if (TUK != TUK_Definition && !Invalid) {
 | |
|       TagDecl *Def;
 | |
|       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
 | |
|           cast<EnumDecl>(New)->isFixed()) {
 | |
|         // C++0x: 7.2p2: opaque-enum-declaration.
 | |
|         // Conflicts are diagnosed above. Do nothing.
 | |
|       }
 | |
|       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
 | |
|         Diag(Loc, diag::ext_forward_ref_enum_def)
 | |
|           << New;
 | |
|         Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|       } else {
 | |
|         unsigned DiagID = diag::ext_forward_ref_enum;
 | |
|         if (getLangOpts().MicrosoftMode)
 | |
|           DiagID = diag::ext_ms_forward_ref_enum;
 | |
|         else if (getLangOpts().CPlusPlus)
 | |
|           DiagID = diag::err_forward_ref_enum;
 | |
|         Diag(Loc, DiagID);
 | |
|         
 | |
|         // If this is a forward-declared reference to an enumeration, make a 
 | |
|         // note of it; we won't actually be introducing the declaration into
 | |
|         // the declaration context.
 | |
|         if (TUK == TUK_Reference)
 | |
|           IsForwardReference = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (EnumUnderlying) {
 | |
|       EnumDecl *ED = cast<EnumDecl>(New);
 | |
|       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
 | |
|         ED->setIntegerTypeSourceInfo(TI);
 | |
|       else
 | |
|         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
 | |
|       ED->setPromotionType(ED->getIntegerType());
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // struct/union/class
 | |
| 
 | |
|     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
 | |
|     // struct X { int A; } D;    D should chain to X.
 | |
|     if (getLangOpts().CPlusPlus) {
 | |
|       // FIXME: Look for a way to use RecordDecl for simple structs.
 | |
|       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
 | |
|                                   cast_or_null<CXXRecordDecl>(PrevDecl));
 | |
| 
 | |
|       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
 | |
|         StdBadAlloc = cast<CXXRecordDecl>(New);
 | |
|     } else
 | |
|       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
 | |
|                                cast_or_null<RecordDecl>(PrevDecl));
 | |
|   }
 | |
| 
 | |
|   // Maybe add qualifier info.
 | |
|   if (SS.isNotEmpty()) {
 | |
|     if (SS.isSet()) {
 | |
|       // If this is either a declaration or a definition, check the 
 | |
|       // nested-name-specifier against the current context. We don't do this
 | |
|       // for explicit specializations, because they have similar checking
 | |
|       // (with more specific diagnostics) in the call to 
 | |
|       // CheckMemberSpecialization, below.
 | |
|       if (!isExplicitSpecialization &&
 | |
|           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
 | |
|           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
 | |
|         Invalid = true;
 | |
| 
 | |
|       New->setQualifierInfo(SS.getWithLocInContext(Context));
 | |
|       if (TemplateParameterLists.size() > 0) {
 | |
|         New->setTemplateParameterListsInfo(Context,
 | |
|                                            TemplateParameterLists.size(),
 | |
|                                            TemplateParameterLists.data());
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|       Invalid = true;
 | |
|   }
 | |
| 
 | |
|   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
 | |
|     // Add alignment attributes if necessary; these attributes are checked when
 | |
|     // the ASTContext lays out the structure.
 | |
|     //
 | |
|     // It is important for implementing the correct semantics that this
 | |
|     // happen here (in act on tag decl). The #pragma pack stack is
 | |
|     // maintained as a result of parser callbacks which can occur at
 | |
|     // many points during the parsing of a struct declaration (because
 | |
|     // the #pragma tokens are effectively skipped over during the
 | |
|     // parsing of the struct).
 | |
|     if (TUK == TUK_Definition) {
 | |
|       AddAlignmentAttributesForRecord(RD);
 | |
|       AddMsStructLayoutForRecord(RD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ModulePrivateLoc.isValid()) {
 | |
|     if (isExplicitSpecialization)
 | |
|       Diag(New->getLocation(), diag::err_module_private_specialization)
 | |
|         << 2
 | |
|         << FixItHint::CreateRemoval(ModulePrivateLoc);
 | |
|     // __module_private__ does not apply to local classes. However, we only
 | |
|     // diagnose this as an error when the declaration specifiers are
 | |
|     // freestanding. Here, we just ignore the __module_private__.
 | |
|     else if (!SearchDC->isFunctionOrMethod())
 | |
|       New->setModulePrivate();
 | |
|   }
 | |
|   
 | |
|   // If this is a specialization of a member class (of a class template),
 | |
|   // check the specialization.
 | |
|   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
 | |
|     Invalid = true;
 | |
|            
 | |
|   if (Invalid)
 | |
|     New->setInvalidDecl();
 | |
| 
 | |
|   if (Attr)
 | |
|     ProcessDeclAttributeList(S, New, Attr);
 | |
| 
 | |
|   // If we're declaring or defining a tag in function prototype scope
 | |
|   // in C, note that this type can only be used within the function.
 | |
|   if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
 | |
|     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
 | |
| 
 | |
|   // Set the lexical context. If the tag has a C++ scope specifier, the
 | |
|   // lexical context will be different from the semantic context.
 | |
|   New->setLexicalDeclContext(CurContext);
 | |
| 
 | |
|   // Mark this as a friend decl if applicable.
 | |
|   // In Microsoft mode, a friend declaration also acts as a forward
 | |
|   // declaration so we always pass true to setObjectOfFriendDecl to make
 | |
|   // the tag name visible.
 | |
|   if (TUK == TUK_Friend)
 | |
|     New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
 | |
|                                getLangOpts().MicrosoftExt);
 | |
| 
 | |
|   // Set the access specifier.
 | |
|   if (!Invalid && SearchDC->isRecord())
 | |
|     SetMemberAccessSpecifier(New, PrevDecl, AS);
 | |
| 
 | |
|   if (TUK == TUK_Definition)
 | |
|     New->startDefinition();
 | |
| 
 | |
|   // If this has an identifier, add it to the scope stack.
 | |
|   if (TUK == TUK_Friend) {
 | |
|     // We might be replacing an existing declaration in the lookup tables;
 | |
|     // if so, borrow its access specifier.
 | |
|     if (PrevDecl)
 | |
|       New->setAccess(PrevDecl->getAccess());
 | |
| 
 | |
|     DeclContext *DC = New->getDeclContext()->getRedeclContext();
 | |
|     DC->makeDeclVisibleInContext(New);
 | |
|     if (Name) // can be null along some error paths
 | |
|       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | |
|         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
 | |
|   } else if (Name) {
 | |
|     S = getNonFieldDeclScope(S);
 | |
|     PushOnScopeChains(New, S, !IsForwardReference);
 | |
|     if (IsForwardReference)
 | |
|       SearchDC->makeDeclVisibleInContext(New);
 | |
| 
 | |
|   } else {
 | |
|     CurContext->addDecl(New);
 | |
|   }
 | |
| 
 | |
|   // If this is the C FILE type, notify the AST context.
 | |
|   if (IdentifierInfo *II = New->getIdentifier())
 | |
|     if (!New->isInvalidDecl() &&
 | |
|         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
 | |
|         II->isStr("FILE"))
 | |
|       Context.setFILEDecl(New);
 | |
| 
 | |
|   // If we were in function prototype scope (and not in C++ mode), add this
 | |
|   // tag to the list of decls to inject into the function definition scope.
 | |
|   if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
 | |
|       InFunctionDeclarator && Name)
 | |
|     DeclsInPrototypeScope.push_back(New);
 | |
| 
 | |
|   if (PrevDecl)
 | |
|     mergeDeclAttributes(New, PrevDecl);
 | |
| 
 | |
|   // If there's a #pragma GCC visibility in scope, set the visibility of this
 | |
|   // record.
 | |
|   AddPushedVisibilityAttribute(New);
 | |
| 
 | |
|   OwnedDecl = true;
 | |
|   // In C++, don't return an invalid declaration. We can't recover well from
 | |
|   // the cases where we make the type anonymous.
 | |
|   return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
 | |
|   AdjustDeclIfTemplate(TagD);
 | |
|   TagDecl *Tag = cast<TagDecl>(TagD);
 | |
|   
 | |
|   // Enter the tag context.
 | |
|   PushDeclContext(S, Tag);
 | |
| 
 | |
|   ActOnDocumentableDecl(TagD);
 | |
| 
 | |
|   // If there's a #pragma GCC visibility in scope, set the visibility of this
 | |
|   // record.
 | |
|   AddPushedVisibilityAttribute(Tag);
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
 | |
|   assert(isa<ObjCContainerDecl>(IDecl) && 
 | |
|          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
 | |
|   DeclContext *OCD = cast<DeclContext>(IDecl);
 | |
|   assert(getContainingDC(OCD) == CurContext &&
 | |
|       "The next DeclContext should be lexically contained in the current one.");
 | |
|   CurContext = OCD;
 | |
|   return IDecl;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
 | |
|                                            SourceLocation FinalLoc,
 | |
|                                            SourceLocation LBraceLoc) {
 | |
|   AdjustDeclIfTemplate(TagD);
 | |
|   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
 | |
| 
 | |
|   FieldCollector->StartClass();
 | |
| 
 | |
|   if (!Record->getIdentifier())
 | |
|     return;
 | |
| 
 | |
|   if (FinalLoc.isValid())
 | |
|     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
 | |
|     
 | |
|   // C++ [class]p2:
 | |
|   //   [...] The class-name is also inserted into the scope of the
 | |
|   //   class itself; this is known as the injected-class-name. For
 | |
|   //   purposes of access checking, the injected-class-name is treated
 | |
|   //   as if it were a public member name.
 | |
|   CXXRecordDecl *InjectedClassName
 | |
|     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
 | |
|                             Record->getLocStart(), Record->getLocation(),
 | |
|                             Record->getIdentifier(),
 | |
|                             /*PrevDecl=*/0,
 | |
|                             /*DelayTypeCreation=*/true);
 | |
|   Context.getTypeDeclType(InjectedClassName, Record);
 | |
|   InjectedClassName->setImplicit();
 | |
|   InjectedClassName->setAccess(AS_public);
 | |
|   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
 | |
|       InjectedClassName->setDescribedClassTemplate(Template);
 | |
|   PushOnScopeChains(InjectedClassName, S);
 | |
|   assert(InjectedClassName->isInjectedClassName() &&
 | |
|          "Broken injected-class-name");
 | |
| }
 | |
| 
 | |
| void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
 | |
|                                     SourceLocation RBraceLoc) {
 | |
|   AdjustDeclIfTemplate(TagD);
 | |
|   TagDecl *Tag = cast<TagDecl>(TagD);
 | |
|   Tag->setRBraceLoc(RBraceLoc);
 | |
| 
 | |
|   // Make sure we "complete" the definition even it is invalid.
 | |
|   if (Tag->isBeingDefined()) {
 | |
|     assert(Tag->isInvalidDecl() && "We should already have completed it");
 | |
|     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
 | |
|       RD->completeDefinition();
 | |
|   }
 | |
| 
 | |
|   if (isa<CXXRecordDecl>(Tag))
 | |
|     FieldCollector->FinishClass();
 | |
| 
 | |
|   // Exit this scope of this tag's definition.
 | |
|   PopDeclContext();
 | |
| 
 | |
|   if (getCurLexicalContext()->isObjCContainer() &&
 | |
|       Tag->getDeclContext()->isFileContext())
 | |
|     Tag->setTopLevelDeclInObjCContainer();
 | |
| 
 | |
|   // Notify the consumer that we've defined a tag.
 | |
|   if (!Tag->isInvalidDecl())
 | |
|     Consumer.HandleTagDeclDefinition(Tag);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnObjCContainerFinishDefinition() {
 | |
|   // Exit this scope of this interface definition.
 | |
|   PopDeclContext();
 | |
| }
 | |
| 
 | |
| void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
 | |
|   assert(DC == CurContext && "Mismatch of container contexts");
 | |
|   OriginalLexicalContext = DC;
 | |
|   ActOnObjCContainerFinishDefinition();
 | |
| }
 | |
| 
 | |
| void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
 | |
|   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
 | |
|   OriginalLexicalContext = 0;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
 | |
|   AdjustDeclIfTemplate(TagD);
 | |
|   TagDecl *Tag = cast<TagDecl>(TagD);
 | |
|   Tag->setInvalidDecl();
 | |
| 
 | |
|   // Make sure we "complete" the definition even it is invalid.
 | |
|   if (Tag->isBeingDefined()) {
 | |
|     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
 | |
|       RD->completeDefinition();
 | |
|   }
 | |
| 
 | |
|   // We're undoing ActOnTagStartDefinition here, not
 | |
|   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
 | |
|   // the FieldCollector.
 | |
| 
 | |
|   PopDeclContext();  
 | |
| }
 | |
| 
 | |
| // Note that FieldName may be null for anonymous bitfields.
 | |
| ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
 | |
|                                 IdentifierInfo *FieldName,
 | |
|                                 QualType FieldTy, bool IsMsStruct,
 | |
|                                 Expr *BitWidth, bool *ZeroWidth) {
 | |
|   // Default to true; that shouldn't confuse checks for emptiness
 | |
|   if (ZeroWidth)
 | |
|     *ZeroWidth = true;
 | |
| 
 | |
|   // C99 6.7.2.1p4 - verify the field type.
 | |
|   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
 | |
|   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
 | |
|     // Handle incomplete types with specific error.
 | |
|     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
 | |
|       return ExprError();
 | |
|     if (FieldName)
 | |
|       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
 | |
|         << FieldName << FieldTy << BitWidth->getSourceRange();
 | |
|     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
 | |
|       << FieldTy << BitWidth->getSourceRange();
 | |
|   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
 | |
|                                              UPPC_BitFieldWidth))
 | |
|     return ExprError();
 | |
| 
 | |
|   // If the bit-width is type- or value-dependent, don't try to check
 | |
|   // it now.
 | |
|   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
 | |
|     return Owned(BitWidth);
 | |
| 
 | |
|   llvm::APSInt Value;
 | |
|   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
 | |
|   if (ICE.isInvalid())
 | |
|     return ICE;
 | |
|   BitWidth = ICE.take();
 | |
| 
 | |
|   if (Value != 0 && ZeroWidth)
 | |
|     *ZeroWidth = false;
 | |
| 
 | |
|   // Zero-width bitfield is ok for anonymous field.
 | |
|   if (Value == 0 && FieldName)
 | |
|     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
 | |
| 
 | |
|   if (Value.isSigned() && Value.isNegative()) {
 | |
|     if (FieldName)
 | |
|       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
 | |
|                << FieldName << Value.toString(10);
 | |
|     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
 | |
|       << Value.toString(10);
 | |
|   }
 | |
| 
 | |
|   if (!FieldTy->isDependentType()) {
 | |
|     uint64_t TypeSize = Context.getTypeSize(FieldTy);
 | |
|     if (Value.getZExtValue() > TypeSize) {
 | |
|       if (!getLangOpts().CPlusPlus || IsMsStruct) {
 | |
|         if (FieldName) 
 | |
|           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
 | |
|             << FieldName << (unsigned)Value.getZExtValue() 
 | |
|             << (unsigned)TypeSize;
 | |
|         
 | |
|         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
 | |
|           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
 | |
|       }
 | |
|       
 | |
|       if (FieldName)
 | |
|         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
 | |
|           << FieldName << (unsigned)Value.getZExtValue() 
 | |
|           << (unsigned)TypeSize;
 | |
|       else
 | |
|         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
 | |
|           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;        
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Owned(BitWidth);
 | |
| }
 | |
| 
 | |
| /// ActOnField - Each field of a C struct/union is passed into this in order
 | |
| /// to create a FieldDecl object for it.
 | |
| Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
 | |
|                        Declarator &D, Expr *BitfieldWidth) {
 | |
|   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
 | |
|                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
 | |
|                                /*InitStyle=*/ICIS_NoInit, AS_public);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// HandleField - Analyze a field of a C struct or a C++ data member.
 | |
| ///
 | |
| FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
 | |
|                              SourceLocation DeclStart,
 | |
|                              Declarator &D, Expr *BitWidth,
 | |
|                              InClassInitStyle InitStyle,
 | |
|                              AccessSpecifier AS) {
 | |
|   IdentifierInfo *II = D.getIdentifier();
 | |
|   SourceLocation Loc = DeclStart;
 | |
|   if (II) Loc = D.getIdentifierLoc();
 | |
| 
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType T = TInfo->getType();
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
| 
 | |
|     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | |
|                                         UPPC_DataMemberType)) {
 | |
|       D.setInvalidType();
 | |
|       T = Context.IntTy;
 | |
|       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TR 18037 does not allow fields to be declared with address spaces.
 | |
|   if (T.getQualifiers().hasAddressSpace()) {
 | |
|     Diag(Loc, diag::err_field_with_address_space);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // OpenCL 1.2 spec, s6.9 r:
 | |
|   // The event type cannot be used to declare a structure or union field.
 | |
|   if (LangOpts.OpenCL && T->isEventT()) {
 | |
|     Diag(Loc, diag::err_event_t_struct_field);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D.getDeclSpec());
 | |
| 
 | |
|   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
 | |
|     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | |
|          diag::err_invalid_thread)
 | |
|       << DeclSpec::getSpecifierName(TSCS);
 | |
| 
 | |
|   // Check to see if this name was declared as a member previously
 | |
|   NamedDecl *PrevDecl = 0;
 | |
|   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
 | |
|   LookupName(Previous, S);
 | |
|   switch (Previous.getResultKind()) {
 | |
|     case LookupResult::Found:
 | |
|     case LookupResult::FoundUnresolvedValue:
 | |
|       PrevDecl = Previous.getAsSingle<NamedDecl>();
 | |
|       break;
 | |
|       
 | |
|     case LookupResult::FoundOverloaded:
 | |
|       PrevDecl = Previous.getRepresentativeDecl();
 | |
|       break;
 | |
|       
 | |
|     case LookupResult::NotFound:
 | |
|     case LookupResult::NotFoundInCurrentInstantiation:
 | |
|     case LookupResult::Ambiguous:
 | |
|       break;
 | |
|   }
 | |
|   Previous.suppressDiagnostics();
 | |
| 
 | |
|   if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     PrevDecl = 0;
 | |
|   }
 | |
| 
 | |
|   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
 | |
|     PrevDecl = 0;
 | |
| 
 | |
|   bool Mutable
 | |
|     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
 | |
|   SourceLocation TSSL = D.getLocStart();
 | |
|   FieldDecl *NewFD
 | |
|     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
 | |
|                      TSSL, AS, PrevDecl, &D);
 | |
| 
 | |
|   if (NewFD->isInvalidDecl())
 | |
|     Record->setInvalidDecl();
 | |
| 
 | |
|   if (D.getDeclSpec().isModulePrivateSpecified())
 | |
|     NewFD->setModulePrivate();
 | |
|   
 | |
|   if (NewFD->isInvalidDecl() && PrevDecl) {
 | |
|     // Don't introduce NewFD into scope; there's already something
 | |
|     // with the same name in the same scope.
 | |
|   } else if (II) {
 | |
|     PushOnScopeChains(NewFD, S);
 | |
|   } else
 | |
|     Record->addDecl(NewFD);
 | |
| 
 | |
|   return NewFD;
 | |
| }
 | |
| 
 | |
| /// \brief Build a new FieldDecl and check its well-formedness.
 | |
| ///
 | |
| /// This routine builds a new FieldDecl given the fields name, type,
 | |
| /// record, etc. \p PrevDecl should refer to any previous declaration
 | |
| /// with the same name and in the same scope as the field to be
 | |
| /// created.
 | |
| ///
 | |
| /// \returns a new FieldDecl.
 | |
| ///
 | |
| /// \todo The Declarator argument is a hack. It will be removed once
 | |
| FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
 | |
|                                 TypeSourceInfo *TInfo,
 | |
|                                 RecordDecl *Record, SourceLocation Loc,
 | |
|                                 bool Mutable, Expr *BitWidth,
 | |
|                                 InClassInitStyle InitStyle,
 | |
|                                 SourceLocation TSSL,
 | |
|                                 AccessSpecifier AS, NamedDecl *PrevDecl,
 | |
|                                 Declarator *D) {
 | |
|   IdentifierInfo *II = Name.getAsIdentifierInfo();
 | |
|   bool InvalidDecl = false;
 | |
|   if (D) InvalidDecl = D->isInvalidType();
 | |
| 
 | |
|   // If we receive a broken type, recover by assuming 'int' and
 | |
|   // marking this declaration as invalid.
 | |
|   if (T.isNull()) {
 | |
|     InvalidDecl = true;
 | |
|     T = Context.IntTy;
 | |
|   }
 | |
| 
 | |
|   QualType EltTy = Context.getBaseElementType(T);
 | |
|   if (!EltTy->isDependentType()) {
 | |
|     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
 | |
|       // Fields of incomplete type force their record to be invalid.
 | |
|       Record->setInvalidDecl();
 | |
|       InvalidDecl = true;
 | |
|     } else {
 | |
|       NamedDecl *Def;
 | |
|       EltTy->isIncompleteType(&Def);
 | |
|       if (Def && Def->isInvalidDecl()) {
 | |
|         Record->setInvalidDecl();
 | |
|         InvalidDecl = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // OpenCL v1.2 s6.9.c: bitfields are not supported.
 | |
|   if (BitWidth && getLangOpts().OpenCL) {
 | |
|     Diag(Loc, diag::err_opencl_bitfields);
 | |
|     InvalidDecl = true;
 | |
|   }
 | |
| 
 | |
|   // C99 6.7.2.1p8: A member of a structure or union may have any type other
 | |
|   // than a variably modified type.
 | |
|   if (!InvalidDecl && T->isVariablyModifiedType()) {
 | |
|     bool SizeIsNegative;
 | |
|     llvm::APSInt Oversized;
 | |
| 
 | |
|     TypeSourceInfo *FixedTInfo =
 | |
|       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
 | |
|                                                     SizeIsNegative,
 | |
|                                                     Oversized);
 | |
|     if (FixedTInfo) {
 | |
|       Diag(Loc, diag::warn_illegal_constant_array_size);
 | |
|       TInfo = FixedTInfo;
 | |
|       T = FixedTInfo->getType();
 | |
|     } else {
 | |
|       if (SizeIsNegative)
 | |
|         Diag(Loc, diag::err_typecheck_negative_array_size);
 | |
|       else if (Oversized.getBoolValue())
 | |
|         Diag(Loc, diag::err_array_too_large)
 | |
|           << Oversized.toString(10);
 | |
|       else
 | |
|         Diag(Loc, diag::err_typecheck_field_variable_size);
 | |
|       InvalidDecl = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fields can not have abstract class types
 | |
|   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
 | |
|                                              diag::err_abstract_type_in_decl,
 | |
|                                              AbstractFieldType))
 | |
|     InvalidDecl = true;
 | |
| 
 | |
|   bool ZeroWidth = false;
 | |
|   // If this is declared as a bit-field, check the bit-field.
 | |
|   if (!InvalidDecl && BitWidth) {
 | |
|     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
 | |
|                               &ZeroWidth).take();
 | |
|     if (!BitWidth) {
 | |
|       InvalidDecl = true;
 | |
|       BitWidth = 0;
 | |
|       ZeroWidth = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that 'mutable' is consistent with the type of the declaration.
 | |
|   if (!InvalidDecl && Mutable) {
 | |
|     unsigned DiagID = 0;
 | |
|     if (T->isReferenceType())
 | |
|       DiagID = diag::err_mutable_reference;
 | |
|     else if (T.isConstQualified())
 | |
|       DiagID = diag::err_mutable_const;
 | |
| 
 | |
|     if (DiagID) {
 | |
|       SourceLocation ErrLoc = Loc;
 | |
|       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
 | |
|         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
 | |
|       Diag(ErrLoc, DiagID);
 | |
|       Mutable = false;
 | |
|       InvalidDecl = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
 | |
|                                        BitWidth, Mutable, InitStyle);
 | |
|   if (InvalidDecl)
 | |
|     NewFD->setInvalidDecl();
 | |
| 
 | |
|   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
 | |
|     Diag(Loc, diag::err_duplicate_member) << II;
 | |
|     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | |
|     NewFD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (!InvalidDecl && getLangOpts().CPlusPlus) {
 | |
|     if (Record->isUnion()) {
 | |
|       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
 | |
|         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|         if (RDecl->getDefinition()) {
 | |
|           // C++ [class.union]p1: An object of a class with a non-trivial
 | |
|           // constructor, a non-trivial copy constructor, a non-trivial
 | |
|           // destructor, or a non-trivial copy assignment operator
 | |
|           // cannot be a member of a union, nor can an array of such
 | |
|           // objects.
 | |
|           if (CheckNontrivialField(NewFD))
 | |
|             NewFD->setInvalidDecl();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // C++ [class.union]p1: If a union contains a member of reference type,
 | |
|       // the program is ill-formed, except when compiling with MSVC extensions
 | |
|       // enabled.
 | |
|       if (EltTy->isReferenceType()) {
 | |
|         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
 | |
|                                     diag::ext_union_member_of_reference_type :
 | |
|                                     diag::err_union_member_of_reference_type)
 | |
|           << NewFD->getDeclName() << EltTy;
 | |
|         if (!getLangOpts().MicrosoftExt)
 | |
|           NewFD->setInvalidDecl();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: We need to pass in the attributes given an AST
 | |
|   // representation, not a parser representation.
 | |
|   if (D) {
 | |
|     // FIXME: The current scope is almost... but not entirely... correct here.
 | |
|     ProcessDeclAttributes(getCurScope(), NewFD, *D);
 | |
| 
 | |
|     if (NewFD->hasAttrs())
 | |
|       CheckAlignasUnderalignment(NewFD);
 | |
|   }
 | |
| 
 | |
|   // In auto-retain/release, infer strong retension for fields of
 | |
|   // retainable type.
 | |
|   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
 | |
|     NewFD->setInvalidDecl();
 | |
| 
 | |
|   if (T.isObjCGCWeak())
 | |
|     Diag(Loc, diag::warn_attribute_weak_on_field);
 | |
| 
 | |
|   NewFD->setAccess(AS);
 | |
|   return NewFD;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckNontrivialField(FieldDecl *FD) {
 | |
|   assert(FD);
 | |
|   assert(getLangOpts().CPlusPlus && "valid check only for C++");
 | |
| 
 | |
|   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
 | |
|     return false;
 | |
| 
 | |
|   QualType EltTy = Context.getBaseElementType(FD->getType());
 | |
|   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
 | |
|     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     if (RDecl->getDefinition()) {
 | |
|       // We check for copy constructors before constructors
 | |
|       // because otherwise we'll never get complaints about
 | |
|       // copy constructors.
 | |
| 
 | |
|       CXXSpecialMember member = CXXInvalid;
 | |
|       // We're required to check for any non-trivial constructors. Since the
 | |
|       // implicit default constructor is suppressed if there are any
 | |
|       // user-declared constructors, we just need to check that there is a
 | |
|       // trivial default constructor and a trivial copy constructor. (We don't
 | |
|       // worry about move constructors here, since this is a C++98 check.)
 | |
|       if (RDecl->hasNonTrivialCopyConstructor())
 | |
|         member = CXXCopyConstructor;
 | |
|       else if (!RDecl->hasTrivialDefaultConstructor())
 | |
|         member = CXXDefaultConstructor;
 | |
|       else if (RDecl->hasNonTrivialCopyAssignment())
 | |
|         member = CXXCopyAssignment;
 | |
|       else if (RDecl->hasNonTrivialDestructor())
 | |
|         member = CXXDestructor;
 | |
| 
 | |
|       if (member != CXXInvalid) {
 | |
|         if (!getLangOpts().CPlusPlus11 &&
 | |
|             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
 | |
|           // Objective-C++ ARC: it is an error to have a non-trivial field of
 | |
|           // a union. However, system headers in Objective-C programs 
 | |
|           // occasionally have Objective-C lifetime objects within unions,
 | |
|           // and rather than cause the program to fail, we make those 
 | |
|           // members unavailable.
 | |
|           SourceLocation Loc = FD->getLocation();
 | |
|           if (getSourceManager().isInSystemHeader(Loc)) {
 | |
|             if (!FD->hasAttr<UnavailableAttr>())
 | |
|               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
 | |
|                                   "this system field has retaining ownership"));
 | |
|             return false;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
 | |
|                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
 | |
|                diag::err_illegal_union_or_anon_struct_member)
 | |
|           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
 | |
|         DiagnoseNontrivial(RDecl, member);
 | |
|         return !getLangOpts().CPlusPlus11;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// TranslateIvarVisibility - Translate visibility from a token ID to an
 | |
| ///  AST enum value.
 | |
| static ObjCIvarDecl::AccessControl
 | |
| TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
 | |
|   switch (ivarVisibility) {
 | |
|   default: llvm_unreachable("Unknown visitibility kind");
 | |
|   case tok::objc_private: return ObjCIvarDecl::Private;
 | |
|   case tok::objc_public: return ObjCIvarDecl::Public;
 | |
|   case tok::objc_protected: return ObjCIvarDecl::Protected;
 | |
|   case tok::objc_package: return ObjCIvarDecl::Package;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ActOnIvar - Each ivar field of an objective-c class is passed into this
 | |
| /// in order to create an IvarDecl object for it.
 | |
| Decl *Sema::ActOnIvar(Scope *S,
 | |
|                                 SourceLocation DeclStart,
 | |
|                                 Declarator &D, Expr *BitfieldWidth,
 | |
|                                 tok::ObjCKeywordKind Visibility) {
 | |
| 
 | |
|   IdentifierInfo *II = D.getIdentifier();
 | |
|   Expr *BitWidth = (Expr*)BitfieldWidth;
 | |
|   SourceLocation Loc = DeclStart;
 | |
|   if (II) Loc = D.getIdentifierLoc();
 | |
| 
 | |
|   // FIXME: Unnamed fields can be handled in various different ways, for
 | |
|   // example, unnamed unions inject all members into the struct namespace!
 | |
| 
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType T = TInfo->getType();
 | |
| 
 | |
|   if (BitWidth) {
 | |
|     // 6.7.2.1p3, 6.7.2.1p4
 | |
|     BitWidth =
 | |
|         VerifyBitField(Loc, II, T, /*IsMsStruct=*/false, BitWidth).take();
 | |
|     if (!BitWidth)
 | |
|       D.setInvalidType();
 | |
|   } else {
 | |
|     // Not a bitfield.
 | |
| 
 | |
|     // validate II.
 | |
| 
 | |
|   }
 | |
|   if (T->isReferenceType()) {
 | |
|     Diag(Loc, diag::err_ivar_reference_type);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
|   // C99 6.7.2.1p8: A member of a structure or union may have any type other
 | |
|   // than a variably modified type.
 | |
|   else if (T->isVariablyModifiedType()) {
 | |
|     Diag(Loc, diag::err_typecheck_ivar_variable_size);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Get the visibility (access control) for this ivar.
 | |
|   ObjCIvarDecl::AccessControl ac =
 | |
|     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
 | |
|                                         : ObjCIvarDecl::None;
 | |
|   // Must set ivar's DeclContext to its enclosing interface.
 | |
|   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
 | |
|   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
 | |
|     return 0;
 | |
|   ObjCContainerDecl *EnclosingContext;
 | |
|   if (ObjCImplementationDecl *IMPDecl =
 | |
|       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
 | |
|     if (LangOpts.ObjCRuntime.isFragile()) {
 | |
|     // Case of ivar declared in an implementation. Context is that of its class.
 | |
|       EnclosingContext = IMPDecl->getClassInterface();
 | |
|       assert(EnclosingContext && "Implementation has no class interface!");
 | |
|     }
 | |
|     else
 | |
|       EnclosingContext = EnclosingDecl;
 | |
|   } else {
 | |
|     if (ObjCCategoryDecl *CDecl = 
 | |
|         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
 | |
|       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
 | |
|         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|     EnclosingContext = EnclosingDecl;
 | |
|   }
 | |
| 
 | |
|   // Construct the decl.
 | |
|   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
 | |
|                                              DeclStart, Loc, II, T,
 | |
|                                              TInfo, ac, (Expr *)BitfieldWidth);
 | |
| 
 | |
|   if (II) {
 | |
|     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
 | |
|                                            ForRedeclaration);
 | |
|     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
 | |
|         && !isa<TagDecl>(PrevDecl)) {
 | |
|       Diag(Loc, diag::err_duplicate_member) << II;
 | |
|       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | |
|       NewID->setInvalidDecl();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Process attributes attached to the ivar.
 | |
|   ProcessDeclAttributes(S, NewID, D);
 | |
| 
 | |
|   if (D.isInvalidType())
 | |
|     NewID->setInvalidDecl();
 | |
| 
 | |
|   // In ARC, infer 'retaining' for ivars of retainable type.
 | |
|   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
 | |
|     NewID->setInvalidDecl();
 | |
| 
 | |
|   if (D.getDeclSpec().isModulePrivateSpecified())
 | |
|     NewID->setModulePrivate();
 | |
|   
 | |
|   if (II) {
 | |
|     // FIXME: When interfaces are DeclContexts, we'll need to add
 | |
|     // these to the interface.
 | |
|     S->AddDecl(NewID);
 | |
|     IdResolver.AddDecl(NewID);
 | |
|   }
 | |
|   
 | |
|   if (LangOpts.ObjCRuntime.isNonFragile() &&
 | |
|       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
 | |
|     Diag(Loc, diag::warn_ivars_in_interface);
 | |
|   
 | |
|   return NewID;
 | |
| }
 | |
| 
 | |
| /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 
 | |
| /// class and class extensions. For every class \@interface and class 
 | |
| /// extension \@interface, if the last ivar is a bitfield of any type, 
 | |
| /// then add an implicit `char :0` ivar to the end of that interface.
 | |
| void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
 | |
|                              SmallVectorImpl<Decl *> &AllIvarDecls) {
 | |
|   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
 | |
|     return;
 | |
|   
 | |
|   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
 | |
|   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
 | |
|   
 | |
|   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
 | |
|     return;
 | |
|   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
 | |
|   if (!ID) {
 | |
|     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
 | |
|       if (!CD->IsClassExtension())
 | |
|         return;
 | |
|     }
 | |
|     // No need to add this to end of @implementation.
 | |
|     else
 | |
|       return;
 | |
|   }
 | |
|   // All conditions are met. Add a new bitfield to the tail end of ivars.
 | |
|   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
 | |
|   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
 | |
| 
 | |
|   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
 | |
|                               DeclLoc, DeclLoc, 0,
 | |
|                               Context.CharTy, 
 | |
|                               Context.getTrivialTypeSourceInfo(Context.CharTy,
 | |
|                                                                DeclLoc),
 | |
|                               ObjCIvarDecl::Private, BW,
 | |
|                               true);
 | |
|   AllIvarDecls.push_back(Ivar);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnFields(Scope* S,
 | |
|                        SourceLocation RecLoc, Decl *EnclosingDecl,
 | |
|                        llvm::ArrayRef<Decl *> Fields,
 | |
|                        SourceLocation LBrac, SourceLocation RBrac,
 | |
|                        AttributeList *Attr) {
 | |
|   assert(EnclosingDecl && "missing record or interface decl");
 | |
| 
 | |
|   // If this is an Objective-C @implementation or category and we have
 | |
|   // new fields here we should reset the layout of the interface since
 | |
|   // it will now change.
 | |
|   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
 | |
|     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
 | |
|     switch (DC->getKind()) {
 | |
|     default: break;
 | |
|     case Decl::ObjCCategory:
 | |
|       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
 | |
|       break;
 | |
|     case Decl::ObjCImplementation:
 | |
|       Context.
 | |
|         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
 | |
| 
 | |
|   // Start counting up the number of named members; make sure to include
 | |
|   // members of anonymous structs and unions in the total.
 | |
|   unsigned NumNamedMembers = 0;
 | |
|   if (Record) {
 | |
|     for (RecordDecl::decl_iterator i = Record->decls_begin(),
 | |
|                                    e = Record->decls_end(); i != e; i++) {
 | |
|       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
 | |
|         if (IFD->getDeclName())
 | |
|           ++NumNamedMembers;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify that all the fields are okay.
 | |
|   SmallVector<FieldDecl*, 32> RecFields;
 | |
| 
 | |
|   bool ARCErrReported = false;
 | |
|   for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
 | |
|        i != end; ++i) {
 | |
|     FieldDecl *FD = cast<FieldDecl>(*i);
 | |
| 
 | |
|     // Get the type for the field.
 | |
|     const Type *FDTy = FD->getType().getTypePtr();
 | |
| 
 | |
|     if (!FD->isAnonymousStructOrUnion()) {
 | |
|       // Remember all fields written by the user.
 | |
|       RecFields.push_back(FD);
 | |
|     }
 | |
| 
 | |
|     // If the field is already invalid for some reason, don't emit more
 | |
|     // diagnostics about it.
 | |
|     if (FD->isInvalidDecl()) {
 | |
|       EnclosingDecl->setInvalidDecl();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C99 6.7.2.1p2:
 | |
|     //   A structure or union shall not contain a member with
 | |
|     //   incomplete or function type (hence, a structure shall not
 | |
|     //   contain an instance of itself, but may contain a pointer to
 | |
|     //   an instance of itself), except that the last member of a
 | |
|     //   structure with more than one named member may have incomplete
 | |
|     //   array type; such a structure (and any union containing,
 | |
|     //   possibly recursively, a member that is such a structure)
 | |
|     //   shall not be a member of a structure or an element of an
 | |
|     //   array.
 | |
|     if (FDTy->isFunctionType()) {
 | |
|       // Field declared as a function.
 | |
|       Diag(FD->getLocation(), diag::err_field_declared_as_function)
 | |
|         << FD->getDeclName();
 | |
|       FD->setInvalidDecl();
 | |
|       EnclosingDecl->setInvalidDecl();
 | |
|       continue;
 | |
|     } else if (FDTy->isIncompleteArrayType() && Record && 
 | |
|                ((i + 1 == Fields.end() && !Record->isUnion()) ||
 | |
|                 ((getLangOpts().MicrosoftExt ||
 | |
|                   getLangOpts().CPlusPlus) &&
 | |
|                  (i + 1 == Fields.end() || Record->isUnion())))) {
 | |
|       // Flexible array member.
 | |
|       // Microsoft and g++ is more permissive regarding flexible array.
 | |
|       // It will accept flexible array in union and also
 | |
|       // as the sole element of a struct/class.
 | |
|       if (getLangOpts().MicrosoftExt) {
 | |
|         if (Record->isUnion()) 
 | |
|           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
 | |
|             << FD->getDeclName();
 | |
|         else if (Fields.size() == 1) 
 | |
|           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
 | |
|             << FD->getDeclName() << Record->getTagKind();
 | |
|       } else if (getLangOpts().CPlusPlus) {
 | |
|         if (Record->isUnion()) 
 | |
|           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
 | |
|             << FD->getDeclName();
 | |
|         else if (Fields.size() == 1) 
 | |
|           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
 | |
|             << FD->getDeclName() << Record->getTagKind();
 | |
|       } else if (!getLangOpts().C99) {
 | |
|       if (Record->isUnion())
 | |
|         Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
 | |
|           << FD->getDeclName();
 | |
|       else
 | |
|         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
 | |
|           << FD->getDeclName() << Record->getTagKind();
 | |
|       } else if (NumNamedMembers < 1) {
 | |
|         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
 | |
|           << FD->getDeclName();
 | |
|         FD->setInvalidDecl();
 | |
|         EnclosingDecl->setInvalidDecl();
 | |
|         continue;
 | |
|       }
 | |
|       if (!FD->getType()->isDependentType() &&
 | |
|           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
 | |
|         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
 | |
|           << FD->getDeclName() << FD->getType();
 | |
|         FD->setInvalidDecl();
 | |
|         EnclosingDecl->setInvalidDecl();
 | |
|         continue;
 | |
|       }
 | |
|       // Okay, we have a legal flexible array member at the end of the struct.
 | |
|       if (Record)
 | |
|         Record->setHasFlexibleArrayMember(true);
 | |
|     } else if (!FDTy->isDependentType() &&
 | |
|                RequireCompleteType(FD->getLocation(), FD->getType(),
 | |
|                                    diag::err_field_incomplete)) {
 | |
|       // Incomplete type
 | |
|       FD->setInvalidDecl();
 | |
|       EnclosingDecl->setInvalidDecl();
 | |
|       continue;
 | |
|     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
 | |
|       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
 | |
|         // If this is a member of a union, then entire union becomes "flexible".
 | |
|         if (Record && Record->isUnion()) {
 | |
|           Record->setHasFlexibleArrayMember(true);
 | |
|         } else {
 | |
|           // If this is a struct/class and this is not the last element, reject
 | |
|           // it.  Note that GCC supports variable sized arrays in the middle of
 | |
|           // structures.
 | |
|           if (i + 1 != Fields.end())
 | |
|             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
 | |
|               << FD->getDeclName() << FD->getType();
 | |
|           else {
 | |
|             // We support flexible arrays at the end of structs in
 | |
|             // other structs as an extension.
 | |
|             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
 | |
|               << FD->getDeclName();
 | |
|             if (Record)
 | |
|               Record->setHasFlexibleArrayMember(true);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
 | |
|           RequireNonAbstractType(FD->getLocation(), FD->getType(),
 | |
|                                  diag::err_abstract_type_in_decl,
 | |
|                                  AbstractIvarType)) {
 | |
|         // Ivars can not have abstract class types
 | |
|         FD->setInvalidDecl();
 | |
|       }
 | |
|       if (Record && FDTTy->getDecl()->hasObjectMember())
 | |
|         Record->setHasObjectMember(true);
 | |
|       if (Record && FDTTy->getDecl()->hasVolatileMember())
 | |
|         Record->setHasVolatileMember(true);
 | |
|     } else if (FDTy->isObjCObjectType()) {
 | |
|       /// A field cannot be an Objective-c object
 | |
|       Diag(FD->getLocation(), diag::err_statically_allocated_object)
 | |
|         << FixItHint::CreateInsertion(FD->getLocation(), "*");
 | |
|       QualType T = Context.getObjCObjectPointerType(FD->getType());
 | |
|       FD->setType(T);
 | |
|     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
 | |
|                (!getLangOpts().CPlusPlus || Record->isUnion())) {
 | |
|       // It's an error in ARC if a field has lifetime.
 | |
|       // We don't want to report this in a system header, though,
 | |
|       // so we just make the field unavailable.
 | |
|       // FIXME: that's really not sufficient; we need to make the type
 | |
|       // itself invalid to, say, initialize or copy.
 | |
|       QualType T = FD->getType();
 | |
|       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
 | |
|       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
 | |
|         SourceLocation loc = FD->getLocation();
 | |
|         if (getSourceManager().isInSystemHeader(loc)) {
 | |
|           if (!FD->hasAttr<UnavailableAttr>()) {
 | |
|             FD->addAttr(new (Context) UnavailableAttr(loc, Context,
 | |
|                               "this system field has retaining ownership"));
 | |
|           }
 | |
|         } else {
 | |
|           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag) 
 | |
|             << T->isBlockPointerType() << Record->getTagKind();
 | |
|         }
 | |
|         ARCErrReported = true;
 | |
|       }
 | |
|     } else if (getLangOpts().ObjC1 &&
 | |
|                getLangOpts().getGC() != LangOptions::NonGC &&
 | |
|                Record && !Record->hasObjectMember()) {
 | |
|       if (FD->getType()->isObjCObjectPointerType() ||
 | |
|           FD->getType().isObjCGCStrong())
 | |
|         Record->setHasObjectMember(true);
 | |
|       else if (Context.getAsArrayType(FD->getType())) {
 | |
|         QualType BaseType = Context.getBaseElementType(FD->getType());
 | |
|         if (BaseType->isRecordType() && 
 | |
|             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
 | |
|           Record->setHasObjectMember(true);
 | |
|         else if (BaseType->isObjCObjectPointerType() ||
 | |
|                  BaseType.isObjCGCStrong())
 | |
|                Record->setHasObjectMember(true);
 | |
|       }
 | |
|     }
 | |
|     if (Record && FD->getType().isVolatileQualified())
 | |
|       Record->setHasVolatileMember(true);
 | |
|     // Keep track of the number of named members.
 | |
|     if (FD->getIdentifier())
 | |
|       ++NumNamedMembers;
 | |
|   }
 | |
| 
 | |
|   // Okay, we successfully defined 'Record'.
 | |
|   if (Record) {
 | |
|     bool Completed = false;
 | |
|     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
 | |
|       if (!CXXRecord->isInvalidDecl()) {
 | |
|         // Set access bits correctly on the directly-declared conversions.
 | |
|         for (CXXRecordDecl::conversion_iterator
 | |
|                I = CXXRecord->conversion_begin(),
 | |
|                E = CXXRecord->conversion_end(); I != E; ++I)
 | |
|           I.setAccess((*I)->getAccess());
 | |
|         
 | |
|         if (!CXXRecord->isDependentType()) {
 | |
|           if (CXXRecord->hasUserDeclaredDestructor()) {
 | |
|             // Adjust user-defined destructor exception spec.
 | |
|             if (getLangOpts().CPlusPlus11)
 | |
|               AdjustDestructorExceptionSpec(CXXRecord,
 | |
|                                             CXXRecord->getDestructor());
 | |
| 
 | |
|             // The Microsoft ABI requires that we perform the destructor body
 | |
|             // checks (i.e. operator delete() lookup) at every declaration, as
 | |
|             // any translation unit may need to emit a deleting destructor.
 | |
|             if (Context.getTargetInfo().getCXXABI().isMicrosoft())
 | |
|               CheckDestructor(CXXRecord->getDestructor());
 | |
|           }
 | |
| 
 | |
|           // Add any implicitly-declared members to this class.
 | |
|           AddImplicitlyDeclaredMembersToClass(CXXRecord);
 | |
| 
 | |
|           // If we have virtual base classes, we may end up finding multiple 
 | |
|           // final overriders for a given virtual function. Check for this 
 | |
|           // problem now.
 | |
|           if (CXXRecord->getNumVBases()) {
 | |
|             CXXFinalOverriderMap FinalOverriders;
 | |
|             CXXRecord->getFinalOverriders(FinalOverriders);
 | |
|             
 | |
|             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 
 | |
|                                              MEnd = FinalOverriders.end();
 | |
|                  M != MEnd; ++M) {
 | |
|               for (OverridingMethods::iterator SO = M->second.begin(), 
 | |
|                                             SOEnd = M->second.end();
 | |
|                    SO != SOEnd; ++SO) {
 | |
|                 assert(SO->second.size() > 0 && 
 | |
|                        "Virtual function without overridding functions?");
 | |
|                 if (SO->second.size() == 1)
 | |
|                   continue;
 | |
|                 
 | |
|                 // C++ [class.virtual]p2:
 | |
|                 //   In a derived class, if a virtual member function of a base
 | |
|                 //   class subobject has more than one final overrider the
 | |
|                 //   program is ill-formed.
 | |
|                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
 | |
|                   << (const NamedDecl *)M->first << Record;
 | |
|                 Diag(M->first->getLocation(), 
 | |
|                      diag::note_overridden_virtual_function);
 | |
|                 for (OverridingMethods::overriding_iterator 
 | |
|                           OM = SO->second.begin(), 
 | |
|                        OMEnd = SO->second.end();
 | |
|                      OM != OMEnd; ++OM)
 | |
|                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
 | |
|                     << (const NamedDecl *)M->first << OM->Method->getParent();
 | |
|                 
 | |
|                 Record->setInvalidDecl();
 | |
|               }
 | |
|             }
 | |
|             CXXRecord->completeDefinition(&FinalOverriders);
 | |
|             Completed = true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (!Completed)
 | |
|       Record->completeDefinition();
 | |
| 
 | |
|     if (Record->hasAttrs())
 | |
|       CheckAlignasUnderalignment(Record);
 | |
| 
 | |
|     // Check if the structure/union declaration is a language extension.
 | |
|     if (!getLangOpts().CPlusPlus) {
 | |
|       bool ZeroSize = true;
 | |
|       bool IsEmpty = true;
 | |
|       unsigned NonBitFields = 0;
 | |
|       for (RecordDecl::field_iterator I = Record->field_begin(),
 | |
|                                       E = Record->field_end();
 | |
|            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
 | |
|         IsEmpty = false;
 | |
|         if (I->isUnnamedBitfield()) {
 | |
|           if (I->getBitWidthValue(Context) > 0)
 | |
|             ZeroSize = false;
 | |
|         } else {
 | |
|           ++NonBitFields;
 | |
|           QualType FieldType = I->getType();
 | |
|           if (FieldType->isIncompleteType() ||
 | |
|               !Context.getTypeSizeInChars(FieldType).isZero())
 | |
|             ZeroSize = false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
 | |
|       // C++.
 | |
|       if (ZeroSize)
 | |
|         Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
 | |
|             << Record->isUnion() << (NonBitFields > 1);
 | |
| 
 | |
|       // Structs without named members are extension in C (C99 6.7.2.1p7), but
 | |
|       // are accepted by GCC.
 | |
|       if (NonBitFields == 0) {
 | |
|         if (IsEmpty)
 | |
|           Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
 | |
|         else
 | |
|           Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     ObjCIvarDecl **ClsFields =
 | |
|       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
 | |
|     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
 | |
|       ID->setEndOfDefinitionLoc(RBrac);
 | |
|       // Add ivar's to class's DeclContext.
 | |
|       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
 | |
|         ClsFields[i]->setLexicalDeclContext(ID);
 | |
|         ID->addDecl(ClsFields[i]);
 | |
|       }
 | |
|       // Must enforce the rule that ivars in the base classes may not be
 | |
|       // duplicates.
 | |
|       if (ID->getSuperClass())
 | |
|         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
 | |
|     } else if (ObjCImplementationDecl *IMPDecl =
 | |
|                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
 | |
|       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
 | |
|       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
 | |
|         // Ivar declared in @implementation never belongs to the implementation.
 | |
|         // Only it is in implementation's lexical context.
 | |
|         ClsFields[I]->setLexicalDeclContext(IMPDecl);
 | |
|       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
 | |
|       IMPDecl->setIvarLBraceLoc(LBrac);
 | |
|       IMPDecl->setIvarRBraceLoc(RBrac);
 | |
|     } else if (ObjCCategoryDecl *CDecl = 
 | |
|                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
 | |
|       // case of ivars in class extension; all other cases have been
 | |
|       // reported as errors elsewhere.
 | |
|       // FIXME. Class extension does not have a LocEnd field.
 | |
|       // CDecl->setLocEnd(RBrac);
 | |
|       // Add ivar's to class extension's DeclContext.
 | |
|       // Diagnose redeclaration of private ivars.
 | |
|       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
 | |
|       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
 | |
|         if (IDecl) {
 | |
|           if (const ObjCIvarDecl *ClsIvar = 
 | |
|               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
 | |
|             Diag(ClsFields[i]->getLocation(), 
 | |
|                  diag::err_duplicate_ivar_declaration); 
 | |
|             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | |
|             continue;
 | |
|           }
 | |
|           for (ObjCInterfaceDecl::known_extensions_iterator
 | |
|                  Ext = IDecl->known_extensions_begin(),
 | |
|                  ExtEnd = IDecl->known_extensions_end();
 | |
|                Ext != ExtEnd; ++Ext) {
 | |
|             if (const ObjCIvarDecl *ClsExtIvar
 | |
|                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
 | |
|               Diag(ClsFields[i]->getLocation(), 
 | |
|                    diag::err_duplicate_ivar_declaration); 
 | |
|               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         ClsFields[i]->setLexicalDeclContext(CDecl);
 | |
|         CDecl->addDecl(ClsFields[i]);
 | |
|       }
 | |
|       CDecl->setIvarLBraceLoc(LBrac);
 | |
|       CDecl->setIvarRBraceLoc(RBrac);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Attr)
 | |
|     ProcessDeclAttributeList(S, Record, Attr);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given integral value is representable within
 | |
| /// the given type T.
 | |
| static bool isRepresentableIntegerValue(ASTContext &Context,
 | |
|                                         llvm::APSInt &Value,
 | |
|                                         QualType T) {
 | |
|   assert(T->isIntegralType(Context) && "Integral type required!");
 | |
|   unsigned BitWidth = Context.getIntWidth(T);
 | |
|   
 | |
|   if (Value.isUnsigned() || Value.isNonNegative()) {
 | |
|     if (T->isSignedIntegerOrEnumerationType()) 
 | |
|       --BitWidth;
 | |
|     return Value.getActiveBits() <= BitWidth;
 | |
|   }  
 | |
|   return Value.getMinSignedBits() <= BitWidth;
 | |
| }
 | |
| 
 | |
| // \brief Given an integral type, return the next larger integral type
 | |
| // (or a NULL type of no such type exists).
 | |
| static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
 | |
|   // FIXME: Int128/UInt128 support, which also needs to be introduced into 
 | |
|   // enum checking below.
 | |
|   assert(T->isIntegralType(Context) && "Integral type required!");
 | |
|   const unsigned NumTypes = 4;
 | |
|   QualType SignedIntegralTypes[NumTypes] = { 
 | |
|     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
 | |
|   };
 | |
|   QualType UnsignedIntegralTypes[NumTypes] = { 
 | |
|     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 
 | |
|     Context.UnsignedLongLongTy
 | |
|   };
 | |
|   
 | |
|   unsigned BitWidth = Context.getTypeSize(T);
 | |
|   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
 | |
|                                                         : UnsignedIntegralTypes;
 | |
|   for (unsigned I = 0; I != NumTypes; ++I)
 | |
|     if (Context.getTypeSize(Types[I]) > BitWidth)
 | |
|       return Types[I];
 | |
|   
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
 | |
|                                           EnumConstantDecl *LastEnumConst,
 | |
|                                           SourceLocation IdLoc,
 | |
|                                           IdentifierInfo *Id,
 | |
|                                           Expr *Val) {
 | |
|   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
 | |
|   llvm::APSInt EnumVal(IntWidth);
 | |
|   QualType EltTy;
 | |
| 
 | |
|   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
 | |
|     Val = 0;
 | |
| 
 | |
|   if (Val)
 | |
|     Val = DefaultLvalueConversion(Val).take();
 | |
| 
 | |
|   if (Val) {
 | |
|     if (Enum->isDependentType() || Val->isTypeDependent())
 | |
|       EltTy = Context.DependentTy;
 | |
|     else {
 | |
|       SourceLocation ExpLoc;
 | |
|       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
 | |
|           !getLangOpts().MicrosoftMode) {
 | |
|         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
 | |
|         // constant-expression in the enumerator-definition shall be a converted
 | |
|         // constant expression of the underlying type.
 | |
|         EltTy = Enum->getIntegerType();
 | |
|         ExprResult Converted =
 | |
|           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
 | |
|                                            CCEK_Enumerator);
 | |
|         if (Converted.isInvalid())
 | |
|           Val = 0;
 | |
|         else
 | |
|           Val = Converted.take();
 | |
|       } else if (!Val->isValueDependent() &&
 | |
|                  !(Val = VerifyIntegerConstantExpression(Val,
 | |
|                                                          &EnumVal).take())) {
 | |
|         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
 | |
|       } else {
 | |
|         if (Enum->isFixed()) {
 | |
|           EltTy = Enum->getIntegerType();
 | |
| 
 | |
|           // In Obj-C and Microsoft mode, require the enumeration value to be
 | |
|           // representable in the underlying type of the enumeration. In C++11,
 | |
|           // we perform a non-narrowing conversion as part of converted constant
 | |
|           // expression checking.
 | |
|           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
 | |
|             if (getLangOpts().MicrosoftMode) {
 | |
|               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
 | |
|               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
 | |
|             } else
 | |
|               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
 | |
|           } else
 | |
|             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
 | |
|         } else if (getLangOpts().CPlusPlus) {
 | |
|           // C++11 [dcl.enum]p5:
 | |
|           //   If the underlying type is not fixed, the type of each enumerator
 | |
|           //   is the type of its initializing value:
 | |
|           //     - If an initializer is specified for an enumerator, the 
 | |
|           //       initializing value has the same type as the expression.
 | |
|           EltTy = Val->getType();
 | |
|         } else {
 | |
|           // C99 6.7.2.2p2:
 | |
|           //   The expression that defines the value of an enumeration constant
 | |
|           //   shall be an integer constant expression that has a value
 | |
|           //   representable as an int.
 | |
| 
 | |
|           // Complain if the value is not representable in an int.
 | |
|           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
 | |
|             Diag(IdLoc, diag::ext_enum_value_not_int)
 | |
|               << EnumVal.toString(10) << Val->getSourceRange()
 | |
|               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
 | |
|           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
 | |
|             // Force the type of the expression to 'int'.
 | |
|             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
 | |
|           }
 | |
|           EltTy = Val->getType();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Val) {
 | |
|     if (Enum->isDependentType())
 | |
|       EltTy = Context.DependentTy;
 | |
|     else if (!LastEnumConst) {
 | |
|       // C++0x [dcl.enum]p5:
 | |
|       //   If the underlying type is not fixed, the type of each enumerator
 | |
|       //   is the type of its initializing value:
 | |
|       //     - If no initializer is specified for the first enumerator, the 
 | |
|       //       initializing value has an unspecified integral type.
 | |
|       //
 | |
|       // GCC uses 'int' for its unspecified integral type, as does 
 | |
|       // C99 6.7.2.2p3.
 | |
|       if (Enum->isFixed()) {
 | |
|         EltTy = Enum->getIntegerType();
 | |
|       }
 | |
|       else {
 | |
|         EltTy = Context.IntTy;
 | |
|       }
 | |
|     } else {
 | |
|       // Assign the last value + 1.
 | |
|       EnumVal = LastEnumConst->getInitVal();
 | |
|       ++EnumVal;
 | |
|       EltTy = LastEnumConst->getType();
 | |
| 
 | |
|       // Check for overflow on increment.
 | |
|       if (EnumVal < LastEnumConst->getInitVal()) {
 | |
|         // C++0x [dcl.enum]p5:
 | |
|         //   If the underlying type is not fixed, the type of each enumerator
 | |
|         //   is the type of its initializing value:
 | |
|         //
 | |
|         //     - Otherwise the type of the initializing value is the same as
 | |
|         //       the type of the initializing value of the preceding enumerator
 | |
|         //       unless the incremented value is not representable in that type,
 | |
|         //       in which case the type is an unspecified integral type 
 | |
|         //       sufficient to contain the incremented value. If no such type
 | |
|         //       exists, the program is ill-formed.
 | |
|         QualType T = getNextLargerIntegralType(Context, EltTy);
 | |
|         if (T.isNull() || Enum->isFixed()) {
 | |
|           // There is no integral type larger enough to represent this 
 | |
|           // value. Complain, then allow the value to wrap around.
 | |
|           EnumVal = LastEnumConst->getInitVal();
 | |
|           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
 | |
|           ++EnumVal;
 | |
|           if (Enum->isFixed())
 | |
|             // When the underlying type is fixed, this is ill-formed.
 | |
|             Diag(IdLoc, diag::err_enumerator_wrapped)
 | |
|               << EnumVal.toString(10)
 | |
|               << EltTy;
 | |
|           else
 | |
|             Diag(IdLoc, diag::warn_enumerator_too_large)
 | |
|               << EnumVal.toString(10);
 | |
|         } else {
 | |
|           EltTy = T;
 | |
|         }
 | |
|         
 | |
|         // Retrieve the last enumerator's value, extent that type to the
 | |
|         // type that is supposed to be large enough to represent the incremented
 | |
|         // value, then increment.
 | |
|         EnumVal = LastEnumConst->getInitVal();
 | |
|         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
 | |
|         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
 | |
|         ++EnumVal;        
 | |
|         
 | |
|         // If we're not in C++, diagnose the overflow of enumerator values,
 | |
|         // which in C99 means that the enumerator value is not representable in
 | |
|         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
 | |
|         // permits enumerator values that are representable in some larger
 | |
|         // integral type.
 | |
|         if (!getLangOpts().CPlusPlus && !T.isNull())
 | |
|           Diag(IdLoc, diag::warn_enum_value_overflow);
 | |
|       } else if (!getLangOpts().CPlusPlus &&
 | |
|                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
 | |
|         // Enforce C99 6.7.2.2p2 even when we compute the next value.
 | |
|         Diag(IdLoc, diag::ext_enum_value_not_int)
 | |
|           << EnumVal.toString(10) << 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!EltTy->isDependentType()) {
 | |
|     // Make the enumerator value match the signedness and size of the 
 | |
|     // enumerator's type.
 | |
|     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
 | |
|     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
 | |
|   }
 | |
|   
 | |
|   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
 | |
|                                   Val, EnumVal);
 | |
| }
 | |
| 
 | |
| 
 | |
| Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
 | |
|                               SourceLocation IdLoc, IdentifierInfo *Id,
 | |
|                               AttributeList *Attr,
 | |
|                               SourceLocation EqualLoc, Expr *Val) {
 | |
|   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
 | |
|   EnumConstantDecl *LastEnumConst =
 | |
|     cast_or_null<EnumConstantDecl>(lastEnumConst);
 | |
| 
 | |
|   // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | |
|   // we find one that is.
 | |
|   S = getNonFieldDeclScope(S);
 | |
| 
 | |
|   // Verify that there isn't already something declared with this name in this
 | |
|   // scope.
 | |
|   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
 | |
|                                          ForRedeclaration);
 | |
|   if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     PrevDecl = 0;
 | |
|   }
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     // When in C++, we may get a TagDecl with the same name; in this case the
 | |
|     // enum constant will 'hide' the tag.
 | |
|     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
 | |
|            "Received TagDecl when not in C++!");
 | |
|     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
 | |
|       if (isa<EnumConstantDecl>(PrevDecl))
 | |
|         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
 | |
|       else
 | |
|         Diag(IdLoc, diag::err_redefinition) << Id;
 | |
|       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [class.mem]p15:
 | |
|   // If T is the name of a class, then each of the following shall have a name 
 | |
|   // different from T:
 | |
|   // - every enumerator of every member of class T that is an unscoped 
 | |
|   // enumerated type
 | |
|   if (CXXRecordDecl *Record
 | |
|                       = dyn_cast<CXXRecordDecl>(
 | |
|                              TheEnumDecl->getDeclContext()->getRedeclContext()))
 | |
|     if (!TheEnumDecl->isScoped() && 
 | |
|         Record->getIdentifier() && Record->getIdentifier() == Id)
 | |
|       Diag(IdLoc, diag::err_member_name_of_class) << Id;
 | |
|   
 | |
|   EnumConstantDecl *New =
 | |
|     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
 | |
| 
 | |
|   if (New) {
 | |
|     // Process attributes.
 | |
|     if (Attr) ProcessDeclAttributeList(S, New, Attr);
 | |
| 
 | |
|     // Register this decl in the current scope stack.
 | |
|     New->setAccess(TheEnumDecl->getAccess());
 | |
|     PushOnScopeChains(New, S);
 | |
|   }
 | |
| 
 | |
|   ActOnDocumentableDecl(New);
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| // Returns true when the enum initial expression does not trigger the
 | |
| // duplicate enum warning.  A few common cases are exempted as follows:
 | |
| // Element2 = Element1
 | |
| // Element2 = Element1 + 1
 | |
| // Element2 = Element1 - 1
 | |
| // Where Element2 and Element1 are from the same enum.
 | |
| static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
 | |
|   Expr *InitExpr = ECD->getInitExpr();
 | |
|   if (!InitExpr)
 | |
|     return true;
 | |
|   InitExpr = InitExpr->IgnoreImpCasts();
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
 | |
|     if (!BO->isAdditiveOp())
 | |
|       return true;
 | |
|     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
 | |
|     if (!IL)
 | |
|       return true;
 | |
|     if (IL->getValue() != 1)
 | |
|       return true;
 | |
| 
 | |
|     InitExpr = BO->getLHS();
 | |
|   }
 | |
| 
 | |
|   // This checks if the elements are from the same enum.
 | |
|   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
 | |
|   if (!DRE)
 | |
|     return true;
 | |
| 
 | |
|   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
 | |
|   if (!EnumConstant)
 | |
|     return true;
 | |
| 
 | |
|   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
 | |
|       Enum)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| struct DupKey {
 | |
|   int64_t val;
 | |
|   bool isTombstoneOrEmptyKey;
 | |
|   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
 | |
|     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
 | |
| };
 | |
| 
 | |
| static DupKey GetDupKey(const llvm::APSInt& Val) {
 | |
|   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
 | |
|                 false);
 | |
| }
 | |
| 
 | |
| struct DenseMapInfoDupKey {
 | |
|   static DupKey getEmptyKey() { return DupKey(0, true); }
 | |
|   static DupKey getTombstoneKey() { return DupKey(1, true); }
 | |
|   static unsigned getHashValue(const DupKey Key) {
 | |
|     return (unsigned)(Key.val * 37);
 | |
|   }
 | |
|   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
 | |
|     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
 | |
|            LHS.val == RHS.val;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Emits a warning when an element is implicitly set a value that
 | |
| // a previous element has already been set to.
 | |
| static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
 | |
|                                         EnumDecl *Enum,
 | |
|                                         QualType EnumType) {
 | |
|   if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
 | |
|                                  Enum->getLocation()) ==
 | |
|       DiagnosticsEngine::Ignored)
 | |
|     return;
 | |
|   // Avoid anonymous enums
 | |
|   if (!Enum->getIdentifier())
 | |
|     return;
 | |
| 
 | |
|   // Only check for small enums.
 | |
|   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
 | |
|     return;
 | |
| 
 | |
|   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
 | |
|   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
 | |
| 
 | |
|   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
 | |
|   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
 | |
|           ValueToVectorMap;
 | |
| 
 | |
|   DuplicatesVector DupVector;
 | |
|   ValueToVectorMap EnumMap;
 | |
| 
 | |
|   // Populate the EnumMap with all values represented by enum constants without
 | |
|   // an initialier.
 | |
|   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | |
|     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
 | |
| 
 | |
|     // Null EnumConstantDecl means a previous diagnostic has been emitted for
 | |
|     // this constant.  Skip this enum since it may be ill-formed.
 | |
|     if (!ECD) {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (ECD->getInitExpr())
 | |
|       continue;
 | |
| 
 | |
|     DupKey Key = GetDupKey(ECD->getInitVal());
 | |
|     DeclOrVector &Entry = EnumMap[Key];
 | |
| 
 | |
|     // First time encountering this value.
 | |
|     if (Entry.isNull())
 | |
|       Entry = ECD;
 | |
|   }
 | |
| 
 | |
|   // Create vectors for any values that has duplicates.
 | |
|   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | |
|     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
 | |
|     if (!ValidDuplicateEnum(ECD, Enum))
 | |
|       continue;
 | |
| 
 | |
|     DupKey Key = GetDupKey(ECD->getInitVal());
 | |
| 
 | |
|     DeclOrVector& Entry = EnumMap[Key];
 | |
|     if (Entry.isNull())
 | |
|       continue;
 | |
| 
 | |
|     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
 | |
|       // Ensure constants are different.
 | |
|       if (D == ECD)
 | |
|         continue;
 | |
| 
 | |
|       // Create new vector and push values onto it.
 | |
|       ECDVector *Vec = new ECDVector();
 | |
|       Vec->push_back(D);
 | |
|       Vec->push_back(ECD);
 | |
| 
 | |
|       // Update entry to point to the duplicates vector.
 | |
|       Entry = Vec;
 | |
| 
 | |
|       // Store the vector somewhere we can consult later for quick emission of
 | |
|       // diagnostics.
 | |
|       DupVector.push_back(Vec);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ECDVector *Vec = Entry.get<ECDVector*>();
 | |
|     // Make sure constants are not added more than once.
 | |
|     if (*Vec->begin() == ECD)
 | |
|       continue;
 | |
| 
 | |
|     Vec->push_back(ECD);
 | |
|   }
 | |
| 
 | |
|   // Emit diagnostics.
 | |
|   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
 | |
|                                   DupVectorEnd = DupVector.end();
 | |
|        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
 | |
|     ECDVector *Vec = *DupVectorIter;
 | |
|     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
 | |
| 
 | |
|     // Emit warning for one enum constant.
 | |
|     ECDVector::iterator I = Vec->begin();
 | |
|     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
 | |
|       << (*I)->getName() << (*I)->getInitVal().toString(10)
 | |
|       << (*I)->getSourceRange();
 | |
|     ++I;
 | |
| 
 | |
|     // Emit one note for each of the remaining enum constants with
 | |
|     // the same value.
 | |
|     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
 | |
|       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
 | |
|         << (*I)->getName() << (*I)->getInitVal().toString(10)
 | |
|         << (*I)->getSourceRange();
 | |
|     delete Vec;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
 | |
|                          SourceLocation RBraceLoc, Decl *EnumDeclX,
 | |
|                          ArrayRef<Decl *> Elements,
 | |
|                          Scope *S, AttributeList *Attr) {
 | |
|   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
 | |
|   QualType EnumType = Context.getTypeDeclType(Enum);
 | |
| 
 | |
|   if (Attr)
 | |
|     ProcessDeclAttributeList(S, Enum, Attr);
 | |
| 
 | |
|   if (Enum->isDependentType()) {
 | |
|     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | |
|       EnumConstantDecl *ECD =
 | |
|         cast_or_null<EnumConstantDecl>(Elements[i]);
 | |
|       if (!ECD) continue;
 | |
| 
 | |
|       ECD->setType(EnumType);
 | |
|     }
 | |
| 
 | |
|     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // TODO: If the result value doesn't fit in an int, it must be a long or long
 | |
|   // long value.  ISO C does not support this, but GCC does as an extension,
 | |
|   // emit a warning.
 | |
|   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
 | |
|   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
 | |
|   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
 | |
| 
 | |
|   // Verify that all the values are okay, compute the size of the values, and
 | |
|   // reverse the list.
 | |
|   unsigned NumNegativeBits = 0;
 | |
|   unsigned NumPositiveBits = 0;
 | |
| 
 | |
|   // Keep track of whether all elements have type int.
 | |
|   bool AllElementsInt = true;
 | |
| 
 | |
|   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | |
|     EnumConstantDecl *ECD =
 | |
|       cast_or_null<EnumConstantDecl>(Elements[i]);
 | |
|     if (!ECD) continue;  // Already issued a diagnostic.
 | |
| 
 | |
|     const llvm::APSInt &InitVal = ECD->getInitVal();
 | |
| 
 | |
|     // Keep track of the size of positive and negative values.
 | |
|     if (InitVal.isUnsigned() || InitVal.isNonNegative())
 | |
|       NumPositiveBits = std::max(NumPositiveBits,
 | |
|                                  (unsigned)InitVal.getActiveBits());
 | |
|     else
 | |
|       NumNegativeBits = std::max(NumNegativeBits,
 | |
|                                  (unsigned)InitVal.getMinSignedBits());
 | |
| 
 | |
|     // Keep track of whether every enum element has type int (very commmon).
 | |
|     if (AllElementsInt)
 | |
|       AllElementsInt = ECD->getType() == Context.IntTy;
 | |
|   }
 | |
| 
 | |
|   // Figure out the type that should be used for this enum.
 | |
|   QualType BestType;
 | |
|   unsigned BestWidth;
 | |
| 
 | |
|   // C++0x N3000 [conv.prom]p3:
 | |
|   //   An rvalue of an unscoped enumeration type whose underlying
 | |
|   //   type is not fixed can be converted to an rvalue of the first
 | |
|   //   of the following types that can represent all the values of
 | |
|   //   the enumeration: int, unsigned int, long int, unsigned long
 | |
|   //   int, long long int, or unsigned long long int.
 | |
|   // C99 6.4.4.3p2:
 | |
|   //   An identifier declared as an enumeration constant has type int.
 | |
|   // The C99 rule is modified by a gcc extension 
 | |
|   QualType BestPromotionType;
 | |
| 
 | |
|   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
 | |
|   // -fshort-enums is the equivalent to specifying the packed attribute on all
 | |
|   // enum definitions.
 | |
|   if (LangOpts.ShortEnums)
 | |
|     Packed = true;
 | |
| 
 | |
|   if (Enum->isFixed()) {
 | |
|     BestType = Enum->getIntegerType();
 | |
|     if (BestType->isPromotableIntegerType())
 | |
|       BestPromotionType = Context.getPromotedIntegerType(BestType);
 | |
|     else
 | |
|       BestPromotionType = BestType;
 | |
|     // We don't need to set BestWidth, because BestType is going to be the type
 | |
|     // of the enumerators, but we do anyway because otherwise some compilers
 | |
|     // warn that it might be used uninitialized.
 | |
|     BestWidth = CharWidth;
 | |
|   }
 | |
|   else if (NumNegativeBits) {
 | |
|     // If there is a negative value, figure out the smallest integer type (of
 | |
|     // int/long/longlong) that fits.
 | |
|     // If it's packed, check also if it fits a char or a short.
 | |
|     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
 | |
|       BestType = Context.SignedCharTy;
 | |
|       BestWidth = CharWidth;
 | |
|     } else if (Packed && NumNegativeBits <= ShortWidth &&
 | |
|                NumPositiveBits < ShortWidth) {
 | |
|       BestType = Context.ShortTy;
 | |
|       BestWidth = ShortWidth;
 | |
|     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
 | |
|       BestType = Context.IntTy;
 | |
|       BestWidth = IntWidth;
 | |
|     } else {
 | |
|       BestWidth = Context.getTargetInfo().getLongWidth();
 | |
| 
 | |
|       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
 | |
|         BestType = Context.LongTy;
 | |
|       } else {
 | |
|         BestWidth = Context.getTargetInfo().getLongLongWidth();
 | |
| 
 | |
|         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
 | |
|           Diag(Enum->getLocation(), diag::warn_enum_too_large);
 | |
|         BestType = Context.LongLongTy;
 | |
|       }
 | |
|     }
 | |
|     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
 | |
|   } else {
 | |
|     // If there is no negative value, figure out the smallest type that fits
 | |
|     // all of the enumerator values.
 | |
|     // If it's packed, check also if it fits a char or a short.
 | |
|     if (Packed && NumPositiveBits <= CharWidth) {
 | |
|       BestType = Context.UnsignedCharTy;
 | |
|       BestPromotionType = Context.IntTy;
 | |
|       BestWidth = CharWidth;
 | |
|     } else if (Packed && NumPositiveBits <= ShortWidth) {
 | |
|       BestType = Context.UnsignedShortTy;
 | |
|       BestPromotionType = Context.IntTy;
 | |
|       BestWidth = ShortWidth;
 | |
|     } else if (NumPositiveBits <= IntWidth) {
 | |
|       BestType = Context.UnsignedIntTy;
 | |
|       BestWidth = IntWidth;
 | |
|       BestPromotionType
 | |
|         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
 | |
|                            ? Context.UnsignedIntTy : Context.IntTy;
 | |
|     } else if (NumPositiveBits <=
 | |
|                (BestWidth = Context.getTargetInfo().getLongWidth())) {
 | |
|       BestType = Context.UnsignedLongTy;
 | |
|       BestPromotionType
 | |
|         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
 | |
|                            ? Context.UnsignedLongTy : Context.LongTy;
 | |
|     } else {
 | |
|       BestWidth = Context.getTargetInfo().getLongLongWidth();
 | |
|       assert(NumPositiveBits <= BestWidth &&
 | |
|              "How could an initializer get larger than ULL?");
 | |
|       BestType = Context.UnsignedLongLongTy;
 | |
|       BestPromotionType
 | |
|         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
 | |
|                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the enumerator constants, changing their types to match
 | |
|   // the type of the enum if needed.
 | |
|   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | |
|     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
 | |
|     if (!ECD) continue;  // Already issued a diagnostic.
 | |
| 
 | |
|     // Standard C says the enumerators have int type, but we allow, as an
 | |
|     // extension, the enumerators to be larger than int size.  If each
 | |
|     // enumerator value fits in an int, type it as an int, otherwise type it the
 | |
|     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
 | |
|     // that X has type 'int', not 'unsigned'.
 | |
| 
 | |
|     // Determine whether the value fits into an int.
 | |
|     llvm::APSInt InitVal = ECD->getInitVal();
 | |
| 
 | |
|     // If it fits into an integer type, force it.  Otherwise force it to match
 | |
|     // the enum decl type.
 | |
|     QualType NewTy;
 | |
|     unsigned NewWidth;
 | |
|     bool NewSign;
 | |
|     if (!getLangOpts().CPlusPlus &&
 | |
|         !Enum->isFixed() &&
 | |
|         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
 | |
|       NewTy = Context.IntTy;
 | |
|       NewWidth = IntWidth;
 | |
|       NewSign = true;
 | |
|     } else if (ECD->getType() == BestType) {
 | |
|       // Already the right type!
 | |
|       if (getLangOpts().CPlusPlus)
 | |
|         // C++ [dcl.enum]p4: Following the closing brace of an
 | |
|         // enum-specifier, each enumerator has the type of its
 | |
|         // enumeration.
 | |
|         ECD->setType(EnumType);
 | |
|       continue;
 | |
|     } else {
 | |
|       NewTy = BestType;
 | |
|       NewWidth = BestWidth;
 | |
|       NewSign = BestType->isSignedIntegerOrEnumerationType();
 | |
|     }
 | |
| 
 | |
|     // Adjust the APSInt value.
 | |
|     InitVal = InitVal.extOrTrunc(NewWidth);
 | |
|     InitVal.setIsSigned(NewSign);
 | |
|     ECD->setInitVal(InitVal);
 | |
| 
 | |
|     // Adjust the Expr initializer and type.
 | |
|     if (ECD->getInitExpr() &&
 | |
|         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
 | |
|       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
 | |
|                                                 CK_IntegralCast,
 | |
|                                                 ECD->getInitExpr(),
 | |
|                                                 /*base paths*/ 0,
 | |
|                                                 VK_RValue));
 | |
|     if (getLangOpts().CPlusPlus)
 | |
|       // C++ [dcl.enum]p4: Following the closing brace of an
 | |
|       // enum-specifier, each enumerator has the type of its
 | |
|       // enumeration.
 | |
|       ECD->setType(EnumType);
 | |
|     else
 | |
|       ECD->setType(NewTy);
 | |
|   }
 | |
| 
 | |
|   Enum->completeDefinition(BestType, BestPromotionType,
 | |
|                            NumPositiveBits, NumNegativeBits);
 | |
| 
 | |
|   // If we're declaring a function, ensure this decl isn't forgotten about -
 | |
|   // it needs to go into the function scope.
 | |
|   if (InFunctionDeclarator)
 | |
|     DeclsInPrototypeScope.push_back(Enum);
 | |
| 
 | |
|   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
 | |
| 
 | |
|   // Now that the enum type is defined, ensure it's not been underaligned.
 | |
|   if (Enum->hasAttrs())
 | |
|     CheckAlignasUnderalignment(Enum);
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
 | |
|                                   SourceLocation StartLoc,
 | |
|                                   SourceLocation EndLoc) {
 | |
|   StringLiteral *AsmString = cast<StringLiteral>(expr);
 | |
| 
 | |
|   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
 | |
|                                                    AsmString, StartLoc,
 | |
|                                                    EndLoc);
 | |
|   CurContext->addDecl(New);
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc, 
 | |
|                                    SourceLocation ImportLoc, 
 | |
|                                    ModuleIdPath Path) {
 | |
|   Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path, 
 | |
|                                                 Module::AllVisible,
 | |
|                                                 /*IsIncludeDirective=*/false);
 | |
|   if (!Mod)
 | |
|     return true;
 | |
|   
 | |
|   SmallVector<SourceLocation, 2> IdentifierLocs;
 | |
|   Module *ModCheck = Mod;
 | |
|   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
 | |
|     // If we've run out of module parents, just drop the remaining identifiers.
 | |
|     // We need the length to be consistent.
 | |
|     if (!ModCheck)
 | |
|       break;
 | |
|     ModCheck = ModCheck->Parent;
 | |
|     
 | |
|     IdentifierLocs.push_back(Path[I].second);
 | |
|   }
 | |
| 
 | |
|   ImportDecl *Import = ImportDecl::Create(Context, 
 | |
|                                           Context.getTranslationUnitDecl(),
 | |
|                                           AtLoc.isValid()? AtLoc : ImportLoc, 
 | |
|                                           Mod, IdentifierLocs);
 | |
|   Context.getTranslationUnitDecl()->addDecl(Import);
 | |
|   return Import;
 | |
| }
 | |
| 
 | |
| void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
 | |
|   // Create the implicit import declaration.
 | |
|   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
 | |
|   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
 | |
|                                                    Loc, Mod, Loc);
 | |
|   TU->addDecl(ImportD);
 | |
|   Consumer.HandleImplicitImportDecl(ImportD);
 | |
| 
 | |
|   // Make the module visible.
 | |
|   PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
 | |
|                                          /*Complain=*/false);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
 | |
|                                       IdentifierInfo* AliasName,
 | |
|                                       SourceLocation PragmaLoc,
 | |
|                                       SourceLocation NameLoc,
 | |
|                                       SourceLocation AliasNameLoc) {
 | |
|   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
 | |
|                                     LookupOrdinaryName);
 | |
|   AsmLabelAttr *Attr =
 | |
|      ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
 | |
| 
 | |
|   if (PrevDecl) 
 | |
|     PrevDecl->addAttr(Attr);
 | |
|   else 
 | |
|     (void)ExtnameUndeclaredIdentifiers.insert(
 | |
|       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
 | |
| }
 | |
| 
 | |
| void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
 | |
|                              SourceLocation PragmaLoc,
 | |
|                              SourceLocation NameLoc) {
 | |
|   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
 | |
|   } else {
 | |
|     (void)WeakUndeclaredIdentifiers.insert(
 | |
|       std::pair<IdentifierInfo*,WeakInfo>
 | |
|         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
 | |
|                                 IdentifierInfo* AliasName,
 | |
|                                 SourceLocation PragmaLoc,
 | |
|                                 SourceLocation NameLoc,
 | |
|                                 SourceLocation AliasNameLoc) {
 | |
|   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
 | |
|                                     LookupOrdinaryName);
 | |
|   WeakInfo W = WeakInfo(Name, NameLoc);
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     if (!PrevDecl->hasAttr<AliasAttr>())
 | |
|       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
 | |
|         DeclApplyPragmaWeak(TUScope, ND, W);
 | |
|   } else {
 | |
|     (void)WeakUndeclaredIdentifiers.insert(
 | |
|       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
 | |
|   }
 | |
| }
 | |
| 
 | |
| Decl *Sema::getObjCDeclContext() const {
 | |
|   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
 | |
| }
 | |
| 
 | |
| AvailabilityResult Sema::getCurContextAvailability() const {
 | |
|   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
 | |
|   return D->getAvailability();
 | |
| }
 |