forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			12515 lines
		
	
	
		
			478 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			12515 lines
		
	
	
		
			478 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for C++ declarations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/AST/ASTConsumer.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTMutationListener.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/DeclVisitor.h"
 | |
| #include "clang/AST/EvaluatedExprVisitor.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/RecursiveASTVisitor.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/AST/TypeOrdering.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/LiteralSupport.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Sema/CXXFieldCollector.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/ParsedTemplate.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include <map>
 | |
| #include <set>
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CheckDefaultArgumentVisitor
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
 | |
|   /// the default argument of a parameter to determine whether it
 | |
|   /// contains any ill-formed subexpressions. For example, this will
 | |
|   /// diagnose the use of local variables or parameters within the
 | |
|   /// default argument expression.
 | |
|   class CheckDefaultArgumentVisitor
 | |
|     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
 | |
|     Expr *DefaultArg;
 | |
|     Sema *S;
 | |
| 
 | |
|   public:
 | |
|     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
 | |
|       : DefaultArg(defarg), S(s) {}
 | |
| 
 | |
|     bool VisitExpr(Expr *Node);
 | |
|     bool VisitDeclRefExpr(DeclRefExpr *DRE);
 | |
|     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
 | |
|     bool VisitLambdaExpr(LambdaExpr *Lambda);
 | |
|     bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
 | |
|   };
 | |
| 
 | |
|   /// VisitExpr - Visit all of the children of this expression.
 | |
|   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
 | |
|     bool IsInvalid = false;
 | |
|     for (Stmt::child_range I = Node->children(); I; ++I)
 | |
|       IsInvalid |= Visit(*I);
 | |
|     return IsInvalid;
 | |
|   }
 | |
| 
 | |
|   /// VisitDeclRefExpr - Visit a reference to a declaration, to
 | |
|   /// determine whether this declaration can be used in the default
 | |
|   /// argument expression.
 | |
|   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
 | |
|     NamedDecl *Decl = DRE->getDecl();
 | |
|     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
 | |
|       // C++ [dcl.fct.default]p9
 | |
|       //   Default arguments are evaluated each time the function is
 | |
|       //   called. The order of evaluation of function arguments is
 | |
|       //   unspecified. Consequently, parameters of a function shall not
 | |
|       //   be used in default argument expressions, even if they are not
 | |
|       //   evaluated. Parameters of a function declared before a default
 | |
|       //   argument expression are in scope and can hide namespace and
 | |
|       //   class member names.
 | |
|       return S->Diag(DRE->getLocStart(),
 | |
|                      diag::err_param_default_argument_references_param)
 | |
|          << Param->getDeclName() << DefaultArg->getSourceRange();
 | |
|     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
 | |
|       // C++ [dcl.fct.default]p7
 | |
|       //   Local variables shall not be used in default argument
 | |
|       //   expressions.
 | |
|       if (VDecl->isLocalVarDecl())
 | |
|         return S->Diag(DRE->getLocStart(),
 | |
|                        diag::err_param_default_argument_references_local)
 | |
|           << VDecl->getDeclName() << DefaultArg->getSourceRange();
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// VisitCXXThisExpr - Visit a C++ "this" expression.
 | |
|   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
 | |
|     // C++ [dcl.fct.default]p8:
 | |
|     //   The keyword this shall not be used in a default argument of a
 | |
|     //   member function.
 | |
|     return S->Diag(ThisE->getLocStart(),
 | |
|                    diag::err_param_default_argument_references_this)
 | |
|                << ThisE->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
 | |
|     bool Invalid = false;
 | |
|     for (PseudoObjectExpr::semantics_iterator
 | |
|            i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
 | |
|       Expr *E = *i;
 | |
| 
 | |
|       // Look through bindings.
 | |
|       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
 | |
|         E = OVE->getSourceExpr();
 | |
|         assert(E && "pseudo-object binding without source expression?");
 | |
|       }
 | |
| 
 | |
|       Invalid |= Visit(E);
 | |
|     }
 | |
|     return Invalid;
 | |
|   }
 | |
| 
 | |
|   bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
 | |
|     // C++11 [expr.lambda.prim]p13:
 | |
|     //   A lambda-expression appearing in a default argument shall not
 | |
|     //   implicitly or explicitly capture any entity.
 | |
|     if (Lambda->capture_begin() == Lambda->capture_end())
 | |
|       return false;
 | |
| 
 | |
|     return S->Diag(Lambda->getLocStart(), 
 | |
|                    diag::err_lambda_capture_default_arg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
 | |
|                                                  const CXXMethodDecl *Method) {
 | |
|   // If we have an MSAny spec already, don't bother.
 | |
|   if (!Method || ComputedEST == EST_MSAny)
 | |
|     return;
 | |
| 
 | |
|   const FunctionProtoType *Proto
 | |
|     = Method->getType()->getAs<FunctionProtoType>();
 | |
|   Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
 | |
|   if (!Proto)
 | |
|     return;
 | |
| 
 | |
|   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
 | |
| 
 | |
|   // If this function can throw any exceptions, make a note of that.
 | |
|   if (EST == EST_MSAny || EST == EST_None) {
 | |
|     ClearExceptions();
 | |
|     ComputedEST = EST;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // FIXME: If the call to this decl is using any of its default arguments, we
 | |
|   // need to search them for potentially-throwing calls.
 | |
| 
 | |
|   // If this function has a basic noexcept, it doesn't affect the outcome.
 | |
|   if (EST == EST_BasicNoexcept)
 | |
|     return;
 | |
| 
 | |
|   // If we have a throw-all spec at this point, ignore the function.
 | |
|   if (ComputedEST == EST_None)
 | |
|     return;
 | |
| 
 | |
|   // If we're still at noexcept(true) and there's a nothrow() callee,
 | |
|   // change to that specification.
 | |
|   if (EST == EST_DynamicNone) {
 | |
|     if (ComputedEST == EST_BasicNoexcept)
 | |
|       ComputedEST = EST_DynamicNone;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check out noexcept specs.
 | |
|   if (EST == EST_ComputedNoexcept) {
 | |
|     FunctionProtoType::NoexceptResult NR =
 | |
|         Proto->getNoexceptSpec(Self->Context);
 | |
|     assert(NR != FunctionProtoType::NR_NoNoexcept &&
 | |
|            "Must have noexcept result for EST_ComputedNoexcept.");
 | |
|     assert(NR != FunctionProtoType::NR_Dependent &&
 | |
|            "Should not generate implicit declarations for dependent cases, "
 | |
|            "and don't know how to handle them anyway.");
 | |
| 
 | |
|     // noexcept(false) -> no spec on the new function
 | |
|     if (NR == FunctionProtoType::NR_Throw) {
 | |
|       ClearExceptions();
 | |
|       ComputedEST = EST_None;
 | |
|     }
 | |
|     // noexcept(true) won't change anything either.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(EST == EST_Dynamic && "EST case not considered earlier.");
 | |
|   assert(ComputedEST != EST_None &&
 | |
|          "Shouldn't collect exceptions when throw-all is guaranteed.");
 | |
|   ComputedEST = EST_Dynamic;
 | |
|   // Record the exceptions in this function's exception specification.
 | |
|   for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
 | |
|                                           EEnd = Proto->exception_end();
 | |
|        E != EEnd; ++E)
 | |
|     if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
 | |
|       Exceptions.push_back(*E);
 | |
| }
 | |
| 
 | |
| void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
 | |
|   if (!E || ComputedEST == EST_MSAny)
 | |
|     return;
 | |
| 
 | |
|   // FIXME:
 | |
|   //
 | |
|   // C++0x [except.spec]p14:
 | |
|   //   [An] implicit exception-specification specifies the type-id T if and
 | |
|   // only if T is allowed by the exception-specification of a function directly
 | |
|   // invoked by f's implicit definition; f shall allow all exceptions if any
 | |
|   // function it directly invokes allows all exceptions, and f shall allow no
 | |
|   // exceptions if every function it directly invokes allows no exceptions.
 | |
|   //
 | |
|   // Note in particular that if an implicit exception-specification is generated
 | |
|   // for a function containing a throw-expression, that specification can still
 | |
|   // be noexcept(true).
 | |
|   //
 | |
|   // Note also that 'directly invoked' is not defined in the standard, and there
 | |
|   // is no indication that we should only consider potentially-evaluated calls.
 | |
|   //
 | |
|   // Ultimately we should implement the intent of the standard: the exception
 | |
|   // specification should be the set of exceptions which can be thrown by the
 | |
|   // implicit definition. For now, we assume that any non-nothrow expression can
 | |
|   // throw any exception.
 | |
| 
 | |
|   if (Self->canThrow(E))
 | |
|     ComputedEST = EST_None;
 | |
| }
 | |
| 
 | |
| bool
 | |
| Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
 | |
|                               SourceLocation EqualLoc) {
 | |
|   if (RequireCompleteType(Param->getLocation(), Param->getType(),
 | |
|                           diag::err_typecheck_decl_incomplete_type)) {
 | |
|     Param->setInvalidDecl();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++ [dcl.fct.default]p5
 | |
|   //   A default argument expression is implicitly converted (clause
 | |
|   //   4) to the parameter type. The default argument expression has
 | |
|   //   the same semantic constraints as the initializer expression in
 | |
|   //   a declaration of a variable of the parameter type, using the
 | |
|   //   copy-initialization semantics (8.5).
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
 | |
|                                                                     Param);
 | |
|   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
 | |
|                                                            EqualLoc);
 | |
|   InitializationSequence InitSeq(*this, Entity, Kind, Arg);
 | |
|   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
 | |
|   if (Result.isInvalid())
 | |
|     return true;
 | |
|   Arg = Result.takeAs<Expr>();
 | |
| 
 | |
|   CheckCompletedExpr(Arg, EqualLoc);
 | |
|   Arg = MaybeCreateExprWithCleanups(Arg);
 | |
| 
 | |
|   // Okay: add the default argument to the parameter
 | |
|   Param->setDefaultArg(Arg);
 | |
| 
 | |
|   // We have already instantiated this parameter; provide each of the 
 | |
|   // instantiations with the uninstantiated default argument.
 | |
|   UnparsedDefaultArgInstantiationsMap::iterator InstPos
 | |
|     = UnparsedDefaultArgInstantiations.find(Param);
 | |
|   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
 | |
|     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
 | |
|       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
 | |
|     
 | |
|     // We're done tracking this parameter's instantiations.
 | |
|     UnparsedDefaultArgInstantiations.erase(InstPos);
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnParamDefaultArgument - Check whether the default argument
 | |
| /// provided for a function parameter is well-formed. If so, attach it
 | |
| /// to the parameter declaration.
 | |
| void
 | |
| Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
 | |
|                                 Expr *DefaultArg) {
 | |
|   if (!param || !DefaultArg)
 | |
|     return;
 | |
| 
 | |
|   ParmVarDecl *Param = cast<ParmVarDecl>(param);
 | |
|   UnparsedDefaultArgLocs.erase(Param);
 | |
| 
 | |
|   // Default arguments are only permitted in C++
 | |
|   if (!getLangOpts().CPlusPlus) {
 | |
|     Diag(EqualLoc, diag::err_param_default_argument)
 | |
|       << DefaultArg->getSourceRange();
 | |
|     Param->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check for unexpanded parameter packs.
 | |
|   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
 | |
|     Param->setInvalidDecl();
 | |
|     return;
 | |
|   }    
 | |
|       
 | |
|   // Check that the default argument is well-formed
 | |
|   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
 | |
|   if (DefaultArgChecker.Visit(DefaultArg)) {
 | |
|     Param->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
 | |
| }
 | |
| 
 | |
| /// ActOnParamUnparsedDefaultArgument - We've seen a default
 | |
| /// argument for a function parameter, but we can't parse it yet
 | |
| /// because we're inside a class definition. Note that this default
 | |
| /// argument will be parsed later.
 | |
| void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
 | |
|                                              SourceLocation EqualLoc,
 | |
|                                              SourceLocation ArgLoc) {
 | |
|   if (!param)
 | |
|     return;
 | |
| 
 | |
|   ParmVarDecl *Param = cast<ParmVarDecl>(param);
 | |
|   if (Param)
 | |
|     Param->setUnparsedDefaultArg();
 | |
| 
 | |
|   UnparsedDefaultArgLocs[Param] = ArgLoc;
 | |
| }
 | |
| 
 | |
| /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
 | |
| /// the default argument for the parameter param failed.
 | |
| void Sema::ActOnParamDefaultArgumentError(Decl *param) {
 | |
|   if (!param)
 | |
|     return;
 | |
| 
 | |
|   ParmVarDecl *Param = cast<ParmVarDecl>(param);
 | |
| 
 | |
|   Param->setInvalidDecl();
 | |
| 
 | |
|   UnparsedDefaultArgLocs.erase(Param);
 | |
| }
 | |
| 
 | |
| /// CheckExtraCXXDefaultArguments - Check for any extra default
 | |
| /// arguments in the declarator, which is not a function declaration
 | |
| /// or definition and therefore is not permitted to have default
 | |
| /// arguments. This routine should be invoked for every declarator
 | |
| /// that is not a function declaration or definition.
 | |
| void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
 | |
|   // C++ [dcl.fct.default]p3
 | |
|   //   A default argument expression shall be specified only in the
 | |
|   //   parameter-declaration-clause of a function declaration or in a
 | |
|   //   template-parameter (14.1). It shall not be specified for a
 | |
|   //   parameter pack. If it is specified in a
 | |
|   //   parameter-declaration-clause, it shall not occur within a
 | |
|   //   declarator or abstract-declarator of a parameter-declaration.
 | |
|   bool MightBeFunction = D.isFunctionDeclarationContext();
 | |
|   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
 | |
|     DeclaratorChunk &chunk = D.getTypeObject(i);
 | |
|     if (chunk.Kind == DeclaratorChunk::Function) {
 | |
|       if (MightBeFunction) {
 | |
|         // This is a function declaration. It can have default arguments, but
 | |
|         // keep looking in case its return type is a function type with default
 | |
|         // arguments.
 | |
|         MightBeFunction = false;
 | |
|         continue;
 | |
|       }
 | |
|       for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
 | |
|         ParmVarDecl *Param =
 | |
|           cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
 | |
|         if (Param->hasUnparsedDefaultArg()) {
 | |
|           CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
 | |
|           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
 | |
|             << SourceRange((*Toks)[1].getLocation(),
 | |
|                            Toks->back().getLocation());
 | |
|           delete Toks;
 | |
|           chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
 | |
|         } else if (Param->getDefaultArg()) {
 | |
|           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
 | |
|             << Param->getDefaultArg()->getSourceRange();
 | |
|           Param->setDefaultArg(0);
 | |
|         }
 | |
|       }
 | |
|     } else if (chunk.Kind != DeclaratorChunk::Paren) {
 | |
|       MightBeFunction = false;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
 | |
|   for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
 | |
|     const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
 | |
|     if (!PVD->hasDefaultArg())
 | |
|       return false;
 | |
|     if (!PVD->hasInheritedDefaultArg())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MergeCXXFunctionDecl - Merge two declarations of the same C++
 | |
| /// function, once we already know that they have the same
 | |
| /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
 | |
| /// error, false otherwise.
 | |
| bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
 | |
|                                 Scope *S) {
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // C++ [dcl.fct.default]p4:
 | |
|   //   For non-template functions, default arguments can be added in
 | |
|   //   later declarations of a function in the same
 | |
|   //   scope. Declarations in different scopes have completely
 | |
|   //   distinct sets of default arguments. That is, declarations in
 | |
|   //   inner scopes do not acquire default arguments from
 | |
|   //   declarations in outer scopes, and vice versa. In a given
 | |
|   //   function declaration, all parameters subsequent to a
 | |
|   //   parameter with a default argument shall have default
 | |
|   //   arguments supplied in this or previous declarations. A
 | |
|   //   default argument shall not be redefined by a later
 | |
|   //   declaration (not even to the same value).
 | |
|   //
 | |
|   // C++ [dcl.fct.default]p6:
 | |
|   //   Except for member functions of class templates, the default arguments 
 | |
|   //   in a member function definition that appears outside of the class 
 | |
|   //   definition are added to the set of default arguments provided by the 
 | |
|   //   member function declaration in the class definition.
 | |
|   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
 | |
|     ParmVarDecl *OldParam = Old->getParamDecl(p);
 | |
|     ParmVarDecl *NewParam = New->getParamDecl(p);
 | |
| 
 | |
|     bool OldParamHasDfl = OldParam->hasDefaultArg();
 | |
|     bool NewParamHasDfl = NewParam->hasDefaultArg();
 | |
| 
 | |
|     NamedDecl *ND = Old;
 | |
|     if (S && !isDeclInScope(ND, New->getDeclContext(), S))
 | |
|       // Ignore default parameters of old decl if they are not in
 | |
|       // the same scope.
 | |
|       OldParamHasDfl = false;
 | |
| 
 | |
|     if (OldParamHasDfl && NewParamHasDfl) {
 | |
| 
 | |
|       unsigned DiagDefaultParamID =
 | |
|         diag::err_param_default_argument_redefinition;
 | |
| 
 | |
|       // MSVC accepts that default parameters be redefined for member functions
 | |
|       // of template class. The new default parameter's value is ignored.
 | |
|       Invalid = true;
 | |
|       if (getLangOpts().MicrosoftExt) {
 | |
|         CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
 | |
|         if (MD && MD->getParent()->getDescribedClassTemplate()) {
 | |
|           // Merge the old default argument into the new parameter.
 | |
|           NewParam->setHasInheritedDefaultArg();
 | |
|           if (OldParam->hasUninstantiatedDefaultArg())
 | |
|             NewParam->setUninstantiatedDefaultArg(
 | |
|                                       OldParam->getUninstantiatedDefaultArg());
 | |
|           else
 | |
|             NewParam->setDefaultArg(OldParam->getInit());
 | |
|           DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
 | |
|           Invalid = false;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // FIXME: If we knew where the '=' was, we could easily provide a fix-it 
 | |
|       // hint here. Alternatively, we could walk the type-source information
 | |
|       // for NewParam to find the last source location in the type... but it
 | |
|       // isn't worth the effort right now. This is the kind of test case that
 | |
|       // is hard to get right:
 | |
|       //   int f(int);
 | |
|       //   void g(int (*fp)(int) = f);
 | |
|       //   void g(int (*fp)(int) = &f);
 | |
|       Diag(NewParam->getLocation(), DiagDefaultParamID)
 | |
|         << NewParam->getDefaultArgRange();
 | |
|       
 | |
|       // Look for the function declaration where the default argument was
 | |
|       // actually written, which may be a declaration prior to Old.
 | |
|       for (FunctionDecl *Older = Old->getPreviousDecl();
 | |
|            Older; Older = Older->getPreviousDecl()) {
 | |
|         if (!Older->getParamDecl(p)->hasDefaultArg())
 | |
|           break;
 | |
|         
 | |
|         OldParam = Older->getParamDecl(p);
 | |
|       }        
 | |
|       
 | |
|       Diag(OldParam->getLocation(), diag::note_previous_definition)
 | |
|         << OldParam->getDefaultArgRange();
 | |
|     } else if (OldParamHasDfl) {
 | |
|       // Merge the old default argument into the new parameter.
 | |
|       // It's important to use getInit() here;  getDefaultArg()
 | |
|       // strips off any top-level ExprWithCleanups.
 | |
|       NewParam->setHasInheritedDefaultArg();
 | |
|       if (OldParam->hasUninstantiatedDefaultArg())
 | |
|         NewParam->setUninstantiatedDefaultArg(
 | |
|                                       OldParam->getUninstantiatedDefaultArg());
 | |
|       else
 | |
|         NewParam->setDefaultArg(OldParam->getInit());
 | |
|     } else if (NewParamHasDfl) {
 | |
|       if (New->getDescribedFunctionTemplate()) {
 | |
|         // Paragraph 4, quoted above, only applies to non-template functions.
 | |
|         Diag(NewParam->getLocation(),
 | |
|              diag::err_param_default_argument_template_redecl)
 | |
|           << NewParam->getDefaultArgRange();
 | |
|         Diag(Old->getLocation(), diag::note_template_prev_declaration)
 | |
|           << false;
 | |
|       } else if (New->getTemplateSpecializationKind()
 | |
|                    != TSK_ImplicitInstantiation &&
 | |
|                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
 | |
|         // C++ [temp.expr.spec]p21:
 | |
|         //   Default function arguments shall not be specified in a declaration
 | |
|         //   or a definition for one of the following explicit specializations:
 | |
|         //     - the explicit specialization of a function template;
 | |
|         //     - the explicit specialization of a member function template;
 | |
|         //     - the explicit specialization of a member function of a class 
 | |
|         //       template where the class template specialization to which the
 | |
|         //       member function specialization belongs is implicitly 
 | |
|         //       instantiated.
 | |
|         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
 | |
|           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
 | |
|           << New->getDeclName()
 | |
|           << NewParam->getDefaultArgRange();
 | |
|       } else if (New->getDeclContext()->isDependentContext()) {
 | |
|         // C++ [dcl.fct.default]p6 (DR217):
 | |
|         //   Default arguments for a member function of a class template shall 
 | |
|         //   be specified on the initial declaration of the member function 
 | |
|         //   within the class template.
 | |
|         //
 | |
|         // Reading the tea leaves a bit in DR217 and its reference to DR205 
 | |
|         // leads me to the conclusion that one cannot add default function 
 | |
|         // arguments for an out-of-line definition of a member function of a 
 | |
|         // dependent type.
 | |
|         int WhichKind = 2;
 | |
|         if (CXXRecordDecl *Record 
 | |
|               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
 | |
|           if (Record->getDescribedClassTemplate())
 | |
|             WhichKind = 0;
 | |
|           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
 | |
|             WhichKind = 1;
 | |
|           else
 | |
|             WhichKind = 2;
 | |
|         }
 | |
|         
 | |
|         Diag(NewParam->getLocation(), 
 | |
|              diag::err_param_default_argument_member_template_redecl)
 | |
|           << WhichKind
 | |
|           << NewParam->getDefaultArgRange();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // DR1344: If a default argument is added outside a class definition and that
 | |
|   // default argument makes the function a special member function, the program
 | |
|   // is ill-formed. This can only happen for constructors.
 | |
|   if (isa<CXXConstructorDecl>(New) &&
 | |
|       New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
 | |
|     CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
 | |
|                      OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
 | |
|     if (NewSM != OldSM) {
 | |
|       ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
 | |
|       assert(NewParam->hasDefaultArg());
 | |
|       Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
 | |
|         << NewParam->getDefaultArgRange() << NewSM;
 | |
|       Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++11 [dcl.constexpr]p1: If any declaration of a function or function
 | |
|   // template has a constexpr specifier then all its declarations shall
 | |
|   // contain the constexpr specifier.
 | |
|   if (New->isConstexpr() != Old->isConstexpr()) {
 | |
|     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
 | |
|       << New << New->isConstexpr();
 | |
|     Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
 | |
|   // argument expression, that declaration shall be a definition and shall be
 | |
|   // the only declaration of the function or function template in the
 | |
|   // translation unit.
 | |
|   if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
 | |
|       functionDeclHasDefaultArgument(Old)) {
 | |
|     Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
 | |
|     Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   if (CheckEquivalentExceptionSpec(Old, New))
 | |
|     Invalid = true;
 | |
| 
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| /// \brief Merge the exception specifications of two variable declarations.
 | |
| ///
 | |
| /// This is called when there's a redeclaration of a VarDecl. The function
 | |
| /// checks if the redeclaration might have an exception specification and
 | |
| /// validates compatibility and merges the specs if necessary.
 | |
| void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
 | |
|   // Shortcut if exceptions are disabled.
 | |
|   if (!getLangOpts().CXXExceptions)
 | |
|     return;
 | |
| 
 | |
|   assert(Context.hasSameType(New->getType(), Old->getType()) &&
 | |
|          "Should only be called if types are otherwise the same.");
 | |
| 
 | |
|   QualType NewType = New->getType();
 | |
|   QualType OldType = Old->getType();
 | |
| 
 | |
|   // We're only interested in pointers and references to functions, as well
 | |
|   // as pointers to member functions.
 | |
|   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
 | |
|     NewType = R->getPointeeType();
 | |
|     OldType = OldType->getAs<ReferenceType>()->getPointeeType();
 | |
|   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
 | |
|     NewType = P->getPointeeType();
 | |
|     OldType = OldType->getAs<PointerType>()->getPointeeType();
 | |
|   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
 | |
|     NewType = M->getPointeeType();
 | |
|     OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   if (!NewType->isFunctionProtoType())
 | |
|     return;
 | |
| 
 | |
|   // There's lots of special cases for functions. For function pointers, system
 | |
|   // libraries are hopefully not as broken so that we don't need these
 | |
|   // workarounds.
 | |
|   if (CheckEquivalentExceptionSpec(
 | |
|         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
 | |
|         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
 | |
|     New->setInvalidDecl();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckCXXDefaultArguments - Verify that the default arguments for a
 | |
| /// function declaration are well-formed according to C++
 | |
| /// [dcl.fct.default].
 | |
| void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
 | |
|   unsigned NumParams = FD->getNumParams();
 | |
|   unsigned p;
 | |
| 
 | |
|   // Find first parameter with a default argument
 | |
|   for (p = 0; p < NumParams; ++p) {
 | |
|     ParmVarDecl *Param = FD->getParamDecl(p);
 | |
|     if (Param->hasDefaultArg())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // C++ [dcl.fct.default]p4:
 | |
|   //   In a given function declaration, all parameters
 | |
|   //   subsequent to a parameter with a default argument shall
 | |
|   //   have default arguments supplied in this or previous
 | |
|   //   declarations. A default argument shall not be redefined
 | |
|   //   by a later declaration (not even to the same value).
 | |
|   unsigned LastMissingDefaultArg = 0;
 | |
|   for (; p < NumParams; ++p) {
 | |
|     ParmVarDecl *Param = FD->getParamDecl(p);
 | |
|     if (!Param->hasDefaultArg()) {
 | |
|       if (Param->isInvalidDecl())
 | |
|         /* We already complained about this parameter. */;
 | |
|       else if (Param->getIdentifier())
 | |
|         Diag(Param->getLocation(),
 | |
|              diag::err_param_default_argument_missing_name)
 | |
|           << Param->getIdentifier();
 | |
|       else
 | |
|         Diag(Param->getLocation(),
 | |
|              diag::err_param_default_argument_missing);
 | |
| 
 | |
|       LastMissingDefaultArg = p;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LastMissingDefaultArg > 0) {
 | |
|     // Some default arguments were missing. Clear out all of the
 | |
|     // default arguments up to (and including) the last missing
 | |
|     // default argument, so that we leave the function parameters
 | |
|     // in a semantically valid state.
 | |
|     for (p = 0; p <= LastMissingDefaultArg; ++p) {
 | |
|       ParmVarDecl *Param = FD->getParamDecl(p);
 | |
|       if (Param->hasDefaultArg()) {
 | |
|         Param->setDefaultArg(0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // CheckConstexprParameterTypes - Check whether a function's parameter types
 | |
| // are all literal types. If so, return true. If not, produce a suitable
 | |
| // diagnostic and return false.
 | |
| static bool CheckConstexprParameterTypes(Sema &SemaRef,
 | |
|                                          const FunctionDecl *FD) {
 | |
|   unsigned ArgIndex = 0;
 | |
|   const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
 | |
|   for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
 | |
|        e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
 | |
|     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
 | |
|     SourceLocation ParamLoc = PD->getLocation();
 | |
|     if (!(*i)->isDependentType() &&
 | |
|         SemaRef.RequireLiteralType(ParamLoc, *i,
 | |
|                                    diag::err_constexpr_non_literal_param,
 | |
|                                    ArgIndex+1, PD->getSourceRange(),
 | |
|                                    isa<CXXConstructorDecl>(FD)))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Get diagnostic %select index for tag kind for
 | |
| /// record diagnostic message.
 | |
| /// WARNING: Indexes apply to particular diagnostics only!
 | |
| ///
 | |
| /// \returns diagnostic %select index.
 | |
| static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
 | |
|   switch (Tag) {
 | |
|   case TTK_Struct: return 0;
 | |
|   case TTK_Interface: return 1;
 | |
|   case TTK_Class:  return 2;
 | |
|   default: llvm_unreachable("Invalid tag kind for record diagnostic!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
 | |
| // the requirements of a constexpr function definition or a constexpr
 | |
| // constructor definition. If so, return true. If not, produce appropriate
 | |
| // diagnostics and return false.
 | |
| //
 | |
| // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
 | |
| bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
 | |
|   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
 | |
|   if (MD && MD->isInstance()) {
 | |
|     // C++11 [dcl.constexpr]p4:
 | |
|     //  The definition of a constexpr constructor shall satisfy the following
 | |
|     //  constraints:
 | |
|     //  - the class shall not have any virtual base classes;
 | |
|     const CXXRecordDecl *RD = MD->getParent();
 | |
|     if (RD->getNumVBases()) {
 | |
|       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
 | |
|         << isa<CXXConstructorDecl>(NewFD)
 | |
|         << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
 | |
|       for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|              E = RD->vbases_end(); I != E; ++I)
 | |
|         Diag(I->getLocStart(),
 | |
|              diag::note_constexpr_virtual_base_here) << I->getSourceRange();
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!isa<CXXConstructorDecl>(NewFD)) {
 | |
|     // C++11 [dcl.constexpr]p3:
 | |
|     //  The definition of a constexpr function shall satisfy the following
 | |
|     //  constraints:
 | |
|     // - it shall not be virtual;
 | |
|     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
 | |
|     if (Method && Method->isVirtual()) {
 | |
|       Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
 | |
| 
 | |
|       // If it's not obvious why this function is virtual, find an overridden
 | |
|       // function which uses the 'virtual' keyword.
 | |
|       const CXXMethodDecl *WrittenVirtual = Method;
 | |
|       while (!WrittenVirtual->isVirtualAsWritten())
 | |
|         WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
 | |
|       if (WrittenVirtual != Method)
 | |
|         Diag(WrittenVirtual->getLocation(),
 | |
|              diag::note_overridden_virtual_function);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // - its return type shall be a literal type;
 | |
|     QualType RT = NewFD->getResultType();
 | |
|     if (!RT->isDependentType() &&
 | |
|         RequireLiteralType(NewFD->getLocation(), RT,
 | |
|                            diag::err_constexpr_non_literal_return))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // - each of its parameter types shall be a literal type;
 | |
|   if (!CheckConstexprParameterTypes(*this, NewFD))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check the given declaration statement is legal within a constexpr function
 | |
| /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
 | |
| ///
 | |
| /// \return true if the body is OK (maybe only as an extension), false if we
 | |
| ///         have diagnosed a problem.
 | |
| static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
 | |
|                                    DeclStmt *DS, SourceLocation &Cxx1yLoc) {
 | |
|   // C++11 [dcl.constexpr]p3 and p4:
 | |
|   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
 | |
|   //  contain only
 | |
|   for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
 | |
|          DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
 | |
|     switch ((*DclIt)->getKind()) {
 | |
|     case Decl::StaticAssert:
 | |
|     case Decl::Using:
 | |
|     case Decl::UsingShadow:
 | |
|     case Decl::UsingDirective:
 | |
|     case Decl::UnresolvedUsingTypename:
 | |
|     case Decl::UnresolvedUsingValue:
 | |
|       //   - static_assert-declarations
 | |
|       //   - using-declarations,
 | |
|       //   - using-directives,
 | |
|       continue;
 | |
| 
 | |
|     case Decl::Typedef:
 | |
|     case Decl::TypeAlias: {
 | |
|       //   - typedef declarations and alias-declarations that do not define
 | |
|       //     classes or enumerations,
 | |
|       TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
 | |
|       if (TN->getUnderlyingType()->isVariablyModifiedType()) {
 | |
|         // Don't allow variably-modified types in constexpr functions.
 | |
|         TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
 | |
|         SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
 | |
|           << TL.getSourceRange() << TL.getType()
 | |
|           << isa<CXXConstructorDecl>(Dcl);
 | |
|         return false;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case Decl::Enum:
 | |
|     case Decl::CXXRecord:
 | |
|       // C++1y allows types to be defined, not just declared.
 | |
|       if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
 | |
|         SemaRef.Diag(DS->getLocStart(),
 | |
|                      SemaRef.getLangOpts().CPlusPlus1y
 | |
|                        ? diag::warn_cxx11_compat_constexpr_type_definition
 | |
|                        : diag::ext_constexpr_type_definition)
 | |
|           << isa<CXXConstructorDecl>(Dcl);
 | |
|       continue;
 | |
| 
 | |
|     case Decl::EnumConstant:
 | |
|     case Decl::IndirectField:
 | |
|     case Decl::ParmVar:
 | |
|       // These can only appear with other declarations which are banned in
 | |
|       // C++11 and permitted in C++1y, so ignore them.
 | |
|       continue;
 | |
| 
 | |
|     case Decl::Var: {
 | |
|       // C++1y [dcl.constexpr]p3 allows anything except:
 | |
|       //   a definition of a variable of non-literal type or of static or
 | |
|       //   thread storage duration or for which no initialization is performed.
 | |
|       VarDecl *VD = cast<VarDecl>(*DclIt);
 | |
|       if (VD->isThisDeclarationADefinition()) {
 | |
|         if (VD->isStaticLocal()) {
 | |
|           SemaRef.Diag(VD->getLocation(),
 | |
|                        diag::err_constexpr_local_var_static)
 | |
|             << isa<CXXConstructorDecl>(Dcl)
 | |
|             << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
 | |
|           return false;
 | |
|         }
 | |
|         if (!VD->getType()->isDependentType() &&
 | |
|             SemaRef.RequireLiteralType(
 | |
|               VD->getLocation(), VD->getType(),
 | |
|               diag::err_constexpr_local_var_non_literal_type,
 | |
|               isa<CXXConstructorDecl>(Dcl)))
 | |
|           return false;
 | |
|         if (!VD->hasInit()) {
 | |
|           SemaRef.Diag(VD->getLocation(),
 | |
|                        diag::err_constexpr_local_var_no_init)
 | |
|             << isa<CXXConstructorDecl>(Dcl);
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|       SemaRef.Diag(VD->getLocation(),
 | |
|                    SemaRef.getLangOpts().CPlusPlus1y
 | |
|                     ? diag::warn_cxx11_compat_constexpr_local_var
 | |
|                     : diag::ext_constexpr_local_var)
 | |
|         << isa<CXXConstructorDecl>(Dcl);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case Decl::NamespaceAlias:
 | |
|     case Decl::Function:
 | |
|       // These are disallowed in C++11 and permitted in C++1y. Allow them
 | |
|       // everywhere as an extension.
 | |
|       if (!Cxx1yLoc.isValid())
 | |
|         Cxx1yLoc = DS->getLocStart();
 | |
|       continue;
 | |
| 
 | |
|     default:
 | |
|       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
 | |
|         << isa<CXXConstructorDecl>(Dcl);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check that the given field is initialized within a constexpr constructor.
 | |
| ///
 | |
| /// \param Dcl The constexpr constructor being checked.
 | |
| /// \param Field The field being checked. This may be a member of an anonymous
 | |
| ///        struct or union nested within the class being checked.
 | |
| /// \param Inits All declarations, including anonymous struct/union members and
 | |
| ///        indirect members, for which any initialization was provided.
 | |
| /// \param Diagnosed Set to true if an error is produced.
 | |
| static void CheckConstexprCtorInitializer(Sema &SemaRef,
 | |
|                                           const FunctionDecl *Dcl,
 | |
|                                           FieldDecl *Field,
 | |
|                                           llvm::SmallSet<Decl*, 16> &Inits,
 | |
|                                           bool &Diagnosed) {
 | |
|   if (Field->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   if (Field->isUnnamedBitfield())
 | |
|     return;
 | |
| 
 | |
|   if (Field->isAnonymousStructOrUnion() &&
 | |
|       Field->getType()->getAsCXXRecordDecl()->isEmpty())
 | |
|     return;
 | |
| 
 | |
|   if (!Inits.count(Field)) {
 | |
|     if (!Diagnosed) {
 | |
|       SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
 | |
|       Diagnosed = true;
 | |
|     }
 | |
|     SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
 | |
|   } else if (Field->isAnonymousStructOrUnion()) {
 | |
|     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
 | |
|     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | |
|          I != E; ++I)
 | |
|       // If an anonymous union contains an anonymous struct of which any member
 | |
|       // is initialized, all members must be initialized.
 | |
|       if (!RD->isUnion() || Inits.count(*I))
 | |
|         CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check the provided statement is allowed in a constexpr function
 | |
| /// definition.
 | |
| static bool
 | |
| CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
 | |
|                            llvm::SmallVectorImpl<SourceLocation> &ReturnStmts,
 | |
|                            SourceLocation &Cxx1yLoc) {
 | |
|   // - its function-body shall be [...] a compound-statement that contains only
 | |
|   switch (S->getStmtClass()) {
 | |
|   case Stmt::NullStmtClass:
 | |
|     //   - null statements,
 | |
|     return true;
 | |
| 
 | |
|   case Stmt::DeclStmtClass:
 | |
|     //   - static_assert-declarations
 | |
|     //   - using-declarations,
 | |
|     //   - using-directives,
 | |
|     //   - typedef declarations and alias-declarations that do not define
 | |
|     //     classes or enumerations,
 | |
|     if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
 | |
|       return false;
 | |
|     return true;
 | |
| 
 | |
|   case Stmt::ReturnStmtClass:
 | |
|     //   - and exactly one return statement;
 | |
|     if (isa<CXXConstructorDecl>(Dcl)) {
 | |
|       // C++1y allows return statements in constexpr constructors.
 | |
|       if (!Cxx1yLoc.isValid())
 | |
|         Cxx1yLoc = S->getLocStart();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     ReturnStmts.push_back(S->getLocStart());
 | |
|     return true;
 | |
| 
 | |
|   case Stmt::CompoundStmtClass: {
 | |
|     // C++1y allows compound-statements.
 | |
|     if (!Cxx1yLoc.isValid())
 | |
|       Cxx1yLoc = S->getLocStart();
 | |
| 
 | |
|     CompoundStmt *CompStmt = cast<CompoundStmt>(S);
 | |
|     for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
 | |
|            BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
 | |
|       if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
 | |
|                                       Cxx1yLoc))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case Stmt::AttributedStmtClass:
 | |
|     if (!Cxx1yLoc.isValid())
 | |
|       Cxx1yLoc = S->getLocStart();
 | |
|     return true;
 | |
| 
 | |
|   case Stmt::IfStmtClass: {
 | |
|     // C++1y allows if-statements.
 | |
|     if (!Cxx1yLoc.isValid())
 | |
|       Cxx1yLoc = S->getLocStart();
 | |
| 
 | |
|     IfStmt *If = cast<IfStmt>(S);
 | |
|     if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
 | |
|                                     Cxx1yLoc))
 | |
|       return false;
 | |
|     if (If->getElse() &&
 | |
|         !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
 | |
|                                     Cxx1yLoc))
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case Stmt::WhileStmtClass:
 | |
|   case Stmt::DoStmtClass:
 | |
|   case Stmt::ForStmtClass:
 | |
|   case Stmt::CXXForRangeStmtClass:
 | |
|   case Stmt::ContinueStmtClass:
 | |
|     // C++1y allows all of these. We don't allow them as extensions in C++11,
 | |
|     // because they don't make sense without variable mutation.
 | |
|     if (!SemaRef.getLangOpts().CPlusPlus1y)
 | |
|       break;
 | |
|     if (!Cxx1yLoc.isValid())
 | |
|       Cxx1yLoc = S->getLocStart();
 | |
|     for (Stmt::child_range Children = S->children(); Children; ++Children)
 | |
|       if (*Children &&
 | |
|           !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
 | |
|                                       Cxx1yLoc))
 | |
|         return false;
 | |
|     return true;
 | |
| 
 | |
|   case Stmt::SwitchStmtClass:
 | |
|   case Stmt::CaseStmtClass:
 | |
|   case Stmt::DefaultStmtClass:
 | |
|   case Stmt::BreakStmtClass:
 | |
|     // C++1y allows switch-statements, and since they don't need variable
 | |
|     // mutation, we can reasonably allow them in C++11 as an extension.
 | |
|     if (!Cxx1yLoc.isValid())
 | |
|       Cxx1yLoc = S->getLocStart();
 | |
|     for (Stmt::child_range Children = S->children(); Children; ++Children)
 | |
|       if (*Children &&
 | |
|           !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
 | |
|                                       Cxx1yLoc))
 | |
|         return false;
 | |
|     return true;
 | |
| 
 | |
|   default:
 | |
|     if (!isa<Expr>(S))
 | |
|       break;
 | |
| 
 | |
|     // C++1y allows expression-statements.
 | |
|     if (!Cxx1yLoc.isValid())
 | |
|       Cxx1yLoc = S->getLocStart();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
 | |
|     << isa<CXXConstructorDecl>(Dcl);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check the body for the given constexpr function declaration only contains
 | |
| /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
 | |
| ///
 | |
| /// \return true if the body is OK, false if we have diagnosed a problem.
 | |
| bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
 | |
|   if (isa<CXXTryStmt>(Body)) {
 | |
|     // C++11 [dcl.constexpr]p3:
 | |
|     //  The definition of a constexpr function shall satisfy the following
 | |
|     //  constraints: [...]
 | |
|     // - its function-body shall be = delete, = default, or a
 | |
|     //   compound-statement
 | |
|     //
 | |
|     // C++11 [dcl.constexpr]p4:
 | |
|     //  In the definition of a constexpr constructor, [...]
 | |
|     // - its function-body shall not be a function-try-block;
 | |
|     Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
 | |
|       << isa<CXXConstructorDecl>(Dcl);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   SmallVector<SourceLocation, 4> ReturnStmts;
 | |
| 
 | |
|   // - its function-body shall be [...] a compound-statement that contains only
 | |
|   //   [... list of cases ...]
 | |
|   CompoundStmt *CompBody = cast<CompoundStmt>(Body);
 | |
|   SourceLocation Cxx1yLoc;
 | |
|   for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
 | |
|          BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
 | |
|     if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (Cxx1yLoc.isValid())
 | |
|     Diag(Cxx1yLoc,
 | |
|          getLangOpts().CPlusPlus1y
 | |
|            ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
 | |
|            : diag::ext_constexpr_body_invalid_stmt)
 | |
|       << isa<CXXConstructorDecl>(Dcl);
 | |
| 
 | |
|   if (const CXXConstructorDecl *Constructor
 | |
|         = dyn_cast<CXXConstructorDecl>(Dcl)) {
 | |
|     const CXXRecordDecl *RD = Constructor->getParent();
 | |
|     // DR1359:
 | |
|     // - every non-variant non-static data member and base class sub-object
 | |
|     //   shall be initialized;
 | |
|     // - if the class is a non-empty union, or for each non-empty anonymous
 | |
|     //   union member of a non-union class, exactly one non-static data member
 | |
|     //   shall be initialized;
 | |
|     if (RD->isUnion()) {
 | |
|       if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
 | |
|         Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
 | |
|         return false;
 | |
|       }
 | |
|     } else if (!Constructor->isDependentContext() &&
 | |
|                !Constructor->isDelegatingConstructor()) {
 | |
|       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
 | |
| 
 | |
|       // Skip detailed checking if we have enough initializers, and we would
 | |
|       // allow at most one initializer per member.
 | |
|       bool AnyAnonStructUnionMembers = false;
 | |
|       unsigned Fields = 0;
 | |
|       for (CXXRecordDecl::field_iterator I = RD->field_begin(),
 | |
|            E = RD->field_end(); I != E; ++I, ++Fields) {
 | |
|         if (I->isAnonymousStructOrUnion()) {
 | |
|           AnyAnonStructUnionMembers = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (AnyAnonStructUnionMembers ||
 | |
|           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
 | |
|         // Check initialization of non-static data members. Base classes are
 | |
|         // always initialized so do not need to be checked. Dependent bases
 | |
|         // might not have initializers in the member initializer list.
 | |
|         llvm::SmallSet<Decl*, 16> Inits;
 | |
|         for (CXXConstructorDecl::init_const_iterator
 | |
|                I = Constructor->init_begin(), E = Constructor->init_end();
 | |
|              I != E; ++I) {
 | |
|           if (FieldDecl *FD = (*I)->getMember())
 | |
|             Inits.insert(FD);
 | |
|           else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
 | |
|             Inits.insert(ID->chain_begin(), ID->chain_end());
 | |
|         }
 | |
| 
 | |
|         bool Diagnosed = false;
 | |
|         for (CXXRecordDecl::field_iterator I = RD->field_begin(),
 | |
|              E = RD->field_end(); I != E; ++I)
 | |
|           CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
 | |
|         if (Diagnosed)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     if (ReturnStmts.empty()) {
 | |
|       // C++1y doesn't require constexpr functions to contain a 'return'
 | |
|       // statement. We still do, unless the return type is void, because
 | |
|       // otherwise if there's no return statement, the function cannot
 | |
|       // be used in a core constant expression.
 | |
|       bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
 | |
|       Diag(Dcl->getLocation(),
 | |
|            OK ? diag::warn_cxx11_compat_constexpr_body_no_return
 | |
|               : diag::err_constexpr_body_no_return);
 | |
|       return OK;
 | |
|     }
 | |
|     if (ReturnStmts.size() > 1) {
 | |
|       Diag(ReturnStmts.back(),
 | |
|            getLangOpts().CPlusPlus1y
 | |
|              ? diag::warn_cxx11_compat_constexpr_body_multiple_return
 | |
|              : diag::ext_constexpr_body_multiple_return);
 | |
|       for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
 | |
|         Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++11 [dcl.constexpr]p5:
 | |
|   //   if no function argument values exist such that the function invocation
 | |
|   //   substitution would produce a constant expression, the program is
 | |
|   //   ill-formed; no diagnostic required.
 | |
|   // C++11 [dcl.constexpr]p3:
 | |
|   //   - every constructor call and implicit conversion used in initializing the
 | |
|   //     return value shall be one of those allowed in a constant expression.
 | |
|   // C++11 [dcl.constexpr]p4:
 | |
|   //   - every constructor involved in initializing non-static data members and
 | |
|   //     base class sub-objects shall be a constexpr constructor.
 | |
|   SmallVector<PartialDiagnosticAt, 8> Diags;
 | |
|   if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
 | |
|     Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
 | |
|       << isa<CXXConstructorDecl>(Dcl);
 | |
|     for (size_t I = 0, N = Diags.size(); I != N; ++I)
 | |
|       Diag(Diags[I].first, Diags[I].second);
 | |
|     // Don't return false here: we allow this for compatibility in
 | |
|     // system headers.
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isCurrentClassName - Determine whether the identifier II is the
 | |
| /// name of the class type currently being defined. In the case of
 | |
| /// nested classes, this will only return true if II is the name of
 | |
| /// the innermost class.
 | |
| bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
 | |
|                               const CXXScopeSpec *SS) {
 | |
|   assert(getLangOpts().CPlusPlus && "No class names in C!");
 | |
| 
 | |
|   CXXRecordDecl *CurDecl;
 | |
|   if (SS && SS->isSet() && !SS->isInvalid()) {
 | |
|     DeclContext *DC = computeDeclContext(*SS, true);
 | |
|     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
 | |
|   } else
 | |
|     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
 | |
| 
 | |
|   if (CurDecl && CurDecl->getIdentifier())
 | |
|     return &II == CurDecl->getIdentifier();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given class is a base class of the given
 | |
| /// class, including looking at dependent bases.
 | |
| static bool findCircularInheritance(const CXXRecordDecl *Class,
 | |
|                                     const CXXRecordDecl *Current) {
 | |
|   SmallVector<const CXXRecordDecl*, 8> Queue;
 | |
| 
 | |
|   Class = Class->getCanonicalDecl();
 | |
|   while (true) {
 | |
|     for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
 | |
|                                                   E = Current->bases_end();
 | |
|          I != E; ++I) {
 | |
|       CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
 | |
|       if (!Base)
 | |
|         continue;
 | |
| 
 | |
|       Base = Base->getDefinition();
 | |
|       if (!Base)
 | |
|         continue;
 | |
| 
 | |
|       if (Base->getCanonicalDecl() == Class)
 | |
|         return true;
 | |
| 
 | |
|       Queue.push_back(Base);
 | |
|     }
 | |
| 
 | |
|     if (Queue.empty())
 | |
|       return false;
 | |
| 
 | |
|     Current = Queue.back();
 | |
|     Queue.pop_back();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check the validity of a C++ base class specifier.
 | |
| ///
 | |
| /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
 | |
| /// and returns NULL otherwise.
 | |
| CXXBaseSpecifier *
 | |
| Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
 | |
|                          SourceRange SpecifierRange,
 | |
|                          bool Virtual, AccessSpecifier Access,
 | |
|                          TypeSourceInfo *TInfo,
 | |
|                          SourceLocation EllipsisLoc) {
 | |
|   QualType BaseType = TInfo->getType();
 | |
| 
 | |
|   // C++ [class.union]p1:
 | |
|   //   A union shall not have base classes.
 | |
|   if (Class->isUnion()) {
 | |
|     Diag(Class->getLocation(), diag::err_base_clause_on_union)
 | |
|       << SpecifierRange;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (EllipsisLoc.isValid() && 
 | |
|       !TInfo->getType()->containsUnexpandedParameterPack()) {
 | |
|     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
 | |
|       << TInfo->getTypeLoc().getSourceRange();
 | |
|     EllipsisLoc = SourceLocation();
 | |
|   }
 | |
| 
 | |
|   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
 | |
| 
 | |
|   if (BaseType->isDependentType()) {
 | |
|     // Make sure that we don't have circular inheritance among our dependent
 | |
|     // bases. For non-dependent bases, the check for completeness below handles
 | |
|     // this.
 | |
|     if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
 | |
|       if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
 | |
|           ((BaseDecl = BaseDecl->getDefinition()) &&
 | |
|            findCircularInheritance(Class, BaseDecl))) {
 | |
|         Diag(BaseLoc, diag::err_circular_inheritance)
 | |
|           << BaseType << Context.getTypeDeclType(Class);
 | |
| 
 | |
|         if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
 | |
|           Diag(BaseDecl->getLocation(), diag::note_previous_decl)
 | |
|             << BaseType;
 | |
|             
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
 | |
|                                           Class->getTagKind() == TTK_Class,
 | |
|                                           Access, TInfo, EllipsisLoc);
 | |
|   }
 | |
| 
 | |
|   // Base specifiers must be record types.
 | |
|   if (!BaseType->isRecordType()) {
 | |
|     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // C++ [class.union]p1:
 | |
|   //   A union shall not be used as a base class.
 | |
|   if (BaseType->isUnionType()) {
 | |
|     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // C++ [class.derived]p2:
 | |
|   //   The class-name in a base-specifier shall not be an incompletely
 | |
|   //   defined class.
 | |
|   if (RequireCompleteType(BaseLoc, BaseType,
 | |
|                           diag::err_incomplete_base_class, SpecifierRange)) {
 | |
|     Class->setInvalidDecl();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
 | |
|   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
 | |
|   assert(BaseDecl && "Record type has no declaration");
 | |
|   BaseDecl = BaseDecl->getDefinition();
 | |
|   assert(BaseDecl && "Base type is not incomplete, but has no definition");
 | |
|   CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
 | |
|   assert(CXXBaseDecl && "Base type is not a C++ type");
 | |
| 
 | |
|   // C++ [class]p3:
 | |
|   //   If a class is marked final and it appears as a base-type-specifier in 
 | |
|   //   base-clause, the program is ill-formed.
 | |
|   if (CXXBaseDecl->hasAttr<FinalAttr>()) {
 | |
|     Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 
 | |
|       << CXXBaseDecl->getDeclName();
 | |
|     Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
 | |
|       << CXXBaseDecl->getDeclName();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (BaseDecl->isInvalidDecl())
 | |
|     Class->setInvalidDecl();
 | |
|   
 | |
|   // Create the base specifier.
 | |
|   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
 | |
|                                         Class->getTagKind() == TTK_Class,
 | |
|                                         Access, TInfo, EllipsisLoc);
 | |
| }
 | |
| 
 | |
| /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
 | |
| /// one entry in the base class list of a class specifier, for
 | |
| /// example:
 | |
| ///    class foo : public bar, virtual private baz {
 | |
| /// 'public bar' and 'virtual private baz' are each base-specifiers.
 | |
| BaseResult
 | |
| Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
 | |
|                          ParsedAttributes &Attributes,
 | |
|                          bool Virtual, AccessSpecifier Access,
 | |
|                          ParsedType basetype, SourceLocation BaseLoc,
 | |
|                          SourceLocation EllipsisLoc) {
 | |
|   if (!classdecl)
 | |
|     return true;
 | |
| 
 | |
|   AdjustDeclIfTemplate(classdecl);
 | |
|   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
 | |
|   if (!Class)
 | |
|     return true;
 | |
| 
 | |
|   // We do not support any C++11 attributes on base-specifiers yet.
 | |
|   // Diagnose any attributes we see.
 | |
|   if (!Attributes.empty()) {
 | |
|     for (AttributeList *Attr = Attributes.getList(); Attr;
 | |
|          Attr = Attr->getNext()) {
 | |
|       if (Attr->isInvalid() ||
 | |
|           Attr->getKind() == AttributeList::IgnoredAttribute)
 | |
|         continue;
 | |
|       Diag(Attr->getLoc(),
 | |
|            Attr->getKind() == AttributeList::UnknownAttribute
 | |
|              ? diag::warn_unknown_attribute_ignored
 | |
|              : diag::err_base_specifier_attribute)
 | |
|         << Attr->getName();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TypeSourceInfo *TInfo = 0;
 | |
|   GetTypeFromParser(basetype, &TInfo);
 | |
| 
 | |
|   if (EllipsisLoc.isInvalid() &&
 | |
|       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 
 | |
|                                       UPPC_BaseType))
 | |
|     return true;
 | |
|   
 | |
|   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
 | |
|                                                       Virtual, Access, TInfo,
 | |
|                                                       EllipsisLoc))
 | |
|     return BaseSpec;
 | |
|   else
 | |
|     Class->setInvalidDecl();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Performs the actual work of attaching the given base class
 | |
| /// specifiers to a C++ class.
 | |
| bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
 | |
|                                 unsigned NumBases) {
 | |
|  if (NumBases == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Used to keep track of which base types we have already seen, so
 | |
|   // that we can properly diagnose redundant direct base types. Note
 | |
|   // that the key is always the unqualified canonical type of the base
 | |
|   // class.
 | |
|   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
 | |
| 
 | |
|   // Copy non-redundant base specifiers into permanent storage.
 | |
|   unsigned NumGoodBases = 0;
 | |
|   bool Invalid = false;
 | |
|   for (unsigned idx = 0; idx < NumBases; ++idx) {
 | |
|     QualType NewBaseType
 | |
|       = Context.getCanonicalType(Bases[idx]->getType());
 | |
|     NewBaseType = NewBaseType.getLocalUnqualifiedType();
 | |
| 
 | |
|     CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
 | |
|     if (KnownBase) {
 | |
|       // C++ [class.mi]p3:
 | |
|       //   A class shall not be specified as a direct base class of a
 | |
|       //   derived class more than once.
 | |
|       Diag(Bases[idx]->getLocStart(),
 | |
|            diag::err_duplicate_base_class)
 | |
|         << KnownBase->getType()
 | |
|         << Bases[idx]->getSourceRange();
 | |
| 
 | |
|       // Delete the duplicate base class specifier; we're going to
 | |
|       // overwrite its pointer later.
 | |
|       Context.Deallocate(Bases[idx]);
 | |
| 
 | |
|       Invalid = true;
 | |
|     } else {
 | |
|       // Okay, add this new base class.
 | |
|       KnownBase = Bases[idx];
 | |
|       Bases[NumGoodBases++] = Bases[idx];
 | |
|       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
 | |
|         const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
 | |
|         if (Class->isInterface() &&
 | |
|               (!RD->isInterface() ||
 | |
|                KnownBase->getAccessSpecifier() != AS_public)) {
 | |
|           // The Microsoft extension __interface does not permit bases that
 | |
|           // are not themselves public interfaces.
 | |
|           Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
 | |
|             << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
 | |
|             << RD->getSourceRange();
 | |
|           Invalid = true;
 | |
|         }
 | |
|         if (RD->hasAttr<WeakAttr>())
 | |
|           Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Attach the remaining base class specifiers to the derived class.
 | |
|   Class->setBases(Bases, NumGoodBases);
 | |
| 
 | |
|   // Delete the remaining (good) base class specifiers, since their
 | |
|   // data has been copied into the CXXRecordDecl.
 | |
|   for (unsigned idx = 0; idx < NumGoodBases; ++idx)
 | |
|     Context.Deallocate(Bases[idx]);
 | |
| 
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| /// ActOnBaseSpecifiers - Attach the given base specifiers to the
 | |
| /// class, after checking whether there are any duplicate base
 | |
| /// classes.
 | |
| void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
 | |
|                                unsigned NumBases) {
 | |
|   if (!ClassDecl || !Bases || !NumBases)
 | |
|     return;
 | |
| 
 | |
|   AdjustDeclIfTemplate(ClassDecl);
 | |
|   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the type \p Derived is a C++ class that is
 | |
| /// derived from the type \p Base.
 | |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
 | |
|   if (!getLangOpts().CPlusPlus)
 | |
|     return false;
 | |
|   
 | |
|   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
 | |
|   if (!DerivedRD)
 | |
|     return false;
 | |
|   
 | |
|   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
 | |
|   if (!BaseRD)
 | |
|     return false;
 | |
| 
 | |
|   // If either the base or the derived type is invalid, don't try to
 | |
|   // check whether one is derived from the other.
 | |
|   if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
 | |
|   return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the type \p Derived is a C++ class that is
 | |
| /// derived from the type \p Base.
 | |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
 | |
|   if (!getLangOpts().CPlusPlus)
 | |
|     return false;
 | |
|   
 | |
|   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
 | |
|   if (!DerivedRD)
 | |
|     return false;
 | |
|   
 | |
|   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
 | |
|   if (!BaseRD)
 | |
|     return false;
 | |
|   
 | |
|   return DerivedRD->isDerivedFrom(BaseRD, Paths);
 | |
| }
 | |
| 
 | |
| void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 
 | |
|                               CXXCastPath &BasePathArray) {
 | |
|   assert(BasePathArray.empty() && "Base path array must be empty!");
 | |
|   assert(Paths.isRecordingPaths() && "Must record paths!");
 | |
|   
 | |
|   const CXXBasePath &Path = Paths.front();
 | |
|        
 | |
|   // We first go backward and check if we have a virtual base.
 | |
|   // FIXME: It would be better if CXXBasePath had the base specifier for
 | |
|   // the nearest virtual base.
 | |
|   unsigned Start = 0;
 | |
|   for (unsigned I = Path.size(); I != 0; --I) {
 | |
|     if (Path[I - 1].Base->isVirtual()) {
 | |
|       Start = I - 1;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now add all bases.
 | |
|   for (unsigned I = Start, E = Path.size(); I != E; ++I)
 | |
|     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given base path includes a virtual
 | |
| /// base class.
 | |
| bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
 | |
|   for (CXXCastPath::const_iterator B = BasePath.begin(), 
 | |
|                                 BEnd = BasePath.end();
 | |
|        B != BEnd; ++B)
 | |
|     if ((*B)->isVirtual())
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
 | |
| /// conversion (where Derived and Base are class types) is
 | |
| /// well-formed, meaning that the conversion is unambiguous (and
 | |
| /// that all of the base classes are accessible). Returns true
 | |
| /// and emits a diagnostic if the code is ill-formed, returns false
 | |
| /// otherwise. Loc is the location where this routine should point to
 | |
| /// if there is an error, and Range is the source range to highlight
 | |
| /// if there is an error.
 | |
| bool
 | |
| Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
 | |
|                                    unsigned InaccessibleBaseID,
 | |
|                                    unsigned AmbigiousBaseConvID,
 | |
|                                    SourceLocation Loc, SourceRange Range,
 | |
|                                    DeclarationName Name,
 | |
|                                    CXXCastPath *BasePath) {
 | |
|   // First, determine whether the path from Derived to Base is
 | |
|   // ambiguous. This is slightly more expensive than checking whether
 | |
|   // the Derived to Base conversion exists, because here we need to
 | |
|   // explore multiple paths to determine if there is an ambiguity.
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | |
|                      /*DetectVirtual=*/false);
 | |
|   bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
 | |
|   assert(DerivationOkay &&
 | |
|          "Can only be used with a derived-to-base conversion");
 | |
|   (void)DerivationOkay;
 | |
|   
 | |
|   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
 | |
|     if (InaccessibleBaseID) {
 | |
|       // Check that the base class can be accessed.
 | |
|       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
 | |
|                                    InaccessibleBaseID)) {
 | |
|         case AR_inaccessible: 
 | |
|           return true;
 | |
|         case AR_accessible: 
 | |
|         case AR_dependent:
 | |
|         case AR_delayed:
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Build a base path if necessary.
 | |
|     if (BasePath)
 | |
|       BuildBasePathArray(Paths, *BasePath);
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   if (AmbigiousBaseConvID) {
 | |
|     // We know that the derived-to-base conversion is ambiguous, and
 | |
|     // we're going to produce a diagnostic. Perform the derived-to-base
 | |
|     // search just one more time to compute all of the possible paths so
 | |
|     // that we can print them out. This is more expensive than any of
 | |
|     // the previous derived-to-base checks we've done, but at this point
 | |
|     // performance isn't as much of an issue.
 | |
|     Paths.clear();
 | |
|     Paths.setRecordingPaths(true);
 | |
|     bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
 | |
|     assert(StillOkay && "Can only be used with a derived-to-base conversion");
 | |
|     (void)StillOkay;
 | |
| 
 | |
|     // Build up a textual representation of the ambiguous paths, e.g.,
 | |
|     // D -> B -> A, that will be used to illustrate the ambiguous
 | |
|     // conversions in the diagnostic. We only print one of the paths
 | |
|     // to each base class subobject.
 | |
|     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
 | |
| 
 | |
|     Diag(Loc, AmbigiousBaseConvID)
 | |
|     << Derived << Base << PathDisplayStr << Range << Name;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
 | |
|                                    SourceLocation Loc, SourceRange Range,
 | |
|                                    CXXCastPath *BasePath,
 | |
|                                    bool IgnoreAccess) {
 | |
|   return CheckDerivedToBaseConversion(Derived, Base,
 | |
|                                       IgnoreAccess ? 0
 | |
|                                        : diag::err_upcast_to_inaccessible_base,
 | |
|                                       diag::err_ambiguous_derived_to_base_conv,
 | |
|                                       Loc, Range, DeclarationName(), 
 | |
|                                       BasePath);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// @brief Builds a string representing ambiguous paths from a
 | |
| /// specific derived class to different subobjects of the same base
 | |
| /// class.
 | |
| ///
 | |
| /// This function builds a string that can be used in error messages
 | |
| /// to show the different paths that one can take through the
 | |
| /// inheritance hierarchy to go from the derived class to different
 | |
| /// subobjects of a base class. The result looks something like this:
 | |
| /// @code
 | |
| /// struct D -> struct B -> struct A
 | |
| /// struct D -> struct C -> struct A
 | |
| /// @endcode
 | |
| std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
 | |
|   std::string PathDisplayStr;
 | |
|   std::set<unsigned> DisplayedPaths;
 | |
|   for (CXXBasePaths::paths_iterator Path = Paths.begin();
 | |
|        Path != Paths.end(); ++Path) {
 | |
|     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
 | |
|       // We haven't displayed a path to this particular base
 | |
|       // class subobject yet.
 | |
|       PathDisplayStr += "\n    ";
 | |
|       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
 | |
|       for (CXXBasePath::const_iterator Element = Path->begin();
 | |
|            Element != Path->end(); ++Element)
 | |
|         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return PathDisplayStr;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // C++ class member Handling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
 | |
| bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
 | |
|                                 SourceLocation ASLoc,
 | |
|                                 SourceLocation ColonLoc,
 | |
|                                 AttributeList *Attrs) {
 | |
|   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
 | |
|   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
 | |
|                                                   ASLoc, ColonLoc);
 | |
|   CurContext->addHiddenDecl(ASDecl);
 | |
|   return ProcessAccessDeclAttributeList(ASDecl, Attrs);
 | |
| }
 | |
| 
 | |
| /// CheckOverrideControl - Check C++11 override control semantics.
 | |
| void Sema::CheckOverrideControl(Decl *D) {
 | |
|   if (D->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
 | |
| 
 | |
|   // Do we know which functions this declaration might be overriding?
 | |
|   bool OverridesAreKnown = !MD ||
 | |
|       (!MD->getParent()->hasAnyDependentBases() &&
 | |
|        !MD->getType()->isDependentType());
 | |
| 
 | |
|   if (!MD || !MD->isVirtual()) {
 | |
|     if (OverridesAreKnown) {
 | |
|       if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
 | |
|         Diag(OA->getLocation(),
 | |
|              diag::override_keyword_only_allowed_on_virtual_member_functions)
 | |
|           << "override" << FixItHint::CreateRemoval(OA->getLocation());
 | |
|         D->dropAttr<OverrideAttr>();
 | |
|       }
 | |
|       if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
 | |
|         Diag(FA->getLocation(),
 | |
|              diag::override_keyword_only_allowed_on_virtual_member_functions)
 | |
|           << "final" << FixItHint::CreateRemoval(FA->getLocation());
 | |
|         D->dropAttr<FinalAttr>();
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!OverridesAreKnown)
 | |
|     return;
 | |
| 
 | |
|   // C++11 [class.virtual]p5:
 | |
|   //   If a virtual function is marked with the virt-specifier override and
 | |
|   //   does not override a member function of a base class, the program is
 | |
|   //   ill-formed.
 | |
|   bool HasOverriddenMethods =
 | |
|     MD->begin_overridden_methods() != MD->end_overridden_methods();
 | |
|   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
 | |
|     Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
 | |
|       << MD->getDeclName();
 | |
| }
 | |
| 
 | |
| /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
 | |
| /// function overrides a virtual member function marked 'final', according to
 | |
| /// C++11 [class.virtual]p4.
 | |
| bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
 | |
|                                                   const CXXMethodDecl *Old) {
 | |
|   if (!Old->hasAttr<FinalAttr>())
 | |
|     return false;
 | |
| 
 | |
|   Diag(New->getLocation(), diag::err_final_function_overridden)
 | |
|     << New->getDeclName();
 | |
|   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool InitializationHasSideEffects(const FieldDecl &FD) {
 | |
|   const Type *T = FD.getType()->getBaseElementTypeUnsafe();
 | |
|   // FIXME: Destruction of ObjC lifetime types has side-effects.
 | |
|   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|     return !RD->isCompleteDefinition() ||
 | |
|            !RD->hasTrivialDefaultConstructor() ||
 | |
|            !RD->hasTrivialDestructor();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static AttributeList *getMSPropertyAttr(AttributeList *list) {
 | |
|   for (AttributeList* it = list; it != 0; it = it->getNext())
 | |
|     if (it->isDeclspecPropertyAttribute())
 | |
|       return it;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
 | |
| /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
 | |
| /// bitfield width if there is one, 'InitExpr' specifies the initializer if
 | |
| /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
 | |
| /// present (but parsing it has been deferred).
 | |
| NamedDecl *
 | |
| Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
 | |
|                                MultiTemplateParamsArg TemplateParameterLists,
 | |
|                                Expr *BW, const VirtSpecifiers &VS,
 | |
|                                InClassInitStyle InitStyle) {
 | |
|   const DeclSpec &DS = D.getDeclSpec();
 | |
|   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   SourceLocation Loc = NameInfo.getLoc();
 | |
| 
 | |
|   // For anonymous bitfields, the location should point to the type.
 | |
|   if (Loc.isInvalid())
 | |
|     Loc = D.getLocStart();
 | |
| 
 | |
|   Expr *BitWidth = static_cast<Expr*>(BW);
 | |
| 
 | |
|   assert(isa<CXXRecordDecl>(CurContext));
 | |
|   assert(!DS.isFriendSpecified());
 | |
| 
 | |
|   bool isFunc = D.isDeclarationOfFunction();
 | |
| 
 | |
|   if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
 | |
|     // The Microsoft extension __interface only permits public member functions
 | |
|     // and prohibits constructors, destructors, operators, non-public member
 | |
|     // functions, static methods and data members.
 | |
|     unsigned InvalidDecl;
 | |
|     bool ShowDeclName = true;
 | |
|     if (!isFunc)
 | |
|       InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
 | |
|     else if (AS != AS_public)
 | |
|       InvalidDecl = 2;
 | |
|     else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
 | |
|       InvalidDecl = 3;
 | |
|     else switch (Name.getNameKind()) {
 | |
|       case DeclarationName::CXXConstructorName:
 | |
|         InvalidDecl = 4;
 | |
|         ShowDeclName = false;
 | |
|         break;
 | |
| 
 | |
|       case DeclarationName::CXXDestructorName:
 | |
|         InvalidDecl = 5;
 | |
|         ShowDeclName = false;
 | |
|         break;
 | |
| 
 | |
|       case DeclarationName::CXXOperatorName:
 | |
|       case DeclarationName::CXXConversionFunctionName:
 | |
|         InvalidDecl = 6;
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         InvalidDecl = 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (InvalidDecl) {
 | |
|       if (ShowDeclName)
 | |
|         Diag(Loc, diag::err_invalid_member_in_interface)
 | |
|           << (InvalidDecl-1) << Name;
 | |
|       else
 | |
|         Diag(Loc, diag::err_invalid_member_in_interface)
 | |
|           << (InvalidDecl-1) << "";
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ 9.2p6: A member shall not be declared to have automatic storage
 | |
|   // duration (auto, register) or with the extern storage-class-specifier.
 | |
|   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
 | |
|   // data members and cannot be applied to names declared const or static,
 | |
|   // and cannot be applied to reference members.
 | |
|   switch (DS.getStorageClassSpec()) {
 | |
|   case DeclSpec::SCS_unspecified:
 | |
|   case DeclSpec::SCS_typedef:
 | |
|   case DeclSpec::SCS_static:
 | |
|     break;
 | |
|   case DeclSpec::SCS_mutable:
 | |
|     if (isFunc) {
 | |
|       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
 | |
| 
 | |
|       // FIXME: It would be nicer if the keyword was ignored only for this
 | |
|       // declarator. Otherwise we could get follow-up errors.
 | |
|       D.getMutableDeclSpec().ClearStorageClassSpecs();
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     Diag(DS.getStorageClassSpecLoc(),
 | |
|          diag::err_storageclass_invalid_for_member);
 | |
|     D.getMutableDeclSpec().ClearStorageClassSpecs();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
 | |
|                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
 | |
|                       !isFunc);
 | |
| 
 | |
|   if (DS.isConstexprSpecified() && isInstField) {
 | |
|     SemaDiagnosticBuilder B =
 | |
|         Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
 | |
|     SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
 | |
|     if (InitStyle == ICIS_NoInit) {
 | |
|       B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
 | |
|       D.getMutableDeclSpec().ClearConstexprSpec();
 | |
|       const char *PrevSpec;
 | |
|       unsigned DiagID;
 | |
|       bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
 | |
|                                          PrevSpec, DiagID, getLangOpts());
 | |
|       (void)Failed;
 | |
|       assert(!Failed && "Making a constexpr member const shouldn't fail");
 | |
|     } else {
 | |
|       B << 1;
 | |
|       const char *PrevSpec;
 | |
|       unsigned DiagID;
 | |
|       if (D.getMutableDeclSpec().SetStorageClassSpec(
 | |
|           *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
 | |
|         assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
 | |
|                "This is the only DeclSpec that should fail to be applied");
 | |
|         B << 1;
 | |
|       } else {
 | |
|         B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
 | |
|         isInstField = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NamedDecl *Member;
 | |
|   if (isInstField) {
 | |
|     CXXScopeSpec &SS = D.getCXXScopeSpec();
 | |
| 
 | |
|     // Data members must have identifiers for names.
 | |
|     if (!Name.isIdentifier()) {
 | |
|       Diag(Loc, diag::err_bad_variable_name)
 | |
|         << Name;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     IdentifierInfo *II = Name.getAsIdentifierInfo();
 | |
| 
 | |
|     // Member field could not be with "template" keyword.
 | |
|     // So TemplateParameterLists should be empty in this case.
 | |
|     if (TemplateParameterLists.size()) {
 | |
|       TemplateParameterList* TemplateParams = TemplateParameterLists[0];
 | |
|       if (TemplateParams->size()) {
 | |
|         // There is no such thing as a member field template.
 | |
|         Diag(D.getIdentifierLoc(), diag::err_template_member)
 | |
|             << II
 | |
|             << SourceRange(TemplateParams->getTemplateLoc(),
 | |
|                 TemplateParams->getRAngleLoc());
 | |
|       } else {
 | |
|         // There is an extraneous 'template<>' for this member.
 | |
|         Diag(TemplateParams->getTemplateLoc(),
 | |
|             diag::err_template_member_noparams)
 | |
|             << II
 | |
|             << SourceRange(TemplateParams->getTemplateLoc(),
 | |
|                 TemplateParams->getRAngleLoc());
 | |
|       }
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     if (SS.isSet() && !SS.isInvalid()) {
 | |
|       // The user provided a superfluous scope specifier inside a class
 | |
|       // definition:
 | |
|       //
 | |
|       // class X {
 | |
|       //   int X::member;
 | |
|       // };
 | |
|       if (DeclContext *DC = computeDeclContext(SS, false))
 | |
|         diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
 | |
|       else
 | |
|         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
 | |
|           << Name << SS.getRange();
 | |
|       
 | |
|       SS.clear();
 | |
|     }
 | |
| 
 | |
|     AttributeList *MSPropertyAttr =
 | |
|       getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
 | |
|     if (MSPropertyAttr) {
 | |
|       Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
 | |
|                                 BitWidth, InitStyle, AS, MSPropertyAttr);
 | |
|       if (!Member)
 | |
|         return 0;
 | |
|       isInstField = false;
 | |
|     } else {
 | |
|       Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
 | |
|                                 BitWidth, InitStyle, AS);
 | |
|       assert(Member && "HandleField never returns null");
 | |
|     }
 | |
|   } else {
 | |
|     assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
 | |
| 
 | |
|     Member = HandleDeclarator(S, D, TemplateParameterLists);
 | |
|     if (!Member)
 | |
|       return 0;
 | |
| 
 | |
|     // Non-instance-fields can't have a bitfield.
 | |
|     if (BitWidth) {
 | |
|       if (Member->isInvalidDecl()) {
 | |
|         // don't emit another diagnostic.
 | |
|       } else if (isa<VarDecl>(Member)) {
 | |
|         // C++ 9.6p3: A bit-field shall not be a static member.
 | |
|         // "static member 'A' cannot be a bit-field"
 | |
|         Diag(Loc, diag::err_static_not_bitfield)
 | |
|           << Name << BitWidth->getSourceRange();
 | |
|       } else if (isa<TypedefDecl>(Member)) {
 | |
|         // "typedef member 'x' cannot be a bit-field"
 | |
|         Diag(Loc, diag::err_typedef_not_bitfield)
 | |
|           << Name << BitWidth->getSourceRange();
 | |
|       } else {
 | |
|         // A function typedef ("typedef int f(); f a;").
 | |
|         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
 | |
|         Diag(Loc, diag::err_not_integral_type_bitfield)
 | |
|           << Name << cast<ValueDecl>(Member)->getType()
 | |
|           << BitWidth->getSourceRange();
 | |
|       }
 | |
| 
 | |
|       BitWidth = 0;
 | |
|       Member->setInvalidDecl();
 | |
|     }
 | |
| 
 | |
|     Member->setAccess(AS);
 | |
| 
 | |
|     // If we have declared a member function template or static data member
 | |
|     // template, set the access of the templated declaration as well.
 | |
|     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
 | |
|       FunTmpl->getTemplatedDecl()->setAccess(AS);
 | |
|     else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
 | |
|       VarTmpl->getTemplatedDecl()->setAccess(AS);
 | |
|   }
 | |
| 
 | |
|   if (VS.isOverrideSpecified())
 | |
|     Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
 | |
|   if (VS.isFinalSpecified())
 | |
|     Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
 | |
| 
 | |
|   if (VS.getLastLocation().isValid()) {
 | |
|     // Update the end location of a method that has a virt-specifiers.
 | |
|     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
 | |
|       MD->setRangeEnd(VS.getLastLocation());
 | |
|   }
 | |
| 
 | |
|   CheckOverrideControl(Member);
 | |
| 
 | |
|   assert((Name || isInstField) && "No identifier for non-field ?");
 | |
| 
 | |
|   if (isInstField) {
 | |
|     FieldDecl *FD = cast<FieldDecl>(Member);
 | |
|     FieldCollector->Add(FD);
 | |
| 
 | |
|     if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
 | |
|                                  FD->getLocation())
 | |
|           != DiagnosticsEngine::Ignored) {
 | |
|       // Remember all explicit private FieldDecls that have a name, no side
 | |
|       // effects and are not part of a dependent type declaration.
 | |
|       if (!FD->isImplicit() && FD->getDeclName() &&
 | |
|           FD->getAccess() == AS_private &&
 | |
|           !FD->hasAttr<UnusedAttr>() &&
 | |
|           !FD->getParent()->isDependentContext() &&
 | |
|           !InitializationHasSideEffects(*FD))
 | |
|         UnusedPrivateFields.insert(FD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Member;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class UninitializedFieldVisitor
 | |
|       : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
 | |
|     Sema &S;
 | |
|     ValueDecl *VD;
 | |
|   public:
 | |
|     typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
 | |
|     UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
 | |
|                                                         S(S) {
 | |
|       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
 | |
|         this->VD = IFD->getAnonField();
 | |
|       else
 | |
|         this->VD = VD;
 | |
|     }
 | |
| 
 | |
|     void HandleExpr(Expr *E) {
 | |
|       if (!E) return;
 | |
| 
 | |
|       // Expressions like x(x) sometimes lack the surrounding expressions
 | |
|       // but need to be checked anyways.
 | |
|       HandleValue(E);
 | |
|       Visit(E);
 | |
|     }
 | |
| 
 | |
|     void HandleValue(Expr *E) {
 | |
|       E = E->IgnoreParens();
 | |
| 
 | |
|       if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
 | |
|         if (isa<EnumConstantDecl>(ME->getMemberDecl()))
 | |
|           return;
 | |
| 
 | |
|         // FieldME is the inner-most MemberExpr that is not an anonymous struct
 | |
|         // or union.
 | |
|         MemberExpr *FieldME = ME;
 | |
| 
 | |
|         Expr *Base = E;
 | |
|         while (isa<MemberExpr>(Base)) {
 | |
|           ME = cast<MemberExpr>(Base);
 | |
| 
 | |
|           if (isa<VarDecl>(ME->getMemberDecl()))
 | |
|             return;
 | |
| 
 | |
|           if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
 | |
|             if (!FD->isAnonymousStructOrUnion())
 | |
|               FieldME = ME;
 | |
| 
 | |
|           Base = ME->getBase();
 | |
|         }
 | |
| 
 | |
|         if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
 | |
|           unsigned diag = VD->getType()->isReferenceType()
 | |
|               ? diag::warn_reference_field_is_uninit
 | |
|               : diag::warn_field_is_uninit;
 | |
|           S.Diag(FieldME->getExprLoc(), diag) << VD;
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
 | |
|         HandleValue(CO->getTrueExpr());
 | |
|         HandleValue(CO->getFalseExpr());
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (BinaryConditionalOperator *BCO =
 | |
|               dyn_cast<BinaryConditionalOperator>(E)) {
 | |
|         HandleValue(BCO->getCommon());
 | |
|         HandleValue(BCO->getFalseExpr());
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|         switch (BO->getOpcode()) {
 | |
|         default:
 | |
|           return;
 | |
|         case(BO_PtrMemD):
 | |
|         case(BO_PtrMemI):
 | |
|           HandleValue(BO->getLHS());
 | |
|           return;
 | |
|         case(BO_Comma):
 | |
|           HandleValue(BO->getRHS());
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
 | |
|       if (E->getCastKind() == CK_LValueToRValue)
 | |
|         HandleValue(E->getSubExpr());
 | |
| 
 | |
|       Inherited::VisitImplicitCastExpr(E);
 | |
|     }
 | |
| 
 | |
|     void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
 | |
|       Expr *Callee = E->getCallee();
 | |
|       if (isa<MemberExpr>(Callee))
 | |
|         HandleValue(Callee);
 | |
| 
 | |
|       Inherited::VisitCXXMemberCallExpr(E);
 | |
|     }
 | |
|   };
 | |
|   static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
 | |
|                                                        ValueDecl *VD) {
 | |
|     UninitializedFieldVisitor(S, VD).HandleExpr(E);
 | |
|   }
 | |
| } // namespace
 | |
| 
 | |
| /// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
 | |
| /// in-class initializer for a non-static C++ class member, and after
 | |
| /// instantiating an in-class initializer in a class template. Such actions
 | |
| /// are deferred until the class is complete.
 | |
| void
 | |
| Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
 | |
|                                        Expr *InitExpr) {
 | |
|   FieldDecl *FD = cast<FieldDecl>(D);
 | |
|   assert(FD->getInClassInitStyle() != ICIS_NoInit &&
 | |
|          "must set init style when field is created");
 | |
| 
 | |
|   if (!InitExpr) {
 | |
|     FD->setInvalidDecl();
 | |
|     FD->removeInClassInitializer();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
 | |
|     FD->setInvalidDecl();
 | |
|     FD->removeInClassInitializer();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
 | |
|       != DiagnosticsEngine::Ignored) {
 | |
|     CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
 | |
|   }
 | |
| 
 | |
|   ExprResult Init = InitExpr;
 | |
|   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
 | |
|     InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
 | |
|         ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
 | |
|         : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
 | |
|     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
 | |
|     Init = Seq.Perform(*this, Entity, Kind, InitExpr);
 | |
|     if (Init.isInvalid()) {
 | |
|       FD->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++11 [class.base.init]p7:
 | |
|   //   The initialization of each base and member constitutes a
 | |
|   //   full-expression.
 | |
|   Init = ActOnFinishFullExpr(Init.take(), InitLoc);
 | |
|   if (Init.isInvalid()) {
 | |
|     FD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   InitExpr = Init.release();
 | |
| 
 | |
|   FD->setInClassInitializer(InitExpr);
 | |
| }
 | |
| 
 | |
| /// \brief Find the direct and/or virtual base specifiers that
 | |
| /// correspond to the given base type, for use in base initialization
 | |
| /// within a constructor.
 | |
| static bool FindBaseInitializer(Sema &SemaRef, 
 | |
|                                 CXXRecordDecl *ClassDecl,
 | |
|                                 QualType BaseType,
 | |
|                                 const CXXBaseSpecifier *&DirectBaseSpec,
 | |
|                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
 | |
|   // First, check for a direct base class.
 | |
|   DirectBaseSpec = 0;
 | |
|   for (CXXRecordDecl::base_class_const_iterator Base
 | |
|          = ClassDecl->bases_begin(); 
 | |
|        Base != ClassDecl->bases_end(); ++Base) {
 | |
|     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
 | |
|       // We found a direct base of this type. That's what we're
 | |
|       // initializing.
 | |
|       DirectBaseSpec = &*Base;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for a virtual base class.
 | |
|   // FIXME: We might be able to short-circuit this if we know in advance that
 | |
|   // there are no virtual bases.
 | |
|   VirtualBaseSpec = 0;
 | |
|   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
 | |
|     // We haven't found a base yet; search the class hierarchy for a
 | |
|     // virtual base class.
 | |
|     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | |
|                        /*DetectVirtual=*/false);
 | |
|     if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), 
 | |
|                               BaseType, Paths)) {
 | |
|       for (CXXBasePaths::paths_iterator Path = Paths.begin();
 | |
|            Path != Paths.end(); ++Path) {
 | |
|         if (Path->back().Base->isVirtual()) {
 | |
|           VirtualBaseSpec = Path->back().Base;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DirectBaseSpec || VirtualBaseSpec;
 | |
| }
 | |
| 
 | |
| /// \brief Handle a C++ member initializer using braced-init-list syntax.
 | |
| MemInitResult
 | |
| Sema::ActOnMemInitializer(Decl *ConstructorD,
 | |
|                           Scope *S,
 | |
|                           CXXScopeSpec &SS,
 | |
|                           IdentifierInfo *MemberOrBase,
 | |
|                           ParsedType TemplateTypeTy,
 | |
|                           const DeclSpec &DS,
 | |
|                           SourceLocation IdLoc,
 | |
|                           Expr *InitList,
 | |
|                           SourceLocation EllipsisLoc) {
 | |
|   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
 | |
|                              DS, IdLoc, InitList,
 | |
|                              EllipsisLoc);
 | |
| }
 | |
| 
 | |
| /// \brief Handle a C++ member initializer using parentheses syntax.
 | |
| MemInitResult
 | |
| Sema::ActOnMemInitializer(Decl *ConstructorD,
 | |
|                           Scope *S,
 | |
|                           CXXScopeSpec &SS,
 | |
|                           IdentifierInfo *MemberOrBase,
 | |
|                           ParsedType TemplateTypeTy,
 | |
|                           const DeclSpec &DS,
 | |
|                           SourceLocation IdLoc,
 | |
|                           SourceLocation LParenLoc,
 | |
|                           ArrayRef<Expr *> Args,
 | |
|                           SourceLocation RParenLoc,
 | |
|                           SourceLocation EllipsisLoc) {
 | |
|   Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
 | |
|                                            Args, RParenLoc);
 | |
|   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
 | |
|                              DS, IdLoc, List, EllipsisLoc);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Callback to only accept typo corrections that can be a valid C++ member
 | |
| // intializer: either a non-static field member or a base class.
 | |
| class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
 | |
| public:
 | |
|   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
 | |
|       : ClassDecl(ClassDecl) {}
 | |
| 
 | |
|   bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
 | |
|     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
 | |
|       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
 | |
|         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
 | |
|       return isa<TypeDecl>(ND);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   CXXRecordDecl *ClassDecl;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// \brief Handle a C++ member initializer.
 | |
| MemInitResult
 | |
| Sema::BuildMemInitializer(Decl *ConstructorD,
 | |
|                           Scope *S,
 | |
|                           CXXScopeSpec &SS,
 | |
|                           IdentifierInfo *MemberOrBase,
 | |
|                           ParsedType TemplateTypeTy,
 | |
|                           const DeclSpec &DS,
 | |
|                           SourceLocation IdLoc,
 | |
|                           Expr *Init,
 | |
|                           SourceLocation EllipsisLoc) {
 | |
|   if (!ConstructorD)
 | |
|     return true;
 | |
| 
 | |
|   AdjustDeclIfTemplate(ConstructorD);
 | |
| 
 | |
|   CXXConstructorDecl *Constructor
 | |
|     = dyn_cast<CXXConstructorDecl>(ConstructorD);
 | |
|   if (!Constructor) {
 | |
|     // The user wrote a constructor initializer on a function that is
 | |
|     // not a C++ constructor. Ignore the error for now, because we may
 | |
|     // have more member initializers coming; we'll diagnose it just
 | |
|     // once in ActOnMemInitializers.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = Constructor->getParent();
 | |
| 
 | |
|   // C++ [class.base.init]p2:
 | |
|   //   Names in a mem-initializer-id are looked up in the scope of the
 | |
|   //   constructor's class and, if not found in that scope, are looked
 | |
|   //   up in the scope containing the constructor's definition.
 | |
|   //   [Note: if the constructor's class contains a member with the
 | |
|   //   same name as a direct or virtual base class of the class, a
 | |
|   //   mem-initializer-id naming the member or base class and composed
 | |
|   //   of a single identifier refers to the class member. A
 | |
|   //   mem-initializer-id for the hidden base class may be specified
 | |
|   //   using a qualified name. ]
 | |
|   if (!SS.getScopeRep() && !TemplateTypeTy) {
 | |
|     // Look for a member, first.
 | |
|     DeclContext::lookup_result Result
 | |
|       = ClassDecl->lookup(MemberOrBase);
 | |
|     if (!Result.empty()) {
 | |
|       ValueDecl *Member;
 | |
|       if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
 | |
|           (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
 | |
|         if (EllipsisLoc.isValid())
 | |
|           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
 | |
|             << MemberOrBase
 | |
|             << SourceRange(IdLoc, Init->getSourceRange().getEnd());
 | |
| 
 | |
|         return BuildMemberInitializer(Member, Init, IdLoc);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // It didn't name a member, so see if it names a class.
 | |
|   QualType BaseType;
 | |
|   TypeSourceInfo *TInfo = 0;
 | |
| 
 | |
|   if (TemplateTypeTy) {
 | |
|     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
 | |
|   } else if (DS.getTypeSpecType() == TST_decltype) {
 | |
|     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
 | |
|   } else {
 | |
|     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
 | |
|     LookupParsedName(R, S, &SS);
 | |
| 
 | |
|     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
 | |
|     if (!TyD) {
 | |
|       if (R.isAmbiguous()) return true;
 | |
| 
 | |
|       // We don't want access-control diagnostics here.
 | |
|       R.suppressDiagnostics();
 | |
| 
 | |
|       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
 | |
|         bool NotUnknownSpecialization = false;
 | |
|         DeclContext *DC = computeDeclContext(SS, false);
 | |
|         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 
 | |
|           NotUnknownSpecialization = !Record->hasAnyDependentBases();
 | |
| 
 | |
|         if (!NotUnknownSpecialization) {
 | |
|           // When the scope specifier can refer to a member of an unknown
 | |
|           // specialization, we take it as a type name.
 | |
|           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
 | |
|                                        SS.getWithLocInContext(Context),
 | |
|                                        *MemberOrBase, IdLoc);
 | |
|           if (BaseType.isNull())
 | |
|             return true;
 | |
| 
 | |
|           R.clear();
 | |
|           R.setLookupName(MemberOrBase);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If no results were found, try to correct typos.
 | |
|       TypoCorrection Corr;
 | |
|       MemInitializerValidatorCCC Validator(ClassDecl);
 | |
|       if (R.empty() && BaseType.isNull() &&
 | |
|           (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
 | |
|                               Validator, ClassDecl))) {
 | |
|         std::string CorrectedStr(Corr.getAsString(getLangOpts()));
 | |
|         std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
 | |
|         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
 | |
|           // We have found a non-static data member with a similar
 | |
|           // name to what was typed; complain and initialize that
 | |
|           // member.
 | |
|           Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
 | |
|             << MemberOrBase << true << CorrectedQuotedStr
 | |
|             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
 | |
|           Diag(Member->getLocation(), diag::note_previous_decl)
 | |
|             << CorrectedQuotedStr;
 | |
| 
 | |
|           return BuildMemberInitializer(Member, Init, IdLoc);
 | |
|         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
 | |
|           const CXXBaseSpecifier *DirectBaseSpec;
 | |
|           const CXXBaseSpecifier *VirtualBaseSpec;
 | |
|           if (FindBaseInitializer(*this, ClassDecl, 
 | |
|                                   Context.getTypeDeclType(Type),
 | |
|                                   DirectBaseSpec, VirtualBaseSpec)) {
 | |
|             // We have found a direct or virtual base class with a
 | |
|             // similar name to what was typed; complain and initialize
 | |
|             // that base class.
 | |
|             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
 | |
|               << MemberOrBase << false << CorrectedQuotedStr
 | |
|               << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
 | |
| 
 | |
|             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec 
 | |
|                                                              : VirtualBaseSpec;
 | |
|             Diag(BaseSpec->getLocStart(),
 | |
|                  diag::note_base_class_specified_here)
 | |
|               << BaseSpec->getType()
 | |
|               << BaseSpec->getSourceRange();
 | |
| 
 | |
|             TyD = Type;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!TyD && BaseType.isNull()) {
 | |
|         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
 | |
|           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BaseType.isNull()) {
 | |
|       BaseType = Context.getTypeDeclType(TyD);
 | |
|       if (SS.isSet()) {
 | |
|         NestedNameSpecifier *Qualifier =
 | |
|           static_cast<NestedNameSpecifier*>(SS.getScopeRep());
 | |
| 
 | |
|         // FIXME: preserve source range information
 | |
|         BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!TInfo)
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
 | |
| 
 | |
|   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
 | |
| }
 | |
| 
 | |
| /// Checks a member initializer expression for cases where reference (or
 | |
| /// pointer) members are bound to by-value parameters (or their addresses).
 | |
| static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
 | |
|                                                Expr *Init,
 | |
|                                                SourceLocation IdLoc) {
 | |
|   QualType MemberTy = Member->getType();
 | |
| 
 | |
|   // We only handle pointers and references currently.
 | |
|   // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
 | |
|   if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
 | |
|     return;
 | |
| 
 | |
|   const bool IsPointer = MemberTy->isPointerType();
 | |
|   if (IsPointer) {
 | |
|     if (const UnaryOperator *Op
 | |
|           = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
 | |
|       // The only case we're worried about with pointers requires taking the
 | |
|       // address.
 | |
|       if (Op->getOpcode() != UO_AddrOf)
 | |
|         return;
 | |
| 
 | |
|       Init = Op->getSubExpr();
 | |
|     } else {
 | |
|       // We only handle address-of expression initializers for pointers.
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
 | |
|     // We only warn when referring to a non-reference parameter declaration.
 | |
|     const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
 | |
|     if (!Parameter || Parameter->getType()->isReferenceType())
 | |
|       return;
 | |
| 
 | |
|     S.Diag(Init->getExprLoc(),
 | |
|            IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
 | |
|                      : diag::warn_bind_ref_member_to_parameter)
 | |
|       << Member << Parameter << Init->getSourceRange();
 | |
|   } else {
 | |
|     // Other initializers are fine.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
 | |
|     << (unsigned)IsPointer;
 | |
| }
 | |
| 
 | |
| MemInitResult
 | |
| Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
 | |
|                              SourceLocation IdLoc) {
 | |
|   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
 | |
|   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
 | |
|   assert((DirectMember || IndirectMember) &&
 | |
|          "Member must be a FieldDecl or IndirectFieldDecl");
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
 | |
|     return true;
 | |
| 
 | |
|   if (Member->isInvalidDecl())
 | |
|     return true;
 | |
| 
 | |
|   // Diagnose value-uses of fields to initialize themselves, e.g.
 | |
|   //   foo(foo)
 | |
|   // where foo is not also a parameter to the constructor.
 | |
|   // TODO: implement -Wuninitialized and fold this into that framework.
 | |
|   MultiExprArg Args;
 | |
|   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
 | |
|     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
 | |
|   } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
 | |
|     Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
 | |
|   } else {
 | |
|     // Template instantiation doesn't reconstruct ParenListExprs for us.
 | |
|     Args = Init;
 | |
|   }
 | |
| 
 | |
|   if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
 | |
|         != DiagnosticsEngine::Ignored)
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | |
|       // FIXME: Warn about the case when other fields are used before being
 | |
|       // initialized. For example, let this field be the i'th field. When
 | |
|       // initializing the i'th field, throw a warning if any of the >= i'th
 | |
|       // fields are used, as they are not yet initialized.
 | |
|       // Right now we are only handling the case where the i'th field uses
 | |
|       // itself in its initializer.
 | |
|       // Also need to take into account that some fields may be initialized by
 | |
|       // in-class initializers, see C++11 [class.base.init]p9.
 | |
|       CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
 | |
| 
 | |
|   SourceRange InitRange = Init->getSourceRange();
 | |
| 
 | |
|   if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
 | |
|     // Can't check initialization for a member of dependent type or when
 | |
|     // any of the arguments are type-dependent expressions.
 | |
|     DiscardCleanupsInEvaluationContext();
 | |
|   } else {
 | |
|     bool InitList = false;
 | |
|     if (isa<InitListExpr>(Init)) {
 | |
|       InitList = true;
 | |
|       Args = Init;
 | |
|     }
 | |
| 
 | |
|     // Initialize the member.
 | |
|     InitializedEntity MemberEntity =
 | |
|       DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
 | |
|                    : InitializedEntity::InitializeMember(IndirectMember, 0);
 | |
|     InitializationKind Kind =
 | |
|       InitList ? InitializationKind::CreateDirectList(IdLoc)
 | |
|                : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
 | |
|                                                   InitRange.getEnd());
 | |
| 
 | |
|     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
 | |
|     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
 | |
|     if (MemberInit.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
 | |
| 
 | |
|     // C++11 [class.base.init]p7:
 | |
|     //   The initialization of each base and member constitutes a
 | |
|     //   full-expression.
 | |
|     MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
 | |
|     if (MemberInit.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     Init = MemberInit.get();
 | |
|   }
 | |
| 
 | |
|   if (DirectMember) {
 | |
|     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
 | |
|                                             InitRange.getBegin(), Init,
 | |
|                                             InitRange.getEnd());
 | |
|   } else {
 | |
|     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
 | |
|                                             InitRange.getBegin(), Init,
 | |
|                                             InitRange.getEnd());
 | |
|   }
 | |
| }
 | |
| 
 | |
| MemInitResult
 | |
| Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
 | |
|                                  CXXRecordDecl *ClassDecl) {
 | |
|   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
 | |
|   if (!LangOpts.CPlusPlus11)
 | |
|     return Diag(NameLoc, diag::err_delegating_ctor)
 | |
|       << TInfo->getTypeLoc().getLocalSourceRange();
 | |
|   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
 | |
| 
 | |
|   bool InitList = true;
 | |
|   MultiExprArg Args = Init;
 | |
|   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
 | |
|     InitList = false;
 | |
|     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
 | |
|   }
 | |
| 
 | |
|   SourceRange InitRange = Init->getSourceRange();
 | |
|   // Initialize the object.
 | |
|   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
 | |
|                                      QualType(ClassDecl->getTypeForDecl(), 0));
 | |
|   InitializationKind Kind =
 | |
|     InitList ? InitializationKind::CreateDirectList(NameLoc)
 | |
|              : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
 | |
|                                                 InitRange.getEnd());
 | |
|   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
 | |
|   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
 | |
|                                               Args, 0);
 | |
|   if (DelegationInit.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
 | |
|          "Delegating constructor with no target?");
 | |
| 
 | |
|   // C++11 [class.base.init]p7:
 | |
|   //   The initialization of each base and member constitutes a
 | |
|   //   full-expression.
 | |
|   DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
 | |
|                                        InitRange.getBegin());
 | |
|   if (DelegationInit.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // If we are in a dependent context, template instantiation will
 | |
|   // perform this type-checking again. Just save the arguments that we
 | |
|   // received in a ParenListExpr.
 | |
|   // FIXME: This isn't quite ideal, since our ASTs don't capture all
 | |
|   // of the information that we have about the base
 | |
|   // initializer. However, deconstructing the ASTs is a dicey process,
 | |
|   // and this approach is far more likely to get the corner cases right.
 | |
|   if (CurContext->isDependentContext())
 | |
|     DelegationInit = Owned(Init);
 | |
| 
 | |
|   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 
 | |
|                                           DelegationInit.takeAs<Expr>(),
 | |
|                                           InitRange.getEnd());
 | |
| }
 | |
| 
 | |
| MemInitResult
 | |
| Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
 | |
|                            Expr *Init, CXXRecordDecl *ClassDecl,
 | |
|                            SourceLocation EllipsisLoc) {
 | |
|   SourceLocation BaseLoc
 | |
|     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
 | |
| 
 | |
|   if (!BaseType->isDependentType() && !BaseType->isRecordType())
 | |
|     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
 | |
|              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
 | |
| 
 | |
|   // C++ [class.base.init]p2:
 | |
|   //   [...] Unless the mem-initializer-id names a nonstatic data
 | |
|   //   member of the constructor's class or a direct or virtual base
 | |
|   //   of that class, the mem-initializer is ill-formed. A
 | |
|   //   mem-initializer-list can initialize a base class using any
 | |
|   //   name that denotes that base class type.
 | |
|   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
 | |
| 
 | |
|   SourceRange InitRange = Init->getSourceRange();
 | |
|   if (EllipsisLoc.isValid()) {
 | |
|     // This is a pack expansion.
 | |
|     if (!BaseType->containsUnexpandedParameterPack())  {
 | |
|       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
 | |
|         << SourceRange(BaseLoc, InitRange.getEnd());
 | |
| 
 | |
|       EllipsisLoc = SourceLocation();
 | |
|     }
 | |
|   } else {
 | |
|     // Check for any unexpanded parameter packs.
 | |
|     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
 | |
|       return true;
 | |
| 
 | |
|     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Check for direct and virtual base classes.
 | |
|   const CXXBaseSpecifier *DirectBaseSpec = 0;
 | |
|   const CXXBaseSpecifier *VirtualBaseSpec = 0;
 | |
|   if (!Dependent) { 
 | |
|     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
 | |
|                                        BaseType))
 | |
|       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
 | |
| 
 | |
|     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 
 | |
|                         VirtualBaseSpec);
 | |
| 
 | |
|     // C++ [base.class.init]p2:
 | |
|     // Unless the mem-initializer-id names a nonstatic data member of the
 | |
|     // constructor's class or a direct or virtual base of that class, the
 | |
|     // mem-initializer is ill-formed.
 | |
|     if (!DirectBaseSpec && !VirtualBaseSpec) {
 | |
|       // If the class has any dependent bases, then it's possible that
 | |
|       // one of those types will resolve to the same type as
 | |
|       // BaseType. Therefore, just treat this as a dependent base
 | |
|       // class initialization.  FIXME: Should we try to check the
 | |
|       // initialization anyway? It seems odd.
 | |
|       if (ClassDecl->hasAnyDependentBases())
 | |
|         Dependent = true;
 | |
|       else
 | |
|         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
 | |
|           << BaseType << Context.getTypeDeclType(ClassDecl)
 | |
|           << BaseTInfo->getTypeLoc().getLocalSourceRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Dependent) {
 | |
|     DiscardCleanupsInEvaluationContext();
 | |
| 
 | |
|     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
 | |
|                                             /*IsVirtual=*/false,
 | |
|                                             InitRange.getBegin(), Init,
 | |
|                                             InitRange.getEnd(), EllipsisLoc);
 | |
|   }
 | |
| 
 | |
|   // C++ [base.class.init]p2:
 | |
|   //   If a mem-initializer-id is ambiguous because it designates both
 | |
|   //   a direct non-virtual base class and an inherited virtual base
 | |
|   //   class, the mem-initializer is ill-formed.
 | |
|   if (DirectBaseSpec && VirtualBaseSpec)
 | |
|     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
 | |
|       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
 | |
| 
 | |
|   const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
 | |
|   if (!BaseSpec)
 | |
|     BaseSpec = VirtualBaseSpec;
 | |
| 
 | |
|   // Initialize the base.
 | |
|   bool InitList = true;
 | |
|   MultiExprArg Args = Init;
 | |
|   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
 | |
|     InitList = false;
 | |
|     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
 | |
|   }
 | |
| 
 | |
|   InitializedEntity BaseEntity =
 | |
|     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
 | |
|   InitializationKind Kind =
 | |
|     InitList ? InitializationKind::CreateDirectList(BaseLoc)
 | |
|              : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
 | |
|                                                 InitRange.getEnd());
 | |
|   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
 | |
|   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
 | |
|   if (BaseInit.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // C++11 [class.base.init]p7:
 | |
|   //   The initialization of each base and member constitutes a
 | |
|   //   full-expression.
 | |
|   BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
 | |
|   if (BaseInit.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // If we are in a dependent context, template instantiation will
 | |
|   // perform this type-checking again. Just save the arguments that we
 | |
|   // received in a ParenListExpr.
 | |
|   // FIXME: This isn't quite ideal, since our ASTs don't capture all
 | |
|   // of the information that we have about the base
 | |
|   // initializer. However, deconstructing the ASTs is a dicey process,
 | |
|   // and this approach is far more likely to get the corner cases right.
 | |
|   if (CurContext->isDependentContext())
 | |
|     BaseInit = Owned(Init);
 | |
| 
 | |
|   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
 | |
|                                           BaseSpec->isVirtual(),
 | |
|                                           InitRange.getBegin(),
 | |
|                                           BaseInit.takeAs<Expr>(),
 | |
|                                           InitRange.getEnd(), EllipsisLoc);
 | |
| }
 | |
| 
 | |
| // Create a static_cast\<T&&>(expr).
 | |
| static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
 | |
|   if (T.isNull()) T = E->getType();
 | |
|   QualType TargetType = SemaRef.BuildReferenceType(
 | |
|       T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
 | |
|   SourceLocation ExprLoc = E->getLocStart();
 | |
|   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
 | |
|       TargetType, ExprLoc);
 | |
| 
 | |
|   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
 | |
|                                    SourceRange(ExprLoc, ExprLoc),
 | |
|                                    E->getSourceRange()).take();
 | |
| }
 | |
| 
 | |
| /// ImplicitInitializerKind - How an implicit base or member initializer should
 | |
| /// initialize its base or member.
 | |
| enum ImplicitInitializerKind {
 | |
|   IIK_Default,
 | |
|   IIK_Copy,
 | |
|   IIK_Move,
 | |
|   IIK_Inherit
 | |
| };
 | |
| 
 | |
| static bool
 | |
| BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
 | |
|                              ImplicitInitializerKind ImplicitInitKind,
 | |
|                              CXXBaseSpecifier *BaseSpec,
 | |
|                              bool IsInheritedVirtualBase,
 | |
|                              CXXCtorInitializer *&CXXBaseInit) {
 | |
|   InitializedEntity InitEntity
 | |
|     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
 | |
|                                         IsInheritedVirtualBase);
 | |
| 
 | |
|   ExprResult BaseInit;
 | |
|   
 | |
|   switch (ImplicitInitKind) {
 | |
|   case IIK_Inherit: {
 | |
|     const CXXRecordDecl *Inherited =
 | |
|         Constructor->getInheritedConstructor()->getParent();
 | |
|     const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
 | |
|     if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
 | |
|       // C++11 [class.inhctor]p8:
 | |
|       //   Each expression in the expression-list is of the form
 | |
|       //   static_cast<T&&>(p), where p is the name of the corresponding
 | |
|       //   constructor parameter and T is the declared type of p.
 | |
|       SmallVector<Expr*, 16> Args;
 | |
|       for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
 | |
|         ParmVarDecl *PD = Constructor->getParamDecl(I);
 | |
|         ExprResult ArgExpr =
 | |
|             SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
 | |
|                                      VK_LValue, SourceLocation());
 | |
|         if (ArgExpr.isInvalid())
 | |
|           return true;
 | |
|         Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
 | |
|       }
 | |
| 
 | |
|       InitializationKind InitKind = InitializationKind::CreateDirect(
 | |
|           Constructor->getLocation(), SourceLocation(), SourceLocation());
 | |
|       InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
 | |
|       BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   // Fall through.
 | |
|   case IIK_Default: {
 | |
|     InitializationKind InitKind
 | |
|       = InitializationKind::CreateDefault(Constructor->getLocation());
 | |
|     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
 | |
|     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case IIK_Move:
 | |
|   case IIK_Copy: {
 | |
|     bool Moving = ImplicitInitKind == IIK_Move;
 | |
|     ParmVarDecl *Param = Constructor->getParamDecl(0);
 | |
|     QualType ParamType = Param->getType().getNonReferenceType();
 | |
| 
 | |
|     Expr *CopyCtorArg = 
 | |
|       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
 | |
|                           SourceLocation(), Param, false,
 | |
|                           Constructor->getLocation(), ParamType,
 | |
|                           VK_LValue, 0);
 | |
| 
 | |
|     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
 | |
| 
 | |
|     // Cast to the base class to avoid ambiguities.
 | |
|     QualType ArgTy = 
 | |
|       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 
 | |
|                                        ParamType.getQualifiers());
 | |
| 
 | |
|     if (Moving) {
 | |
|       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
 | |
|     }
 | |
| 
 | |
|     CXXCastPath BasePath;
 | |
|     BasePath.push_back(BaseSpec);
 | |
|     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
 | |
|                                             CK_UncheckedDerivedToBase,
 | |
|                                             Moving ? VK_XValue : VK_LValue,
 | |
|                                             &BasePath).take();
 | |
| 
 | |
|     InitializationKind InitKind
 | |
|       = InitializationKind::CreateDirect(Constructor->getLocation(),
 | |
|                                          SourceLocation(), SourceLocation());
 | |
|     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
 | |
|     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
 | |
|   if (BaseInit.isInvalid())
 | |
|     return true;
 | |
|         
 | |
|   CXXBaseInit =
 | |
|     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
 | |
|                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 
 | |
|                                                         SourceLocation()),
 | |
|                                              BaseSpec->isVirtual(),
 | |
|                                              SourceLocation(),
 | |
|                                              BaseInit.takeAs<Expr>(),
 | |
|                                              SourceLocation(),
 | |
|                                              SourceLocation());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool RefersToRValueRef(Expr *MemRef) {
 | |
|   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
 | |
|   return Referenced->getType()->isRValueReferenceType();
 | |
| }
 | |
| 
 | |
| static bool
 | |
| BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
 | |
|                                ImplicitInitializerKind ImplicitInitKind,
 | |
|                                FieldDecl *Field, IndirectFieldDecl *Indirect,
 | |
|                                CXXCtorInitializer *&CXXMemberInit) {
 | |
|   if (Field->isInvalidDecl())
 | |
|     return true;
 | |
| 
 | |
|   SourceLocation Loc = Constructor->getLocation();
 | |
| 
 | |
|   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
 | |
|     bool Moving = ImplicitInitKind == IIK_Move;
 | |
|     ParmVarDecl *Param = Constructor->getParamDecl(0);
 | |
|     QualType ParamType = Param->getType().getNonReferenceType();
 | |
| 
 | |
|     // Suppress copying zero-width bitfields.
 | |
|     if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
 | |
|       return false;
 | |
|         
 | |
|     Expr *MemberExprBase = 
 | |
|       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
 | |
|                           SourceLocation(), Param, false,
 | |
|                           Loc, ParamType, VK_LValue, 0);
 | |
| 
 | |
|     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
 | |
| 
 | |
|     if (Moving) {
 | |
|       MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
 | |
|     }
 | |
| 
 | |
|     // Build a reference to this field within the parameter.
 | |
|     CXXScopeSpec SS;
 | |
|     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
 | |
|                               Sema::LookupMemberName);
 | |
|     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
 | |
|                                   : cast<ValueDecl>(Field), AS_public);
 | |
|     MemberLookup.resolveKind();
 | |
|     ExprResult CtorArg 
 | |
|       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
 | |
|                                          ParamType, Loc,
 | |
|                                          /*IsArrow=*/false,
 | |
|                                          SS,
 | |
|                                          /*TemplateKWLoc=*/SourceLocation(),
 | |
|                                          /*FirstQualifierInScope=*/0,
 | |
|                                          MemberLookup,
 | |
|                                          /*TemplateArgs=*/0);    
 | |
|     if (CtorArg.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     // C++11 [class.copy]p15:
 | |
|     //   - if a member m has rvalue reference type T&&, it is direct-initialized
 | |
|     //     with static_cast<T&&>(x.m);
 | |
|     if (RefersToRValueRef(CtorArg.get())) {
 | |
|       CtorArg = CastForMoving(SemaRef, CtorArg.take());
 | |
|     }
 | |
| 
 | |
|     // When the field we are copying is an array, create index variables for 
 | |
|     // each dimension of the array. We use these index variables to subscript
 | |
|     // the source array, and other clients (e.g., CodeGen) will perform the
 | |
|     // necessary iteration with these index variables.
 | |
|     SmallVector<VarDecl *, 4> IndexVariables;
 | |
|     QualType BaseType = Field->getType();
 | |
|     QualType SizeType = SemaRef.Context.getSizeType();
 | |
|     bool InitializingArray = false;
 | |
|     while (const ConstantArrayType *Array
 | |
|                           = SemaRef.Context.getAsConstantArrayType(BaseType)) {
 | |
|       InitializingArray = true;
 | |
|       // Create the iteration variable for this array index.
 | |
|       IdentifierInfo *IterationVarName = 0;
 | |
|       {
 | |
|         SmallString<8> Str;
 | |
|         llvm::raw_svector_ostream OS(Str);
 | |
|         OS << "__i" << IndexVariables.size();
 | |
|         IterationVarName = &SemaRef.Context.Idents.get(OS.str());
 | |
|       }
 | |
|       VarDecl *IterationVar
 | |
|         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
 | |
|                           IterationVarName, SizeType,
 | |
|                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
 | |
|                           SC_None);
 | |
|       IndexVariables.push_back(IterationVar);
 | |
|       
 | |
|       // Create a reference to the iteration variable.
 | |
|       ExprResult IterationVarRef
 | |
|         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
 | |
|       assert(!IterationVarRef.isInvalid() &&
 | |
|              "Reference to invented variable cannot fail!");
 | |
|       IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
 | |
|       assert(!IterationVarRef.isInvalid() &&
 | |
|              "Conversion of invented variable cannot fail!");
 | |
| 
 | |
|       // Subscript the array with this iteration variable.
 | |
|       CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
 | |
|                                                         IterationVarRef.take(),
 | |
|                                                         Loc);
 | |
|       if (CtorArg.isInvalid())
 | |
|         return true;
 | |
| 
 | |
|       BaseType = Array->getElementType();
 | |
|     }
 | |
| 
 | |
|     // The array subscript expression is an lvalue, which is wrong for moving.
 | |
|     if (Moving && InitializingArray)
 | |
|       CtorArg = CastForMoving(SemaRef, CtorArg.take());
 | |
| 
 | |
|     // Construct the entity that we will be initializing. For an array, this
 | |
|     // will be first element in the array, which may require several levels
 | |
|     // of array-subscript entities. 
 | |
|     SmallVector<InitializedEntity, 4> Entities;
 | |
|     Entities.reserve(1 + IndexVariables.size());
 | |
|     if (Indirect)
 | |
|       Entities.push_back(InitializedEntity::InitializeMember(Indirect));
 | |
|     else
 | |
|       Entities.push_back(InitializedEntity::InitializeMember(Field));
 | |
|     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
 | |
|       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
 | |
|                                                               0,
 | |
|                                                               Entities.back()));
 | |
|     
 | |
|     // Direct-initialize to use the copy constructor.
 | |
|     InitializationKind InitKind =
 | |
|       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
 | |
|     
 | |
|     Expr *CtorArgE = CtorArg.takeAs<Expr>();
 | |
|     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
 | |
|     
 | |
|     ExprResult MemberInit
 | |
|       = InitSeq.Perform(SemaRef, Entities.back(), InitKind, 
 | |
|                         MultiExprArg(&CtorArgE, 1));
 | |
|     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
 | |
|     if (MemberInit.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     if (Indirect) {
 | |
|       assert(IndexVariables.size() == 0 && 
 | |
|              "Indirect field improperly initialized");
 | |
|       CXXMemberInit
 | |
|         = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect, 
 | |
|                                                    Loc, Loc, 
 | |
|                                                    MemberInit.takeAs<Expr>(), 
 | |
|                                                    Loc);
 | |
|     } else
 | |
|       CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, 
 | |
|                                                  Loc, MemberInit.takeAs<Expr>(), 
 | |
|                                                  Loc,
 | |
|                                                  IndexVariables.data(),
 | |
|                                                  IndexVariables.size());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
 | |
|          "Unhandled implicit init kind!");
 | |
| 
 | |
|   QualType FieldBaseElementType = 
 | |
|     SemaRef.Context.getBaseElementType(Field->getType());
 | |
|   
 | |
|   if (FieldBaseElementType->isRecordType()) {
 | |
|     InitializedEntity InitEntity 
 | |
|       = Indirect? InitializedEntity::InitializeMember(Indirect)
 | |
|                 : InitializedEntity::InitializeMember(Field);
 | |
|     InitializationKind InitKind = 
 | |
|       InitializationKind::CreateDefault(Loc);
 | |
| 
 | |
|     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
 | |
|     ExprResult MemberInit =
 | |
|       InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
 | |
| 
 | |
|     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
 | |
|     if (MemberInit.isInvalid())
 | |
|       return true;
 | |
|     
 | |
|     if (Indirect)
 | |
|       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
 | |
|                                                                Indirect, Loc, 
 | |
|                                                                Loc,
 | |
|                                                                MemberInit.get(),
 | |
|                                                                Loc);
 | |
|     else
 | |
|       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
 | |
|                                                                Field, Loc, Loc,
 | |
|                                                                MemberInit.get(),
 | |
|                                                                Loc);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Field->getParent()->isUnion()) {
 | |
|     if (FieldBaseElementType->isReferenceType()) {
 | |
|       SemaRef.Diag(Constructor->getLocation(), 
 | |
|                    diag::err_uninitialized_member_in_ctor)
 | |
|       << (int)Constructor->isImplicit() 
 | |
|       << SemaRef.Context.getTagDeclType(Constructor->getParent())
 | |
|       << 0 << Field->getDeclName();
 | |
|       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (FieldBaseElementType.isConstQualified()) {
 | |
|       SemaRef.Diag(Constructor->getLocation(), 
 | |
|                    diag::err_uninitialized_member_in_ctor)
 | |
|       << (int)Constructor->isImplicit() 
 | |
|       << SemaRef.Context.getTagDeclType(Constructor->getParent())
 | |
|       << 1 << Field->getDeclName();
 | |
|       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
 | |
|       FieldBaseElementType->isObjCRetainableType() &&
 | |
|       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
 | |
|       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
 | |
|     // ARC:
 | |
|     //   Default-initialize Objective-C pointers to NULL.
 | |
|     CXXMemberInit
 | |
|       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 
 | |
|                                                  Loc, Loc, 
 | |
|                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 
 | |
|                                                  Loc);
 | |
|     return false;
 | |
|   }
 | |
|       
 | |
|   // Nothing to initialize.
 | |
|   CXXMemberInit = 0;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct BaseAndFieldInfo {
 | |
|   Sema &S;
 | |
|   CXXConstructorDecl *Ctor;
 | |
|   bool AnyErrorsInInits;
 | |
|   ImplicitInitializerKind IIK;
 | |
|   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
 | |
|   SmallVector<CXXCtorInitializer*, 8> AllToInit;
 | |
| 
 | |
|   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
 | |
|     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
 | |
|     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
 | |
|     if (Generated && Ctor->isCopyConstructor())
 | |
|       IIK = IIK_Copy;
 | |
|     else if (Generated && Ctor->isMoveConstructor())
 | |
|       IIK = IIK_Move;
 | |
|     else if (Ctor->getInheritedConstructor())
 | |
|       IIK = IIK_Inherit;
 | |
|     else
 | |
|       IIK = IIK_Default;
 | |
|   }
 | |
|   
 | |
|   bool isImplicitCopyOrMove() const {
 | |
|     switch (IIK) {
 | |
|     case IIK_Copy:
 | |
|     case IIK_Move:
 | |
|       return true;
 | |
|       
 | |
|     case IIK_Default:
 | |
|     case IIK_Inherit:
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("Invalid ImplicitInitializerKind!");
 | |
|   }
 | |
| 
 | |
|   bool addFieldInitializer(CXXCtorInitializer *Init) {
 | |
|     AllToInit.push_back(Init);
 | |
| 
 | |
|     // Check whether this initializer makes the field "used".
 | |
|     if (Init->getInit()->HasSideEffects(S.Context))
 | |
|       S.UnusedPrivateFields.remove(Init->getAnyMember());
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given indirect field declaration is somewhere
 | |
| /// within an anonymous union.
 | |
| static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
 | |
|   for (IndirectFieldDecl::chain_iterator C = F->chain_begin(), 
 | |
|                                       CEnd = F->chain_end();
 | |
|        C != CEnd; ++C)
 | |
|     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
 | |
|       if (Record->isUnion())
 | |
|         return true;
 | |
|         
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given type is an incomplete or zero-lenfgth
 | |
| /// array type.
 | |
| static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
 | |
|   if (T->isIncompleteArrayType())
 | |
|     return true;
 | |
|   
 | |
|   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
 | |
|     if (!ArrayT->getSize())
 | |
|       return true;
 | |
|     
 | |
|     T = ArrayT->getElementType();
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
 | |
|                                     FieldDecl *Field, 
 | |
|                                     IndirectFieldDecl *Indirect = 0) {
 | |
|   if (Field->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // Overwhelmingly common case: we have a direct initializer for this field.
 | |
|   if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
 | |
|     return Info.addFieldInitializer(Init);
 | |
| 
 | |
|   // C++11 [class.base.init]p8: if the entity is a non-static data member that
 | |
|   // has a brace-or-equal-initializer, the entity is initialized as specified
 | |
|   // in [dcl.init].
 | |
|   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
 | |
|     Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
 | |
|                                            Info.Ctor->getLocation(), Field);
 | |
|     CXXCtorInitializer *Init;
 | |
|     if (Indirect)
 | |
|       Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
 | |
|                                                       SourceLocation(),
 | |
|                                                       SourceLocation(), DIE,
 | |
|                                                       SourceLocation());
 | |
|     else
 | |
|       Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
 | |
|                                                       SourceLocation(),
 | |
|                                                       SourceLocation(), DIE,
 | |
|                                                       SourceLocation());
 | |
|     return Info.addFieldInitializer(Init);
 | |
|   }
 | |
| 
 | |
|   // Don't build an implicit initializer for union members if none was
 | |
|   // explicitly specified.
 | |
|   if (Field->getParent()->isUnion() ||
 | |
|       (Indirect && isWithinAnonymousUnion(Indirect)))
 | |
|     return false;
 | |
| 
 | |
|   // Don't initialize incomplete or zero-length arrays.
 | |
|   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Don't try to build an implicit initializer if there were semantic
 | |
|   // errors in any of the initializers (and therefore we might be
 | |
|   // missing some that the user actually wrote).
 | |
|   if (Info.AnyErrorsInInits)
 | |
|     return false;
 | |
| 
 | |
|   CXXCtorInitializer *Init = 0;
 | |
|   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
 | |
|                                      Indirect, Init))
 | |
|     return true;
 | |
| 
 | |
|   if (!Init)
 | |
|     return false;
 | |
| 
 | |
|   return Info.addFieldInitializer(Init);
 | |
| }
 | |
| 
 | |
| bool
 | |
| Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
 | |
|                                CXXCtorInitializer *Initializer) {
 | |
|   assert(Initializer->isDelegatingInitializer());
 | |
|   Constructor->setNumCtorInitializers(1);
 | |
|   CXXCtorInitializer **initializer =
 | |
|     new (Context) CXXCtorInitializer*[1];
 | |
|   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
 | |
|   Constructor->setCtorInitializers(initializer);
 | |
| 
 | |
|   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
 | |
|     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
 | |
|     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
 | |
|   }
 | |
| 
 | |
|   DelegatingCtorDecls.push_back(Constructor);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
 | |
|                                ArrayRef<CXXCtorInitializer *> Initializers) {
 | |
|   if (Constructor->isDependentContext()) {
 | |
|     // Just store the initializers as written, they will be checked during
 | |
|     // instantiation.
 | |
|     if (!Initializers.empty()) {
 | |
|       Constructor->setNumCtorInitializers(Initializers.size());
 | |
|       CXXCtorInitializer **baseOrMemberInitializers =
 | |
|         new (Context) CXXCtorInitializer*[Initializers.size()];
 | |
|       memcpy(baseOrMemberInitializers, Initializers.data(),
 | |
|              Initializers.size() * sizeof(CXXCtorInitializer*));
 | |
|       Constructor->setCtorInitializers(baseOrMemberInitializers);
 | |
|     }
 | |
| 
 | |
|     // Let template instantiation know whether we had errors.
 | |
|     if (AnyErrors)
 | |
|       Constructor->setInvalidDecl();
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
 | |
| 
 | |
|   // We need to build the initializer AST according to order of construction
 | |
|   // and not what user specified in the Initializers list.
 | |
|   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
 | |
|   if (!ClassDecl)
 | |
|     return true;
 | |
|   
 | |
|   bool HadError = false;
 | |
| 
 | |
|   for (unsigned i = 0; i < Initializers.size(); i++) {
 | |
|     CXXCtorInitializer *Member = Initializers[i];
 | |
| 
 | |
|     if (Member->isBaseInitializer())
 | |
|       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
 | |
|     else
 | |
|       Info.AllBaseFields[Member->getAnyMember()] = Member;
 | |
|   }
 | |
| 
 | |
|   // Keep track of the direct virtual bases.
 | |
|   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
 | |
|   for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); I != E; ++I) {
 | |
|     if (I->isVirtual())
 | |
|       DirectVBases.insert(I);
 | |
|   }
 | |
| 
 | |
|   // Push virtual bases before others.
 | |
|   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
 | |
|        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
 | |
| 
 | |
|     if (CXXCtorInitializer *Value
 | |
|         = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
 | |
|       // [class.base.init]p7, per DR257:
 | |
|       //   A mem-initializer where the mem-initializer-id names a virtual base
 | |
|       //   class is ignored during execution of a constructor of any class that
 | |
|       //   is not the most derived class.
 | |
|       if (ClassDecl->isAbstract()) {
 | |
|         // FIXME: Provide a fixit to remove the base specifier. This requires
 | |
|         // tracking the location of the associated comma for a base specifier.
 | |
|         Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
 | |
|           << VBase->getType() << ClassDecl;
 | |
|         DiagnoseAbstractType(ClassDecl);
 | |
|       }
 | |
| 
 | |
|       Info.AllToInit.push_back(Value);
 | |
|     } else if (!AnyErrors && !ClassDecl->isAbstract()) {
 | |
|       // [class.base.init]p8, per DR257:
 | |
|       //   If a given [...] base class is not named by a mem-initializer-id
 | |
|       //   [...] and the entity is not a virtual base class of an abstract
 | |
|       //   class, then [...] the entity is default-initialized.
 | |
|       bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
 | |
|       CXXCtorInitializer *CXXBaseInit;
 | |
|       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
 | |
|                                        VBase, IsInheritedVirtualBase,
 | |
|                                        CXXBaseInit)) {
 | |
|         HadError = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Info.AllToInit.push_back(CXXBaseInit);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); Base != E; ++Base) {
 | |
|     // Virtuals are in the virtual base list and already constructed.
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     if (CXXCtorInitializer *Value
 | |
|           = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
 | |
|       Info.AllToInit.push_back(Value);
 | |
|     } else if (!AnyErrors) {
 | |
|       CXXCtorInitializer *CXXBaseInit;
 | |
|       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
 | |
|                                        Base, /*IsInheritedVirtualBase=*/false,
 | |
|                                        CXXBaseInit)) {
 | |
|         HadError = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Info.AllToInit.push_back(CXXBaseInit);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fields.
 | |
|   for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
 | |
|                                MemEnd = ClassDecl->decls_end();
 | |
|        Mem != MemEnd; ++Mem) {
 | |
|     if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
 | |
|       // C++ [class.bit]p2:
 | |
|       //   A declaration for a bit-field that omits the identifier declares an
 | |
|       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
 | |
|       //   initialized.
 | |
|       if (F->isUnnamedBitfield())
 | |
|         continue;
 | |
|             
 | |
|       // If we're not generating the implicit copy/move constructor, then we'll
 | |
|       // handle anonymous struct/union fields based on their individual
 | |
|       // indirect fields.
 | |
|       if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
 | |
|         continue;
 | |
|           
 | |
|       if (CollectFieldInitializer(*this, Info, F))
 | |
|         HadError = true;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Beyond this point, we only consider default initialization.
 | |
|     if (Info.isImplicitCopyOrMove())
 | |
|       continue;
 | |
|     
 | |
|     if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
 | |
|       if (F->getType()->isIncompleteArrayType()) {
 | |
|         assert(ClassDecl->hasFlexibleArrayMember() &&
 | |
|                "Incomplete array type is not valid");
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Initialize each field of an anonymous struct individually.
 | |
|       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
 | |
|         HadError = true;
 | |
|       
 | |
|       continue;        
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned NumInitializers = Info.AllToInit.size();
 | |
|   if (NumInitializers > 0) {
 | |
|     Constructor->setNumCtorInitializers(NumInitializers);
 | |
|     CXXCtorInitializer **baseOrMemberInitializers =
 | |
|       new (Context) CXXCtorInitializer*[NumInitializers];
 | |
|     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
 | |
|            NumInitializers * sizeof(CXXCtorInitializer*));
 | |
|     Constructor->setCtorInitializers(baseOrMemberInitializers);
 | |
| 
 | |
|     // Constructors implicitly reference the base and member
 | |
|     // destructors.
 | |
|     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
 | |
|                                            Constructor->getParent());
 | |
|   }
 | |
| 
 | |
|   return HadError;
 | |
| }
 | |
| 
 | |
| static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
 | |
|   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     if (RD->isAnonymousStructOrUnion()) {
 | |
|       for (RecordDecl::field_iterator Field = RD->field_begin(),
 | |
|           E = RD->field_end(); Field != E; ++Field)
 | |
|         PopulateKeysForFields(*Field, IdealInits);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   IdealInits.push_back(Field);
 | |
| }
 | |
| 
 | |
| static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
 | |
|   return Context.getCanonicalType(BaseType).getTypePtr();
 | |
| }
 | |
| 
 | |
| static const void *GetKeyForMember(ASTContext &Context,
 | |
|                                    CXXCtorInitializer *Member) {
 | |
|   if (!Member->isAnyMemberInitializer())
 | |
|     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
 | |
|     
 | |
|   return Member->getAnyMember();
 | |
| }
 | |
| 
 | |
| static void DiagnoseBaseOrMemInitializerOrder(
 | |
|     Sema &SemaRef, const CXXConstructorDecl *Constructor,
 | |
|     ArrayRef<CXXCtorInitializer *> Inits) {
 | |
|   if (Constructor->getDeclContext()->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   // Don't check initializers order unless the warning is enabled at the
 | |
|   // location of at least one initializer. 
 | |
|   bool ShouldCheckOrder = false;
 | |
|   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
 | |
|     CXXCtorInitializer *Init = Inits[InitIndex];
 | |
|     if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
 | |
|                                          Init->getSourceLocation())
 | |
|           != DiagnosticsEngine::Ignored) {
 | |
|       ShouldCheckOrder = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!ShouldCheckOrder)
 | |
|     return;
 | |
|   
 | |
|   // Build the list of bases and members in the order that they'll
 | |
|   // actually be initialized.  The explicit initializers should be in
 | |
|   // this same order but may be missing things.
 | |
|   SmallVector<const void*, 32> IdealInitKeys;
 | |
| 
 | |
|   const CXXRecordDecl *ClassDecl = Constructor->getParent();
 | |
| 
 | |
|   // 1. Virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator VBase =
 | |
|        ClassDecl->vbases_begin(),
 | |
|        E = ClassDecl->vbases_end(); VBase != E; ++VBase)
 | |
|     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
 | |
| 
 | |
|   // 2. Non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); Base != E; ++Base) {
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
|     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
 | |
|   }
 | |
| 
 | |
|   // 3. Direct fields.
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|        E = ClassDecl->field_end(); Field != E; ++Field) {
 | |
|     if (Field->isUnnamedBitfield())
 | |
|       continue;
 | |
|     
 | |
|     PopulateKeysForFields(*Field, IdealInitKeys);
 | |
|   }
 | |
|   
 | |
|   unsigned NumIdealInits = IdealInitKeys.size();
 | |
|   unsigned IdealIndex = 0;
 | |
| 
 | |
|   CXXCtorInitializer *PrevInit = 0;
 | |
|   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
 | |
|     CXXCtorInitializer *Init = Inits[InitIndex];
 | |
|     const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
 | |
| 
 | |
|     // Scan forward to try to find this initializer in the idealized
 | |
|     // initializers list.
 | |
|     for (; IdealIndex != NumIdealInits; ++IdealIndex)
 | |
|       if (InitKey == IdealInitKeys[IdealIndex])
 | |
|         break;
 | |
| 
 | |
|     // If we didn't find this initializer, it must be because we
 | |
|     // scanned past it on a previous iteration.  That can only
 | |
|     // happen if we're out of order;  emit a warning.
 | |
|     if (IdealIndex == NumIdealInits && PrevInit) {
 | |
|       Sema::SemaDiagnosticBuilder D =
 | |
|         SemaRef.Diag(PrevInit->getSourceLocation(),
 | |
|                      diag::warn_initializer_out_of_order);
 | |
| 
 | |
|       if (PrevInit->isAnyMemberInitializer())
 | |
|         D << 0 << PrevInit->getAnyMember()->getDeclName();
 | |
|       else
 | |
|         D << 1 << PrevInit->getTypeSourceInfo()->getType();
 | |
|       
 | |
|       if (Init->isAnyMemberInitializer())
 | |
|         D << 0 << Init->getAnyMember()->getDeclName();
 | |
|       else
 | |
|         D << 1 << Init->getTypeSourceInfo()->getType();
 | |
| 
 | |
|       // Move back to the initializer's location in the ideal list.
 | |
|       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
 | |
|         if (InitKey == IdealInitKeys[IdealIndex])
 | |
|           break;
 | |
| 
 | |
|       assert(IdealIndex != NumIdealInits &&
 | |
|              "initializer not found in initializer list");
 | |
|     }
 | |
| 
 | |
|     PrevInit = Init;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| bool CheckRedundantInit(Sema &S,
 | |
|                         CXXCtorInitializer *Init,
 | |
|                         CXXCtorInitializer *&PrevInit) {
 | |
|   if (!PrevInit) {
 | |
|     PrevInit = Init;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (FieldDecl *Field = Init->getAnyMember())
 | |
|     S.Diag(Init->getSourceLocation(),
 | |
|            diag::err_multiple_mem_initialization)
 | |
|       << Field->getDeclName()
 | |
|       << Init->getSourceRange();
 | |
|   else {
 | |
|     const Type *BaseClass = Init->getBaseClass();
 | |
|     assert(BaseClass && "neither field nor base");
 | |
|     S.Diag(Init->getSourceLocation(),
 | |
|            diag::err_multiple_base_initialization)
 | |
|       << QualType(BaseClass, 0)
 | |
|       << Init->getSourceRange();
 | |
|   }
 | |
|   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
 | |
|     << 0 << PrevInit->getSourceRange();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
 | |
| typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
 | |
| 
 | |
| bool CheckRedundantUnionInit(Sema &S,
 | |
|                              CXXCtorInitializer *Init,
 | |
|                              RedundantUnionMap &Unions) {
 | |
|   FieldDecl *Field = Init->getAnyMember();
 | |
|   RecordDecl *Parent = Field->getParent();
 | |
|   NamedDecl *Child = Field;
 | |
| 
 | |
|   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
 | |
|     if (Parent->isUnion()) {
 | |
|       UnionEntry &En = Unions[Parent];
 | |
|       if (En.first && En.first != Child) {
 | |
|         S.Diag(Init->getSourceLocation(),
 | |
|                diag::err_multiple_mem_union_initialization)
 | |
|           << Field->getDeclName()
 | |
|           << Init->getSourceRange();
 | |
|         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
 | |
|           << 0 << En.second->getSourceRange();
 | |
|         return true;
 | |
|       } 
 | |
|       if (!En.first) {
 | |
|         En.first = Child;
 | |
|         En.second = Init;
 | |
|       }
 | |
|       if (!Parent->isAnonymousStructOrUnion())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     Child = Parent;
 | |
|     Parent = cast<RecordDecl>(Parent->getDeclContext());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| }
 | |
| 
 | |
| /// ActOnMemInitializers - Handle the member initializers for a constructor.
 | |
| void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
 | |
|                                 SourceLocation ColonLoc,
 | |
|                                 ArrayRef<CXXCtorInitializer*> MemInits,
 | |
|                                 bool AnyErrors) {
 | |
|   if (!ConstructorDecl)
 | |
|     return;
 | |
| 
 | |
|   AdjustDeclIfTemplate(ConstructorDecl);
 | |
| 
 | |
|   CXXConstructorDecl *Constructor
 | |
|     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
 | |
| 
 | |
|   if (!Constructor) {
 | |
|     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Mapping for the duplicate initializers check.
 | |
|   // For member initializers, this is keyed with a FieldDecl*.
 | |
|   // For base initializers, this is keyed with a Type*.
 | |
|   llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
 | |
| 
 | |
|   // Mapping for the inconsistent anonymous-union initializers check.
 | |
|   RedundantUnionMap MemberUnions;
 | |
| 
 | |
|   bool HadError = false;
 | |
|   for (unsigned i = 0; i < MemInits.size(); i++) {
 | |
|     CXXCtorInitializer *Init = MemInits[i];
 | |
| 
 | |
|     // Set the source order index.
 | |
|     Init->setSourceOrder(i);
 | |
| 
 | |
|     if (Init->isAnyMemberInitializer()) {
 | |
|       FieldDecl *Field = Init->getAnyMember();
 | |
|       if (CheckRedundantInit(*this, Init, Members[Field]) ||
 | |
|           CheckRedundantUnionInit(*this, Init, MemberUnions))
 | |
|         HadError = true;
 | |
|     } else if (Init->isBaseInitializer()) {
 | |
|       const void *Key =
 | |
|           GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
 | |
|       if (CheckRedundantInit(*this, Init, Members[Key]))
 | |
|         HadError = true;
 | |
|     } else {
 | |
|       assert(Init->isDelegatingInitializer());
 | |
|       // This must be the only initializer
 | |
|       if (MemInits.size() != 1) {
 | |
|         Diag(Init->getSourceLocation(),
 | |
|              diag::err_delegating_initializer_alone)
 | |
|           << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
 | |
|         // We will treat this as being the only initializer.
 | |
|       }
 | |
|       SetDelegatingInitializer(Constructor, MemInits[i]);
 | |
|       // Return immediately as the initializer is set.
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (HadError)
 | |
|     return;
 | |
| 
 | |
|   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
 | |
| 
 | |
|   SetCtorInitializers(Constructor, AnyErrors, MemInits);
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
 | |
|                                              CXXRecordDecl *ClassDecl) {
 | |
|   // Ignore dependent contexts. Also ignore unions, since their members never
 | |
|   // have destructors implicitly called.
 | |
|   if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
 | |
|     return;
 | |
| 
 | |
|   // FIXME: all the access-control diagnostics are positioned on the
 | |
|   // field/base declaration.  That's probably good; that said, the
 | |
|   // user might reasonably want to know why the destructor is being
 | |
|   // emitted, and we currently don't say.
 | |
|   
 | |
|   // Non-static data members.
 | |
|   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
 | |
|        E = ClassDecl->field_end(); I != E; ++I) {
 | |
|     FieldDecl *Field = *I;
 | |
|     if (Field->isInvalidDecl())
 | |
|       continue;
 | |
|     
 | |
|     // Don't destroy incomplete or zero-length arrays.
 | |
|     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
 | |
|       continue;
 | |
| 
 | |
|     QualType FieldType = Context.getBaseElementType(Field->getType());
 | |
|     
 | |
|     const RecordType* RT = FieldType->getAs<RecordType>();
 | |
|     if (!RT)
 | |
|       continue;
 | |
|     
 | |
|     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     if (FieldClassDecl->isInvalidDecl())
 | |
|       continue;
 | |
|     if (FieldClassDecl->hasIrrelevantDestructor())
 | |
|       continue;
 | |
|     // The destructor for an implicit anonymous union member is never invoked.
 | |
|     if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
 | |
|       continue;
 | |
| 
 | |
|     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
 | |
|     assert(Dtor && "No dtor found for FieldClassDecl!");
 | |
|     CheckDestructorAccess(Field->getLocation(), Dtor,
 | |
|                           PDiag(diag::err_access_dtor_field)
 | |
|                             << Field->getDeclName()
 | |
|                             << FieldType);
 | |
| 
 | |
|     MarkFunctionReferenced(Location, Dtor);
 | |
|     DiagnoseUseOfDecl(Dtor, Location);
 | |
|   }
 | |
| 
 | |
|   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
 | |
| 
 | |
|   // Bases.
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); Base != E; ++Base) {
 | |
|     // Bases are always records in a well-formed non-dependent class.
 | |
|     const RecordType *RT = Base->getType()->getAs<RecordType>();
 | |
| 
 | |
|     // Remember direct virtual bases.
 | |
|     if (Base->isVirtual())
 | |
|       DirectVirtualBases.insert(RT);
 | |
| 
 | |
|     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     // If our base class is invalid, we probably can't get its dtor anyway.
 | |
|     if (BaseClassDecl->isInvalidDecl())
 | |
|       continue;
 | |
|     if (BaseClassDecl->hasIrrelevantDestructor())
 | |
|       continue;
 | |
| 
 | |
|     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
 | |
|     assert(Dtor && "No dtor found for BaseClassDecl!");
 | |
| 
 | |
|     // FIXME: caret should be on the start of the class name
 | |
|     CheckDestructorAccess(Base->getLocStart(), Dtor,
 | |
|                           PDiag(diag::err_access_dtor_base)
 | |
|                             << Base->getType()
 | |
|                             << Base->getSourceRange(),
 | |
|                           Context.getTypeDeclType(ClassDecl));
 | |
|     
 | |
|     MarkFunctionReferenced(Location, Dtor);
 | |
|     DiagnoseUseOfDecl(Dtor, Location);
 | |
|   }
 | |
|   
 | |
|   // Virtual bases.
 | |
|   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
 | |
|        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
 | |
| 
 | |
|     // Bases are always records in a well-formed non-dependent class.
 | |
|     const RecordType *RT = VBase->getType()->castAs<RecordType>();
 | |
| 
 | |
|     // Ignore direct virtual bases.
 | |
|     if (DirectVirtualBases.count(RT))
 | |
|       continue;
 | |
| 
 | |
|     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     // If our base class is invalid, we probably can't get its dtor anyway.
 | |
|     if (BaseClassDecl->isInvalidDecl())
 | |
|       continue;
 | |
|     if (BaseClassDecl->hasIrrelevantDestructor())
 | |
|       continue;
 | |
| 
 | |
|     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
 | |
|     assert(Dtor && "No dtor found for BaseClassDecl!");
 | |
|     if (CheckDestructorAccess(
 | |
|             ClassDecl->getLocation(), Dtor,
 | |
|             PDiag(diag::err_access_dtor_vbase)
 | |
|                 << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
 | |
|             Context.getTypeDeclType(ClassDecl)) ==
 | |
|         AR_accessible) {
 | |
|       CheckDerivedToBaseConversion(
 | |
|           Context.getTypeDeclType(ClassDecl), VBase->getType(),
 | |
|           diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
 | |
|           SourceRange(), DeclarationName(), 0);
 | |
|     }
 | |
| 
 | |
|     MarkFunctionReferenced(Location, Dtor);
 | |
|     DiagnoseUseOfDecl(Dtor, Location);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
 | |
|   if (!CDtorDecl)
 | |
|     return;
 | |
| 
 | |
|   if (CXXConstructorDecl *Constructor
 | |
|       = dyn_cast<CXXConstructorDecl>(CDtorDecl))
 | |
|     SetCtorInitializers(Constructor, /*AnyErrors=*/false);
 | |
| }
 | |
| 
 | |
| bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
 | |
|                                   unsigned DiagID, AbstractDiagSelID SelID) {
 | |
|   class NonAbstractTypeDiagnoser : public TypeDiagnoser {
 | |
|     unsigned DiagID;
 | |
|     AbstractDiagSelID SelID;
 | |
|     
 | |
|   public:
 | |
|     NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
 | |
|       : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
 | |
| 
 | |
|     void diagnose(Sema &S, SourceLocation Loc, QualType T) LLVM_OVERRIDE {
 | |
|       if (Suppressed) return;
 | |
|       if (SelID == -1)
 | |
|         S.Diag(Loc, DiagID) << T;
 | |
|       else
 | |
|         S.Diag(Loc, DiagID) << SelID << T;
 | |
|     }
 | |
|   } Diagnoser(DiagID, SelID);
 | |
|   
 | |
|   return RequireNonAbstractType(Loc, T, Diagnoser);
 | |
| }
 | |
| 
 | |
| bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
 | |
|                                   TypeDiagnoser &Diagnoser) {
 | |
|   if (!getLangOpts().CPlusPlus)
 | |
|     return false;
 | |
| 
 | |
|   if (const ArrayType *AT = Context.getAsArrayType(T))
 | |
|     return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
 | |
| 
 | |
|   if (const PointerType *PT = T->getAs<PointerType>()) {
 | |
|     // Find the innermost pointer type.
 | |
|     while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
 | |
|       PT = T;
 | |
| 
 | |
|     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
 | |
|       return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
 | |
|   }
 | |
| 
 | |
|   const RecordType *RT = T->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
| 
 | |
|   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
| 
 | |
|   // We can't answer whether something is abstract until it has a
 | |
|   // definition.  If it's currently being defined, we'll walk back
 | |
|   // over all the declarations when we have a full definition.
 | |
|   const CXXRecordDecl *Def = RD->getDefinition();
 | |
|   if (!Def || Def->isBeingDefined())
 | |
|     return false;
 | |
| 
 | |
|   if (!RD->isAbstract())
 | |
|     return false;
 | |
| 
 | |
|   Diagnoser.diagnose(*this, Loc, T);
 | |
|   DiagnoseAbstractType(RD);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
 | |
|   // Check if we've already emitted the list of pure virtual functions
 | |
|   // for this class.
 | |
|   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
 | |
|     return;
 | |
| 
 | |
|   // If the diagnostic is suppressed, don't emit the notes. We're only
 | |
|   // going to emit them once, so try to attach them to a diagnostic we're
 | |
|   // actually going to show.
 | |
|   if (Diags.isLastDiagnosticIgnored())
 | |
|     return;
 | |
| 
 | |
|   CXXFinalOverriderMap FinalOverriders;
 | |
|   RD->getFinalOverriders(FinalOverriders);
 | |
| 
 | |
|   // Keep a set of seen pure methods so we won't diagnose the same method
 | |
|   // more than once.
 | |
|   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
 | |
|   
 | |
|   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 
 | |
|                                    MEnd = FinalOverriders.end();
 | |
|        M != MEnd; 
 | |
|        ++M) {
 | |
|     for (OverridingMethods::iterator SO = M->second.begin(), 
 | |
|                                   SOEnd = M->second.end();
 | |
|          SO != SOEnd; ++SO) {
 | |
|       // C++ [class.abstract]p4:
 | |
|       //   A class is abstract if it contains or inherits at least one
 | |
|       //   pure virtual function for which the final overrider is pure
 | |
|       //   virtual.
 | |
| 
 | |
|       // 
 | |
|       if (SO->second.size() != 1)
 | |
|         continue;
 | |
| 
 | |
|       if (!SO->second.front().Method->isPure())
 | |
|         continue;
 | |
| 
 | |
|       if (!SeenPureMethods.insert(SO->second.front().Method))
 | |
|         continue;
 | |
| 
 | |
|       Diag(SO->second.front().Method->getLocation(), 
 | |
|            diag::note_pure_virtual_function) 
 | |
|         << SO->second.front().Method->getDeclName() << RD->getDeclName();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!PureVirtualClassDiagSet)
 | |
|     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
 | |
|   PureVirtualClassDiagSet->insert(RD);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct AbstractUsageInfo {
 | |
|   Sema &S;
 | |
|   CXXRecordDecl *Record;
 | |
|   CanQualType AbstractType;
 | |
|   bool Invalid;
 | |
| 
 | |
|   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
 | |
|     : S(S), Record(Record),
 | |
|       AbstractType(S.Context.getCanonicalType(
 | |
|                    S.Context.getTypeDeclType(Record))),
 | |
|       Invalid(false) {}
 | |
| 
 | |
|   void DiagnoseAbstractType() {
 | |
|     if (Invalid) return;
 | |
|     S.DiagnoseAbstractType(Record);
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
 | |
| };
 | |
| 
 | |
| struct CheckAbstractUsage {
 | |
|   AbstractUsageInfo &Info;
 | |
|   const NamedDecl *Ctx;
 | |
| 
 | |
|   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
 | |
|     : Info(Info), Ctx(Ctx) {}
 | |
| 
 | |
|   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     switch (TL.getTypeLocClass()) {
 | |
| #define ABSTRACT_TYPELOC(CLASS, PARENT)
 | |
| #define TYPELOC(CLASS, PARENT) \
 | |
|     case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
 | |
| #include "clang/AST/TypeLocNodes.def"
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     Visit(TL.getResultLoc(), Sema::AbstractReturnType);
 | |
|     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
 | |
|       if (!TL.getArg(I))
 | |
|         continue;
 | |
|       
 | |
|       TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
 | |
|       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
 | |
|   }
 | |
| 
 | |
|   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     // Visit the type parameters from a permissive context.
 | |
|     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
 | |
|       TemplateArgumentLoc TAL = TL.getArgLoc(I);
 | |
|       if (TAL.getArgument().getKind() == TemplateArgument::Type)
 | |
|         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
 | |
|           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
 | |
|       // TODO: other template argument types?
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Visit pointee types from a permissive context.
 | |
| #define CheckPolymorphic(Type) \
 | |
|   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
 | |
|     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
 | |
|   }
 | |
|   CheckPolymorphic(PointerTypeLoc)
 | |
|   CheckPolymorphic(ReferenceTypeLoc)
 | |
|   CheckPolymorphic(MemberPointerTypeLoc)
 | |
|   CheckPolymorphic(BlockPointerTypeLoc)
 | |
|   CheckPolymorphic(AtomicTypeLoc)
 | |
| 
 | |
|   /// Handle all the types we haven't given a more specific
 | |
|   /// implementation for above.
 | |
|   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     // Every other kind of type that we haven't called out already
 | |
|     // that has an inner type is either (1) sugar or (2) contains that
 | |
|     // inner type in some way as a subobject.
 | |
|     if (TypeLoc Next = TL.getNextTypeLoc())
 | |
|       return Visit(Next, Sel);
 | |
| 
 | |
|     // If there's no inner type and we're in a permissive context,
 | |
|     // don't diagnose.
 | |
|     if (Sel == Sema::AbstractNone) return;
 | |
| 
 | |
|     // Check whether the type matches the abstract type.
 | |
|     QualType T = TL.getType();
 | |
|     if (T->isArrayType()) {
 | |
|       Sel = Sema::AbstractArrayType;
 | |
|       T = Info.S.Context.getBaseElementType(T);
 | |
|     }
 | |
|     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
 | |
|     if (CT != Info.AbstractType) return;
 | |
| 
 | |
|     // It matched; do some magic.
 | |
|     if (Sel == Sema::AbstractArrayType) {
 | |
|       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
 | |
|         << T << TL.getSourceRange();
 | |
|     } else {
 | |
|       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
 | |
|         << Sel << T << TL.getSourceRange();
 | |
|     }
 | |
|     Info.DiagnoseAbstractType();
 | |
|   }
 | |
| };
 | |
| 
 | |
| void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
 | |
|                                   Sema::AbstractDiagSelID Sel) {
 | |
|   CheckAbstractUsage(*this, D).Visit(TL, Sel);
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Check for invalid uses of an abstract type in a method declaration.
 | |
| static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
 | |
|                                     CXXMethodDecl *MD) {
 | |
|   // No need to do the check on definitions, which require that
 | |
|   // the return/param types be complete.
 | |
|   if (MD->doesThisDeclarationHaveABody())
 | |
|     return;
 | |
| 
 | |
|   // For safety's sake, just ignore it if we don't have type source
 | |
|   // information.  This should never happen for non-implicit methods,
 | |
|   // but...
 | |
|   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
 | |
|     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
 | |
| }
 | |
| 
 | |
| /// Check for invalid uses of an abstract type within a class definition.
 | |
| static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
 | |
|                                     CXXRecordDecl *RD) {
 | |
|   for (CXXRecordDecl::decl_iterator
 | |
|          I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
 | |
|     Decl *D = *I;
 | |
|     if (D->isImplicit()) continue;
 | |
| 
 | |
|     // Methods and method templates.
 | |
|     if (isa<CXXMethodDecl>(D)) {
 | |
|       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
 | |
|     } else if (isa<FunctionTemplateDecl>(D)) {
 | |
|       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
 | |
|       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
 | |
| 
 | |
|     // Fields and static variables.
 | |
|     } else if (isa<FieldDecl>(D)) {
 | |
|       FieldDecl *FD = cast<FieldDecl>(D);
 | |
|       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
 | |
|         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
 | |
|     } else if (isa<VarDecl>(D)) {
 | |
|       VarDecl *VD = cast<VarDecl>(D);
 | |
|       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
 | |
|         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
 | |
| 
 | |
|     // Nested classes and class templates.
 | |
|     } else if (isa<CXXRecordDecl>(D)) {
 | |
|       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
 | |
|     } else if (isa<ClassTemplateDecl>(D)) {
 | |
|       CheckAbstractClassUsage(Info,
 | |
|                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic checks on a class definition that has been
 | |
| /// completing, introducing implicitly-declared members, checking for
 | |
| /// abstract types, etc.
 | |
| void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
 | |
|   if (!Record)
 | |
|     return;
 | |
| 
 | |
|   if (Record->isAbstract() && !Record->isInvalidDecl()) {
 | |
|     AbstractUsageInfo Info(*this, Record);
 | |
|     CheckAbstractClassUsage(Info, Record);
 | |
|   }
 | |
|   
 | |
|   // If this is not an aggregate type and has no user-declared constructor,
 | |
|   // complain about any non-static data members of reference or const scalar
 | |
|   // type, since they will never get initializers.
 | |
|   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
 | |
|       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
 | |
|       !Record->isLambda()) {
 | |
|     bool Complained = false;
 | |
|     for (RecordDecl::field_iterator F = Record->field_begin(), 
 | |
|                                  FEnd = Record->field_end();
 | |
|          F != FEnd; ++F) {
 | |
|       if (F->hasInClassInitializer() || F->isUnnamedBitfield())
 | |
|         continue;
 | |
| 
 | |
|       if (F->getType()->isReferenceType() ||
 | |
|           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
 | |
|         if (!Complained) {
 | |
|           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
 | |
|             << Record->getTagKind() << Record;
 | |
|           Complained = true;
 | |
|         }
 | |
|         
 | |
|         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
 | |
|           << F->getType()->isReferenceType()
 | |
|           << F->getDeclName();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Record->isDynamicClass() && !Record->isDependentType())
 | |
|     DynamicClasses.push_back(Record);
 | |
| 
 | |
|   if (Record->getIdentifier()) {
 | |
|     // C++ [class.mem]p13:
 | |
|     //   If T is the name of a class, then each of the following shall have a 
 | |
|     //   name different from T:
 | |
|     //     - every member of every anonymous union that is a member of class T.
 | |
|     //
 | |
|     // C++ [class.mem]p14:
 | |
|     //   In addition, if class T has a user-declared constructor (12.1), every 
 | |
|     //   non-static data member of class T shall have a name different from T.
 | |
|     DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
 | |
|     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
 | |
|          ++I) {
 | |
|       NamedDecl *D = *I;
 | |
|       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
 | |
|           isa<IndirectFieldDecl>(D)) {
 | |
|         Diag(D->getLocation(), diag::err_member_name_of_class)
 | |
|           << D->getDeclName();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Warn if the class has virtual methods but non-virtual public destructor.
 | |
|   if (Record->isPolymorphic() && !Record->isDependentType()) {
 | |
|     CXXDestructorDecl *dtor = Record->getDestructor();
 | |
|     if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
 | |
|       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
 | |
|            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
 | |
|   }
 | |
| 
 | |
|   if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
 | |
|     Diag(Record->getLocation(), diag::warn_abstract_final_class);
 | |
|     DiagnoseAbstractType(Record);
 | |
|   }
 | |
| 
 | |
|   if (!Record->isDependentType()) {
 | |
|     for (CXXRecordDecl::method_iterator M = Record->method_begin(),
 | |
|                                      MEnd = Record->method_end();
 | |
|          M != MEnd; ++M) {
 | |
|       // See if a method overloads virtual methods in a base
 | |
|       // class without overriding any.
 | |
|       if (!M->isStatic())
 | |
|         DiagnoseHiddenVirtualMethods(Record, *M);
 | |
| 
 | |
|       // Check whether the explicitly-defaulted special members are valid.
 | |
|       if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
 | |
|         CheckExplicitlyDefaultedSpecialMember(*M);
 | |
| 
 | |
|       // For an explicitly defaulted or deleted special member, we defer
 | |
|       // determining triviality until the class is complete. That time is now!
 | |
|       if (!M->isImplicit() && !M->isUserProvided()) {
 | |
|         CXXSpecialMember CSM = getSpecialMember(*M);
 | |
|         if (CSM != CXXInvalid) {
 | |
|           M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
 | |
| 
 | |
|           // Inform the class that we've finished declaring this member.
 | |
|           Record->finishedDefaultedOrDeletedMember(*M);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
 | |
|   // function that is not a constructor declares that member function to be
 | |
|   // const. [...] The class of which that function is a member shall be
 | |
|   // a literal type.
 | |
|   //
 | |
|   // If the class has virtual bases, any constexpr members will already have
 | |
|   // been diagnosed by the checks performed on the member declaration, so
 | |
|   // suppress this (less useful) diagnostic.
 | |
|   //
 | |
|   // We delay this until we know whether an explicitly-defaulted (or deleted)
 | |
|   // destructor for the class is trivial.
 | |
|   if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
 | |
|       !Record->isLiteral() && !Record->getNumVBases()) {
 | |
|     for (CXXRecordDecl::method_iterator M = Record->method_begin(),
 | |
|                                      MEnd = Record->method_end();
 | |
|          M != MEnd; ++M) {
 | |
|       if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
 | |
|         switch (Record->getTemplateSpecializationKind()) {
 | |
|         case TSK_ImplicitInstantiation:
 | |
|         case TSK_ExplicitInstantiationDeclaration:
 | |
|         case TSK_ExplicitInstantiationDefinition:
 | |
|           // If a template instantiates to a non-literal type, but its members
 | |
|           // instantiate to constexpr functions, the template is technically
 | |
|           // ill-formed, but we allow it for sanity.
 | |
|           continue;
 | |
| 
 | |
|         case TSK_Undeclared:
 | |
|         case TSK_ExplicitSpecialization:
 | |
|           RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
 | |
|                              diag::err_constexpr_method_non_literal);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // Only produce one error per class.
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Declare inheriting constructors. We do this eagerly here because:
 | |
|   // - The standard requires an eager diagnostic for conflicting inheriting
 | |
|   //   constructors from different classes.
 | |
|   // - The lazy declaration of the other implicit constructors is so as to not
 | |
|   //   waste space and performance on classes that are not meant to be
 | |
|   //   instantiated (e.g. meta-functions). This doesn't apply to classes that
 | |
|   //   have inheriting constructors.
 | |
|   DeclareInheritingConstructors(Record);
 | |
| }
 | |
| 
 | |
| /// Is the special member function which would be selected to perform the
 | |
| /// specified operation on the specified class type a constexpr constructor?
 | |
| static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
 | |
|                                      Sema::CXXSpecialMember CSM,
 | |
|                                      bool ConstArg) {
 | |
|   Sema::SpecialMemberOverloadResult *SMOR =
 | |
|       S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
 | |
|                             false, false, false, false);
 | |
|   if (!SMOR || !SMOR->getMethod())
 | |
|     // A constructor we wouldn't select can't be "involved in initializing"
 | |
|     // anything.
 | |
|     return true;
 | |
|   return SMOR->getMethod()->isConstexpr();
 | |
| }
 | |
| 
 | |
| /// Determine whether the specified special member function would be constexpr
 | |
| /// if it were implicitly defined.
 | |
| static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
 | |
|                                               Sema::CXXSpecialMember CSM,
 | |
|                                               bool ConstArg) {
 | |
|   if (!S.getLangOpts().CPlusPlus11)
 | |
|     return false;
 | |
| 
 | |
|   // C++11 [dcl.constexpr]p4:
 | |
|   // In the definition of a constexpr constructor [...]
 | |
|   bool Ctor = true;
 | |
|   switch (CSM) {
 | |
|   case Sema::CXXDefaultConstructor:
 | |
|     // Since default constructor lookup is essentially trivial (and cannot
 | |
|     // involve, for instance, template instantiation), we compute whether a
 | |
|     // defaulted default constructor is constexpr directly within CXXRecordDecl.
 | |
|     //
 | |
|     // This is important for performance; we need to know whether the default
 | |
|     // constructor is constexpr to determine whether the type is a literal type.
 | |
|     return ClassDecl->defaultedDefaultConstructorIsConstexpr();
 | |
| 
 | |
|   case Sema::CXXCopyConstructor:
 | |
|   case Sema::CXXMoveConstructor:
 | |
|     // For copy or move constructors, we need to perform overload resolution.
 | |
|     break;
 | |
| 
 | |
|   case Sema::CXXCopyAssignment:
 | |
|   case Sema::CXXMoveAssignment:
 | |
|     if (!S.getLangOpts().CPlusPlus1y)
 | |
|       return false;
 | |
|     // In C++1y, we need to perform overload resolution.
 | |
|     Ctor = false;
 | |
|     break;
 | |
| 
 | |
|   case Sema::CXXDestructor:
 | |
|   case Sema::CXXInvalid:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //   -- if the class is a non-empty union, or for each non-empty anonymous
 | |
|   //      union member of a non-union class, exactly one non-static data member
 | |
|   //      shall be initialized; [DR1359]
 | |
|   //
 | |
|   // If we squint, this is guaranteed, since exactly one non-static data member
 | |
|   // will be initialized (if the constructor isn't deleted), we just don't know
 | |
|   // which one.
 | |
|   if (Ctor && ClassDecl->isUnion())
 | |
|     return true;
 | |
| 
 | |
|   //   -- the class shall not have any virtual base classes;
 | |
|   if (Ctor && ClassDecl->getNumVBases())
 | |
|     return false;
 | |
| 
 | |
|   // C++1y [class.copy]p26:
 | |
|   //   -- [the class] is a literal type, and
 | |
|   if (!Ctor && !ClassDecl->isLiteral())
 | |
|     return false;
 | |
| 
 | |
|   //   -- every constructor involved in initializing [...] base class
 | |
|   //      sub-objects shall be a constexpr constructor;
 | |
|   //   -- the assignment operator selected to copy/move each direct base
 | |
|   //      class is a constexpr function, and
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
 | |
|                                        BEnd = ClassDecl->bases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     const RecordType *BaseType = B->getType()->getAs<RecordType>();
 | |
|     if (!BaseType) continue;
 | |
| 
 | |
|     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|     if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   //   -- every constructor involved in initializing non-static data members
 | |
|   //      [...] shall be a constexpr constructor;
 | |
|   //   -- every non-static data member and base class sub-object shall be
 | |
|   //      initialized
 | |
|   //   -- for each non-stastic data member of X that is of class type (or array
 | |
|   //      thereof), the assignment operator selected to copy/move that member is
 | |
|   //      a constexpr function
 | |
|   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
 | |
|                                FEnd = ClassDecl->field_end();
 | |
|        F != FEnd; ++F) {
 | |
|     if (F->isInvalidDecl())
 | |
|       continue;
 | |
|     if (const RecordType *RecordTy =
 | |
|             S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|       if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All OK, it's constexpr!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static Sema::ImplicitExceptionSpecification
 | |
| computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
 | |
|   switch (S.getSpecialMember(MD)) {
 | |
|   case Sema::CXXDefaultConstructor:
 | |
|     return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
 | |
|   case Sema::CXXCopyConstructor:
 | |
|     return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
 | |
|   case Sema::CXXCopyAssignment:
 | |
|     return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
 | |
|   case Sema::CXXMoveConstructor:
 | |
|     return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
 | |
|   case Sema::CXXMoveAssignment:
 | |
|     return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
 | |
|   case Sema::CXXDestructor:
 | |
|     return S.ComputeDefaultedDtorExceptionSpec(MD);
 | |
|   case Sema::CXXInvalid:
 | |
|     break;
 | |
|   }
 | |
|   assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
 | |
|          "only special members have implicit exception specs");
 | |
|   return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
 | |
| }
 | |
| 
 | |
| static void
 | |
| updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
 | |
|                     const Sema::ImplicitExceptionSpecification &ExceptSpec) {
 | |
|   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | |
|   ExceptSpec.getEPI(EPI);
 | |
|   FD->setType(S.Context.getFunctionType(FPT->getResultType(),
 | |
|                                         FPT->getArgTypes(), EPI));
 | |
| }
 | |
| 
 | |
| void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
 | |
|   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | |
|   if (FPT->getExceptionSpecType() != EST_Unevaluated)
 | |
|     return;
 | |
| 
 | |
|   // Evaluate the exception specification.
 | |
|   ImplicitExceptionSpecification ExceptSpec =
 | |
|       computeImplicitExceptionSpec(*this, Loc, MD);
 | |
| 
 | |
|   // Update the type of the special member to use it.
 | |
|   updateExceptionSpec(*this, MD, FPT, ExceptSpec);
 | |
| 
 | |
|   // A user-provided destructor can be defined outside the class. When that
 | |
|   // happens, be sure to update the exception specification on both
 | |
|   // declarations.
 | |
|   const FunctionProtoType *CanonicalFPT =
 | |
|     MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
 | |
|   if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
 | |
|     updateExceptionSpec(*this, MD->getCanonicalDecl(),
 | |
|                         CanonicalFPT, ExceptSpec);
 | |
| }
 | |
| 
 | |
| void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
 | |
|   CXXRecordDecl *RD = MD->getParent();
 | |
|   CXXSpecialMember CSM = getSpecialMember(MD);
 | |
| 
 | |
|   assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
 | |
|          "not an explicitly-defaulted special member");
 | |
| 
 | |
|   // Whether this was the first-declared instance of the constructor.
 | |
|   // This affects whether we implicitly add an exception spec and constexpr.
 | |
|   bool First = MD == MD->getCanonicalDecl();
 | |
| 
 | |
|   bool HadError = false;
 | |
| 
 | |
|   // C++11 [dcl.fct.def.default]p1:
 | |
|   //   A function that is explicitly defaulted shall
 | |
|   //     -- be a special member function (checked elsewhere),
 | |
|   //     -- have the same type (except for ref-qualifiers, and except that a
 | |
|   //        copy operation can take a non-const reference) as an implicit
 | |
|   //        declaration, and
 | |
|   //     -- not have default arguments.
 | |
|   unsigned ExpectedParams = 1;
 | |
|   if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
 | |
|     ExpectedParams = 0;
 | |
|   if (MD->getNumParams() != ExpectedParams) {
 | |
|     // This also checks for default arguments: a copy or move constructor with a
 | |
|     // default argument is classified as a default constructor, and assignment
 | |
|     // operations and destructors can't have default arguments.
 | |
|     Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
 | |
|       << CSM << MD->getSourceRange();
 | |
|     HadError = true;
 | |
|   } else if (MD->isVariadic()) {
 | |
|     Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
 | |
|       << CSM << MD->getSourceRange();
 | |
|     HadError = true;
 | |
|   }
 | |
| 
 | |
|   const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|   bool CanHaveConstParam = false;
 | |
|   if (CSM == CXXCopyConstructor)
 | |
|     CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
 | |
|   else if (CSM == CXXCopyAssignment)
 | |
|     CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
 | |
| 
 | |
|   QualType ReturnType = Context.VoidTy;
 | |
|   if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
 | |
|     // Check for return type matching.
 | |
|     ReturnType = Type->getResultType();
 | |
|     QualType ExpectedReturnType =
 | |
|         Context.getLValueReferenceType(Context.getTypeDeclType(RD));
 | |
|     if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
 | |
|       Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
 | |
|         << (CSM == CXXMoveAssignment) << ExpectedReturnType;
 | |
|       HadError = true;
 | |
|     }
 | |
| 
 | |
|     // A defaulted special member cannot have cv-qualifiers.
 | |
|     if (Type->getTypeQuals()) {
 | |
|       Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
 | |
|         << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
 | |
|       HadError = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for parameter type matching.
 | |
|   QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
 | |
|   bool HasConstParam = false;
 | |
|   if (ExpectedParams && ArgType->isReferenceType()) {
 | |
|     // Argument must be reference to possibly-const T.
 | |
|     QualType ReferentType = ArgType->getPointeeType();
 | |
|     HasConstParam = ReferentType.isConstQualified();
 | |
| 
 | |
|     if (ReferentType.isVolatileQualified()) {
 | |
|       Diag(MD->getLocation(),
 | |
|            diag::err_defaulted_special_member_volatile_param) << CSM;
 | |
|       HadError = true;
 | |
|     }
 | |
| 
 | |
|     if (HasConstParam && !CanHaveConstParam) {
 | |
|       if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
 | |
|         Diag(MD->getLocation(),
 | |
|              diag::err_defaulted_special_member_copy_const_param)
 | |
|           << (CSM == CXXCopyAssignment);
 | |
|         // FIXME: Explain why this special member can't be const.
 | |
|       } else {
 | |
|         Diag(MD->getLocation(),
 | |
|              diag::err_defaulted_special_member_move_const_param)
 | |
|           << (CSM == CXXMoveAssignment);
 | |
|       }
 | |
|       HadError = true;
 | |
|     }
 | |
|   } else if (ExpectedParams) {
 | |
|     // A copy assignment operator can take its argument by value, but a
 | |
|     // defaulted one cannot.
 | |
|     assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
 | |
|     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
 | |
|     HadError = true;
 | |
|   }
 | |
| 
 | |
|   // C++11 [dcl.fct.def.default]p2:
 | |
|   //   An explicitly-defaulted function may be declared constexpr only if it
 | |
|   //   would have been implicitly declared as constexpr,
 | |
|   // Do not apply this rule to members of class templates, since core issue 1358
 | |
|   // makes such functions always instantiate to constexpr functions. For
 | |
|   // functions which cannot be constexpr (for non-constructors in C++11 and for
 | |
|   // destructors in C++1y), this is checked elsewhere.
 | |
|   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
 | |
|                                                      HasConstParam);
 | |
|   if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
 | |
|                                  : isa<CXXConstructorDecl>(MD)) &&
 | |
|       MD->isConstexpr() && !Constexpr &&
 | |
|       MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
 | |
|     Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
 | |
|     // FIXME: Explain why the special member can't be constexpr.
 | |
|     HadError = true;
 | |
|   }
 | |
| 
 | |
|   //   and may have an explicit exception-specification only if it is compatible
 | |
|   //   with the exception-specification on the implicit declaration.
 | |
|   if (Type->hasExceptionSpec()) {
 | |
|     // Delay the check if this is the first declaration of the special member,
 | |
|     // since we may not have parsed some necessary in-class initializers yet.
 | |
|     if (First) {
 | |
|       // If the exception specification needs to be instantiated, do so now,
 | |
|       // before we clobber it with an EST_Unevaluated specification below.
 | |
|       if (Type->getExceptionSpecType() == EST_Uninstantiated) {
 | |
|         InstantiateExceptionSpec(MD->getLocStart(), MD);
 | |
|         Type = MD->getType()->getAs<FunctionProtoType>();
 | |
|       }
 | |
|       DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
 | |
|     } else
 | |
|       CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
 | |
|   }
 | |
| 
 | |
|   //   If a function is explicitly defaulted on its first declaration,
 | |
|   if (First) {
 | |
|     //  -- it is implicitly considered to be constexpr if the implicit
 | |
|     //     definition would be,
 | |
|     MD->setConstexpr(Constexpr);
 | |
| 
 | |
|     //  -- it is implicitly considered to have the same exception-specification
 | |
|     //     as if it had been implicitly declared,
 | |
|     FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
 | |
|     EPI.ExceptionSpecType = EST_Unevaluated;
 | |
|     EPI.ExceptionSpecDecl = MD;
 | |
|     MD->setType(Context.getFunctionType(ReturnType,
 | |
|                                         ArrayRef<QualType>(&ArgType,
 | |
|                                                            ExpectedParams),
 | |
|                                         EPI));
 | |
|   }
 | |
| 
 | |
|   if (ShouldDeleteSpecialMember(MD, CSM)) {
 | |
|     if (First) {
 | |
|       SetDeclDeleted(MD, MD->getLocation());
 | |
|     } else {
 | |
|       // C++11 [dcl.fct.def.default]p4:
 | |
|       //   [For a] user-provided explicitly-defaulted function [...] if such a
 | |
|       //   function is implicitly defined as deleted, the program is ill-formed.
 | |
|       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
 | |
|       HadError = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (HadError)
 | |
|     MD->setInvalidDecl();
 | |
| }
 | |
| 
 | |
| /// Check whether the exception specification provided for an
 | |
| /// explicitly-defaulted special member matches the exception specification
 | |
| /// that would have been generated for an implicit special member, per
 | |
| /// C++11 [dcl.fct.def.default]p2.
 | |
| void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
 | |
|     CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
 | |
|   // Compute the implicit exception specification.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
 | |
|   const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
 | |
|     Context.getFunctionType(Context.VoidTy, None, EPI));
 | |
| 
 | |
|   // Ensure that it matches.
 | |
|   CheckEquivalentExceptionSpec(
 | |
|     PDiag(diag::err_incorrect_defaulted_exception_spec)
 | |
|       << getSpecialMember(MD), PDiag(),
 | |
|     ImplicitType, SourceLocation(),
 | |
|     SpecifiedType, MD->getLocation());
 | |
| }
 | |
| 
 | |
| void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
 | |
|   for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
 | |
|        I != N; ++I)
 | |
|     CheckExplicitlyDefaultedMemberExceptionSpec(
 | |
|       DelayedDefaultedMemberExceptionSpecs[I].first,
 | |
|       DelayedDefaultedMemberExceptionSpecs[I].second);
 | |
| 
 | |
|   DelayedDefaultedMemberExceptionSpecs.clear();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct SpecialMemberDeletionInfo {
 | |
|   Sema &S;
 | |
|   CXXMethodDecl *MD;
 | |
|   Sema::CXXSpecialMember CSM;
 | |
|   bool Diagnose;
 | |
| 
 | |
|   // Properties of the special member, computed for convenience.
 | |
|   bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
 | |
|   SourceLocation Loc;
 | |
| 
 | |
|   bool AllFieldsAreConst;
 | |
| 
 | |
|   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
 | |
|                             Sema::CXXSpecialMember CSM, bool Diagnose)
 | |
|     : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
 | |
|       IsConstructor(false), IsAssignment(false), IsMove(false),
 | |
|       ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
 | |
|       AllFieldsAreConst(true) {
 | |
|     switch (CSM) {
 | |
|       case Sema::CXXDefaultConstructor:
 | |
|       case Sema::CXXCopyConstructor:
 | |
|         IsConstructor = true;
 | |
|         break;
 | |
|       case Sema::CXXMoveConstructor:
 | |
|         IsConstructor = true;
 | |
|         IsMove = true;
 | |
|         break;
 | |
|       case Sema::CXXCopyAssignment:
 | |
|         IsAssignment = true;
 | |
|         break;
 | |
|       case Sema::CXXMoveAssignment:
 | |
|         IsAssignment = true;
 | |
|         IsMove = true;
 | |
|         break;
 | |
|       case Sema::CXXDestructor:
 | |
|         break;
 | |
|       case Sema::CXXInvalid:
 | |
|         llvm_unreachable("invalid special member kind");
 | |
|     }
 | |
| 
 | |
|     if (MD->getNumParams()) {
 | |
|       ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
 | |
|       VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool inUnion() const { return MD->getParent()->isUnion(); }
 | |
| 
 | |
|   /// Look up the corresponding special member in the given class.
 | |
|   Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
 | |
|                                               unsigned Quals) {
 | |
|     unsigned TQ = MD->getTypeQualifiers();
 | |
|     // cv-qualifiers on class members don't affect default ctor / dtor calls.
 | |
|     if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
 | |
|       Quals = 0;
 | |
|     return S.LookupSpecialMember(Class, CSM,
 | |
|                                  ConstArg || (Quals & Qualifiers::Const),
 | |
|                                  VolatileArg || (Quals & Qualifiers::Volatile),
 | |
|                                  MD->getRefQualifier() == RQ_RValue,
 | |
|                                  TQ & Qualifiers::Const,
 | |
|                                  TQ & Qualifiers::Volatile);
 | |
|   }
 | |
| 
 | |
|   typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
 | |
| 
 | |
|   bool shouldDeleteForBase(CXXBaseSpecifier *Base);
 | |
|   bool shouldDeleteForField(FieldDecl *FD);
 | |
|   bool shouldDeleteForAllConstMembers();
 | |
| 
 | |
|   bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
 | |
|                                      unsigned Quals);
 | |
|   bool shouldDeleteForSubobjectCall(Subobject Subobj,
 | |
|                                     Sema::SpecialMemberOverloadResult *SMOR,
 | |
|                                     bool IsDtorCallInCtor);
 | |
| 
 | |
|   bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
 | |
| };
 | |
| }
 | |
| 
 | |
| /// Is the given special member inaccessible when used on the given
 | |
| /// sub-object.
 | |
| bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
 | |
|                                              CXXMethodDecl *target) {
 | |
|   /// If we're operating on a base class, the object type is the
 | |
|   /// type of this special member.
 | |
|   QualType objectTy;
 | |
|   AccessSpecifier access = target->getAccess();
 | |
|   if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
 | |
|     objectTy = S.Context.getTypeDeclType(MD->getParent());
 | |
|     access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
 | |
| 
 | |
|   // If we're operating on a field, the object type is the type of the field.
 | |
|   } else {
 | |
|     objectTy = S.Context.getTypeDeclType(target->getParent());
 | |
|   }
 | |
| 
 | |
|   return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
 | |
| }
 | |
| 
 | |
| /// Check whether we should delete a special member due to the implicit
 | |
| /// definition containing a call to a special member of a subobject.
 | |
| bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
 | |
|     Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
 | |
|     bool IsDtorCallInCtor) {
 | |
|   CXXMethodDecl *Decl = SMOR->getMethod();
 | |
|   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
 | |
| 
 | |
|   int DiagKind = -1;
 | |
| 
 | |
|   if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
 | |
|     DiagKind = !Decl ? 0 : 1;
 | |
|   else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
 | |
|     DiagKind = 2;
 | |
|   else if (!isAccessible(Subobj, Decl))
 | |
|     DiagKind = 3;
 | |
|   else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
 | |
|            !Decl->isTrivial()) {
 | |
|     // A member of a union must have a trivial corresponding special member.
 | |
|     // As a weird special case, a destructor call from a union's constructor
 | |
|     // must be accessible and non-deleted, but need not be trivial. Such a
 | |
|     // destructor is never actually called, but is semantically checked as
 | |
|     // if it were.
 | |
|     DiagKind = 4;
 | |
|   }
 | |
| 
 | |
|   if (DiagKind == -1)
 | |
|     return false;
 | |
| 
 | |
|   if (Diagnose) {
 | |
|     if (Field) {
 | |
|       S.Diag(Field->getLocation(),
 | |
|              diag::note_deleted_special_member_class_subobject)
 | |
|         << CSM << MD->getParent() << /*IsField*/true
 | |
|         << Field << DiagKind << IsDtorCallInCtor;
 | |
|     } else {
 | |
|       CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
 | |
|       S.Diag(Base->getLocStart(),
 | |
|              diag::note_deleted_special_member_class_subobject)
 | |
|         << CSM << MD->getParent() << /*IsField*/false
 | |
|         << Base->getType() << DiagKind << IsDtorCallInCtor;
 | |
|     }
 | |
| 
 | |
|     if (DiagKind == 1)
 | |
|       S.NoteDeletedFunction(Decl);
 | |
|     // FIXME: Explain inaccessibility if DiagKind == 3.
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check whether we should delete a special member function due to having a
 | |
| /// direct or virtual base class or non-static data member of class type M.
 | |
| bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
 | |
|     CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
 | |
|   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
 | |
| 
 | |
|   // C++11 [class.ctor]p5:
 | |
|   // -- any direct or virtual base class, or non-static data member with no
 | |
|   //    brace-or-equal-initializer, has class type M (or array thereof) and
 | |
|   //    either M has no default constructor or overload resolution as applied
 | |
|   //    to M's default constructor results in an ambiguity or in a function
 | |
|   //    that is deleted or inaccessible
 | |
|   // C++11 [class.copy]p11, C++11 [class.copy]p23:
 | |
|   // -- a direct or virtual base class B that cannot be copied/moved because
 | |
|   //    overload resolution, as applied to B's corresponding special member,
 | |
|   //    results in an ambiguity or a function that is deleted or inaccessible
 | |
|   //    from the defaulted special member
 | |
|   // C++11 [class.dtor]p5:
 | |
|   // -- any direct or virtual base class [...] has a type with a destructor
 | |
|   //    that is deleted or inaccessible
 | |
|   if (!(CSM == Sema::CXXDefaultConstructor &&
 | |
|         Field && Field->hasInClassInitializer()) &&
 | |
|       shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
 | |
|     return true;
 | |
| 
 | |
|   // C++11 [class.ctor]p5, C++11 [class.copy]p11:
 | |
|   // -- any direct or virtual base class or non-static data member has a
 | |
|   //    type with a destructor that is deleted or inaccessible
 | |
|   if (IsConstructor) {
 | |
|     Sema::SpecialMemberOverloadResult *SMOR =
 | |
|         S.LookupSpecialMember(Class, Sema::CXXDestructor,
 | |
|                               false, false, false, false, false);
 | |
|     if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check whether we should delete a special member function due to the class
 | |
| /// having a particular direct or virtual base class.
 | |
| bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
 | |
|   CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
 | |
|   return shouldDeleteForClassSubobject(BaseClass, Base, 0);
 | |
| }
 | |
| 
 | |
| /// Check whether we should delete a special member function due to the class
 | |
| /// having a particular non-static data member.
 | |
| bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
 | |
|   QualType FieldType = S.Context.getBaseElementType(FD->getType());
 | |
|   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
 | |
| 
 | |
|   if (CSM == Sema::CXXDefaultConstructor) {
 | |
|     // For a default constructor, all references must be initialized in-class
 | |
|     // and, if a union, it must have a non-const member.
 | |
|     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
 | |
|       if (Diagnose)
 | |
|         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
 | |
|           << MD->getParent() << FD << FieldType << /*Reference*/0;
 | |
|       return true;
 | |
|     }
 | |
|     // C++11 [class.ctor]p5: any non-variant non-static data member of
 | |
|     // const-qualified type (or array thereof) with no
 | |
|     // brace-or-equal-initializer does not have a user-provided default
 | |
|     // constructor.
 | |
|     if (!inUnion() && FieldType.isConstQualified() &&
 | |
|         !FD->hasInClassInitializer() &&
 | |
|         (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
 | |
|       if (Diagnose)
 | |
|         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
 | |
|           << MD->getParent() << FD << FD->getType() << /*Const*/1;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (inUnion() && !FieldType.isConstQualified())
 | |
|       AllFieldsAreConst = false;
 | |
|   } else if (CSM == Sema::CXXCopyConstructor) {
 | |
|     // For a copy constructor, data members must not be of rvalue reference
 | |
|     // type.
 | |
|     if (FieldType->isRValueReferenceType()) {
 | |
|       if (Diagnose)
 | |
|         S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
 | |
|           << MD->getParent() << FD << FieldType;
 | |
|       return true;
 | |
|     }
 | |
|   } else if (IsAssignment) {
 | |
|     // For an assignment operator, data members must not be of reference type.
 | |
|     if (FieldType->isReferenceType()) {
 | |
|       if (Diagnose)
 | |
|         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
 | |
|           << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
 | |
|       return true;
 | |
|     }
 | |
|     if (!FieldRecord && FieldType.isConstQualified()) {
 | |
|       // C++11 [class.copy]p23:
 | |
|       // -- a non-static data member of const non-class type (or array thereof)
 | |
|       if (Diagnose)
 | |
|         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
 | |
|           << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FieldRecord) {
 | |
|     // Some additional restrictions exist on the variant members.
 | |
|     if (!inUnion() && FieldRecord->isUnion() &&
 | |
|         FieldRecord->isAnonymousStructOrUnion()) {
 | |
|       bool AllVariantFieldsAreConst = true;
 | |
| 
 | |
|       // FIXME: Handle anonymous unions declared within anonymous unions.
 | |
|       for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
 | |
|                                          UE = FieldRecord->field_end();
 | |
|            UI != UE; ++UI) {
 | |
|         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
 | |
| 
 | |
|         if (!UnionFieldType.isConstQualified())
 | |
|           AllVariantFieldsAreConst = false;
 | |
| 
 | |
|         CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
 | |
|         if (UnionFieldRecord &&
 | |
|             shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
 | |
|                                           UnionFieldType.getCVRQualifiers()))
 | |
|           return true;
 | |
|       }
 | |
| 
 | |
|       // At least one member in each anonymous union must be non-const
 | |
|       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
 | |
|           FieldRecord->field_begin() != FieldRecord->field_end()) {
 | |
|         if (Diagnose)
 | |
|           S.Diag(FieldRecord->getLocation(),
 | |
|                  diag::note_deleted_default_ctor_all_const)
 | |
|             << MD->getParent() << /*anonymous union*/1;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Don't check the implicit member of the anonymous union type.
 | |
|       // This is technically non-conformant, but sanity demands it.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (shouldDeleteForClassSubobject(FieldRecord, FD,
 | |
|                                       FieldType.getCVRQualifiers()))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// C++11 [class.ctor] p5:
 | |
| ///   A defaulted default constructor for a class X is defined as deleted if
 | |
| /// X is a union and all of its variant members are of const-qualified type.
 | |
| bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
 | |
|   // This is a silly definition, because it gives an empty union a deleted
 | |
|   // default constructor. Don't do that.
 | |
|   if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
 | |
|       (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
 | |
|     if (Diagnose)
 | |
|       S.Diag(MD->getParent()->getLocation(),
 | |
|              diag::note_deleted_default_ctor_all_const)
 | |
|         << MD->getParent() << /*not anonymous union*/0;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determine whether a defaulted special member function should be defined as
 | |
| /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
 | |
| /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
 | |
| bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
 | |
|                                      bool Diagnose) {
 | |
|   if (MD->isInvalidDecl())
 | |
|     return false;
 | |
|   CXXRecordDecl *RD = MD->getParent();
 | |
|   assert(!RD->isDependentType() && "do deletion after instantiation");
 | |
|   if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // C++11 [expr.lambda.prim]p19:
 | |
|   //   The closure type associated with a lambda-expression has a
 | |
|   //   deleted (8.4.3) default constructor and a deleted copy
 | |
|   //   assignment operator.
 | |
|   if (RD->isLambda() &&
 | |
|       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
 | |
|     if (Diagnose)
 | |
|       Diag(RD->getLocation(), diag::note_lambda_decl);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // For an anonymous struct or union, the copy and assignment special members
 | |
|   // will never be used, so skip the check. For an anonymous union declared at
 | |
|   // namespace scope, the constructor and destructor are used.
 | |
|   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
 | |
|       RD->isAnonymousStructOrUnion())
 | |
|     return false;
 | |
| 
 | |
|   // C++11 [class.copy]p7, p18:
 | |
|   //   If the class definition declares a move constructor or move assignment
 | |
|   //   operator, an implicitly declared copy constructor or copy assignment
 | |
|   //   operator is defined as deleted.
 | |
|   if (MD->isImplicit() &&
 | |
|       (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
 | |
|     CXXMethodDecl *UserDeclaredMove = 0;
 | |
| 
 | |
|     // In Microsoft mode, a user-declared move only causes the deletion of the
 | |
|     // corresponding copy operation, not both copy operations.
 | |
|     if (RD->hasUserDeclaredMoveConstructor() &&
 | |
|         (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
 | |
|       if (!Diagnose) return true;
 | |
| 
 | |
|       // Find any user-declared move constructor.
 | |
|       for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
 | |
|                                         E = RD->ctor_end(); I != E; ++I) {
 | |
|         if (I->isMoveConstructor()) {
 | |
|           UserDeclaredMove = *I;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       assert(UserDeclaredMove);
 | |
|     } else if (RD->hasUserDeclaredMoveAssignment() &&
 | |
|                (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
 | |
|       if (!Diagnose) return true;
 | |
| 
 | |
|       // Find any user-declared move assignment operator.
 | |
|       for (CXXRecordDecl::method_iterator I = RD->method_begin(),
 | |
|                                           E = RD->method_end(); I != E; ++I) {
 | |
|         if (I->isMoveAssignmentOperator()) {
 | |
|           UserDeclaredMove = *I;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       assert(UserDeclaredMove);
 | |
|     }
 | |
| 
 | |
|     if (UserDeclaredMove) {
 | |
|       Diag(UserDeclaredMove->getLocation(),
 | |
|            diag::note_deleted_copy_user_declared_move)
 | |
|         << (CSM == CXXCopyAssignment) << RD
 | |
|         << UserDeclaredMove->isMoveAssignmentOperator();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Do access control from the special member function
 | |
|   ContextRAII MethodContext(*this, MD);
 | |
| 
 | |
|   // C++11 [class.dtor]p5:
 | |
|   // -- for a virtual destructor, lookup of the non-array deallocation function
 | |
|   //    results in an ambiguity or in a function that is deleted or inaccessible
 | |
|   if (CSM == CXXDestructor && MD->isVirtual()) {
 | |
|     FunctionDecl *OperatorDelete = 0;
 | |
|     DeclarationName Name =
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
 | |
|     if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
 | |
|                                  OperatorDelete, false)) {
 | |
|       if (Diagnose)
 | |
|         Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
 | |
|                                           BE = RD->bases_end(); BI != BE; ++BI)
 | |
|     if (!BI->isVirtual() &&
 | |
|         SMI.shouldDeleteForBase(BI))
 | |
|       return true;
 | |
| 
 | |
|   // Per DR1611, do not consider virtual bases of constructors of abstract
 | |
|   // classes, since we are not going to construct them.
 | |
|   if (!RD->isAbstract() || !SMI.IsConstructor) {
 | |
|     for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
 | |
|                                             BE = RD->vbases_end();
 | |
|          BI != BE; ++BI)
 | |
|       if (SMI.shouldDeleteForBase(BI))
 | |
|         return true;
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
 | |
|                                      FE = RD->field_end(); FI != FE; ++FI)
 | |
|     if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
 | |
|         SMI.shouldDeleteForField(*FI))
 | |
|       return true;
 | |
| 
 | |
|   if (SMI.shouldDeleteForAllConstMembers())
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Perform lookup for a special member of the specified kind, and determine
 | |
| /// whether it is trivial. If the triviality can be determined without the
 | |
| /// lookup, skip it. This is intended for use when determining whether a
 | |
| /// special member of a containing object is trivial, and thus does not ever
 | |
| /// perform overload resolution for default constructors.
 | |
| ///
 | |
| /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
 | |
| /// member that was most likely to be intended to be trivial, if any.
 | |
| static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
 | |
|                                      Sema::CXXSpecialMember CSM, unsigned Quals,
 | |
|                                      CXXMethodDecl **Selected) {
 | |
|   if (Selected)
 | |
|     *Selected = 0;
 | |
| 
 | |
|   switch (CSM) {
 | |
|   case Sema::CXXInvalid:
 | |
|     llvm_unreachable("not a special member");
 | |
| 
 | |
|   case Sema::CXXDefaultConstructor:
 | |
|     // C++11 [class.ctor]p5:
 | |
|     //   A default constructor is trivial if:
 | |
|     //    - all the [direct subobjects] have trivial default constructors
 | |
|     //
 | |
|     // Note, no overload resolution is performed in this case.
 | |
|     if (RD->hasTrivialDefaultConstructor())
 | |
|       return true;
 | |
| 
 | |
|     if (Selected) {
 | |
|       // If there's a default constructor which could have been trivial, dig it
 | |
|       // out. Otherwise, if there's any user-provided default constructor, point
 | |
|       // to that as an example of why there's not a trivial one.
 | |
|       CXXConstructorDecl *DefCtor = 0;
 | |
|       if (RD->needsImplicitDefaultConstructor())
 | |
|         S.DeclareImplicitDefaultConstructor(RD);
 | |
|       for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
 | |
|                                         CE = RD->ctor_end(); CI != CE; ++CI) {
 | |
|         if (!CI->isDefaultConstructor())
 | |
|           continue;
 | |
|         DefCtor = *CI;
 | |
|         if (!DefCtor->isUserProvided())
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       *Selected = DefCtor;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| 
 | |
|   case Sema::CXXDestructor:
 | |
|     // C++11 [class.dtor]p5:
 | |
|     //   A destructor is trivial if:
 | |
|     //    - all the direct [subobjects] have trivial destructors
 | |
|     if (RD->hasTrivialDestructor())
 | |
|       return true;
 | |
| 
 | |
|     if (Selected) {
 | |
|       if (RD->needsImplicitDestructor())
 | |
|         S.DeclareImplicitDestructor(RD);
 | |
|       *Selected = RD->getDestructor();
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| 
 | |
|   case Sema::CXXCopyConstructor:
 | |
|     // C++11 [class.copy]p12:
 | |
|     //   A copy constructor is trivial if:
 | |
|     //    - the constructor selected to copy each direct [subobject] is trivial
 | |
|     if (RD->hasTrivialCopyConstructor()) {
 | |
|       if (Quals == Qualifiers::Const)
 | |
|         // We must either select the trivial copy constructor or reach an
 | |
|         // ambiguity; no need to actually perform overload resolution.
 | |
|         return true;
 | |
|     } else if (!Selected) {
 | |
|       return false;
 | |
|     }
 | |
|     // In C++98, we are not supposed to perform overload resolution here, but we
 | |
|     // treat that as a language defect, as suggested on cxx-abi-dev, to treat
 | |
|     // cases like B as having a non-trivial copy constructor:
 | |
|     //   struct A { template<typename T> A(T&); };
 | |
|     //   struct B { mutable A a; };
 | |
|     goto NeedOverloadResolution;
 | |
| 
 | |
|   case Sema::CXXCopyAssignment:
 | |
|     // C++11 [class.copy]p25:
 | |
|     //   A copy assignment operator is trivial if:
 | |
|     //    - the assignment operator selected to copy each direct [subobject] is
 | |
|     //      trivial
 | |
|     if (RD->hasTrivialCopyAssignment()) {
 | |
|       if (Quals == Qualifiers::Const)
 | |
|         return true;
 | |
|     } else if (!Selected) {
 | |
|       return false;
 | |
|     }
 | |
|     // In C++98, we are not supposed to perform overload resolution here, but we
 | |
|     // treat that as a language defect.
 | |
|     goto NeedOverloadResolution;
 | |
| 
 | |
|   case Sema::CXXMoveConstructor:
 | |
|   case Sema::CXXMoveAssignment:
 | |
|   NeedOverloadResolution:
 | |
|     Sema::SpecialMemberOverloadResult *SMOR =
 | |
|       S.LookupSpecialMember(RD, CSM,
 | |
|                             Quals & Qualifiers::Const,
 | |
|                             Quals & Qualifiers::Volatile,
 | |
|                             /*RValueThis*/false, /*ConstThis*/false,
 | |
|                             /*VolatileThis*/false);
 | |
| 
 | |
|     // The standard doesn't describe how to behave if the lookup is ambiguous.
 | |
|     // We treat it as not making the member non-trivial, just like the standard
 | |
|     // mandates for the default constructor. This should rarely matter, because
 | |
|     // the member will also be deleted.
 | |
|     if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
 | |
|       return true;
 | |
| 
 | |
|     if (!SMOR->getMethod()) {
 | |
|       assert(SMOR->getKind() ==
 | |
|              Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // We deliberately don't check if we found a deleted special member. We're
 | |
|     // not supposed to!
 | |
|     if (Selected)
 | |
|       *Selected = SMOR->getMethod();
 | |
|     return SMOR->getMethod()->isTrivial();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown special method kind");
 | |
| }
 | |
| 
 | |
| static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
 | |
|   for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
 | |
|        CI != CE; ++CI)
 | |
|     if (!CI->isImplicit())
 | |
|       return *CI;
 | |
| 
 | |
|   // Look for constructor templates.
 | |
|   typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
 | |
|   for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
 | |
|     if (CXXConstructorDecl *CD =
 | |
|           dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
 | |
|       return CD;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// The kind of subobject we are checking for triviality. The values of this
 | |
| /// enumeration are used in diagnostics.
 | |
| enum TrivialSubobjectKind {
 | |
|   /// The subobject is a base class.
 | |
|   TSK_BaseClass,
 | |
|   /// The subobject is a non-static data member.
 | |
|   TSK_Field,
 | |
|   /// The object is actually the complete object.
 | |
|   TSK_CompleteObject
 | |
| };
 | |
| 
 | |
| /// Check whether the special member selected for a given type would be trivial.
 | |
| static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
 | |
|                                       QualType SubType,
 | |
|                                       Sema::CXXSpecialMember CSM,
 | |
|                                       TrivialSubobjectKind Kind,
 | |
|                                       bool Diagnose) {
 | |
|   CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
 | |
|   if (!SubRD)
 | |
|     return true;
 | |
| 
 | |
|   CXXMethodDecl *Selected;
 | |
|   if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
 | |
|                                Diagnose ? &Selected : 0))
 | |
|     return true;
 | |
| 
 | |
|   if (Diagnose) {
 | |
|     if (!Selected && CSM == Sema::CXXDefaultConstructor) {
 | |
|       S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
 | |
|         << Kind << SubType.getUnqualifiedType();
 | |
|       if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
 | |
|         S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
 | |
|     } else if (!Selected)
 | |
|       S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
 | |
|         << Kind << SubType.getUnqualifiedType() << CSM << SubType;
 | |
|     else if (Selected->isUserProvided()) {
 | |
|       if (Kind == TSK_CompleteObject)
 | |
|         S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
 | |
|           << Kind << SubType.getUnqualifiedType() << CSM;
 | |
|       else {
 | |
|         S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
 | |
|           << Kind << SubType.getUnqualifiedType() << CSM;
 | |
|         S.Diag(Selected->getLocation(), diag::note_declared_at);
 | |
|       }
 | |
|     } else {
 | |
|       if (Kind != TSK_CompleteObject)
 | |
|         S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
 | |
|           << Kind << SubType.getUnqualifiedType() << CSM;
 | |
| 
 | |
|       // Explain why the defaulted or deleted special member isn't trivial.
 | |
|       S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check whether the members of a class type allow a special member to be
 | |
| /// trivial.
 | |
| static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
 | |
|                                      Sema::CXXSpecialMember CSM,
 | |
|                                      bool ConstArg, bool Diagnose) {
 | |
|   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
 | |
|                                      FE = RD->field_end(); FI != FE; ++FI) {
 | |
|     if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     QualType FieldType = S.Context.getBaseElementType(FI->getType());
 | |
| 
 | |
|     // Pretend anonymous struct or union members are members of this class.
 | |
|     if (FI->isAnonymousStructOrUnion()) {
 | |
|       if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
 | |
|                                     CSM, ConstArg, Diagnose))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C++11 [class.ctor]p5:
 | |
|     //   A default constructor is trivial if [...]
 | |
|     //    -- no non-static data member of its class has a
 | |
|     //       brace-or-equal-initializer
 | |
|     if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
 | |
|       if (Diagnose)
 | |
|         S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Objective C ARC 4.3.5:
 | |
|     //   [...] nontrivally ownership-qualified types are [...] not trivially
 | |
|     //   default constructible, copy constructible, move constructible, copy
 | |
|     //   assignable, move assignable, or destructible [...]
 | |
|     if (S.getLangOpts().ObjCAutoRefCount &&
 | |
|         FieldType.hasNonTrivialObjCLifetime()) {
 | |
|       if (Diagnose)
 | |
|         S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
 | |
|           << RD << FieldType.getObjCLifetime();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (ConstArg && !FI->isMutable())
 | |
|       FieldType.addConst();
 | |
|     if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
 | |
|                                    TSK_Field, Diagnose))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Diagnose why the specified class does not have a trivial special member of
 | |
| /// the given kind.
 | |
| void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
 | |
|   QualType Ty = Context.getRecordType(RD);
 | |
|   if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
 | |
|     Ty.addConst();
 | |
| 
 | |
|   checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
 | |
|                             TSK_CompleteObject, /*Diagnose*/true);
 | |
| }
 | |
| 
 | |
| /// Determine whether a defaulted or deleted special member function is trivial,
 | |
| /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
 | |
| /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
 | |
| bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
 | |
|                                   bool Diagnose) {
 | |
|   assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
 | |
| 
 | |
|   CXXRecordDecl *RD = MD->getParent();
 | |
| 
 | |
|   bool ConstArg = false;
 | |
| 
 | |
|   // C++11 [class.copy]p12, p25:
 | |
|   //   A [special member] is trivial if its declared parameter type is the same
 | |
|   //   as if it had been implicitly declared [...]
 | |
|   switch (CSM) {
 | |
|   case CXXDefaultConstructor:
 | |
|   case CXXDestructor:
 | |
|     // Trivial default constructors and destructors cannot have parameters.
 | |
|     break;
 | |
| 
 | |
|   case CXXCopyConstructor:
 | |
|   case CXXCopyAssignment: {
 | |
|     // Trivial copy operations always have const, non-volatile parameter types.
 | |
|     ConstArg = true;
 | |
|     const ParmVarDecl *Param0 = MD->getParamDecl(0);
 | |
|     const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
 | |
|     if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
 | |
|       if (Diagnose)
 | |
|         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
 | |
|           << Param0->getSourceRange() << Param0->getType()
 | |
|           << Context.getLValueReferenceType(
 | |
|                Context.getRecordType(RD).withConst());
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case CXXMoveConstructor:
 | |
|   case CXXMoveAssignment: {
 | |
|     // Trivial move operations always have non-cv-qualified parameters.
 | |
|     const ParmVarDecl *Param0 = MD->getParamDecl(0);
 | |
|     const RValueReferenceType *RT =
 | |
|       Param0->getType()->getAs<RValueReferenceType>();
 | |
|     if (!RT || RT->getPointeeType().getCVRQualifiers()) {
 | |
|       if (Diagnose)
 | |
|         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
 | |
|           << Param0->getSourceRange() << Param0->getType()
 | |
|           << Context.getRValueReferenceType(Context.getRecordType(RD));
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case CXXInvalid:
 | |
|     llvm_unreachable("not a special member");
 | |
|   }
 | |
| 
 | |
|   // FIXME: We require that the parameter-declaration-clause is equivalent to
 | |
|   // that of an implicit declaration, not just that the declared parameter type
 | |
|   // matches, in order to prevent absuridities like a function simultaneously
 | |
|   // being a trivial copy constructor and a non-trivial default constructor.
 | |
|   // This issue has not yet been assigned a core issue number.
 | |
|   if (MD->getMinRequiredArguments() < MD->getNumParams()) {
 | |
|     if (Diagnose)
 | |
|       Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
 | |
|            diag::note_nontrivial_default_arg)
 | |
|         << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
 | |
|     return false;
 | |
|   }
 | |
|   if (MD->isVariadic()) {
 | |
|     if (Diagnose)
 | |
|       Diag(MD->getLocation(), diag::note_nontrivial_variadic);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
 | |
|   //   A copy/move [constructor or assignment operator] is trivial if
 | |
|   //    -- the [member] selected to copy/move each direct base class subobject
 | |
|   //       is trivial
 | |
|   //
 | |
|   // C++11 [class.copy]p12, C++11 [class.copy]p25:
 | |
|   //   A [default constructor or destructor] is trivial if
 | |
|   //    -- all the direct base classes have trivial [default constructors or
 | |
|   //       destructors]
 | |
|   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
 | |
|                                           BE = RD->bases_end(); BI != BE; ++BI)
 | |
|     if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
 | |
|                                    ConstArg ? BI->getType().withConst()
 | |
|                                             : BI->getType(),
 | |
|                                    CSM, TSK_BaseClass, Diagnose))
 | |
|       return false;
 | |
| 
 | |
|   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
 | |
|   //   A copy/move [constructor or assignment operator] for a class X is
 | |
|   //   trivial if
 | |
|   //    -- for each non-static data member of X that is of class type (or array
 | |
|   //       thereof), the constructor selected to copy/move that member is
 | |
|   //       trivial
 | |
|   //
 | |
|   // C++11 [class.copy]p12, C++11 [class.copy]p25:
 | |
|   //   A [default constructor or destructor] is trivial if
 | |
|   //    -- for all of the non-static data members of its class that are of class
 | |
|   //       type (or array thereof), each such class has a trivial [default
 | |
|   //       constructor or destructor]
 | |
|   if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
 | |
|     return false;
 | |
| 
 | |
|   // C++11 [class.dtor]p5:
 | |
|   //   A destructor is trivial if [...]
 | |
|   //    -- the destructor is not virtual
 | |
|   if (CSM == CXXDestructor && MD->isVirtual()) {
 | |
|     if (Diagnose)
 | |
|       Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
 | |
|   //   A [special member] for class X is trivial if [...]
 | |
|   //    -- class X has no virtual functions and no virtual base classes
 | |
|   if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
 | |
|     if (!Diagnose)
 | |
|       return false;
 | |
| 
 | |
|     if (RD->getNumVBases()) {
 | |
|       // Check for virtual bases. We already know that the corresponding
 | |
|       // member in all bases is trivial, so vbases must all be direct.
 | |
|       CXXBaseSpecifier &BS = *RD->vbases_begin();
 | |
|       assert(BS.isVirtual());
 | |
|       Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Must have a virtual method.
 | |
|     for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
 | |
|                                         ME = RD->method_end(); MI != ME; ++MI) {
 | |
|       if (MI->isVirtual()) {
 | |
|         SourceLocation MLoc = MI->getLocStart();
 | |
|         Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("dynamic class with no vbases and no virtual functions");
 | |
|   }
 | |
| 
 | |
|   // Looks like it's trivial!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Data used with FindHiddenVirtualMethod
 | |
| namespace {
 | |
|   struct FindHiddenVirtualMethodData {
 | |
|     Sema *S;
 | |
|     CXXMethodDecl *Method;
 | |
|     llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
 | |
|     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// \brief Check whether any most overriden method from MD in Methods
 | |
| static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
 | |
|                    const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
 | |
|   if (MD->size_overridden_methods() == 0)
 | |
|     return Methods.count(MD->getCanonicalDecl());
 | |
|   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
 | |
|                                       E = MD->end_overridden_methods();
 | |
|        I != E; ++I)
 | |
|     if (CheckMostOverridenMethods(*I, Methods))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Member lookup function that determines whether a given C++
 | |
| /// method overloads virtual methods in a base class without overriding any,
 | |
| /// to be used with CXXRecordDecl::lookupInBases().
 | |
| static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
 | |
|                                     CXXBasePath &Path,
 | |
|                                     void *UserData) {
 | |
|   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
 | |
| 
 | |
|   FindHiddenVirtualMethodData &Data
 | |
|     = *static_cast<FindHiddenVirtualMethodData*>(UserData);
 | |
| 
 | |
|   DeclarationName Name = Data.Method->getDeclName();
 | |
|   assert(Name.getNameKind() == DeclarationName::Identifier);
 | |
| 
 | |
|   bool foundSameNameMethod = false;
 | |
|   SmallVector<CXXMethodDecl *, 8> overloadedMethods;
 | |
|   for (Path.Decls = BaseRecord->lookup(Name);
 | |
|        !Path.Decls.empty();
 | |
|        Path.Decls = Path.Decls.slice(1)) {
 | |
|     NamedDecl *D = Path.Decls.front();
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
 | |
|       MD = MD->getCanonicalDecl();
 | |
|       foundSameNameMethod = true;
 | |
|       // Interested only in hidden virtual methods.
 | |
|       if (!MD->isVirtual())
 | |
|         continue;
 | |
|       // If the method we are checking overrides a method from its base
 | |
|       // don't warn about the other overloaded methods.
 | |
|       if (!Data.S->IsOverload(Data.Method, MD, false))
 | |
|         return true;
 | |
|       // Collect the overload only if its hidden.
 | |
|       if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
 | |
|         overloadedMethods.push_back(MD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (foundSameNameMethod)
 | |
|     Data.OverloadedMethods.append(overloadedMethods.begin(),
 | |
|                                    overloadedMethods.end());
 | |
|   return foundSameNameMethod;
 | |
| }
 | |
| 
 | |
| /// \brief Add the most overriden methods from MD to Methods
 | |
| static void AddMostOverridenMethods(const CXXMethodDecl *MD,
 | |
|                          llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
 | |
|   if (MD->size_overridden_methods() == 0)
 | |
|     Methods.insert(MD->getCanonicalDecl());
 | |
|   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
 | |
|                                       E = MD->end_overridden_methods();
 | |
|        I != E; ++I)
 | |
|     AddMostOverridenMethods(*I, Methods);
 | |
| }
 | |
| 
 | |
| /// \brief See if a method overloads virtual methods in a base class without
 | |
| /// overriding any.
 | |
| void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
 | |
|   if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
 | |
|                                MD->getLocation()) == DiagnosticsEngine::Ignored)
 | |
|     return;
 | |
|   if (!MD->getDeclName().isIdentifier())
 | |
|     return;
 | |
| 
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
 | |
|                      /*bool RecordPaths=*/false,
 | |
|                      /*bool DetectVirtual=*/false);
 | |
|   FindHiddenVirtualMethodData Data;
 | |
|   Data.Method = MD;
 | |
|   Data.S = this;
 | |
| 
 | |
|   // Keep the base methods that were overriden or introduced in the subclass
 | |
|   // by 'using' in a set. A base method not in this set is hidden.
 | |
|   DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
 | |
|   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|     NamedDecl *ND = *I;
 | |
|     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
 | |
|       ND = shad->getTargetDecl();
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
 | |
|       AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
 | |
|   }
 | |
| 
 | |
|   if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
 | |
|       !Data.OverloadedMethods.empty()) {
 | |
|     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
 | |
|       << MD << (Data.OverloadedMethods.size() > 1);
 | |
| 
 | |
|     for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
 | |
|       CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
 | |
|       PartialDiagnostic PD = PDiag(
 | |
|            diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
 | |
|       HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
 | |
|       Diag(overloadedMD->getLocation(), PD);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
 | |
|                                              Decl *TagDecl,
 | |
|                                              SourceLocation LBrac,
 | |
|                                              SourceLocation RBrac,
 | |
|                                              AttributeList *AttrList) {
 | |
|   if (!TagDecl)
 | |
|     return;
 | |
| 
 | |
|   AdjustDeclIfTemplate(TagDecl);
 | |
| 
 | |
|   for (const AttributeList* l = AttrList; l; l = l->getNext()) {
 | |
|     if (l->getKind() != AttributeList::AT_Visibility)
 | |
|       continue;
 | |
|     l->setInvalid();
 | |
|     Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
 | |
|       l->getName();
 | |
|   }
 | |
| 
 | |
|   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
 | |
|               // strict aliasing violation!
 | |
|               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
 | |
|               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
 | |
| 
 | |
|   CheckCompletedCXXClass(
 | |
|                         dyn_cast_or_null<CXXRecordDecl>(TagDecl));
 | |
| }
 | |
| 
 | |
| /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
 | |
| /// special functions, such as the default constructor, copy
 | |
| /// constructor, or destructor, to the given C++ class (C++
 | |
| /// [special]p1).  This routine can only be executed just before the
 | |
| /// definition of the class is complete.
 | |
| void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
 | |
|   if (!ClassDecl->hasUserDeclaredConstructor())
 | |
|     ++ASTContext::NumImplicitDefaultConstructors;
 | |
| 
 | |
|   if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
 | |
|     ++ASTContext::NumImplicitCopyConstructors;
 | |
| 
 | |
|     // If the properties or semantics of the copy constructor couldn't be
 | |
|     // determined while the class was being declared, force a declaration
 | |
|     // of it now.
 | |
|     if (ClassDecl->needsOverloadResolutionForCopyConstructor())
 | |
|       DeclareImplicitCopyConstructor(ClassDecl);
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
 | |
|     ++ASTContext::NumImplicitMoveConstructors;
 | |
| 
 | |
|     if (ClassDecl->needsOverloadResolutionForMoveConstructor())
 | |
|       DeclareImplicitMoveConstructor(ClassDecl);
 | |
|   }
 | |
| 
 | |
|   if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
 | |
|     ++ASTContext::NumImplicitCopyAssignmentOperators;
 | |
| 
 | |
|     // If we have a dynamic class, then the copy assignment operator may be
 | |
|     // virtual, so we have to declare it immediately. This ensures that, e.g.,
 | |
|     // it shows up in the right place in the vtable and that we diagnose
 | |
|     // problems with the implicit exception specification.
 | |
|     if (ClassDecl->isDynamicClass() ||
 | |
|         ClassDecl->needsOverloadResolutionForCopyAssignment())
 | |
|       DeclareImplicitCopyAssignment(ClassDecl);
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
 | |
|     ++ASTContext::NumImplicitMoveAssignmentOperators;
 | |
| 
 | |
|     // Likewise for the move assignment operator.
 | |
|     if (ClassDecl->isDynamicClass() ||
 | |
|         ClassDecl->needsOverloadResolutionForMoveAssignment())
 | |
|       DeclareImplicitMoveAssignment(ClassDecl);
 | |
|   }
 | |
| 
 | |
|   if (!ClassDecl->hasUserDeclaredDestructor()) {
 | |
|     ++ASTContext::NumImplicitDestructors;
 | |
| 
 | |
|     // If we have a dynamic class, then the destructor may be virtual, so we
 | |
|     // have to declare the destructor immediately. This ensures that, e.g., it
 | |
|     // shows up in the right place in the vtable and that we diagnose problems
 | |
|     // with the implicit exception specification.
 | |
|     if (ClassDecl->isDynamicClass() ||
 | |
|         ClassDecl->needsOverloadResolutionForDestructor())
 | |
|       DeclareImplicitDestructor(ClassDecl);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
 | |
|   if (!D)
 | |
|     return;
 | |
| 
 | |
|   int NumParamList = D->getNumTemplateParameterLists();
 | |
|   for (int i = 0; i < NumParamList; i++) {
 | |
|     TemplateParameterList* Params = D->getTemplateParameterList(i);
 | |
|     for (TemplateParameterList::iterator Param = Params->begin(),
 | |
|                                       ParamEnd = Params->end();
 | |
|           Param != ParamEnd; ++Param) {
 | |
|       NamedDecl *Named = cast<NamedDecl>(*Param);
 | |
|       if (Named->getDeclName()) {
 | |
|         S->AddDecl(Named);
 | |
|         IdResolver.AddDecl(Named);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
 | |
|   if (!D)
 | |
|     return;
 | |
|   
 | |
|   TemplateParameterList *Params = 0;
 | |
|   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
 | |
|     Params = Template->getTemplateParameters();
 | |
|   else if (ClassTemplatePartialSpecializationDecl *PartialSpec
 | |
|            = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
 | |
|     Params = PartialSpec->getTemplateParameters();
 | |
|   else
 | |
|     return;
 | |
| 
 | |
|   for (TemplateParameterList::iterator Param = Params->begin(),
 | |
|                                     ParamEnd = Params->end();
 | |
|        Param != ParamEnd; ++Param) {
 | |
|     NamedDecl *Named = cast<NamedDecl>(*Param);
 | |
|     if (Named->getDeclName()) {
 | |
|       S->AddDecl(Named);
 | |
|       IdResolver.AddDecl(Named);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
 | |
|   if (!RecordD) return;
 | |
|   AdjustDeclIfTemplate(RecordD);
 | |
|   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
 | |
|   PushDeclContext(S, Record);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
 | |
|   if (!RecordD) return;
 | |
|   PopDeclContext();
 | |
| }
 | |
| 
 | |
| /// ActOnStartDelayedCXXMethodDeclaration - We have completed
 | |
| /// parsing a top-level (non-nested) C++ class, and we are now
 | |
| /// parsing those parts of the given Method declaration that could
 | |
| /// not be parsed earlier (C++ [class.mem]p2), such as default
 | |
| /// arguments. This action should enter the scope of the given
 | |
| /// Method declaration as if we had just parsed the qualified method
 | |
| /// name. However, it should not bring the parameters into scope;
 | |
| /// that will be performed by ActOnDelayedCXXMethodParameter.
 | |
| void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
 | |
| }
 | |
| 
 | |
| /// ActOnDelayedCXXMethodParameter - We've already started a delayed
 | |
| /// C++ method declaration. We're (re-)introducing the given
 | |
| /// function parameter into scope for use in parsing later parts of
 | |
| /// the method declaration. For example, we could see an
 | |
| /// ActOnParamDefaultArgument event for this parameter.
 | |
| void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
 | |
|   if (!ParamD)
 | |
|     return;
 | |
| 
 | |
|   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
 | |
| 
 | |
|   // If this parameter has an unparsed default argument, clear it out
 | |
|   // to make way for the parsed default argument.
 | |
|   if (Param->hasUnparsedDefaultArg())
 | |
|     Param->setDefaultArg(0);
 | |
| 
 | |
|   S->AddDecl(Param);
 | |
|   if (Param->getDeclName())
 | |
|     IdResolver.AddDecl(Param);
 | |
| }
 | |
| 
 | |
| /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
 | |
| /// processing the delayed method declaration for Method. The method
 | |
| /// declaration is now considered finished. There may be a separate
 | |
| /// ActOnStartOfFunctionDef action later (not necessarily
 | |
| /// immediately!) for this method, if it was also defined inside the
 | |
| /// class body.
 | |
| void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
 | |
|   if (!MethodD)
 | |
|     return;
 | |
| 
 | |
|   AdjustDeclIfTemplate(MethodD);
 | |
| 
 | |
|   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
 | |
| 
 | |
|   // Now that we have our default arguments, check the constructor
 | |
|   // again. It could produce additional diagnostics or affect whether
 | |
|   // the class has implicitly-declared destructors, among other
 | |
|   // things.
 | |
|   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
 | |
|     CheckConstructor(Constructor);
 | |
| 
 | |
|   // Check the default arguments, which we may have added.
 | |
|   if (!Method->isInvalidDecl())
 | |
|     CheckCXXDefaultArguments(Method);
 | |
| }
 | |
| 
 | |
| /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
 | |
| /// the well-formedness of the constructor declarator @p D with type @p
 | |
| /// R. If there are any errors in the declarator, this routine will
 | |
| /// emit diagnostics and set the invalid bit to true.  In any case, the type
 | |
| /// will be updated to reflect a well-formed type for the constructor and
 | |
| /// returned.
 | |
| QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
 | |
|                                           StorageClass &SC) {
 | |
|   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
 | |
| 
 | |
|   // C++ [class.ctor]p3:
 | |
|   //   A constructor shall not be virtual (10.3) or static (9.4). A
 | |
|   //   constructor can be invoked for a const, volatile or const
 | |
|   //   volatile object. A constructor shall not be declared const,
 | |
|   //   volatile, or const volatile (9.3.2).
 | |
|   if (isVirtual) {
 | |
|     if (!D.isInvalidType())
 | |
|       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
 | |
|         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
 | |
|         << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
|   if (SC == SC_Static) {
 | |
|     if (!D.isInvalidType())
 | |
|       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
 | |
|         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
 | |
|         << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|     SC = SC_None;
 | |
|   }
 | |
| 
 | |
|   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | |
|   if (FTI.TypeQuals != 0) {
 | |
|     if (FTI.TypeQuals & Qualifiers::Const)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
 | |
|         << "const" << SourceRange(D.getIdentifierLoc());
 | |
|     if (FTI.TypeQuals & Qualifiers::Volatile)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
 | |
|         << "volatile" << SourceRange(D.getIdentifierLoc());
 | |
|     if (FTI.TypeQuals & Qualifiers::Restrict)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
 | |
|         << "restrict" << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // C++0x [class.ctor]p4:
 | |
|   //   A constructor shall not be declared with a ref-qualifier.
 | |
|   if (FTI.hasRefQualifier()) {
 | |
|     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
 | |
|       << FTI.RefQualifierIsLValueRef 
 | |
|       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
|   
 | |
|   // Rebuild the function type "R" without any type qualifiers (in
 | |
|   // case any of the errors above fired) and with "void" as the
 | |
|   // return type, since constructors don't have return types.
 | |
|   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
 | |
|   if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
 | |
|     return R;
 | |
| 
 | |
|   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
 | |
|   EPI.TypeQuals = 0;
 | |
|   EPI.RefQualifier = RQ_None;
 | |
|   
 | |
|   return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
 | |
| }
 | |
| 
 | |
| /// CheckConstructor - Checks a fully-formed constructor for
 | |
| /// well-formedness, issuing any diagnostics required. Returns true if
 | |
| /// the constructor declarator is invalid.
 | |
| void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
 | |
|   CXXRecordDecl *ClassDecl
 | |
|     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
 | |
|   if (!ClassDecl)
 | |
|     return Constructor->setInvalidDecl();
 | |
| 
 | |
|   // C++ [class.copy]p3:
 | |
|   //   A declaration of a constructor for a class X is ill-formed if
 | |
|   //   its first parameter is of type (optionally cv-qualified) X and
 | |
|   //   either there are no other parameters or else all other
 | |
|   //   parameters have default arguments.
 | |
|   if (!Constructor->isInvalidDecl() &&
 | |
|       ((Constructor->getNumParams() == 1) ||
 | |
|        (Constructor->getNumParams() > 1 &&
 | |
|         Constructor->getParamDecl(1)->hasDefaultArg())) &&
 | |
|       Constructor->getTemplateSpecializationKind()
 | |
|                                               != TSK_ImplicitInstantiation) {
 | |
|     QualType ParamType = Constructor->getParamDecl(0)->getType();
 | |
|     QualType ClassTy = Context.getTagDeclType(ClassDecl);
 | |
|     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
 | |
|       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
 | |
|       const char *ConstRef 
 | |
|         = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 
 | |
|                                                         : " const &";
 | |
|       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
 | |
|         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
 | |
| 
 | |
|       // FIXME: Rather that making the constructor invalid, we should endeavor
 | |
|       // to fix the type.
 | |
|       Constructor->setInvalidDecl();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckDestructor - Checks a fully-formed destructor definition for
 | |
| /// well-formedness, issuing any diagnostics required.  Returns true
 | |
| /// on error.
 | |
| bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
 | |
|   CXXRecordDecl *RD = Destructor->getParent();
 | |
|   
 | |
|   if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
 | |
|     SourceLocation Loc;
 | |
|     
 | |
|     if (!Destructor->isImplicit())
 | |
|       Loc = Destructor->getLocation();
 | |
|     else
 | |
|       Loc = RD->getLocation();
 | |
|     
 | |
|     // If we have a virtual destructor, look up the deallocation function
 | |
|     FunctionDecl *OperatorDelete = 0;
 | |
|     DeclarationName Name = 
 | |
|     Context.DeclarationNames.getCXXOperatorName(OO_Delete);
 | |
|     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
 | |
|       return true;
 | |
| 
 | |
|     MarkFunctionReferenced(Loc, OperatorDelete);
 | |
|     
 | |
|     Destructor->setOperatorDelete(OperatorDelete);
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
 | |
|   return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
 | |
|           FTI.ArgInfo[0].Param &&
 | |
|           cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
 | |
| }
 | |
| 
 | |
| /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
 | |
| /// the well-formednes of the destructor declarator @p D with type @p
 | |
| /// R. If there are any errors in the declarator, this routine will
 | |
| /// emit diagnostics and set the declarator to invalid.  Even if this happens,
 | |
| /// will be updated to reflect a well-formed type for the destructor and
 | |
| /// returned.
 | |
| QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
 | |
|                                          StorageClass& SC) {
 | |
|   // C++ [class.dtor]p1:
 | |
|   //   [...] A typedef-name that names a class is a class-name
 | |
|   //   (7.1.3); however, a typedef-name that names a class shall not
 | |
|   //   be used as the identifier in the declarator for a destructor
 | |
|   //   declaration.
 | |
|   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
 | |
|   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
 | |
|     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
 | |
|       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
 | |
|   else if (const TemplateSpecializationType *TST =
 | |
|              DeclaratorType->getAs<TemplateSpecializationType>())
 | |
|     if (TST->isTypeAlias())
 | |
|       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
 | |
|         << DeclaratorType << 1;
 | |
| 
 | |
|   // C++ [class.dtor]p2:
 | |
|   //   A destructor is used to destroy objects of its class type. A
 | |
|   //   destructor takes no parameters, and no return type can be
 | |
|   //   specified for it (not even void). The address of a destructor
 | |
|   //   shall not be taken. A destructor shall not be static. A
 | |
|   //   destructor can be invoked for a const, volatile or const
 | |
|   //   volatile object. A destructor shall not be declared const,
 | |
|   //   volatile or const volatile (9.3.2).
 | |
|   if (SC == SC_Static) {
 | |
|     if (!D.isInvalidType())
 | |
|       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
 | |
|         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
 | |
|         << SourceRange(D.getIdentifierLoc())
 | |
|         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | |
|     
 | |
|     SC = SC_None;
 | |
|   }
 | |
|   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
 | |
|     // Destructors don't have return types, but the parser will
 | |
|     // happily parse something like:
 | |
|     //
 | |
|     //   class X {
 | |
|     //     float ~X();
 | |
|     //   };
 | |
|     //
 | |
|     // The return type will be eliminated later.
 | |
|     Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
 | |
|       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
 | |
|       << SourceRange(D.getIdentifierLoc());
 | |
|   }
 | |
| 
 | |
|   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | |
|   if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
 | |
|     if (FTI.TypeQuals & Qualifiers::Const)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
 | |
|         << "const" << SourceRange(D.getIdentifierLoc());
 | |
|     if (FTI.TypeQuals & Qualifiers::Volatile)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
 | |
|         << "volatile" << SourceRange(D.getIdentifierLoc());
 | |
|     if (FTI.TypeQuals & Qualifiers::Restrict)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
 | |
|         << "restrict" << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // C++0x [class.dtor]p2:
 | |
|   //   A destructor shall not be declared with a ref-qualifier.
 | |
|   if (FTI.hasRefQualifier()) {
 | |
|     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
 | |
|       << FTI.RefQualifierIsLValueRef
 | |
|       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
|   
 | |
|   // Make sure we don't have any parameters.
 | |
|   if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
 | |
| 
 | |
|     // Delete the parameters.
 | |
|     FTI.freeArgs();
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Make sure the destructor isn't variadic.
 | |
|   if (FTI.isVariadic) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Rebuild the function type "R" without any type qualifiers or
 | |
|   // parameters (in case any of the errors above fired) and with
 | |
|   // "void" as the return type, since destructors don't have return
 | |
|   // types. 
 | |
|   if (!D.isInvalidType())
 | |
|     return R;
 | |
| 
 | |
|   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
 | |
|   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
 | |
|   EPI.Variadic = false;
 | |
|   EPI.TypeQuals = 0;
 | |
|   EPI.RefQualifier = RQ_None;
 | |
|   return Context.getFunctionType(Context.VoidTy, None, EPI);
 | |
| }
 | |
| 
 | |
| /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
 | |
| /// well-formednes of the conversion function declarator @p D with
 | |
| /// type @p R. If there are any errors in the declarator, this routine
 | |
| /// will emit diagnostics and return true. Otherwise, it will return
 | |
| /// false. Either way, the type @p R will be updated to reflect a
 | |
| /// well-formed type for the conversion operator.
 | |
| void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
 | |
|                                      StorageClass& SC) {
 | |
|   // C++ [class.conv.fct]p1:
 | |
|   //   Neither parameter types nor return type can be specified. The
 | |
|   //   type of a conversion function (8.3.5) is "function taking no
 | |
|   //   parameter returning conversion-type-id."
 | |
|   if (SC == SC_Static) {
 | |
|     if (!D.isInvalidType())
 | |
|       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
 | |
|         << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
 | |
|         << D.getName().getSourceRange();
 | |
|     D.setInvalidType();
 | |
|     SC = SC_None;
 | |
|   }
 | |
| 
 | |
|   QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
 | |
| 
 | |
|   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
 | |
|     // Conversion functions don't have return types, but the parser will
 | |
|     // happily parse something like:
 | |
|     //
 | |
|     //   class X {
 | |
|     //     float operator bool();
 | |
|     //   };
 | |
|     //
 | |
|     // The return type will be changed later anyway.
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
 | |
|       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
 | |
|       << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
 | |
| 
 | |
|   // Make sure we don't have any parameters.
 | |
|   if (Proto->getNumArgs() > 0) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
 | |
| 
 | |
|     // Delete the parameters.
 | |
|     D.getFunctionTypeInfo().freeArgs();
 | |
|     D.setInvalidType();
 | |
|   } else if (Proto->isVariadic()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Diagnose "&operator bool()" and other such nonsense.  This
 | |
|   // is actually a gcc extension which we don't support.
 | |
|   if (Proto->getResultType() != ConvType) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
 | |
|       << Proto->getResultType();
 | |
|     D.setInvalidType();
 | |
|     ConvType = Proto->getResultType();
 | |
|   }
 | |
| 
 | |
|   // C++ [class.conv.fct]p4:
 | |
|   //   The conversion-type-id shall not represent a function type nor
 | |
|   //   an array type.
 | |
|   if (ConvType->isArrayType()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
 | |
|     ConvType = Context.getPointerType(ConvType);
 | |
|     D.setInvalidType();
 | |
|   } else if (ConvType->isFunctionType()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
 | |
|     ConvType = Context.getPointerType(ConvType);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Rebuild the function type "R" without any parameters (in case any
 | |
|   // of the errors above fired) and with the conversion type as the
 | |
|   // return type.
 | |
|   if (D.isInvalidType())
 | |
|     R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
 | |
| 
 | |
|   // C++0x explicit conversion operators.
 | |
|   if (D.getDeclSpec().isExplicitSpecified())
 | |
|     Diag(D.getDeclSpec().getExplicitSpecLoc(),
 | |
|          getLangOpts().CPlusPlus11 ?
 | |
|            diag::warn_cxx98_compat_explicit_conversion_functions :
 | |
|            diag::ext_explicit_conversion_functions)
 | |
|       << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
 | |
| }
 | |
| 
 | |
| /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
 | |
| /// the declaration of the given C++ conversion function. This routine
 | |
| /// is responsible for recording the conversion function in the C++
 | |
| /// class, if possible.
 | |
| Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
 | |
|   assert(Conversion && "Expected to receive a conversion function declaration");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
 | |
| 
 | |
|   // Make sure we aren't redeclaring the conversion function.
 | |
|   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
 | |
| 
 | |
|   // C++ [class.conv.fct]p1:
 | |
|   //   [...] A conversion function is never used to convert a
 | |
|   //   (possibly cv-qualified) object to the (possibly cv-qualified)
 | |
|   //   same object type (or a reference to it), to a (possibly
 | |
|   //   cv-qualified) base class of that type (or a reference to it),
 | |
|   //   or to (possibly cv-qualified) void.
 | |
|   // FIXME: Suppress this warning if the conversion function ends up being a
 | |
|   // virtual function that overrides a virtual function in a base class.
 | |
|   QualType ClassType
 | |
|     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
 | |
|   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
 | |
|     ConvType = ConvTypeRef->getPointeeType();
 | |
|   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
 | |
|       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
 | |
|     /* Suppress diagnostics for instantiations. */;
 | |
|   else if (ConvType->isRecordType()) {
 | |
|     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
 | |
|     if (ConvType == ClassType)
 | |
|       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
 | |
|         << ClassType;
 | |
|     else if (IsDerivedFrom(ClassType, ConvType))
 | |
|       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
 | |
|         <<  ClassType << ConvType;
 | |
|   } else if (ConvType->isVoidType()) {
 | |
|     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
 | |
|       << ClassType << ConvType;
 | |
|   }
 | |
| 
 | |
|   if (FunctionTemplateDecl *ConversionTemplate
 | |
|                                 = Conversion->getDescribedFunctionTemplate())
 | |
|     return ConversionTemplate;
 | |
|   
 | |
|   return Conversion;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Namespace Handling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
 | |
| /// reopened.
 | |
| static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
 | |
|                                             SourceLocation Loc,
 | |
|                                             IdentifierInfo *II, bool *IsInline,
 | |
|                                             NamespaceDecl *PrevNS) {
 | |
|   assert(*IsInline != PrevNS->isInline());
 | |
| 
 | |
|   // HACK: Work around a bug in libstdc++4.6's <atomic>, where
 | |
|   // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
 | |
|   // inline namespaces, with the intention of bringing names into namespace std.
 | |
|   //
 | |
|   // We support this just well enough to get that case working; this is not
 | |
|   // sufficient to support reopening namespaces as inline in general.
 | |
|   if (*IsInline && II && II->getName().startswith("__atomic") &&
 | |
|       S.getSourceManager().isInSystemHeader(Loc)) {
 | |
|     // Mark all prior declarations of the namespace as inline.
 | |
|     for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
 | |
|          NS = NS->getPreviousDecl())
 | |
|       NS->setInline(*IsInline);
 | |
|     // Patch up the lookup table for the containing namespace. This isn't really
 | |
|     // correct, but it's good enough for this particular case.
 | |
|     for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
 | |
|                                     E = PrevNS->decls_end(); I != E; ++I)
 | |
|       if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
 | |
|         PrevNS->getParent()->makeDeclVisibleInContext(ND);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (PrevNS->isInline())
 | |
|     // The user probably just forgot the 'inline', so suggest that it
 | |
|     // be added back.
 | |
|     S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
 | |
|       << FixItHint::CreateInsertion(KeywordLoc, "inline ");
 | |
|   else
 | |
|     S.Diag(Loc, diag::err_inline_namespace_mismatch)
 | |
|       << IsInline;
 | |
| 
 | |
|   S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
 | |
|   *IsInline = PrevNS->isInline();
 | |
| }
 | |
| 
 | |
| /// ActOnStartNamespaceDef - This is called at the start of a namespace
 | |
| /// definition.
 | |
| Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
 | |
|                                    SourceLocation InlineLoc,
 | |
|                                    SourceLocation NamespaceLoc,
 | |
|                                    SourceLocation IdentLoc,
 | |
|                                    IdentifierInfo *II,
 | |
|                                    SourceLocation LBrace,
 | |
|                                    AttributeList *AttrList) {
 | |
|   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
 | |
|   // For anonymous namespace, take the location of the left brace.
 | |
|   SourceLocation Loc = II ? IdentLoc : LBrace;
 | |
|   bool IsInline = InlineLoc.isValid();
 | |
|   bool IsInvalid = false;
 | |
|   bool IsStd = false;
 | |
|   bool AddToKnown = false;
 | |
|   Scope *DeclRegionScope = NamespcScope->getParent();
 | |
| 
 | |
|   NamespaceDecl *PrevNS = 0;
 | |
|   if (II) {
 | |
|     // C++ [namespace.def]p2:
 | |
|     //   The identifier in an original-namespace-definition shall not
 | |
|     //   have been previously defined in the declarative region in
 | |
|     //   which the original-namespace-definition appears. The
 | |
|     //   identifier in an original-namespace-definition is the name of
 | |
|     //   the namespace. Subsequently in that declarative region, it is
 | |
|     //   treated as an original-namespace-name.
 | |
|     //
 | |
|     // Since namespace names are unique in their scope, and we don't
 | |
|     // look through using directives, just look for any ordinary names.
 | |
|     
 | |
|     const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member | 
 | |
|     Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag | 
 | |
|     Decl::IDNS_Namespace;
 | |
|     NamedDecl *PrevDecl = 0;
 | |
|     DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
 | |
|     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
 | |
|          ++I) {
 | |
|       if ((*I)->getIdentifierNamespace() & IDNS) {
 | |
|         PrevDecl = *I;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
 | |
|     
 | |
|     if (PrevNS) {
 | |
|       // This is an extended namespace definition.
 | |
|       if (IsInline != PrevNS->isInline())
 | |
|         DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
 | |
|                                         &IsInline, PrevNS);
 | |
|     } else if (PrevDecl) {
 | |
|       // This is an invalid name redefinition.
 | |
|       Diag(Loc, diag::err_redefinition_different_kind)
 | |
|         << II;
 | |
|       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|       IsInvalid = true;
 | |
|       // Continue on to push Namespc as current DeclContext and return it.
 | |
|     } else if (II->isStr("std") &&
 | |
|                CurContext->getRedeclContext()->isTranslationUnit()) {
 | |
|       // This is the first "real" definition of the namespace "std", so update
 | |
|       // our cache of the "std" namespace to point at this definition.
 | |
|       PrevNS = getStdNamespace();
 | |
|       IsStd = true;
 | |
|       AddToKnown = !IsInline;
 | |
|     } else {
 | |
|       // We've seen this namespace for the first time.
 | |
|       AddToKnown = !IsInline;
 | |
|     }
 | |
|   } else {
 | |
|     // Anonymous namespaces.
 | |
|     
 | |
|     // Determine whether the parent already has an anonymous namespace.
 | |
|     DeclContext *Parent = CurContext->getRedeclContext();
 | |
|     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
 | |
|       PrevNS = TU->getAnonymousNamespace();
 | |
|     } else {
 | |
|       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
 | |
|       PrevNS = ND->getAnonymousNamespace();
 | |
|     }
 | |
| 
 | |
|     if (PrevNS && IsInline != PrevNS->isInline())
 | |
|       DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
 | |
|                                       &IsInline, PrevNS);
 | |
|   }
 | |
|   
 | |
|   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
 | |
|                                                  StartLoc, Loc, II, PrevNS);
 | |
|   if (IsInvalid)
 | |
|     Namespc->setInvalidDecl();
 | |
|   
 | |
|   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
 | |
| 
 | |
|   // FIXME: Should we be merging attributes?
 | |
|   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
 | |
|     PushNamespaceVisibilityAttr(Attr, Loc);
 | |
| 
 | |
|   if (IsStd)
 | |
|     StdNamespace = Namespc;
 | |
|   if (AddToKnown)
 | |
|     KnownNamespaces[Namespc] = false;
 | |
|   
 | |
|   if (II) {
 | |
|     PushOnScopeChains(Namespc, DeclRegionScope);
 | |
|   } else {
 | |
|     // Link the anonymous namespace into its parent.
 | |
|     DeclContext *Parent = CurContext->getRedeclContext();
 | |
|     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
 | |
|       TU->setAnonymousNamespace(Namespc);
 | |
|     } else {
 | |
|       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
 | |
|     }
 | |
| 
 | |
|     CurContext->addDecl(Namespc);
 | |
| 
 | |
|     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
 | |
|     //   behaves as if it were replaced by
 | |
|     //     namespace unique { /* empty body */ }
 | |
|     //     using namespace unique;
 | |
|     //     namespace unique { namespace-body }
 | |
|     //   where all occurrences of 'unique' in a translation unit are
 | |
|     //   replaced by the same identifier and this identifier differs
 | |
|     //   from all other identifiers in the entire program.
 | |
| 
 | |
|     // We just create the namespace with an empty name and then add an
 | |
|     // implicit using declaration, just like the standard suggests.
 | |
|     //
 | |
|     // CodeGen enforces the "universally unique" aspect by giving all
 | |
|     // declarations semantically contained within an anonymous
 | |
|     // namespace internal linkage.
 | |
| 
 | |
|     if (!PrevNS) {
 | |
|       UsingDirectiveDecl* UD
 | |
|         = UsingDirectiveDecl::Create(Context, Parent,
 | |
|                                      /* 'using' */ LBrace,
 | |
|                                      /* 'namespace' */ SourceLocation(),
 | |
|                                      /* qualifier */ NestedNameSpecifierLoc(),
 | |
|                                      /* identifier */ SourceLocation(),
 | |
|                                      Namespc,
 | |
|                                      /* Ancestor */ Parent);
 | |
|       UD->setImplicit();
 | |
|       Parent->addDecl(UD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ActOnDocumentableDecl(Namespc);
 | |
| 
 | |
|   // Although we could have an invalid decl (i.e. the namespace name is a
 | |
|   // redefinition), push it as current DeclContext and try to continue parsing.
 | |
|   // FIXME: We should be able to push Namespc here, so that the each DeclContext
 | |
|   // for the namespace has the declarations that showed up in that particular
 | |
|   // namespace definition.
 | |
|   PushDeclContext(NamespcScope, Namespc);
 | |
|   return Namespc;
 | |
| }
 | |
| 
 | |
| /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
 | |
| /// is a namespace alias, returns the namespace it points to.
 | |
| static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
 | |
|   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
 | |
|     return AD->getNamespace();
 | |
|   return dyn_cast_or_null<NamespaceDecl>(D);
 | |
| }
 | |
| 
 | |
| /// ActOnFinishNamespaceDef - This callback is called after a namespace is
 | |
| /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
 | |
| void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
 | |
|   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
 | |
|   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
 | |
|   Namespc->setRBraceLoc(RBrace);
 | |
|   PopDeclContext();
 | |
|   if (Namespc->hasAttr<VisibilityAttr>())
 | |
|     PopPragmaVisibility(true, RBrace);
 | |
| }
 | |
| 
 | |
| CXXRecordDecl *Sema::getStdBadAlloc() const {
 | |
|   return cast_or_null<CXXRecordDecl>(
 | |
|                                   StdBadAlloc.get(Context.getExternalSource()));
 | |
| }
 | |
| 
 | |
| NamespaceDecl *Sema::getStdNamespace() const {
 | |
|   return cast_or_null<NamespaceDecl>(
 | |
|                                  StdNamespace.get(Context.getExternalSource()));
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the special "std" namespace, which may require us to 
 | |
| /// implicitly define the namespace.
 | |
| NamespaceDecl *Sema::getOrCreateStdNamespace() {
 | |
|   if (!StdNamespace) {
 | |
|     // The "std" namespace has not yet been defined, so build one implicitly.
 | |
|     StdNamespace = NamespaceDecl::Create(Context, 
 | |
|                                          Context.getTranslationUnitDecl(),
 | |
|                                          /*Inline=*/false,
 | |
|                                          SourceLocation(), SourceLocation(),
 | |
|                                          &PP.getIdentifierTable().get("std"),
 | |
|                                          /*PrevDecl=*/0);
 | |
|     getStdNamespace()->setImplicit(true);
 | |
|   }
 | |
|   
 | |
|   return getStdNamespace();
 | |
| }
 | |
| 
 | |
| bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
 | |
|   assert(getLangOpts().CPlusPlus &&
 | |
|          "Looking for std::initializer_list outside of C++.");
 | |
| 
 | |
|   // We're looking for implicit instantiations of
 | |
|   // template <typename E> class std::initializer_list.
 | |
| 
 | |
|   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
 | |
|     return false;
 | |
| 
 | |
|   ClassTemplateDecl *Template = 0;
 | |
|   const TemplateArgument *Arguments = 0;
 | |
| 
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
| 
 | |
|     ClassTemplateSpecializationDecl *Specialization =
 | |
|         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
 | |
|     if (!Specialization)
 | |
|       return false;
 | |
| 
 | |
|     Template = Specialization->getSpecializedTemplate();
 | |
|     Arguments = Specialization->getTemplateArgs().data();
 | |
|   } else if (const TemplateSpecializationType *TST =
 | |
|                  Ty->getAs<TemplateSpecializationType>()) {
 | |
|     Template = dyn_cast_or_null<ClassTemplateDecl>(
 | |
|         TST->getTemplateName().getAsTemplateDecl());
 | |
|     Arguments = TST->getArgs();
 | |
|   }
 | |
|   if (!Template)
 | |
|     return false;
 | |
| 
 | |
|   if (!StdInitializerList) {
 | |
|     // Haven't recognized std::initializer_list yet, maybe this is it.
 | |
|     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
 | |
|     if (TemplateClass->getIdentifier() !=
 | |
|             &PP.getIdentifierTable().get("initializer_list") ||
 | |
|         !getStdNamespace()->InEnclosingNamespaceSetOf(
 | |
|             TemplateClass->getDeclContext()))
 | |
|       return false;
 | |
|     // This is a template called std::initializer_list, but is it the right
 | |
|     // template?
 | |
|     TemplateParameterList *Params = Template->getTemplateParameters();
 | |
|     if (Params->getMinRequiredArguments() != 1)
 | |
|       return false;
 | |
|     if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
 | |
|       return false;
 | |
| 
 | |
|     // It's the right template.
 | |
|     StdInitializerList = Template;
 | |
|   }
 | |
| 
 | |
|   if (Template != StdInitializerList)
 | |
|     return false;
 | |
| 
 | |
|   // This is an instance of std::initializer_list. Find the argument type.
 | |
|   if (Element)
 | |
|     *Element = Arguments[0].getAsType();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
 | |
|   NamespaceDecl *Std = S.getStdNamespace();
 | |
|   if (!Std) {
 | |
|     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
 | |
|                       Loc, Sema::LookupOrdinaryName);
 | |
|   if (!S.LookupQualifiedName(Result, Std)) {
 | |
|     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
 | |
|     return 0;
 | |
|   }
 | |
|   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
 | |
|   if (!Template) {
 | |
|     Result.suppressDiagnostics();
 | |
|     // We found something weird. Complain about the first thing we found.
 | |
|     NamedDecl *Found = *Result.begin();
 | |
|     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // We found some template called std::initializer_list. Now verify that it's
 | |
|   // correct.
 | |
|   TemplateParameterList *Params = Template->getTemplateParameters();
 | |
|   if (Params->getMinRequiredArguments() != 1 ||
 | |
|       !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
 | |
|     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   return Template;
 | |
| }
 | |
| 
 | |
| QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
 | |
|   if (!StdInitializerList) {
 | |
|     StdInitializerList = LookupStdInitializerList(*this, Loc);
 | |
|     if (!StdInitializerList)
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   TemplateArgumentListInfo Args(Loc, Loc);
 | |
|   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
 | |
|                                        Context.getTrivialTypeSourceInfo(Element,
 | |
|                                                                         Loc)));
 | |
|   return Context.getCanonicalType(
 | |
|       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
 | |
| }
 | |
| 
 | |
| bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
 | |
|   // C++ [dcl.init.list]p2:
 | |
|   //   A constructor is an initializer-list constructor if its first parameter
 | |
|   //   is of type std::initializer_list<E> or reference to possibly cv-qualified
 | |
|   //   std::initializer_list<E> for some type E, and either there are no other
 | |
|   //   parameters or else all other parameters have default arguments.
 | |
|   if (Ctor->getNumParams() < 1 ||
 | |
|       (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
 | |
|     return false;
 | |
| 
 | |
|   QualType ArgType = Ctor->getParamDecl(0)->getType();
 | |
|   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
 | |
|     ArgType = RT->getPointeeType().getUnqualifiedType();
 | |
| 
 | |
|   return isStdInitializerList(ArgType, 0);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether a using statement is in a context where it will be
 | |
| /// apply in all contexts.
 | |
| static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
 | |
|   switch (CurContext->getDeclKind()) {
 | |
|     case Decl::TranslationUnit:
 | |
|       return true;
 | |
|     case Decl::LinkageSpec:
 | |
|       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Callback to only accept typo corrections that are namespaces.
 | |
| class NamespaceValidatorCCC : public CorrectionCandidateCallback {
 | |
| public:
 | |
|   bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
 | |
|     if (NamedDecl *ND = candidate.getCorrectionDecl())
 | |
|       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
 | |
|                                        CXXScopeSpec &SS,
 | |
|                                        SourceLocation IdentLoc,
 | |
|                                        IdentifierInfo *Ident) {
 | |
|   NamespaceValidatorCCC Validator;
 | |
|   R.clear();
 | |
|   if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
 | |
|                                                R.getLookupKind(), Sc, &SS,
 | |
|                                                Validator)) {
 | |
|     std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
 | |
|     std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
 | |
|     if (DeclContext *DC = S.computeDeclContext(SS, false)) {
 | |
|       bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | |
|                               Ident->getName().equals(CorrectedStr);
 | |
|       S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
 | |
|           << Ident << DC << droppedSpecifier << CorrectedQuotedStr
 | |
|           << SS.getRange() << FixItHint::CreateReplacement(
 | |
|                                   Corrected.getCorrectionRange(), CorrectedStr);
 | |
|     } else {
 | |
|       S.Diag(IdentLoc, diag::err_using_directive_suggest)
 | |
|         << Ident << CorrectedQuotedStr
 | |
|         << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
 | |
|     }
 | |
| 
 | |
|     S.Diag(Corrected.getCorrectionDecl()->getLocation(),
 | |
|          diag::note_namespace_defined_here) << CorrectedQuotedStr;
 | |
| 
 | |
|     R.addDecl(Corrected.getCorrectionDecl());
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnUsingDirective(Scope *S,
 | |
|                                           SourceLocation UsingLoc,
 | |
|                                           SourceLocation NamespcLoc,
 | |
|                                           CXXScopeSpec &SS,
 | |
|                                           SourceLocation IdentLoc,
 | |
|                                           IdentifierInfo *NamespcName,
 | |
|                                           AttributeList *AttrList) {
 | |
|   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
 | |
|   assert(NamespcName && "Invalid NamespcName.");
 | |
|   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
 | |
| 
 | |
|   // This can only happen along a recovery path.
 | |
|   while (S->getFlags() & Scope::TemplateParamScope)
 | |
|     S = S->getParent();
 | |
|   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
 | |
| 
 | |
|   UsingDirectiveDecl *UDir = 0;
 | |
|   NestedNameSpecifier *Qualifier = 0;
 | |
|   if (SS.isSet())
 | |
|     Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | |
|   
 | |
|   // Lookup namespace name.
 | |
|   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
 | |
|   LookupParsedName(R, S, &SS);
 | |
|   if (R.isAmbiguous())
 | |
|     return 0;
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     R.clear();
 | |
|     // Allow "using namespace std;" or "using namespace ::std;" even if 
 | |
|     // "std" hasn't been defined yet, for GCC compatibility.
 | |
|     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
 | |
|         NamespcName->isStr("std")) {
 | |
|       Diag(IdentLoc, diag::ext_using_undefined_std);
 | |
|       R.addDecl(getOrCreateStdNamespace());
 | |
|       R.resolveKind();
 | |
|     } 
 | |
|     // Otherwise, attempt typo correction.
 | |
|     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
 | |
|   }
 | |
|   
 | |
|   if (!R.empty()) {
 | |
|     NamedDecl *Named = R.getFoundDecl();
 | |
|     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
 | |
|         && "expected namespace decl");
 | |
|     // C++ [namespace.udir]p1:
 | |
|     //   A using-directive specifies that the names in the nominated
 | |
|     //   namespace can be used in the scope in which the
 | |
|     //   using-directive appears after the using-directive. During
 | |
|     //   unqualified name lookup (3.4.1), the names appear as if they
 | |
|     //   were declared in the nearest enclosing namespace which
 | |
|     //   contains both the using-directive and the nominated
 | |
|     //   namespace. [Note: in this context, "contains" means "contains
 | |
|     //   directly or indirectly". ]
 | |
| 
 | |
|     // Find enclosing context containing both using-directive and
 | |
|     // nominated namespace.
 | |
|     NamespaceDecl *NS = getNamespaceDecl(Named);
 | |
|     DeclContext *CommonAncestor = cast<DeclContext>(NS);
 | |
|     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
 | |
|       CommonAncestor = CommonAncestor->getParent();
 | |
| 
 | |
|     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
 | |
|                                       SS.getWithLocInContext(Context),
 | |
|                                       IdentLoc, Named, CommonAncestor);
 | |
| 
 | |
|     if (IsUsingDirectiveInToplevelContext(CurContext) &&
 | |
|         !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
 | |
|       Diag(IdentLoc, diag::warn_using_directive_in_header);
 | |
|     }
 | |
| 
 | |
|     PushUsingDirective(S, UDir);
 | |
|   } else {
 | |
|     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
 | |
|   }
 | |
| 
 | |
|   if (UDir)
 | |
|     ProcessDeclAttributeList(S, UDir, AttrList);
 | |
| 
 | |
|   return UDir;
 | |
| }
 | |
| 
 | |
| void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
 | |
|   // If the scope has an associated entity and the using directive is at
 | |
|   // namespace or translation unit scope, add the UsingDirectiveDecl into
 | |
|   // its lookup structure so qualified name lookup can find it.
 | |
|   DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
 | |
|   if (Ctx && !Ctx->isFunctionOrMethod())
 | |
|     Ctx->addDecl(UDir);
 | |
|   else
 | |
|     // Otherwise, it is at block sope. The using-directives will affect lookup
 | |
|     // only to the end of the scope.
 | |
|     S->PushUsingDirective(UDir);
 | |
| }
 | |
| 
 | |
| 
 | |
| Decl *Sema::ActOnUsingDeclaration(Scope *S,
 | |
|                                   AccessSpecifier AS,
 | |
|                                   bool HasUsingKeyword,
 | |
|                                   SourceLocation UsingLoc,
 | |
|                                   CXXScopeSpec &SS,
 | |
|                                   UnqualifiedId &Name,
 | |
|                                   AttributeList *AttrList,
 | |
|                                   bool HasTypenameKeyword,
 | |
|                                   SourceLocation TypenameLoc) {
 | |
|   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
 | |
| 
 | |
|   switch (Name.getKind()) {
 | |
|   case UnqualifiedId::IK_ImplicitSelfParam:
 | |
|   case UnqualifiedId::IK_Identifier:
 | |
|   case UnqualifiedId::IK_OperatorFunctionId:
 | |
|   case UnqualifiedId::IK_LiteralOperatorId:
 | |
|   case UnqualifiedId::IK_ConversionFunctionId:
 | |
|     break;
 | |
|       
 | |
|   case UnqualifiedId::IK_ConstructorName:
 | |
|   case UnqualifiedId::IK_ConstructorTemplateId:
 | |
|     // C++11 inheriting constructors.
 | |
|     Diag(Name.getLocStart(),
 | |
|          getLangOpts().CPlusPlus11 ?
 | |
|            diag::warn_cxx98_compat_using_decl_constructor :
 | |
|            diag::err_using_decl_constructor)
 | |
|       << SS.getRange();
 | |
| 
 | |
|     if (getLangOpts().CPlusPlus11) break;
 | |
| 
 | |
|     return 0;
 | |
|       
 | |
|   case UnqualifiedId::IK_DestructorName:
 | |
|     Diag(Name.getLocStart(), diag::err_using_decl_destructor)
 | |
|       << SS.getRange();
 | |
|     return 0;
 | |
|       
 | |
|   case UnqualifiedId::IK_TemplateId:
 | |
|     Diag(Name.getLocStart(), diag::err_using_decl_template_id)
 | |
|       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
 | |
|   DeclarationName TargetName = TargetNameInfo.getName();
 | |
|   if (!TargetName)
 | |
|     return 0;
 | |
| 
 | |
|   // Warn about access declarations.
 | |
|   if (!HasUsingKeyword) {
 | |
|     Diag(Name.getLocStart(),
 | |
|          getLangOpts().CPlusPlus11 ? diag::err_access_decl
 | |
|                                    : diag::warn_access_decl_deprecated)
 | |
|       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
 | |
|   }
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
 | |
|       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
 | |
|     return 0;
 | |
| 
 | |
|   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
 | |
|                                         TargetNameInfo, AttrList,
 | |
|                                         /* IsInstantiation */ false,
 | |
|                                         HasTypenameKeyword, TypenameLoc);
 | |
|   if (UD)
 | |
|     PushOnScopeChains(UD, S, /*AddToContext*/ false);
 | |
| 
 | |
|   return UD;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether a using declaration considers the given
 | |
| /// declarations as "equivalent", e.g., if they are redeclarations of
 | |
| /// the same entity or are both typedefs of the same type.
 | |
| static bool 
 | |
| IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
 | |
|                          bool &SuppressRedeclaration) {
 | |
|   if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
 | |
|     SuppressRedeclaration = false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
 | |
|     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
 | |
|       SuppressRedeclaration = true;
 | |
|       return Context.hasSameType(TD1->getUnderlyingType(),
 | |
|                                  TD2->getUnderlyingType());
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Determines whether to create a using shadow decl for a particular
 | |
| /// decl, given the set of decls existing prior to this using lookup.
 | |
| bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
 | |
|                                 const LookupResult &Previous) {
 | |
|   // Diagnose finding a decl which is not from a base class of the
 | |
|   // current class.  We do this now because there are cases where this
 | |
|   // function will silently decide not to build a shadow decl, which
 | |
|   // will pre-empt further diagnostics.
 | |
|   //
 | |
|   // We don't need to do this in C++0x because we do the check once on
 | |
|   // the qualifier.
 | |
|   //
 | |
|   // FIXME: diagnose the following if we care enough:
 | |
|   //   struct A { int foo; };
 | |
|   //   struct B : A { using A::foo; };
 | |
|   //   template <class T> struct C : A {};
 | |
|   //   template <class T> struct D : C<T> { using B::foo; } // <---
 | |
|   // This is invalid (during instantiation) in C++03 because B::foo
 | |
|   // resolves to the using decl in B, which is not a base class of D<T>.
 | |
|   // We can't diagnose it immediately because C<T> is an unknown
 | |
|   // specialization.  The UsingShadowDecl in D<T> then points directly
 | |
|   // to A::foo, which will look well-formed when we instantiate.
 | |
|   // The right solution is to not collapse the shadow-decl chain.
 | |
|   if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
 | |
|     DeclContext *OrigDC = Orig->getDeclContext();
 | |
| 
 | |
|     // Handle enums and anonymous structs.
 | |
|     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
 | |
|     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
 | |
|     while (OrigRec->isAnonymousStructOrUnion())
 | |
|       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
 | |
| 
 | |
|     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
 | |
|       if (OrigDC == CurContext) {
 | |
|         Diag(Using->getLocation(),
 | |
|              diag::err_using_decl_nested_name_specifier_is_current_class)
 | |
|           << Using->getQualifierLoc().getSourceRange();
 | |
|         Diag(Orig->getLocation(), diag::note_using_decl_target);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       Diag(Using->getQualifierLoc().getBeginLoc(),
 | |
|            diag::err_using_decl_nested_name_specifier_is_not_base_class)
 | |
|         << Using->getQualifier()
 | |
|         << cast<CXXRecordDecl>(CurContext)
 | |
|         << Using->getQualifierLoc().getSourceRange();
 | |
|       Diag(Orig->getLocation(), diag::note_using_decl_target);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Previous.empty()) return false;
 | |
| 
 | |
|   NamedDecl *Target = Orig;
 | |
|   if (isa<UsingShadowDecl>(Target))
 | |
|     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
 | |
| 
 | |
|   // If the target happens to be one of the previous declarations, we
 | |
|   // don't have a conflict.
 | |
|   // 
 | |
|   // FIXME: but we might be increasing its access, in which case we
 | |
|   // should redeclare it.
 | |
|   NamedDecl *NonTag = 0, *Tag = 0;
 | |
|   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | |
|          I != E; ++I) {
 | |
|     NamedDecl *D = (*I)->getUnderlyingDecl();
 | |
|     bool Result;
 | |
|     if (IsEquivalentForUsingDecl(Context, D, Target, Result))
 | |
|       return Result;
 | |
| 
 | |
|     (isa<TagDecl>(D) ? Tag : NonTag) = D;
 | |
|   }
 | |
| 
 | |
|   if (Target->isFunctionOrFunctionTemplate()) {
 | |
|     FunctionDecl *FD;
 | |
|     if (isa<FunctionTemplateDecl>(Target))
 | |
|       FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
 | |
|     else
 | |
|       FD = cast<FunctionDecl>(Target);
 | |
| 
 | |
|     NamedDecl *OldDecl = 0;
 | |
|     switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
 | |
|     case Ovl_Overload:
 | |
|       return false;
 | |
| 
 | |
|     case Ovl_NonFunction:
 | |
|       Diag(Using->getLocation(), diag::err_using_decl_conflict);
 | |
|       break;
 | |
|       
 | |
|     // We found a decl with the exact signature.
 | |
|     case Ovl_Match:
 | |
|       // If we're in a record, we want to hide the target, so we
 | |
|       // return true (without a diagnostic) to tell the caller not to
 | |
|       // build a shadow decl.
 | |
|       if (CurContext->isRecord())
 | |
|         return true;
 | |
| 
 | |
|       // If we're not in a record, this is an error.
 | |
|       Diag(Using->getLocation(), diag::err_using_decl_conflict);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Diag(Target->getLocation(), diag::note_using_decl_target);
 | |
|     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Target is not a function.
 | |
| 
 | |
|   if (isa<TagDecl>(Target)) {
 | |
|     // No conflict between a tag and a non-tag.
 | |
|     if (!Tag) return false;
 | |
| 
 | |
|     Diag(Using->getLocation(), diag::err_using_decl_conflict);
 | |
|     Diag(Target->getLocation(), diag::note_using_decl_target);
 | |
|     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // No conflict between a tag and a non-tag.
 | |
|   if (!NonTag) return false;
 | |
| 
 | |
|   Diag(Using->getLocation(), diag::err_using_decl_conflict);
 | |
|   Diag(Target->getLocation(), diag::note_using_decl_target);
 | |
|   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Builds a shadow declaration corresponding to a 'using' declaration.
 | |
| UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
 | |
|                                             UsingDecl *UD,
 | |
|                                             NamedDecl *Orig) {
 | |
| 
 | |
|   // If we resolved to another shadow declaration, just coalesce them.
 | |
|   NamedDecl *Target = Orig;
 | |
|   if (isa<UsingShadowDecl>(Target)) {
 | |
|     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
 | |
|     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
 | |
|   }
 | |
|   
 | |
|   UsingShadowDecl *Shadow
 | |
|     = UsingShadowDecl::Create(Context, CurContext,
 | |
|                               UD->getLocation(), UD, Target);
 | |
|   UD->addShadowDecl(Shadow);
 | |
|   
 | |
|   Shadow->setAccess(UD->getAccess());
 | |
|   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
 | |
|     Shadow->setInvalidDecl();
 | |
|   
 | |
|   if (S)
 | |
|     PushOnScopeChains(Shadow, S);
 | |
|   else
 | |
|     CurContext->addDecl(Shadow);
 | |
| 
 | |
| 
 | |
|   return Shadow;
 | |
| }
 | |
| 
 | |
| /// Hides a using shadow declaration.  This is required by the current
 | |
| /// using-decl implementation when a resolvable using declaration in a
 | |
| /// class is followed by a declaration which would hide or override
 | |
| /// one or more of the using decl's targets; for example:
 | |
| ///
 | |
| ///   struct Base { void foo(int); };
 | |
| ///   struct Derived : Base {
 | |
| ///     using Base::foo;
 | |
| ///     void foo(int);
 | |
| ///   };
 | |
| ///
 | |
| /// The governing language is C++03 [namespace.udecl]p12:
 | |
| ///
 | |
| ///   When a using-declaration brings names from a base class into a
 | |
| ///   derived class scope, member functions in the derived class
 | |
| ///   override and/or hide member functions with the same name and
 | |
| ///   parameter types in a base class (rather than conflicting).
 | |
| ///
 | |
| /// There are two ways to implement this:
 | |
| ///   (1) optimistically create shadow decls when they're not hidden
 | |
| ///       by existing declarations, or
 | |
| ///   (2) don't create any shadow decls (or at least don't make them
 | |
| ///       visible) until we've fully parsed/instantiated the class.
 | |
| /// The problem with (1) is that we might have to retroactively remove
 | |
| /// a shadow decl, which requires several O(n) operations because the
 | |
| /// decl structures are (very reasonably) not designed for removal.
 | |
| /// (2) avoids this but is very fiddly and phase-dependent.
 | |
| void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
 | |
|   if (Shadow->getDeclName().getNameKind() ==
 | |
|         DeclarationName::CXXConversionFunctionName)
 | |
|     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
 | |
| 
 | |
|   // Remove it from the DeclContext...
 | |
|   Shadow->getDeclContext()->removeDecl(Shadow);
 | |
| 
 | |
|   // ...and the scope, if applicable...
 | |
|   if (S) {
 | |
|     S->RemoveDecl(Shadow);
 | |
|     IdResolver.RemoveDecl(Shadow);
 | |
|   }
 | |
| 
 | |
|   // ...and the using decl.
 | |
|   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
 | |
| 
 | |
|   // TODO: complain somehow if Shadow was used.  It shouldn't
 | |
|   // be possible for this to happen, because...?
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class UsingValidatorCCC : public CorrectionCandidateCallback {
 | |
| public:
 | |
|   UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation)
 | |
|       : HasTypenameKeyword(HasTypenameKeyword),
 | |
|         IsInstantiation(IsInstantiation) {}
 | |
| 
 | |
|   bool ValidateCandidate(const TypoCorrection &Candidate) LLVM_OVERRIDE {
 | |
|     NamedDecl *ND = Candidate.getCorrectionDecl();
 | |
| 
 | |
|     // Keywords are not valid here.
 | |
|     if (!ND || isa<NamespaceDecl>(ND))
 | |
|       return false;
 | |
| 
 | |
|     // Completely unqualified names are invalid for a 'using' declaration.
 | |
|     if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
 | |
|       return false;
 | |
| 
 | |
|     if (isa<TypeDecl>(ND))
 | |
|       return HasTypenameKeyword || !IsInstantiation;
 | |
| 
 | |
|     return !HasTypenameKeyword;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool HasTypenameKeyword;
 | |
|   bool IsInstantiation;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Builds a using declaration.
 | |
| ///
 | |
| /// \param IsInstantiation - Whether this call arises from an
 | |
| ///   instantiation of an unresolved using declaration.  We treat
 | |
| ///   the lookup differently for these declarations.
 | |
| NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
 | |
|                                        SourceLocation UsingLoc,
 | |
|                                        CXXScopeSpec &SS,
 | |
|                                        const DeclarationNameInfo &NameInfo,
 | |
|                                        AttributeList *AttrList,
 | |
|                                        bool IsInstantiation,
 | |
|                                        bool HasTypenameKeyword,
 | |
|                                        SourceLocation TypenameLoc) {
 | |
|   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
 | |
|   SourceLocation IdentLoc = NameInfo.getLoc();
 | |
|   assert(IdentLoc.isValid() && "Invalid TargetName location.");
 | |
| 
 | |
|   // FIXME: We ignore attributes for now.
 | |
| 
 | |
|   if (SS.isEmpty()) {
 | |
|     Diag(IdentLoc, diag::err_using_requires_qualname);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Do the redeclaration lookup in the current scope.
 | |
|   LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
 | |
|                         ForRedeclaration);
 | |
|   Previous.setHideTags(false);
 | |
|   if (S) {
 | |
|     LookupName(Previous, S);
 | |
| 
 | |
|     // It is really dumb that we have to do this.
 | |
|     LookupResult::Filter F = Previous.makeFilter();
 | |
|     while (F.hasNext()) {
 | |
|       NamedDecl *D = F.next();
 | |
|       if (!isDeclInScope(D, CurContext, S))
 | |
|         F.erase();
 | |
|     }
 | |
|     F.done();
 | |
|   } else {
 | |
|     assert(IsInstantiation && "no scope in non-instantiation");
 | |
|     assert(CurContext->isRecord() && "scope not record in instantiation");
 | |
|     LookupQualifiedName(Previous, CurContext);
 | |
|   }
 | |
| 
 | |
|   // Check for invalid redeclarations.
 | |
|   if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
 | |
|                                   SS, IdentLoc, Previous))
 | |
|     return 0;
 | |
| 
 | |
|   // Check for bad qualifiers.
 | |
|   if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
 | |
|     return 0;
 | |
| 
 | |
|   DeclContext *LookupContext = computeDeclContext(SS);
 | |
|   NamedDecl *D;
 | |
|   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | |
|   if (!LookupContext) {
 | |
|     if (HasTypenameKeyword) {
 | |
|       // FIXME: not all declaration name kinds are legal here
 | |
|       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
 | |
|                                               UsingLoc, TypenameLoc,
 | |
|                                               QualifierLoc,
 | |
|                                               IdentLoc, NameInfo.getName());
 | |
|     } else {
 | |
|       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 
 | |
|                                            QualifierLoc, NameInfo);
 | |
|     }
 | |
|   } else {
 | |
|     D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
 | |
|                           NameInfo, HasTypenameKeyword);
 | |
|   }
 | |
|   D->setAccess(AS);
 | |
|   CurContext->addDecl(D);
 | |
| 
 | |
|   if (!LookupContext) return D;
 | |
|   UsingDecl *UD = cast<UsingDecl>(D);
 | |
| 
 | |
|   if (RequireCompleteDeclContext(SS, LookupContext)) {
 | |
|     UD->setInvalidDecl();
 | |
|     return UD;
 | |
|   }
 | |
| 
 | |
|   // The normal rules do not apply to inheriting constructor declarations.
 | |
|   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
 | |
|     if (CheckInheritingConstructorUsingDecl(UD))
 | |
|       UD->setInvalidDecl();
 | |
|     return UD;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, look up the target name.
 | |
| 
 | |
|   LookupResult R(*this, NameInfo, LookupOrdinaryName);
 | |
| 
 | |
|   // Unlike most lookups, we don't always want to hide tag
 | |
|   // declarations: tag names are visible through the using declaration
 | |
|   // even if hidden by ordinary names, *except* in a dependent context
 | |
|   // where it's important for the sanity of two-phase lookup.
 | |
|   if (!IsInstantiation)
 | |
|     R.setHideTags(false);
 | |
| 
 | |
|   // For the purposes of this lookup, we have a base object type
 | |
|   // equal to that of the current context.
 | |
|   if (CurContext->isRecord()) {
 | |
|     R.setBaseObjectType(
 | |
|                    Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
 | |
|   }
 | |
| 
 | |
|   LookupQualifiedName(R, LookupContext);
 | |
| 
 | |
|   // Try to correct typos if possible.
 | |
|   if (R.empty()) {
 | |
|     UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation);
 | |
|     if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
 | |
|                                                R.getLookupKind(), S, &SS, CCC)){
 | |
|       // We reject any correction for which ND would be NULL.
 | |
|       NamedDecl *ND = Corrected.getCorrectionDecl();
 | |
|       std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | |
|       std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
 | |
|       R.setLookupName(Corrected.getCorrection());
 | |
|       R.addDecl(ND);
 | |
|       // We reject candidates where droppedSpecifier == true, hence the
 | |
|       // literal '0' below.
 | |
|       Diag(R.getNameLoc(), diag::err_no_member_suggest)
 | |
|         << NameInfo.getName() << LookupContext << 0
 | |
|         << CorrectedQuotedStr << SS.getRange()
 | |
|         << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
 | |
|                                         CorrectedStr);
 | |
|       Diag(ND->getLocation(), diag::note_previous_decl)
 | |
|         << CorrectedQuotedStr;
 | |
|     } else {
 | |
|       Diag(IdentLoc, diag::err_no_member) 
 | |
|         << NameInfo.getName() << LookupContext << SS.getRange();
 | |
|       UD->setInvalidDecl();
 | |
|       return UD;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (R.isAmbiguous()) {
 | |
|     UD->setInvalidDecl();
 | |
|     return UD;
 | |
|   }
 | |
| 
 | |
|   if (HasTypenameKeyword) {
 | |
|     // If we asked for a typename and got a non-type decl, error out.
 | |
|     if (!R.getAsSingle<TypeDecl>()) {
 | |
|       Diag(IdentLoc, diag::err_using_typename_non_type);
 | |
|       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
 | |
|         Diag((*I)->getUnderlyingDecl()->getLocation(),
 | |
|              diag::note_using_decl_target);
 | |
|       UD->setInvalidDecl();
 | |
|       return UD;
 | |
|     }
 | |
|   } else {
 | |
|     // If we asked for a non-typename and we got a type, error out,
 | |
|     // but only if this is an instantiation of an unresolved using
 | |
|     // decl.  Otherwise just silently find the type name.
 | |
|     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
 | |
|       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
 | |
|       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
 | |
|       UD->setInvalidDecl();
 | |
|       return UD;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++0x N2914 [namespace.udecl]p6:
 | |
|   // A using-declaration shall not name a namespace.
 | |
|   if (R.getAsSingle<NamespaceDecl>()) {
 | |
|     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
 | |
|       << SS.getRange();
 | |
|     UD->setInvalidDecl();
 | |
|     return UD;
 | |
|   }
 | |
| 
 | |
|   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|     if (!CheckUsingShadowDecl(UD, *I, Previous))
 | |
|       BuildUsingShadowDecl(S, UD, *I);
 | |
|   }
 | |
| 
 | |
|   return UD;
 | |
| }
 | |
| 
 | |
| /// Additional checks for a using declaration referring to a constructor name.
 | |
| bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
 | |
|   assert(!UD->hasTypename() && "expecting a constructor name");
 | |
| 
 | |
|   const Type *SourceType = UD->getQualifier()->getAsType();
 | |
|   assert(SourceType &&
 | |
|          "Using decl naming constructor doesn't have type in scope spec.");
 | |
|   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
 | |
| 
 | |
|   // Check whether the named type is a direct base class.
 | |
|   CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
 | |
|   CXXRecordDecl::base_class_iterator BaseIt, BaseE;
 | |
|   for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
 | |
|        BaseIt != BaseE; ++BaseIt) {
 | |
|     CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
 | |
|     if (CanonicalSourceType == BaseType)
 | |
|       break;
 | |
|     if (BaseIt->getType()->isDependentType())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (BaseIt == BaseE) {
 | |
|     // Did not find SourceType in the bases.
 | |
|     Diag(UD->getUsingLoc(),
 | |
|          diag::err_using_decl_constructor_not_in_direct_base)
 | |
|       << UD->getNameInfo().getSourceRange()
 | |
|       << QualType(SourceType, 0) << TargetClass;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!CurContext->isDependentContext())
 | |
|     BaseIt->setInheritConstructors();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Checks that the given using declaration is not an invalid
 | |
| /// redeclaration.  Note that this is checking only for the using decl
 | |
| /// itself, not for any ill-formedness among the UsingShadowDecls.
 | |
| bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
 | |
|                                        bool HasTypenameKeyword,
 | |
|                                        const CXXScopeSpec &SS,
 | |
|                                        SourceLocation NameLoc,
 | |
|                                        const LookupResult &Prev) {
 | |
|   // C++03 [namespace.udecl]p8:
 | |
|   // C++0x [namespace.udecl]p10:
 | |
|   //   A using-declaration is a declaration and can therefore be used
 | |
|   //   repeatedly where (and only where) multiple declarations are
 | |
|   //   allowed.
 | |
|   //
 | |
|   // That's in non-member contexts.
 | |
|   if (!CurContext->getRedeclContext()->isRecord())
 | |
|     return false;
 | |
| 
 | |
|   NestedNameSpecifier *Qual
 | |
|     = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
 | |
| 
 | |
|   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
| 
 | |
|     bool DTypename;
 | |
|     NestedNameSpecifier *DQual;
 | |
|     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
 | |
|       DTypename = UD->hasTypename();
 | |
|       DQual = UD->getQualifier();
 | |
|     } else if (UnresolvedUsingValueDecl *UD
 | |
|                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
 | |
|       DTypename = false;
 | |
|       DQual = UD->getQualifier();
 | |
|     } else if (UnresolvedUsingTypenameDecl *UD
 | |
|                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
 | |
|       DTypename = true;
 | |
|       DQual = UD->getQualifier();
 | |
|     } else continue;
 | |
| 
 | |
|     // using decls differ if one says 'typename' and the other doesn't.
 | |
|     // FIXME: non-dependent using decls?
 | |
|     if (HasTypenameKeyword != DTypename) continue;
 | |
| 
 | |
|     // using decls differ if they name different scopes (but note that
 | |
|     // template instantiation can cause this check to trigger when it
 | |
|     // didn't before instantiation).
 | |
|     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
 | |
|         Context.getCanonicalNestedNameSpecifier(DQual))
 | |
|       continue;
 | |
| 
 | |
|     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
 | |
|     Diag(D->getLocation(), diag::note_using_decl) << 1;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Checks that the given nested-name qualifier used in a using decl
 | |
| /// in the current context is appropriately related to the current
 | |
| /// scope.  If an error is found, diagnoses it and returns true.
 | |
| bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
 | |
|                                    const CXXScopeSpec &SS,
 | |
|                                    SourceLocation NameLoc) {
 | |
|   DeclContext *NamedContext = computeDeclContext(SS);
 | |
| 
 | |
|   if (!CurContext->isRecord()) {
 | |
|     // C++03 [namespace.udecl]p3:
 | |
|     // C++0x [namespace.udecl]p8:
 | |
|     //   A using-declaration for a class member shall be a member-declaration.
 | |
| 
 | |
|     // If we weren't able to compute a valid scope, it must be a
 | |
|     // dependent class scope.
 | |
|     if (!NamedContext || NamedContext->isRecord()) {
 | |
|       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
 | |
|         << SS.getRange();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, everything is known to be fine.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // The current scope is a record.
 | |
| 
 | |
|   // If the named context is dependent, we can't decide much.
 | |
|   if (!NamedContext) {
 | |
|     // FIXME: in C++0x, we can diagnose if we can prove that the
 | |
|     // nested-name-specifier does not refer to a base class, which is
 | |
|     // still possible in some cases.
 | |
| 
 | |
|     // Otherwise we have to conservatively report that things might be
 | |
|     // okay.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!NamedContext->isRecord()) {
 | |
|     // Ideally this would point at the last name in the specifier,
 | |
|     // but we don't have that level of source info.
 | |
|     Diag(SS.getRange().getBegin(),
 | |
|          diag::err_using_decl_nested_name_specifier_is_not_class)
 | |
|       << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!NamedContext->isDependentContext() &&
 | |
|       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
 | |
|     return true;
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus11) {
 | |
|     // C++0x [namespace.udecl]p3:
 | |
|     //   In a using-declaration used as a member-declaration, the
 | |
|     //   nested-name-specifier shall name a base class of the class
 | |
|     //   being defined.
 | |
| 
 | |
|     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
 | |
|                                  cast<CXXRecordDecl>(NamedContext))) {
 | |
|       if (CurContext == NamedContext) {
 | |
|         Diag(NameLoc,
 | |
|              diag::err_using_decl_nested_name_specifier_is_current_class)
 | |
|           << SS.getRange();
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       Diag(SS.getRange().getBegin(),
 | |
|            diag::err_using_decl_nested_name_specifier_is_not_base_class)
 | |
|         << (NestedNameSpecifier*) SS.getScopeRep()
 | |
|         << cast<CXXRecordDecl>(CurContext)
 | |
|         << SS.getRange();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // C++03 [namespace.udecl]p4:
 | |
|   //   A using-declaration used as a member-declaration shall refer
 | |
|   //   to a member of a base class of the class being defined [etc.].
 | |
| 
 | |
|   // Salient point: SS doesn't have to name a base class as long as
 | |
|   // lookup only finds members from base classes.  Therefore we can
 | |
|   // diagnose here only if we can prove that that can't happen,
 | |
|   // i.e. if the class hierarchies provably don't intersect.
 | |
| 
 | |
|   // TODO: it would be nice if "definitely valid" results were cached
 | |
|   // in the UsingDecl and UsingShadowDecl so that these checks didn't
 | |
|   // need to be repeated.
 | |
| 
 | |
|   struct UserData {
 | |
|     llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
 | |
| 
 | |
|     static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
 | |
|       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
 | |
|       Data->Bases.insert(Base);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool hasDependentBases(const CXXRecordDecl *Class) {
 | |
|       return !Class->forallBases(collect, this);
 | |
|     }
 | |
| 
 | |
|     /// Returns true if the base is dependent or is one of the
 | |
|     /// accumulated base classes.
 | |
|     static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
 | |
|       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
 | |
|       return !Data->Bases.count(Base);
 | |
|     }
 | |
| 
 | |
|     bool mightShareBases(const CXXRecordDecl *Class) {
 | |
|       return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   UserData Data;
 | |
| 
 | |
|   // Returns false if we find a dependent base.
 | |
|   if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
 | |
|     return false;
 | |
| 
 | |
|   // Returns false if the class has a dependent base or if it or one
 | |
|   // of its bases is present in the base set of the current context.
 | |
|   if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
 | |
|     return false;
 | |
| 
 | |
|   Diag(SS.getRange().getBegin(),
 | |
|        diag::err_using_decl_nested_name_specifier_is_not_base_class)
 | |
|     << (NestedNameSpecifier*) SS.getScopeRep()
 | |
|     << cast<CXXRecordDecl>(CurContext)
 | |
|     << SS.getRange();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnAliasDeclaration(Scope *S,
 | |
|                                   AccessSpecifier AS,
 | |
|                                   MultiTemplateParamsArg TemplateParamLists,
 | |
|                                   SourceLocation UsingLoc,
 | |
|                                   UnqualifiedId &Name,
 | |
|                                   AttributeList *AttrList,
 | |
|                                   TypeResult Type) {
 | |
|   // Skip up to the relevant declaration scope.
 | |
|   while (S->getFlags() & Scope::TemplateParamScope)
 | |
|     S = S->getParent();
 | |
|   assert((S->getFlags() & Scope::DeclScope) &&
 | |
|          "got alias-declaration outside of declaration scope");
 | |
| 
 | |
|   if (Type.isInvalid())
 | |
|     return 0;
 | |
| 
 | |
|   bool Invalid = false;
 | |
|   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
 | |
|   TypeSourceInfo *TInfo = 0;
 | |
|   GetTypeFromParser(Type.get(), &TInfo);
 | |
| 
 | |
|   if (DiagnoseClassNameShadow(CurContext, NameInfo))
 | |
|     return 0;
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
 | |
|                                       UPPC_DeclarationType)) {
 | |
|     Invalid = true;
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 
 | |
|                                              TInfo->getTypeLoc().getBeginLoc());
 | |
|   }
 | |
| 
 | |
|   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
 | |
|   LookupName(Previous, S);
 | |
| 
 | |
|   // Warn about shadowing the name of a template parameter.
 | |
|   if (Previous.isSingleResult() &&
 | |
|       Previous.getFoundDecl()->isTemplateParameter()) {
 | |
|     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
 | |
|     Previous.clear();
 | |
|   }
 | |
| 
 | |
|   assert(Name.Kind == UnqualifiedId::IK_Identifier &&
 | |
|          "name in alias declaration must be an identifier");
 | |
|   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
 | |
|                                                Name.StartLocation,
 | |
|                                                Name.Identifier, TInfo);
 | |
| 
 | |
|   NewTD->setAccess(AS);
 | |
| 
 | |
|   if (Invalid)
 | |
|     NewTD->setInvalidDecl();
 | |
| 
 | |
|   ProcessDeclAttributeList(S, NewTD, AttrList);
 | |
| 
 | |
|   CheckTypedefForVariablyModifiedType(S, NewTD);
 | |
|   Invalid |= NewTD->isInvalidDecl();
 | |
| 
 | |
|   bool Redeclaration = false;
 | |
| 
 | |
|   NamedDecl *NewND;
 | |
|   if (TemplateParamLists.size()) {
 | |
|     TypeAliasTemplateDecl *OldDecl = 0;
 | |
|     TemplateParameterList *OldTemplateParams = 0;
 | |
| 
 | |
|     if (TemplateParamLists.size() != 1) {
 | |
|       Diag(UsingLoc, diag::err_alias_template_extra_headers)
 | |
|         << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
 | |
|          TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
 | |
|     }
 | |
|     TemplateParameterList *TemplateParams = TemplateParamLists[0];
 | |
| 
 | |
|     // Only consider previous declarations in the same scope.
 | |
|     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
 | |
|                          /*ExplicitInstantiationOrSpecialization*/false);
 | |
|     if (!Previous.empty()) {
 | |
|       Redeclaration = true;
 | |
| 
 | |
|       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
 | |
|       if (!OldDecl && !Invalid) {
 | |
|         Diag(UsingLoc, diag::err_redefinition_different_kind)
 | |
|           << Name.Identifier;
 | |
| 
 | |
|         NamedDecl *OldD = Previous.getRepresentativeDecl();
 | |
|         if (OldD->getLocation().isValid())
 | |
|           Diag(OldD->getLocation(), diag::note_previous_definition);
 | |
| 
 | |
|         Invalid = true;
 | |
|       }
 | |
| 
 | |
|       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
 | |
|         if (TemplateParameterListsAreEqual(TemplateParams,
 | |
|                                            OldDecl->getTemplateParameters(),
 | |
|                                            /*Complain=*/true,
 | |
|                                            TPL_TemplateMatch))
 | |
|           OldTemplateParams = OldDecl->getTemplateParameters();
 | |
|         else
 | |
|           Invalid = true;
 | |
| 
 | |
|         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
 | |
|         if (!Invalid &&
 | |
|             !Context.hasSameType(OldTD->getUnderlyingType(),
 | |
|                                  NewTD->getUnderlyingType())) {
 | |
|           // FIXME: The C++0x standard does not clearly say this is ill-formed,
 | |
|           // but we can't reasonably accept it.
 | |
|           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
 | |
|             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
 | |
|           if (OldTD->getLocation().isValid())
 | |
|             Diag(OldTD->getLocation(), diag::note_previous_definition);
 | |
|           Invalid = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Merge any previous default template arguments into our parameters,
 | |
|     // and check the parameter list.
 | |
|     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
 | |
|                                    TPC_TypeAliasTemplate))
 | |
|       return 0;
 | |
| 
 | |
|     TypeAliasTemplateDecl *NewDecl =
 | |
|       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
 | |
|                                     Name.Identifier, TemplateParams,
 | |
|                                     NewTD);
 | |
| 
 | |
|     NewDecl->setAccess(AS);
 | |
| 
 | |
|     if (Invalid)
 | |
|       NewDecl->setInvalidDecl();
 | |
|     else if (OldDecl)
 | |
|       NewDecl->setPreviousDeclaration(OldDecl);
 | |
| 
 | |
|     NewND = NewDecl;
 | |
|   } else {
 | |
|     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
 | |
|     NewND = NewTD;
 | |
|   }
 | |
| 
 | |
|   if (!Redeclaration)
 | |
|     PushOnScopeChains(NewND, S);
 | |
| 
 | |
|   ActOnDocumentableDecl(NewND);
 | |
|   return NewND;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
 | |
|                                              SourceLocation NamespaceLoc,
 | |
|                                              SourceLocation AliasLoc,
 | |
|                                              IdentifierInfo *Alias,
 | |
|                                              CXXScopeSpec &SS,
 | |
|                                              SourceLocation IdentLoc,
 | |
|                                              IdentifierInfo *Ident) {
 | |
| 
 | |
|   // Lookup the namespace name.
 | |
|   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
 | |
|   LookupParsedName(R, S, &SS);
 | |
| 
 | |
|   // Check if we have a previous declaration with the same name.
 | |
|   NamedDecl *PrevDecl
 | |
|     = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName, 
 | |
|                        ForRedeclaration);
 | |
|   if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
 | |
|     PrevDecl = 0;
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
 | |
|       // We already have an alias with the same name that points to the same
 | |
|       // namespace, so don't create a new one.
 | |
|       // FIXME: At some point, we'll want to create the (redundant)
 | |
|       // declaration to maintain better source information.
 | |
|       if (!R.isAmbiguous() && !R.empty() &&
 | |
|           AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
 | |
|       diag::err_redefinition_different_kind;
 | |
|     Diag(AliasLoc, DiagID) << Alias;
 | |
|     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (R.isAmbiguous())
 | |
|     return 0;
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
 | |
|       Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NamespaceAliasDecl *AliasDecl =
 | |
|     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
 | |
|                                Alias, SS.getWithLocInContext(Context),
 | |
|                                IdentLoc, R.getFoundDecl());
 | |
| 
 | |
|   PushOnScopeChains(AliasDecl, S);
 | |
|   return AliasDecl;
 | |
| }
 | |
| 
 | |
| Sema::ImplicitExceptionSpecification
 | |
| Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
 | |
|                                                CXXMethodDecl *MD) {
 | |
|   CXXRecordDecl *ClassDecl = MD->getParent();
 | |
| 
 | |
|   // C++ [except.spec]p14:
 | |
|   //   An implicitly declared special member function (Clause 12) shall have an 
 | |
|   //   exception-specification. [...]
 | |
|   ImplicitExceptionSpecification ExceptSpec(*this);
 | |
|   if (ClassDecl->isInvalidDecl())
 | |
|     return ExceptSpec;
 | |
| 
 | |
|   // Direct base-class constructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
 | |
|                                        BEnd = ClassDecl->bases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (B->isVirtual()) // Handled below.
 | |
|       continue;
 | |
|     
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
 | |
|       // If this is a deleted function, add it anyway. This might be conformant
 | |
|       // with the standard. This might not. I'm not sure. It might not matter.
 | |
|       if (Constructor)
 | |
|         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Virtual base-class constructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
 | |
|                                        BEnd = ClassDecl->vbases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
 | |
|       // If this is a deleted function, add it anyway. This might be conformant
 | |
|       // with the standard. This might not. I'm not sure. It might not matter.
 | |
|       if (Constructor)
 | |
|         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Field constructors.
 | |
|   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
 | |
|                                FEnd = ClassDecl->field_end();
 | |
|        F != FEnd; ++F) {
 | |
|     if (F->hasInClassInitializer()) {
 | |
|       if (Expr *E = F->getInClassInitializer())
 | |
|         ExceptSpec.CalledExpr(E);
 | |
|       else if (!F->isInvalidDecl())
 | |
|         // DR1351:
 | |
|         //   If the brace-or-equal-initializer of a non-static data member
 | |
|         //   invokes a defaulted default constructor of its class or of an
 | |
|         //   enclosing class in a potentially evaluated subexpression, the
 | |
|         //   program is ill-formed.
 | |
|         //
 | |
|         // This resolution is unworkable: the exception specification of the
 | |
|         // default constructor can be needed in an unevaluated context, in
 | |
|         // particular, in the operand of a noexcept-expression, and we can be
 | |
|         // unable to compute an exception specification for an enclosed class.
 | |
|         //
 | |
|         // We do not allow an in-class initializer to require the evaluation
 | |
|         // of the exception specification for any in-class initializer whose
 | |
|         // definition is not lexically complete.
 | |
|         Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
 | |
|     } else if (const RecordType *RecordTy
 | |
|               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
 | |
|       // If this is a deleted function, add it anyway. This might be conformant
 | |
|       // with the standard. This might not. I'm not sure. It might not matter.
 | |
|       // In particular, the problem is that this function never gets called. It
 | |
|       // might just be ill-formed because this function attempts to refer to
 | |
|       // a deleted function here.
 | |
|       if (Constructor)
 | |
|         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ExceptSpec;
 | |
| }
 | |
| 
 | |
| Sema::ImplicitExceptionSpecification
 | |
| Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
 | |
|   CXXRecordDecl *ClassDecl = CD->getParent();
 | |
| 
 | |
|   // C++ [except.spec]p14:
 | |
|   //   An inheriting constructor [...] shall have an exception-specification. [...]
 | |
|   ImplicitExceptionSpecification ExceptSpec(*this);
 | |
|   if (ClassDecl->isInvalidDecl())
 | |
|     return ExceptSpec;
 | |
| 
 | |
|   // Inherited constructor.
 | |
|   const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
 | |
|   const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
 | |
|   // FIXME: Copying or moving the parameters could add extra exceptions to the
 | |
|   // set, as could the default arguments for the inherited constructor. This
 | |
|   // will be addressed when we implement the resolution of core issue 1351.
 | |
|   ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
 | |
| 
 | |
|   // Direct base-class constructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
 | |
|                                        BEnd = ClassDecl->bases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (B->isVirtual()) // Handled below.
 | |
|       continue;
 | |
| 
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       if (BaseClassDecl == InheritedDecl)
 | |
|         continue;
 | |
|       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
 | |
|       if (Constructor)
 | |
|         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Virtual base-class constructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
 | |
|                                        BEnd = ClassDecl->vbases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       if (BaseClassDecl == InheritedDecl)
 | |
|         continue;
 | |
|       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
 | |
|       if (Constructor)
 | |
|         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Field constructors.
 | |
|   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
 | |
|                                FEnd = ClassDecl->field_end();
 | |
|        F != FEnd; ++F) {
 | |
|     if (F->hasInClassInitializer()) {
 | |
|       if (Expr *E = F->getInClassInitializer())
 | |
|         ExceptSpec.CalledExpr(E);
 | |
|       else if (!F->isInvalidDecl())
 | |
|         Diag(CD->getLocation(),
 | |
|              diag::err_in_class_initializer_references_def_ctor) << CD;
 | |
|     } else if (const RecordType *RecordTy
 | |
|               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
 | |
|       if (Constructor)
 | |
|         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ExceptSpec;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// RAII object to register a special member as being currently declared.
 | |
| struct DeclaringSpecialMember {
 | |
|   Sema &S;
 | |
|   Sema::SpecialMemberDecl D;
 | |
|   bool WasAlreadyBeingDeclared;
 | |
| 
 | |
|   DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
 | |
|     : S(S), D(RD, CSM) {
 | |
|     WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
 | |
|     if (WasAlreadyBeingDeclared)
 | |
|       // This almost never happens, but if it does, ensure that our cache
 | |
|       // doesn't contain a stale result.
 | |
|       S.SpecialMemberCache.clear();
 | |
| 
 | |
|     // FIXME: Register a note to be produced if we encounter an error while
 | |
|     // declaring the special member.
 | |
|   }
 | |
|   ~DeclaringSpecialMember() {
 | |
|     if (!WasAlreadyBeingDeclared)
 | |
|       S.SpecialMembersBeingDeclared.erase(D);
 | |
|   }
 | |
| 
 | |
|   /// \brief Are we already trying to declare this special member?
 | |
|   bool isAlreadyBeingDeclared() const {
 | |
|     return WasAlreadyBeingDeclared;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
 | |
|                                                      CXXRecordDecl *ClassDecl) {
 | |
|   // C++ [class.ctor]p5:
 | |
|   //   A default constructor for a class X is a constructor of class X
 | |
|   //   that can be called without an argument. If there is no
 | |
|   //   user-declared constructor for class X, a default constructor is
 | |
|   //   implicitly declared. An implicitly-declared default constructor
 | |
|   //   is an inline public member of its class.
 | |
|   assert(ClassDecl->needsImplicitDefaultConstructor() && 
 | |
|          "Should not build implicit default constructor!");
 | |
| 
 | |
|   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
 | |
|   if (DSM.isAlreadyBeingDeclared())
 | |
|     return 0;
 | |
| 
 | |
|   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
 | |
|                                                      CXXDefaultConstructor,
 | |
|                                                      false);
 | |
| 
 | |
|   // Create the actual constructor declaration.
 | |
|   CanQualType ClassType
 | |
|     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationName Name
 | |
|     = Context.DeclarationNames.getCXXConstructorName(ClassType);
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
|   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
 | |
|       Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
 | |
|       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
 | |
|       Constexpr);
 | |
|   DefaultCon->setAccess(AS_public);
 | |
|   DefaultCon->setDefaulted();
 | |
|   DefaultCon->setImplicit();
 | |
| 
 | |
|   // Build an exception specification pointing back at this constructor.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = EST_Unevaluated;
 | |
|   EPI.ExceptionSpecDecl = DefaultCon;
 | |
|   DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
 | |
| 
 | |
|   // We don't need to use SpecialMemberIsTrivial here; triviality for default
 | |
|   // constructors is easy to compute.
 | |
|   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
 | |
| 
 | |
|   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
 | |
|     SetDeclDeleted(DefaultCon, ClassLoc);
 | |
| 
 | |
|   // Note that we have declared this constructor.
 | |
|   ++ASTContext::NumImplicitDefaultConstructorsDeclared;
 | |
| 
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(DefaultCon, S, false);
 | |
|   ClassDecl->addDecl(DefaultCon);
 | |
| 
 | |
|   return DefaultCon;
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
 | |
|                                             CXXConstructorDecl *Constructor) {
 | |
|   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
 | |
|           !Constructor->doesThisDeclarationHaveABody() &&
 | |
|           !Constructor->isDeleted()) &&
 | |
|     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = Constructor->getParent();
 | |
|   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
 | |
| 
 | |
|   SynthesizedFunctionScope Scope(*this, Constructor);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
|   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
 | |
|       Trap.hasErrorOccurred()) {
 | |
|     Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|       << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
 | |
|     Constructor->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SourceLocation Loc = Constructor->getLocation();
 | |
|   Constructor->setBody(new (Context) CompoundStmt(Loc));
 | |
| 
 | |
|   Constructor->setUsed();
 | |
|   MarkVTableUsed(CurrentLocation, ClassDecl);
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(Constructor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
 | |
|   // Check that any explicitly-defaulted methods have exception specifications
 | |
|   // compatible with their implicit exception specifications.
 | |
|   CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Information on inheriting constructors to declare.
 | |
| class InheritingConstructorInfo {
 | |
| public:
 | |
|   InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
 | |
|       : SemaRef(SemaRef), Derived(Derived) {
 | |
|     // Mark the constructors that we already have in the derived class.
 | |
|     //
 | |
|     // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
 | |
|     //   unless there is a user-declared constructor with the same signature in
 | |
|     //   the class where the using-declaration appears.
 | |
|     visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
 | |
|   }
 | |
| 
 | |
|   void inheritAll(CXXRecordDecl *RD) {
 | |
|     visitAll(RD, &InheritingConstructorInfo::inherit);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Information about an inheriting constructor.
 | |
|   struct InheritingConstructor {
 | |
|     InheritingConstructor()
 | |
|       : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
 | |
| 
 | |
|     /// If \c true, a constructor with this signature is already declared
 | |
|     /// in the derived class.
 | |
|     bool DeclaredInDerived;
 | |
| 
 | |
|     /// The constructor which is inherited.
 | |
|     const CXXConstructorDecl *BaseCtor;
 | |
| 
 | |
|     /// The derived constructor we declared.
 | |
|     CXXConstructorDecl *DerivedCtor;
 | |
|   };
 | |
| 
 | |
|   /// Inheriting constructors with a given canonical type. There can be at
 | |
|   /// most one such non-template constructor, and any number of templated
 | |
|   /// constructors.
 | |
|   struct InheritingConstructorsForType {
 | |
|     InheritingConstructor NonTemplate;
 | |
|     llvm::SmallVector<
 | |
|       std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
 | |
| 
 | |
|     InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
 | |
|       if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
 | |
|         TemplateParameterList *ParamList = FTD->getTemplateParameters();
 | |
|         for (unsigned I = 0, N = Templates.size(); I != N; ++I)
 | |
|           if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
 | |
|                                                false, S.TPL_TemplateMatch))
 | |
|             return Templates[I].second;
 | |
|         Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
 | |
|         return Templates.back().second;
 | |
|       }
 | |
| 
 | |
|       return NonTemplate;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Get or create the inheriting constructor record for a constructor.
 | |
|   InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
 | |
|                                   QualType CtorType) {
 | |
|     return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
 | |
|         .getEntry(SemaRef, Ctor);
 | |
|   }
 | |
| 
 | |
|   typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
 | |
| 
 | |
|   /// Process all constructors for a class.
 | |
|   void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
 | |
|     for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
 | |
|                                       CtorE = RD->ctor_end();
 | |
|          CtorIt != CtorE; ++CtorIt)
 | |
|       (this->*Callback)(*CtorIt);
 | |
|     for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
 | |
|              I(RD->decls_begin()), E(RD->decls_end());
 | |
|          I != E; ++I) {
 | |
|       const FunctionDecl *FD = (*I)->getTemplatedDecl();
 | |
|       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
 | |
|         (this->*Callback)(CD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Note that a constructor (or constructor template) was declared in Derived.
 | |
|   void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
 | |
|     getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
 | |
|   }
 | |
| 
 | |
|   /// Inherit a single constructor.
 | |
|   void inherit(const CXXConstructorDecl *Ctor) {
 | |
|     const FunctionProtoType *CtorType =
 | |
|         Ctor->getType()->castAs<FunctionProtoType>();
 | |
|     ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
 | |
|     FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
 | |
| 
 | |
|     SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
 | |
| 
 | |
|     // Core issue (no number yet): the ellipsis is always discarded.
 | |
|     if (EPI.Variadic) {
 | |
|       SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
 | |
|       SemaRef.Diag(Ctor->getLocation(),
 | |
|                    diag::note_using_decl_constructor_ellipsis);
 | |
|       EPI.Variadic = false;
 | |
|     }
 | |
| 
 | |
|     // Declare a constructor for each number of parameters.
 | |
|     //
 | |
|     // C++11 [class.inhctor]p1:
 | |
|     //   The candidate set of inherited constructors from the class X named in
 | |
|     //   the using-declaration consists of [... modulo defects ...] for each
 | |
|     //   constructor or constructor template of X, the set of constructors or
 | |
|     //   constructor templates that results from omitting any ellipsis parameter
 | |
|     //   specification and successively omitting parameters with a default
 | |
|     //   argument from the end of the parameter-type-list
 | |
|     unsigned MinParams = minParamsToInherit(Ctor);
 | |
|     unsigned Params = Ctor->getNumParams();
 | |
|     if (Params >= MinParams) {
 | |
|       do
 | |
|         declareCtor(UsingLoc, Ctor,
 | |
|                     SemaRef.Context.getFunctionType(
 | |
|                         Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
 | |
|       while (Params > MinParams &&
 | |
|              Ctor->getParamDecl(--Params)->hasDefaultArg());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Find the using-declaration which specified that we should inherit the
 | |
|   /// constructors of \p Base.
 | |
|   SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
 | |
|     // No fancy lookup required; just look for the base constructor name
 | |
|     // directly within the derived class.
 | |
|     ASTContext &Context = SemaRef.Context;
 | |
|     DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
 | |
|         Context.getCanonicalType(Context.getRecordType(Base)));
 | |
|     DeclContext::lookup_const_result Decls = Derived->lookup(Name);
 | |
|     return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
 | |
|   }
 | |
| 
 | |
|   unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
 | |
|     // C++11 [class.inhctor]p3:
 | |
|     //   [F]or each constructor template in the candidate set of inherited
 | |
|     //   constructors, a constructor template is implicitly declared
 | |
|     if (Ctor->getDescribedFunctionTemplate())
 | |
|       return 0;
 | |
| 
 | |
|     //   For each non-template constructor in the candidate set of inherited
 | |
|     //   constructors other than a constructor having no parameters or a
 | |
|     //   copy/move constructor having a single parameter, a constructor is
 | |
|     //   implicitly declared [...]
 | |
|     if (Ctor->getNumParams() == 0)
 | |
|       return 1;
 | |
|     if (Ctor->isCopyOrMoveConstructor())
 | |
|       return 2;
 | |
| 
 | |
|     // Per discussion on core reflector, never inherit a constructor which
 | |
|     // would become a default, copy, or move constructor of Derived either.
 | |
|     const ParmVarDecl *PD = Ctor->getParamDecl(0);
 | |
|     const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
 | |
|     return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
 | |
|   }
 | |
| 
 | |
|   /// Declare a single inheriting constructor, inheriting the specified
 | |
|   /// constructor, with the given type.
 | |
|   void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
 | |
|                    QualType DerivedType) {
 | |
|     InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
 | |
| 
 | |
|     // C++11 [class.inhctor]p3:
 | |
|     //   ... a constructor is implicitly declared with the same constructor
 | |
|     //   characteristics unless there is a user-declared constructor with
 | |
|     //   the same signature in the class where the using-declaration appears
 | |
|     if (Entry.DeclaredInDerived)
 | |
|       return;
 | |
| 
 | |
|     // C++11 [class.inhctor]p7:
 | |
|     //   If two using-declarations declare inheriting constructors with the
 | |
|     //   same signature, the program is ill-formed
 | |
|     if (Entry.DerivedCtor) {
 | |
|       if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
 | |
|         // Only diagnose this once per constructor.
 | |
|         if (Entry.DerivedCtor->isInvalidDecl())
 | |
|           return;
 | |
|         Entry.DerivedCtor->setInvalidDecl();
 | |
| 
 | |
|         SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
 | |
|         SemaRef.Diag(BaseCtor->getLocation(),
 | |
|                      diag::note_using_decl_constructor_conflict_current_ctor);
 | |
|         SemaRef.Diag(Entry.BaseCtor->getLocation(),
 | |
|                      diag::note_using_decl_constructor_conflict_previous_ctor);
 | |
|         SemaRef.Diag(Entry.DerivedCtor->getLocation(),
 | |
|                      diag::note_using_decl_constructor_conflict_previous_using);
 | |
|       } else {
 | |
|         // Core issue (no number): if the same inheriting constructor is
 | |
|         // produced by multiple base class constructors from the same base
 | |
|         // class, the inheriting constructor is defined as deleted.
 | |
|         SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
 | |
|       }
 | |
| 
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     ASTContext &Context = SemaRef.Context;
 | |
|     DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
 | |
|         Context.getCanonicalType(Context.getRecordType(Derived)));
 | |
|     DeclarationNameInfo NameInfo(Name, UsingLoc);
 | |
| 
 | |
|     TemplateParameterList *TemplateParams = 0;
 | |
|     if (const FunctionTemplateDecl *FTD =
 | |
|             BaseCtor->getDescribedFunctionTemplate()) {
 | |
|       TemplateParams = FTD->getTemplateParameters();
 | |
|       // We're reusing template parameters from a different DeclContext. This
 | |
|       // is questionable at best, but works out because the template depth in
 | |
|       // both places is guaranteed to be 0.
 | |
|       // FIXME: Rebuild the template parameters in the new context, and
 | |
|       // transform the function type to refer to them.
 | |
|     }
 | |
| 
 | |
|     // Build type source info pointing at the using-declaration. This is
 | |
|     // required by template instantiation.
 | |
|     TypeSourceInfo *TInfo =
 | |
|         Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
 | |
|     FunctionProtoTypeLoc ProtoLoc =
 | |
|         TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
 | |
| 
 | |
|     CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
 | |
|         Context, Derived, UsingLoc, NameInfo, DerivedType,
 | |
|         TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
 | |
|         /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
 | |
| 
 | |
|     // Build an unevaluated exception specification for this constructor.
 | |
|     const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
 | |
|     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | |
|     EPI.ExceptionSpecType = EST_Unevaluated;
 | |
|     EPI.ExceptionSpecDecl = DerivedCtor;
 | |
|     DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
 | |
|                                                  FPT->getArgTypes(), EPI));
 | |
| 
 | |
|     // Build the parameter declarations.
 | |
|     SmallVector<ParmVarDecl *, 16> ParamDecls;
 | |
|     for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
 | |
|       TypeSourceInfo *TInfo =
 | |
|           Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
 | |
|       ParmVarDecl *PD = ParmVarDecl::Create(
 | |
|           Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
 | |
|           FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
 | |
|       PD->setScopeInfo(0, I);
 | |
|       PD->setImplicit();
 | |
|       ParamDecls.push_back(PD);
 | |
|       ProtoLoc.setArg(I, PD);
 | |
|     }
 | |
| 
 | |
|     // Set up the new constructor.
 | |
|     DerivedCtor->setAccess(BaseCtor->getAccess());
 | |
|     DerivedCtor->setParams(ParamDecls);
 | |
|     DerivedCtor->setInheritedConstructor(BaseCtor);
 | |
|     if (BaseCtor->isDeleted())
 | |
|       SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
 | |
| 
 | |
|     // If this is a constructor template, build the template declaration.
 | |
|     if (TemplateParams) {
 | |
|       FunctionTemplateDecl *DerivedTemplate =
 | |
|           FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
 | |
|                                        TemplateParams, DerivedCtor);
 | |
|       DerivedTemplate->setAccess(BaseCtor->getAccess());
 | |
|       DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
 | |
|       Derived->addDecl(DerivedTemplate);
 | |
|     } else {
 | |
|       Derived->addDecl(DerivedCtor);
 | |
|     }
 | |
| 
 | |
|     Entry.BaseCtor = BaseCtor;
 | |
|     Entry.DerivedCtor = DerivedCtor;
 | |
|   }
 | |
| 
 | |
|   Sema &SemaRef;
 | |
|   CXXRecordDecl *Derived;
 | |
|   typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
 | |
|   MapType Map;
 | |
| };
 | |
| }
 | |
| 
 | |
| void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
 | |
|   // Defer declaring the inheriting constructors until the class is
 | |
|   // instantiated.
 | |
|   if (ClassDecl->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   // Find base classes from which we might inherit constructors.
 | |
|   SmallVector<CXXRecordDecl*, 4> InheritedBases;
 | |
|   for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
 | |
|                                           BaseE = ClassDecl->bases_end();
 | |
|        BaseIt != BaseE; ++BaseIt)
 | |
|     if (BaseIt->getInheritConstructors())
 | |
|       InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
 | |
| 
 | |
|   // Go no further if we're not inheriting any constructors.
 | |
|   if (InheritedBases.empty())
 | |
|     return;
 | |
| 
 | |
|   // Declare the inherited constructors.
 | |
|   InheritingConstructorInfo ICI(*this, ClassDecl);
 | |
|   for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
 | |
|     ICI.inheritAll(InheritedBases[I]);
 | |
| }
 | |
| 
 | |
| void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
 | |
|                                        CXXConstructorDecl *Constructor) {
 | |
|   CXXRecordDecl *ClassDecl = Constructor->getParent();
 | |
|   assert(Constructor->getInheritedConstructor() &&
 | |
|          !Constructor->doesThisDeclarationHaveABody() &&
 | |
|          !Constructor->isDeleted());
 | |
| 
 | |
|   SynthesizedFunctionScope Scope(*this, Constructor);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
|   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
 | |
|       Trap.hasErrorOccurred()) {
 | |
|     Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
 | |
|       << Context.getTagDeclType(ClassDecl);
 | |
|     Constructor->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SourceLocation Loc = Constructor->getLocation();
 | |
|   Constructor->setBody(new (Context) CompoundStmt(Loc));
 | |
| 
 | |
|   Constructor->setUsed();
 | |
|   MarkVTableUsed(CurrentLocation, ClassDecl);
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(Constructor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| Sema::ImplicitExceptionSpecification
 | |
| Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
 | |
|   CXXRecordDecl *ClassDecl = MD->getParent();
 | |
| 
 | |
|   // C++ [except.spec]p14: 
 | |
|   //   An implicitly declared special member function (Clause 12) shall have 
 | |
|   //   an exception-specification.
 | |
|   ImplicitExceptionSpecification ExceptSpec(*this);
 | |
|   if (ClassDecl->isInvalidDecl())
 | |
|     return ExceptSpec;
 | |
| 
 | |
|   // Direct base-class destructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
 | |
|                                        BEnd = ClassDecl->bases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (B->isVirtual()) // Handled below.
 | |
|       continue;
 | |
|     
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
 | |
|       ExceptSpec.CalledDecl(B->getLocStart(),
 | |
|                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
 | |
|   }
 | |
| 
 | |
|   // Virtual base-class destructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
 | |
|                                        BEnd = ClassDecl->vbases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
 | |
|       ExceptSpec.CalledDecl(B->getLocStart(),
 | |
|                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
 | |
|   }
 | |
| 
 | |
|   // Field destructors.
 | |
|   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
 | |
|                                FEnd = ClassDecl->field_end();
 | |
|        F != FEnd; ++F) {
 | |
|     if (const RecordType *RecordTy
 | |
|         = Context.getBaseElementType(F->getType())->getAs<RecordType>())
 | |
|       ExceptSpec.CalledDecl(F->getLocation(),
 | |
|                   LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
 | |
|   }
 | |
| 
 | |
|   return ExceptSpec;
 | |
| }
 | |
| 
 | |
| CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
 | |
|   // C++ [class.dtor]p2:
 | |
|   //   If a class has no user-declared destructor, a destructor is
 | |
|   //   declared implicitly. An implicitly-declared destructor is an
 | |
|   //   inline public member of its class.
 | |
|   assert(ClassDecl->needsImplicitDestructor());
 | |
| 
 | |
|   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
 | |
|   if (DSM.isAlreadyBeingDeclared())
 | |
|     return 0;
 | |
| 
 | |
|   // Create the actual destructor declaration.
 | |
|   CanQualType ClassType
 | |
|     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationName Name
 | |
|     = Context.DeclarationNames.getCXXDestructorName(ClassType);
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
|   CXXDestructorDecl *Destructor
 | |
|       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
 | |
|                                   QualType(), 0, /*isInline=*/true,
 | |
|                                   /*isImplicitlyDeclared=*/true);
 | |
|   Destructor->setAccess(AS_public);
 | |
|   Destructor->setDefaulted();
 | |
|   Destructor->setImplicit();
 | |
| 
 | |
|   // Build an exception specification pointing back at this destructor.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = EST_Unevaluated;
 | |
|   EPI.ExceptionSpecDecl = Destructor;
 | |
|   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
 | |
| 
 | |
|   AddOverriddenMethods(ClassDecl, Destructor);
 | |
| 
 | |
|   // We don't need to use SpecialMemberIsTrivial here; triviality for
 | |
|   // destructors is easy to compute.
 | |
|   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
 | |
| 
 | |
|   if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
 | |
|     SetDeclDeleted(Destructor, ClassLoc);
 | |
| 
 | |
|   // Note that we have declared this destructor.
 | |
|   ++ASTContext::NumImplicitDestructorsDeclared;
 | |
| 
 | |
|   // Introduce this destructor into its scope.
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(Destructor, S, false);
 | |
|   ClassDecl->addDecl(Destructor);
 | |
| 
 | |
|   return Destructor;
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
 | |
|                                     CXXDestructorDecl *Destructor) {
 | |
|   assert((Destructor->isDefaulted() &&
 | |
|           !Destructor->doesThisDeclarationHaveABody() &&
 | |
|           !Destructor->isDeleted()) &&
 | |
|          "DefineImplicitDestructor - call it for implicit default dtor");
 | |
|   CXXRecordDecl *ClassDecl = Destructor->getParent();
 | |
|   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
 | |
| 
 | |
|   if (Destructor->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   SynthesizedFunctionScope Scope(*this, Destructor);
 | |
| 
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
|   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
 | |
|                                          Destructor->getParent());
 | |
| 
 | |
|   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
 | |
|     Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|       << CXXDestructor << Context.getTagDeclType(ClassDecl);
 | |
| 
 | |
|     Destructor->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SourceLocation Loc = Destructor->getLocation();
 | |
|   Destructor->setBody(new (Context) CompoundStmt(Loc));
 | |
|   Destructor->setUsed();
 | |
|   MarkVTableUsed(CurrentLocation, ClassDecl);
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(Destructor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Perform any semantic analysis which needs to be delayed until all
 | |
| /// pending class member declarations have been parsed.
 | |
| void Sema::ActOnFinishCXXMemberDecls() {
 | |
|   // If the context is an invalid C++ class, just suppress these checks.
 | |
|   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
 | |
|     if (Record->isInvalidDecl()) {
 | |
|       DelayedDestructorExceptionSpecChecks.clear();
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Perform any deferred checking of exception specifications for virtual
 | |
|   // destructors.
 | |
|   for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
 | |
|        i != e; ++i) {
 | |
|     const CXXDestructorDecl *Dtor =
 | |
|         DelayedDestructorExceptionSpecChecks[i].first;
 | |
|     assert(!Dtor->getParent()->isDependentType() &&
 | |
|            "Should not ever add destructors of templates into the list.");
 | |
|     CheckOverridingFunctionExceptionSpec(Dtor,
 | |
|         DelayedDestructorExceptionSpecChecks[i].second);
 | |
|   }
 | |
|   DelayedDestructorExceptionSpecChecks.clear();
 | |
| }
 | |
| 
 | |
| void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
 | |
|                                          CXXDestructorDecl *Destructor) {
 | |
|   assert(getLangOpts().CPlusPlus11 &&
 | |
|          "adjusting dtor exception specs was introduced in c++11");
 | |
| 
 | |
|   // C++11 [class.dtor]p3:
 | |
|   //   A declaration of a destructor that does not have an exception-
 | |
|   //   specification is implicitly considered to have the same exception-
 | |
|   //   specification as an implicit declaration.
 | |
|   const FunctionProtoType *DtorType = Destructor->getType()->
 | |
|                                         getAs<FunctionProtoType>();
 | |
|   if (DtorType->hasExceptionSpec())
 | |
|     return;
 | |
| 
 | |
|   // Replace the destructor's type, building off the existing one. Fortunately,
 | |
|   // the only thing of interest in the destructor type is its extended info.
 | |
|   // The return and arguments are fixed.
 | |
|   FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
 | |
|   EPI.ExceptionSpecType = EST_Unevaluated;
 | |
|   EPI.ExceptionSpecDecl = Destructor;
 | |
|   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
 | |
| 
 | |
|   // FIXME: If the destructor has a body that could throw, and the newly created
 | |
|   // spec doesn't allow exceptions, we should emit a warning, because this
 | |
|   // change in behavior can break conforming C++03 programs at runtime.
 | |
|   // However, we don't have a body or an exception specification yet, so it
 | |
|   // needs to be done somewhere else.
 | |
| }
 | |
| 
 | |
| /// When generating a defaulted copy or move assignment operator, if a field
 | |
| /// should be copied with __builtin_memcpy rather than via explicit assignments,
 | |
| /// do so. This optimization only applies for arrays of scalars, and for arrays
 | |
| /// of class type where the selected copy/move-assignment operator is trivial.
 | |
| static StmtResult
 | |
| buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
 | |
|                            Expr *To, Expr *From) {
 | |
|   // Compute the size of the memory buffer to be copied.
 | |
|   QualType SizeType = S.Context.getSizeType();
 | |
|   llvm::APInt Size(S.Context.getTypeSize(SizeType),
 | |
|                    S.Context.getTypeSizeInChars(T).getQuantity());
 | |
| 
 | |
|   // Take the address of the field references for "from" and "to". We
 | |
|   // directly construct UnaryOperators here because semantic analysis
 | |
|   // does not permit us to take the address of an xvalue.
 | |
|   From = new (S.Context) UnaryOperator(From, UO_AddrOf,
 | |
|                          S.Context.getPointerType(From->getType()),
 | |
|                          VK_RValue, OK_Ordinary, Loc);
 | |
|   To = new (S.Context) UnaryOperator(To, UO_AddrOf,
 | |
|                        S.Context.getPointerType(To->getType()),
 | |
|                        VK_RValue, OK_Ordinary, Loc);
 | |
| 
 | |
|   const Type *E = T->getBaseElementTypeUnsafe();
 | |
|   bool NeedsCollectableMemCpy =
 | |
|     E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
 | |
| 
 | |
|   // Create a reference to the __builtin_objc_memmove_collectable function
 | |
|   StringRef MemCpyName = NeedsCollectableMemCpy ?
 | |
|     "__builtin_objc_memmove_collectable" :
 | |
|     "__builtin_memcpy";
 | |
|   LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
 | |
|                  Sema::LookupOrdinaryName);
 | |
|   S.LookupName(R, S.TUScope, true);
 | |
| 
 | |
|   FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
 | |
|   if (!MemCpy)
 | |
|     // Something went horribly wrong earlier, and we will have complained
 | |
|     // about it.
 | |
|     return StmtError();
 | |
| 
 | |
|   ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
 | |
|                                             VK_RValue, Loc, 0);
 | |
|   assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
 | |
| 
 | |
|   Expr *CallArgs[] = {
 | |
|     To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
 | |
|   };
 | |
|   ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
 | |
|                                     Loc, CallArgs, Loc);
 | |
| 
 | |
|   assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
 | |
|   return S.Owned(Call.takeAs<Stmt>());
 | |
| }
 | |
| 
 | |
| /// \brief Builds a statement that copies/moves the given entity from \p From to
 | |
| /// \c To.
 | |
| ///
 | |
| /// This routine is used to copy/move the members of a class with an
 | |
| /// implicitly-declared copy/move assignment operator. When the entities being
 | |
| /// copied are arrays, this routine builds for loops to copy them.
 | |
| ///
 | |
| /// \param S The Sema object used for type-checking.
 | |
| ///
 | |
| /// \param Loc The location where the implicit copy/move is being generated.
 | |
| ///
 | |
| /// \param T The type of the expressions being copied/moved. Both expressions
 | |
| /// must have this type.
 | |
| ///
 | |
| /// \param To The expression we are copying/moving to.
 | |
| ///
 | |
| /// \param From The expression we are copying/moving from.
 | |
| ///
 | |
| /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
 | |
| /// Otherwise, it's a non-static member subobject.
 | |
| ///
 | |
| /// \param Copying Whether we're copying or moving.
 | |
| ///
 | |
| /// \param Depth Internal parameter recording the depth of the recursion.
 | |
| ///
 | |
| /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
 | |
| /// if a memcpy should be used instead.
 | |
| static StmtResult
 | |
| buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
 | |
|                                  Expr *To, Expr *From,
 | |
|                                  bool CopyingBaseSubobject, bool Copying,
 | |
|                                  unsigned Depth = 0) {
 | |
|   // C++11 [class.copy]p28:
 | |
|   //   Each subobject is assigned in the manner appropriate to its type:
 | |
|   //
 | |
|   //     - if the subobject is of class type, as if by a call to operator= with
 | |
|   //       the subobject as the object expression and the corresponding
 | |
|   //       subobject of x as a single function argument (as if by explicit
 | |
|   //       qualification; that is, ignoring any possible virtual overriding
 | |
|   //       functions in more derived classes);
 | |
|   //
 | |
|   // C++03 [class.copy]p13:
 | |
|   //     - if the subobject is of class type, the copy assignment operator for
 | |
|   //       the class is used (as if by explicit qualification; that is,
 | |
|   //       ignoring any possible virtual overriding functions in more derived
 | |
|   //       classes);
 | |
|   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
 | |
|     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
| 
 | |
|     // Look for operator=.
 | |
|     DeclarationName Name
 | |
|       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
 | |
|     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
 | |
|     S.LookupQualifiedName(OpLookup, ClassDecl, false);
 | |
| 
 | |
|     // Prior to C++11, filter out any result that isn't a copy/move-assignment
 | |
|     // operator.
 | |
|     if (!S.getLangOpts().CPlusPlus11) {
 | |
|       LookupResult::Filter F = OpLookup.makeFilter();
 | |
|       while (F.hasNext()) {
 | |
|         NamedDecl *D = F.next();
 | |
|         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
 | |
|           if (Method->isCopyAssignmentOperator() ||
 | |
|               (!Copying && Method->isMoveAssignmentOperator()))
 | |
|             continue;
 | |
| 
 | |
|         F.erase();
 | |
|       }
 | |
|       F.done();
 | |
|     }
 | |
| 
 | |
|     // Suppress the protected check (C++ [class.protected]) for each of the
 | |
|     // assignment operators we found. This strange dance is required when
 | |
|     // we're assigning via a base classes's copy-assignment operator. To
 | |
|     // ensure that we're getting the right base class subobject (without
 | |
|     // ambiguities), we need to cast "this" to that subobject type; to
 | |
|     // ensure that we don't go through the virtual call mechanism, we need
 | |
|     // to qualify the operator= name with the base class (see below). However,
 | |
|     // this means that if the base class has a protected copy assignment
 | |
|     // operator, the protected member access check will fail. So, we
 | |
|     // rewrite "protected" access to "public" access in this case, since we
 | |
|     // know by construction that we're calling from a derived class.
 | |
|     if (CopyingBaseSubobject) {
 | |
|       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
 | |
|            L != LEnd; ++L) {
 | |
|         if (L.getAccess() == AS_protected)
 | |
|           L.setAccess(AS_public);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Create the nested-name-specifier that will be used to qualify the
 | |
|     // reference to operator=; this is required to suppress the virtual
 | |
|     // call mechanism.
 | |
|     CXXScopeSpec SS;
 | |
|     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
 | |
|     SS.MakeTrivial(S.Context,
 | |
|                    NestedNameSpecifier::Create(S.Context, 0, false,
 | |
|                                                CanonicalT),
 | |
|                    Loc);
 | |
| 
 | |
|     // Create the reference to operator=.
 | |
|     ExprResult OpEqualRef
 | |
|       = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
 | |
|                                    /*TemplateKWLoc=*/SourceLocation(),
 | |
|                                    /*FirstQualifierInScope=*/0,
 | |
|                                    OpLookup,
 | |
|                                    /*TemplateArgs=*/0,
 | |
|                                    /*SuppressQualifierCheck=*/true);
 | |
|     if (OpEqualRef.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     // Build the call to the assignment operator.
 | |
| 
 | |
|     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
 | |
|                                                   OpEqualRef.takeAs<Expr>(),
 | |
|                                                   Loc, From, Loc);
 | |
|     if (Call.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     // If we built a call to a trivial 'operator=' while copying an array,
 | |
|     // bail out. We'll replace the whole shebang with a memcpy.
 | |
|     CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
 | |
|     if (CE && CE->getMethodDecl()->isTrivial() && Depth)
 | |
|       return StmtResult((Stmt*)0);
 | |
| 
 | |
|     // Convert to an expression-statement, and clean up any produced
 | |
|     // temporaries.
 | |
|     return S.ActOnExprStmt(Call);
 | |
|   }
 | |
| 
 | |
|   //     - if the subobject is of scalar type, the built-in assignment
 | |
|   //       operator is used.
 | |
|   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
 | |
|   if (!ArrayTy) {
 | |
|     ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
 | |
|     if (Assignment.isInvalid())
 | |
|       return StmtError();
 | |
|     return S.ActOnExprStmt(Assignment);
 | |
|   }
 | |
| 
 | |
|   //     - if the subobject is an array, each element is assigned, in the
 | |
|   //       manner appropriate to the element type;
 | |
| 
 | |
|   // Construct a loop over the array bounds, e.g.,
 | |
|   //
 | |
|   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
 | |
|   //
 | |
|   // that will copy each of the array elements. 
 | |
|   QualType SizeType = S.Context.getSizeType();
 | |
| 
 | |
|   // Create the iteration variable.
 | |
|   IdentifierInfo *IterationVarName = 0;
 | |
|   {
 | |
|     SmallString<8> Str;
 | |
|     llvm::raw_svector_ostream OS(Str);
 | |
|     OS << "__i" << Depth;
 | |
|     IterationVarName = &S.Context.Idents.get(OS.str());
 | |
|   }
 | |
|   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
 | |
|                                           IterationVarName, SizeType,
 | |
|                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
 | |
|                                           SC_None);
 | |
| 
 | |
|   // Initialize the iteration variable to zero.
 | |
|   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
 | |
|   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
 | |
| 
 | |
|   // Create a reference to the iteration variable; we'll use this several
 | |
|   // times throughout.
 | |
|   Expr *IterationVarRef
 | |
|     = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
 | |
|   assert(IterationVarRef && "Reference to invented variable cannot fail!");
 | |
|   Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
 | |
|   assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
 | |
| 
 | |
|   // Create the DeclStmt that holds the iteration variable.
 | |
|   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
 | |
| 
 | |
|   // Subscript the "from" and "to" expressions with the iteration variable.
 | |
|   From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
 | |
|                                                          IterationVarRefRVal,
 | |
|                                                          Loc));
 | |
|   To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
 | |
|                                                        IterationVarRefRVal,
 | |
|                                                        Loc));
 | |
|   if (!Copying) // Cast to rvalue
 | |
|     From = CastForMoving(S, From);
 | |
| 
 | |
|   // Build the copy/move for an individual element of the array.
 | |
|   StmtResult Copy =
 | |
|     buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
 | |
|                                      To, From, CopyingBaseSubobject,
 | |
|                                      Copying, Depth + 1);
 | |
|   // Bail out if copying fails or if we determined that we should use memcpy.
 | |
|   if (Copy.isInvalid() || !Copy.get())
 | |
|     return Copy;
 | |
| 
 | |
|   // Create the comparison against the array bound.
 | |
|   llvm::APInt Upper
 | |
|     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
 | |
|   Expr *Comparison
 | |
|     = new (S.Context) BinaryOperator(IterationVarRefRVal,
 | |
|                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
 | |
|                                      BO_NE, S.Context.BoolTy,
 | |
|                                      VK_RValue, OK_Ordinary, Loc, false);
 | |
| 
 | |
|   // Create the pre-increment of the iteration variable.
 | |
|   Expr *Increment
 | |
|     = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
 | |
|                                     VK_LValue, OK_Ordinary, Loc);
 | |
| 
 | |
|   // Construct the loop that copies all elements of this array.
 | |
|   return S.ActOnForStmt(Loc, Loc, InitStmt, 
 | |
|                         S.MakeFullExpr(Comparison),
 | |
|                         0, S.MakeFullDiscardedValueExpr(Increment),
 | |
|                         Loc, Copy.take());
 | |
| }
 | |
| 
 | |
| static StmtResult
 | |
| buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
 | |
|                       Expr *To, Expr *From,
 | |
|                       bool CopyingBaseSubobject, bool Copying) {
 | |
|   // Maybe we should use a memcpy?
 | |
|   if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
 | |
|       T.isTriviallyCopyableType(S.Context))
 | |
|     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
 | |
| 
 | |
|   StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
 | |
|                                                      CopyingBaseSubobject,
 | |
|                                                      Copying, 0));
 | |
| 
 | |
|   // If we ended up picking a trivial assignment operator for an array of a
 | |
|   // non-trivially-copyable class type, just emit a memcpy.
 | |
|   if (!Result.isInvalid() && !Result.get())
 | |
|     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| Sema::ImplicitExceptionSpecification
 | |
| Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
 | |
|   CXXRecordDecl *ClassDecl = MD->getParent();
 | |
| 
 | |
|   ImplicitExceptionSpecification ExceptSpec(*this);
 | |
|   if (ClassDecl->isInvalidDecl())
 | |
|     return ExceptSpec;
 | |
| 
 | |
|   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
 | |
|   assert(T->getNumArgs() == 1 && "not a copy assignment op");
 | |
|   unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
 | |
| 
 | |
|   // C++ [except.spec]p14:
 | |
|   //   An implicitly declared special member function (Clause 12) shall have an
 | |
|   //   exception-specification. [...]
 | |
| 
 | |
|   // It is unspecified whether or not an implicit copy assignment operator
 | |
|   // attempts to deduplicate calls to assignment operators of virtual bases are
 | |
|   // made. As such, this exception specification is effectively unspecified.
 | |
|   // Based on a similar decision made for constness in C++0x, we're erring on
 | |
|   // the side of assuming such calls to be made regardless of whether they
 | |
|   // actually happen.
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|                                        BaseEnd = ClassDecl->bases_end();
 | |
|        Base != BaseEnd; ++Base) {
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
 | |
|                                                             ArgQuals, false, 0))
 | |
|       ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
 | |
|                                        BaseEnd = ClassDecl->vbases_end();
 | |
|        Base != BaseEnd; ++Base) {
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
 | |
|                                                             ArgQuals, false, 0))
 | |
|       ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end();
 | |
|        Field != FieldEnd;
 | |
|        ++Field) {
 | |
|     QualType FieldType = Context.getBaseElementType(Field->getType());
 | |
|     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
 | |
|       if (CXXMethodDecl *CopyAssign =
 | |
|           LookupCopyingAssignment(FieldClassDecl,
 | |
|                                   ArgQuals | FieldType.getCVRQualifiers(),
 | |
|                                   false, 0))
 | |
|         ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ExceptSpec;
 | |
| }
 | |
| 
 | |
| CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
 | |
|   // Note: The following rules are largely analoguous to the copy
 | |
|   // constructor rules. Note that virtual bases are not taken into account
 | |
|   // for determining the argument type of the operator. Note also that
 | |
|   // operators taking an object instead of a reference are allowed.
 | |
|   assert(ClassDecl->needsImplicitCopyAssignment());
 | |
| 
 | |
|   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
 | |
|   if (DSM.isAlreadyBeingDeclared())
 | |
|     return 0;
 | |
| 
 | |
|   QualType ArgType = Context.getTypeDeclType(ClassDecl);
 | |
|   QualType RetType = Context.getLValueReferenceType(ArgType);
 | |
|   bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
 | |
|   if (Const)
 | |
|     ArgType = ArgType.withConst();
 | |
|   ArgType = Context.getLValueReferenceType(ArgType);
 | |
| 
 | |
|   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
 | |
|                                                      CXXCopyAssignment,
 | |
|                                                      Const);
 | |
| 
 | |
|   //   An implicitly-declared copy assignment operator is an inline public
 | |
|   //   member of its class.
 | |
|   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
|   CXXMethodDecl *CopyAssignment =
 | |
|       CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
 | |
|                             /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
 | |
|                             /*isInline=*/ true, Constexpr, SourceLocation());
 | |
|   CopyAssignment->setAccess(AS_public);
 | |
|   CopyAssignment->setDefaulted();
 | |
|   CopyAssignment->setImplicit();
 | |
| 
 | |
|   // Build an exception specification pointing back at this member.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = EST_Unevaluated;
 | |
|   EPI.ExceptionSpecDecl = CopyAssignment;
 | |
|   CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
 | |
| 
 | |
|   // Add the parameter to the operator.
 | |
|   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
 | |
|                                                ClassLoc, ClassLoc, /*Id=*/0,
 | |
|                                                ArgType, /*TInfo=*/0,
 | |
|                                                SC_None, 0);
 | |
|   CopyAssignment->setParams(FromParam);
 | |
| 
 | |
|   AddOverriddenMethods(ClassDecl, CopyAssignment);
 | |
| 
 | |
|   CopyAssignment->setTrivial(
 | |
|     ClassDecl->needsOverloadResolutionForCopyAssignment()
 | |
|       ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
 | |
|       : ClassDecl->hasTrivialCopyAssignment());
 | |
| 
 | |
|   // C++11 [class.copy]p19:
 | |
|   //   ....  If the class definition does not explicitly declare a copy
 | |
|   //   assignment operator, there is no user-declared move constructor, and
 | |
|   //   there is no user-declared move assignment operator, a copy assignment
 | |
|   //   operator is implicitly declared as defaulted.
 | |
|   if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
 | |
|     SetDeclDeleted(CopyAssignment, ClassLoc);
 | |
| 
 | |
|   // Note that we have added this copy-assignment operator.
 | |
|   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
 | |
| 
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(CopyAssignment, S, false);
 | |
|   ClassDecl->addDecl(CopyAssignment);
 | |
| 
 | |
|   return CopyAssignment;
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit copy operation for a class which is odr-used, but
 | |
| /// which is deprecated because the class has a user-declared copy constructor,
 | |
| /// copy assignment operator, or destructor.
 | |
| static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
 | |
|                                             SourceLocation UseLoc) {
 | |
|   assert(CopyOp->isImplicit());
 | |
| 
 | |
|   CXXRecordDecl *RD = CopyOp->getParent();
 | |
|   CXXMethodDecl *UserDeclaredOperation = 0;
 | |
| 
 | |
|   // In Microsoft mode, assignment operations don't affect constructors and
 | |
|   // vice versa.
 | |
|   if (RD->hasUserDeclaredDestructor()) {
 | |
|     UserDeclaredOperation = RD->getDestructor();
 | |
|   } else if (!isa<CXXConstructorDecl>(CopyOp) &&
 | |
|              RD->hasUserDeclaredCopyConstructor() &&
 | |
|              !S.getLangOpts().MicrosoftMode) {
 | |
|     // Find any user-declared copy constructor.
 | |
|     for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
 | |
|                                       E = RD->ctor_end(); I != E; ++I) {
 | |
|       if (I->isCopyConstructor()) {
 | |
|         UserDeclaredOperation = *I;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert(UserDeclaredOperation);
 | |
|   } else if (isa<CXXConstructorDecl>(CopyOp) &&
 | |
|              RD->hasUserDeclaredCopyAssignment() &&
 | |
|              !S.getLangOpts().MicrosoftMode) {
 | |
|     // Find any user-declared move assignment operator.
 | |
|     for (CXXRecordDecl::method_iterator I = RD->method_begin(),
 | |
|                                         E = RD->method_end(); I != E; ++I) {
 | |
|       if (I->isCopyAssignmentOperator()) {
 | |
|         UserDeclaredOperation = *I;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert(UserDeclaredOperation);
 | |
|   }
 | |
| 
 | |
|   if (UserDeclaredOperation) {
 | |
|     S.Diag(UserDeclaredOperation->getLocation(),
 | |
|          diag::warn_deprecated_copy_operation)
 | |
|       << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
 | |
|       << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
 | |
|     S.Diag(UseLoc, diag::note_member_synthesized_at)
 | |
|       << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
 | |
|                                           : Sema::CXXCopyAssignment)
 | |
|       << RD;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
 | |
|                                         CXXMethodDecl *CopyAssignOperator) {
 | |
|   assert((CopyAssignOperator->isDefaulted() && 
 | |
|           CopyAssignOperator->isOverloadedOperator() &&
 | |
|           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
 | |
|           !CopyAssignOperator->doesThisDeclarationHaveABody() &&
 | |
|           !CopyAssignOperator->isDeleted()) &&
 | |
|          "DefineImplicitCopyAssignment called for wrong function");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
 | |
| 
 | |
|   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
 | |
|     CopyAssignOperator->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // C++11 [class.copy]p18:
 | |
|   //   The [definition of an implicitly declared copy assignment operator] is
 | |
|   //   deprecated if the class has a user-declared copy constructor or a
 | |
|   //   user-declared destructor.
 | |
|   if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
 | |
|     diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
 | |
| 
 | |
|   CopyAssignOperator->setUsed();
 | |
| 
 | |
|   SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
| 
 | |
|   // C++0x [class.copy]p30:
 | |
|   //   The implicitly-defined or explicitly-defaulted copy assignment operator
 | |
|   //   for a non-union class X performs memberwise copy assignment of its 
 | |
|   //   subobjects. The direct base classes of X are assigned first, in the 
 | |
|   //   order of their declaration in the base-specifier-list, and then the 
 | |
|   //   immediate non-static data members of X are assigned, in the order in 
 | |
|   //   which they were declared in the class definition.
 | |
|   
 | |
|   // The statements that form the synthesized function body.
 | |
|   SmallVector<Stmt*, 8> Statements;
 | |
|   
 | |
|   // The parameter for the "other" object, which we are copying from.
 | |
|   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
 | |
|   Qualifiers OtherQuals = Other->getType().getQualifiers();
 | |
|   QualType OtherRefType = Other->getType();
 | |
|   if (const LValueReferenceType *OtherRef
 | |
|                                 = OtherRefType->getAs<LValueReferenceType>()) {
 | |
|     OtherRefType = OtherRef->getPointeeType();
 | |
|     OtherQuals = OtherRefType.getQualifiers();
 | |
|   }
 | |
|   
 | |
|   // Our location for everything implicitly-generated.
 | |
|   SourceLocation Loc = CopyAssignOperator->getLocation();
 | |
|   
 | |
|   // Construct a reference to the "other" object. We'll be using this 
 | |
|   // throughout the generated ASTs.
 | |
|   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
 | |
|   assert(OtherRef && "Reference to parameter cannot fail!");
 | |
|   
 | |
|   // Construct the "this" pointer. We'll be using this throughout the generated
 | |
|   // ASTs.
 | |
|   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
 | |
|   assert(This && "Reference to this cannot fail!");
 | |
|   
 | |
|   // Assign base classes.
 | |
|   bool Invalid = false;
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); Base != E; ++Base) {
 | |
|     // Form the assignment:
 | |
|     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
 | |
|     QualType BaseType = Base->getType().getUnqualifiedType();
 | |
|     if (!BaseType->isRecordType()) {
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     CXXCastPath BasePath;
 | |
|     BasePath.push_back(Base);
 | |
| 
 | |
|     // Construct the "from" expression, which is an implicit cast to the
 | |
|     // appropriately-qualified base type.
 | |
|     Expr *From = OtherRef;
 | |
|     From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
 | |
|                              CK_UncheckedDerivedToBase,
 | |
|                              VK_LValue, &BasePath).take();
 | |
| 
 | |
|     // Dereference "this".
 | |
|     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
 | |
|     
 | |
|     // Implicitly cast "this" to the appropriately-qualified base type.
 | |
|     To = ImpCastExprToType(To.take(), 
 | |
|                            Context.getCVRQualifiedType(BaseType,
 | |
|                                      CopyAssignOperator->getTypeQualifiers()),
 | |
|                            CK_UncheckedDerivedToBase, 
 | |
|                            VK_LValue, &BasePath);
 | |
| 
 | |
|     // Build the copy.
 | |
|     StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
 | |
|                                             To.get(), From,
 | |
|                                             /*CopyingBaseSubobject=*/true,
 | |
|                                             /*Copying=*/true);
 | |
|     if (Copy.isInvalid()) {
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       CopyAssignOperator->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Success! Record the copy.
 | |
|     Statements.push_back(Copy.takeAs<Expr>());
 | |
|   }
 | |
|   
 | |
|   // Assign non-static members.
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end(); 
 | |
|        Field != FieldEnd; ++Field) {
 | |
|     if (Field->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     if (Field->isInvalidDecl()) {
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check for members of reference type; we can't copy those.
 | |
|     if (Field->getType()->isReferenceType()) {
 | |
|       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
 | |
|         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
 | |
|       Diag(Field->getLocation(), diag::note_declared_at);
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Check for members of const-qualified, non-class type.
 | |
|     QualType BaseType = Context.getBaseElementType(Field->getType());
 | |
|     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
 | |
|       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
 | |
|         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
 | |
|       Diag(Field->getLocation(), diag::note_declared_at);
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       Invalid = true;      
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Suppress assigning zero-width bitfields.
 | |
|     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
 | |
|       continue;
 | |
|     
 | |
|     QualType FieldType = Field->getType().getNonReferenceType();
 | |
|     if (FieldType->isIncompleteArrayType()) {
 | |
|       assert(ClassDecl->hasFlexibleArrayMember() && 
 | |
|              "Incomplete array type is not valid");
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Build references to the field in the object we're copying from and to.
 | |
|     CXXScopeSpec SS; // Intentionally empty
 | |
|     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
 | |
|                               LookupMemberName);
 | |
|     MemberLookup.addDecl(*Field);
 | |
|     MemberLookup.resolveKind();
 | |
|     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
 | |
|                                                Loc, /*IsArrow=*/false,
 | |
|                                                SS, SourceLocation(), 0,
 | |
|                                                MemberLookup, 0);
 | |
|     ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
 | |
|                                              Loc, /*IsArrow=*/true,
 | |
|                                              SS, SourceLocation(), 0,
 | |
|                                              MemberLookup, 0);
 | |
|     assert(!From.isInvalid() && "Implicit field reference cannot fail");
 | |
|     assert(!To.isInvalid() && "Implicit field reference cannot fail");
 | |
| 
 | |
|     // Build the copy of this field.
 | |
|     StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
 | |
|                                             To.get(), From.get(),
 | |
|                                             /*CopyingBaseSubobject=*/false,
 | |
|                                             /*Copying=*/true);
 | |
|     if (Copy.isInvalid()) {
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       CopyAssignOperator->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Success! Record the copy.
 | |
|     Statements.push_back(Copy.takeAs<Stmt>());
 | |
|   }
 | |
| 
 | |
|   if (!Invalid) {
 | |
|     // Add a "return *this;"
 | |
|     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
 | |
|     
 | |
|     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
 | |
|     if (Return.isInvalid())
 | |
|       Invalid = true;
 | |
|     else {
 | |
|       Statements.push_back(Return.takeAs<Stmt>());
 | |
| 
 | |
|       if (Trap.hasErrorOccurred()) {
 | |
|         Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|         Invalid = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Invalid) {
 | |
|     CopyAssignOperator->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   StmtResult Body;
 | |
|   {
 | |
|     CompoundScopeRAII CompoundScope(*this);
 | |
|     Body = ActOnCompoundStmt(Loc, Loc, Statements,
 | |
|                              /*isStmtExpr=*/false);
 | |
|     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
 | |
|   }
 | |
|   CopyAssignOperator->setBody(Body.takeAs<Stmt>());
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(CopyAssignOperator);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::ImplicitExceptionSpecification
 | |
| Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
 | |
|   CXXRecordDecl *ClassDecl = MD->getParent();
 | |
| 
 | |
|   ImplicitExceptionSpecification ExceptSpec(*this);
 | |
|   if (ClassDecl->isInvalidDecl())
 | |
|     return ExceptSpec;
 | |
| 
 | |
|   // C++0x [except.spec]p14:
 | |
|   //   An implicitly declared special member function (Clause 12) shall have an 
 | |
|   //   exception-specification. [...]
 | |
| 
 | |
|   // It is unspecified whether or not an implicit move assignment operator
 | |
|   // attempts to deduplicate calls to assignment operators of virtual bases are
 | |
|   // made. As such, this exception specification is effectively unspecified.
 | |
|   // Based on a similar decision made for constness in C++0x, we're erring on
 | |
|   // the side of assuming such calls to be made regardless of whether they
 | |
|   // actually happen.
 | |
|   // Note that a move constructor is not implicitly declared when there are
 | |
|   // virtual bases, but it can still be user-declared and explicitly defaulted.
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|                                        BaseEnd = ClassDecl->bases_end();
 | |
|        Base != BaseEnd; ++Base) {
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
 | |
|                                                            0, false, 0))
 | |
|       ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
 | |
|                                        BaseEnd = ClassDecl->vbases_end();
 | |
|        Base != BaseEnd; ++Base) {
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
 | |
|                                                            0, false, 0))
 | |
|       ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end();
 | |
|        Field != FieldEnd;
 | |
|        ++Field) {
 | |
|     QualType FieldType = Context.getBaseElementType(Field->getType());
 | |
|     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
 | |
|       if (CXXMethodDecl *MoveAssign =
 | |
|               LookupMovingAssignment(FieldClassDecl,
 | |
|                                      FieldType.getCVRQualifiers(),
 | |
|                                      false, 0))
 | |
|         ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ExceptSpec;
 | |
| }
 | |
| 
 | |
| /// Determine whether the class type has any direct or indirect virtual base
 | |
| /// classes which have a non-trivial move assignment operator.
 | |
| static bool
 | |
| hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
 | |
|                                           BaseEnd = ClassDecl->vbases_end();
 | |
|        Base != BaseEnd; ++Base) {
 | |
|     CXXRecordDecl *BaseClass =
 | |
|         cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     // Try to declare the move assignment. If it would be deleted, then the
 | |
|     // class does not have a non-trivial move assignment.
 | |
|     if (BaseClass->needsImplicitMoveAssignment())
 | |
|       S.DeclareImplicitMoveAssignment(BaseClass);
 | |
| 
 | |
|     if (BaseClass->hasNonTrivialMoveAssignment())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determine whether the given type either has a move constructor or is
 | |
| /// trivially copyable.
 | |
| static bool
 | |
| hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
 | |
|   Type = S.Context.getBaseElementType(Type);
 | |
| 
 | |
|   // FIXME: Technically, non-trivially-copyable non-class types, such as
 | |
|   // reference types, are supposed to return false here, but that appears
 | |
|   // to be a standard defect.
 | |
|   CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
 | |
|   if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
 | |
|     return true;
 | |
| 
 | |
|   if (Type.isTriviallyCopyableType(S.Context))
 | |
|     return true;
 | |
| 
 | |
|   if (IsConstructor) {
 | |
|     // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
 | |
|     // give the right answer.
 | |
|     if (ClassDecl->needsImplicitMoveConstructor())
 | |
|       S.DeclareImplicitMoveConstructor(ClassDecl);
 | |
|     return ClassDecl->hasMoveConstructor();
 | |
|   }
 | |
| 
 | |
|   // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
 | |
|   // give the right answer.
 | |
|   if (ClassDecl->needsImplicitMoveAssignment())
 | |
|     S.DeclareImplicitMoveAssignment(ClassDecl);
 | |
|   return ClassDecl->hasMoveAssignment();
 | |
| }
 | |
| 
 | |
| /// Determine whether all non-static data members and direct or virtual bases
 | |
| /// of class \p ClassDecl have either a move operation, or are trivially
 | |
| /// copyable.
 | |
| static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
 | |
|                                             bool IsConstructor) {
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|                                           BaseEnd = ClassDecl->bases_end();
 | |
|        Base != BaseEnd; ++Base) {
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
 | |
|                                           BaseEnd = ClassDecl->vbases_end();
 | |
|        Base != BaseEnd; ++Base) {
 | |
|     if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                      FieldEnd = ClassDecl->field_end();
 | |
|        Field != FieldEnd; ++Field) {
 | |
|     if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
 | |
|   // C++11 [class.copy]p20:
 | |
|   //   If the definition of a class X does not explicitly declare a move
 | |
|   //   assignment operator, one will be implicitly declared as defaulted
 | |
|   //   if and only if:
 | |
|   //
 | |
|   //   - [first 4 bullets]
 | |
|   assert(ClassDecl->needsImplicitMoveAssignment());
 | |
| 
 | |
|   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
 | |
|   if (DSM.isAlreadyBeingDeclared())
 | |
|     return 0;
 | |
| 
 | |
|   // [Checked after we build the declaration]
 | |
|   //   - the move assignment operator would not be implicitly defined as
 | |
|   //     deleted,
 | |
| 
 | |
|   // [DR1402]:
 | |
|   //   - X has no direct or indirect virtual base class with a non-trivial
 | |
|   //     move assignment operator, and
 | |
|   //   - each of X's non-static data members and direct or virtual base classes
 | |
|   //     has a type that either has a move assignment operator or is trivially
 | |
|   //     copyable.
 | |
|   if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
 | |
|       !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
 | |
|     ClassDecl->setFailedImplicitMoveAssignment();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Note: The following rules are largely analoguous to the move
 | |
|   // constructor rules.
 | |
| 
 | |
|   QualType ArgType = Context.getTypeDeclType(ClassDecl);
 | |
|   QualType RetType = Context.getLValueReferenceType(ArgType);
 | |
|   ArgType = Context.getRValueReferenceType(ArgType);
 | |
| 
 | |
|   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
 | |
|                                                      CXXMoveAssignment,
 | |
|                                                      false);
 | |
| 
 | |
|   //   An implicitly-declared move assignment operator is an inline public
 | |
|   //   member of its class.
 | |
|   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
|   CXXMethodDecl *MoveAssignment =
 | |
|       CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
 | |
|                             /*TInfo=*/0, /*StorageClass=*/SC_None,
 | |
|                             /*isInline=*/true, Constexpr, SourceLocation());
 | |
|   MoveAssignment->setAccess(AS_public);
 | |
|   MoveAssignment->setDefaulted();
 | |
|   MoveAssignment->setImplicit();
 | |
| 
 | |
|   // Build an exception specification pointing back at this member.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = EST_Unevaluated;
 | |
|   EPI.ExceptionSpecDecl = MoveAssignment;
 | |
|   MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
 | |
| 
 | |
|   // Add the parameter to the operator.
 | |
|   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
 | |
|                                                ClassLoc, ClassLoc, /*Id=*/0,
 | |
|                                                ArgType, /*TInfo=*/0,
 | |
|                                                SC_None, 0);
 | |
|   MoveAssignment->setParams(FromParam);
 | |
| 
 | |
|   AddOverriddenMethods(ClassDecl, MoveAssignment);
 | |
| 
 | |
|   MoveAssignment->setTrivial(
 | |
|     ClassDecl->needsOverloadResolutionForMoveAssignment()
 | |
|       ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
 | |
|       : ClassDecl->hasTrivialMoveAssignment());
 | |
| 
 | |
|   // C++0x [class.copy]p9:
 | |
|   //   If the definition of a class X does not explicitly declare a move
 | |
|   //   assignment operator, one will be implicitly declared as defaulted if and
 | |
|   //   only if:
 | |
|   //   [...]
 | |
|   //   - the move assignment operator would not be implicitly defined as
 | |
|   //     deleted.
 | |
|   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
 | |
|     // Cache this result so that we don't try to generate this over and over
 | |
|     // on every lookup, leaking memory and wasting time.
 | |
|     ClassDecl->setFailedImplicitMoveAssignment();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Note that we have added this copy-assignment operator.
 | |
|   ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
 | |
| 
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(MoveAssignment, S, false);
 | |
|   ClassDecl->addDecl(MoveAssignment);
 | |
| 
 | |
|   return MoveAssignment;
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
 | |
|                                         CXXMethodDecl *MoveAssignOperator) {
 | |
|   assert((MoveAssignOperator->isDefaulted() && 
 | |
|           MoveAssignOperator->isOverloadedOperator() &&
 | |
|           MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
 | |
|           !MoveAssignOperator->doesThisDeclarationHaveABody() &&
 | |
|           !MoveAssignOperator->isDeleted()) &&
 | |
|          "DefineImplicitMoveAssignment called for wrong function");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
 | |
| 
 | |
|   if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
 | |
|     MoveAssignOperator->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   MoveAssignOperator->setUsed();
 | |
| 
 | |
|   SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
| 
 | |
|   // C++0x [class.copy]p28:
 | |
|   //   The implicitly-defined or move assignment operator for a non-union class
 | |
|   //   X performs memberwise move assignment of its subobjects. The direct base
 | |
|   //   classes of X are assigned first, in the order of their declaration in the
 | |
|   //   base-specifier-list, and then the immediate non-static data members of X
 | |
|   //   are assigned, in the order in which they were declared in the class
 | |
|   //   definition.
 | |
| 
 | |
|   // The statements that form the synthesized function body.
 | |
|   SmallVector<Stmt*, 8> Statements;
 | |
| 
 | |
|   // The parameter for the "other" object, which we are move from.
 | |
|   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
 | |
|   QualType OtherRefType = Other->getType()->
 | |
|       getAs<RValueReferenceType>()->getPointeeType();
 | |
|   assert(!OtherRefType.getQualifiers() &&
 | |
|          "Bad argument type of defaulted move assignment");
 | |
| 
 | |
|   // Our location for everything implicitly-generated.
 | |
|   SourceLocation Loc = MoveAssignOperator->getLocation();
 | |
| 
 | |
|   // Construct a reference to the "other" object. We'll be using this 
 | |
|   // throughout the generated ASTs.
 | |
|   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
 | |
|   assert(OtherRef && "Reference to parameter cannot fail!");
 | |
|   // Cast to rvalue.
 | |
|   OtherRef = CastForMoving(*this, OtherRef);
 | |
| 
 | |
|   // Construct the "this" pointer. We'll be using this throughout the generated
 | |
|   // ASTs.
 | |
|   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
 | |
|   assert(This && "Reference to this cannot fail!");
 | |
| 
 | |
|   // Assign base classes.
 | |
|   bool Invalid = false;
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); Base != E; ++Base) {
 | |
|     // Form the assignment:
 | |
|     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
 | |
|     QualType BaseType = Base->getType().getUnqualifiedType();
 | |
|     if (!BaseType->isRecordType()) {
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     CXXCastPath BasePath;
 | |
|     BasePath.push_back(Base);
 | |
| 
 | |
|     // Construct the "from" expression, which is an implicit cast to the
 | |
|     // appropriately-qualified base type.
 | |
|     Expr *From = OtherRef;
 | |
|     From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
 | |
|                              VK_XValue, &BasePath).take();
 | |
| 
 | |
|     // Dereference "this".
 | |
|     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
 | |
| 
 | |
|     // Implicitly cast "this" to the appropriately-qualified base type.
 | |
|     To = ImpCastExprToType(To.take(), 
 | |
|                            Context.getCVRQualifiedType(BaseType,
 | |
|                                      MoveAssignOperator->getTypeQualifiers()),
 | |
|                            CK_UncheckedDerivedToBase, 
 | |
|                            VK_LValue, &BasePath);
 | |
| 
 | |
|     // Build the move.
 | |
|     StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
 | |
|                                             To.get(), From,
 | |
|                                             /*CopyingBaseSubobject=*/true,
 | |
|                                             /*Copying=*/false);
 | |
|     if (Move.isInvalid()) {
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       MoveAssignOperator->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Success! Record the move.
 | |
|     Statements.push_back(Move.takeAs<Expr>());
 | |
|   }
 | |
| 
 | |
|   // Assign non-static members.
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end(); 
 | |
|        Field != FieldEnd; ++Field) {
 | |
|     if (Field->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     if (Field->isInvalidDecl()) {
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check for members of reference type; we can't move those.
 | |
|     if (Field->getType()->isReferenceType()) {
 | |
|       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
 | |
|         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
 | |
|       Diag(Field->getLocation(), diag::note_declared_at);
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check for members of const-qualified, non-class type.
 | |
|     QualType BaseType = Context.getBaseElementType(Field->getType());
 | |
|     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
 | |
|       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
 | |
|         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
 | |
|       Diag(Field->getLocation(), diag::note_declared_at);
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       Invalid = true;      
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Suppress assigning zero-width bitfields.
 | |
|     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
 | |
|       continue;
 | |
|     
 | |
|     QualType FieldType = Field->getType().getNonReferenceType();
 | |
|     if (FieldType->isIncompleteArrayType()) {
 | |
|       assert(ClassDecl->hasFlexibleArrayMember() && 
 | |
|              "Incomplete array type is not valid");
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Build references to the field in the object we're copying from and to.
 | |
|     CXXScopeSpec SS; // Intentionally empty
 | |
|     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
 | |
|                               LookupMemberName);
 | |
|     MemberLookup.addDecl(*Field);
 | |
|     MemberLookup.resolveKind();
 | |
|     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
 | |
|                                                Loc, /*IsArrow=*/false,
 | |
|                                                SS, SourceLocation(), 0,
 | |
|                                                MemberLookup, 0);
 | |
|     ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
 | |
|                                              Loc, /*IsArrow=*/true,
 | |
|                                              SS, SourceLocation(), 0,
 | |
|                                              MemberLookup, 0);
 | |
|     assert(!From.isInvalid() && "Implicit field reference cannot fail");
 | |
|     assert(!To.isInvalid() && "Implicit field reference cannot fail");
 | |
| 
 | |
|     assert(!From.get()->isLValue() && // could be xvalue or prvalue
 | |
|         "Member reference with rvalue base must be rvalue except for reference "
 | |
|         "members, which aren't allowed for move assignment.");
 | |
| 
 | |
|     // Build the move of this field.
 | |
|     StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
 | |
|                                             To.get(), From.get(),
 | |
|                                             /*CopyingBaseSubobject=*/false,
 | |
|                                             /*Copying=*/false);
 | |
|     if (Move.isInvalid()) {
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       MoveAssignOperator->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Success! Record the copy.
 | |
|     Statements.push_back(Move.takeAs<Stmt>());
 | |
|   }
 | |
| 
 | |
|   if (!Invalid) {
 | |
|     // Add a "return *this;"
 | |
|     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
 | |
|     
 | |
|     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
 | |
|     if (Return.isInvalid())
 | |
|       Invalid = true;
 | |
|     else {
 | |
|       Statements.push_back(Return.takeAs<Stmt>());
 | |
| 
 | |
|       if (Trap.hasErrorOccurred()) {
 | |
|         Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|           << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
 | |
|         Invalid = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Invalid) {
 | |
|     MoveAssignOperator->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   StmtResult Body;
 | |
|   {
 | |
|     CompoundScopeRAII CompoundScope(*this);
 | |
|     Body = ActOnCompoundStmt(Loc, Loc, Statements,
 | |
|                              /*isStmtExpr=*/false);
 | |
|     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
 | |
|   }
 | |
|   MoveAssignOperator->setBody(Body.takeAs<Stmt>());
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(MoveAssignOperator);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::ImplicitExceptionSpecification
 | |
| Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
 | |
|   CXXRecordDecl *ClassDecl = MD->getParent();
 | |
| 
 | |
|   ImplicitExceptionSpecification ExceptSpec(*this);
 | |
|   if (ClassDecl->isInvalidDecl())
 | |
|     return ExceptSpec;
 | |
| 
 | |
|   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
 | |
|   assert(T->getNumArgs() >= 1 && "not a copy ctor");
 | |
|   unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
 | |
| 
 | |
|   // C++ [except.spec]p14:
 | |
|   //   An implicitly declared special member function (Clause 12) shall have an 
 | |
|   //   exception-specification. [...]
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|                                        BaseEnd = ClassDecl->bases_end();
 | |
|        Base != BaseEnd; 
 | |
|        ++Base) {
 | |
|     // Virtual bases are handled below.
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
|     
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (CXXConstructorDecl *CopyConstructor =
 | |
|           LookupCopyingConstructor(BaseClassDecl, Quals))
 | |
|       ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
 | |
|   }
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
 | |
|                                        BaseEnd = ClassDecl->vbases_end();
 | |
|        Base != BaseEnd; 
 | |
|        ++Base) {
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (CXXConstructorDecl *CopyConstructor =
 | |
|           LookupCopyingConstructor(BaseClassDecl, Quals))
 | |
|       ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
 | |
|   }
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end();
 | |
|        Field != FieldEnd;
 | |
|        ++Field) {
 | |
|     QualType FieldType = Context.getBaseElementType(Field->getType());
 | |
|     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
 | |
|       if (CXXConstructorDecl *CopyConstructor =
 | |
|               LookupCopyingConstructor(FieldClassDecl,
 | |
|                                        Quals | FieldType.getCVRQualifiers()))
 | |
|       ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ExceptSpec;
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
 | |
|                                                     CXXRecordDecl *ClassDecl) {
 | |
|   // C++ [class.copy]p4:
 | |
|   //   If the class definition does not explicitly declare a copy
 | |
|   //   constructor, one is declared implicitly.
 | |
|   assert(ClassDecl->needsImplicitCopyConstructor());
 | |
| 
 | |
|   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
 | |
|   if (DSM.isAlreadyBeingDeclared())
 | |
|     return 0;
 | |
| 
 | |
|   QualType ClassType = Context.getTypeDeclType(ClassDecl);
 | |
|   QualType ArgType = ClassType;
 | |
|   bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
 | |
|   if (Const)
 | |
|     ArgType = ArgType.withConst();
 | |
|   ArgType = Context.getLValueReferenceType(ArgType);
 | |
| 
 | |
|   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
 | |
|                                                      CXXCopyConstructor,
 | |
|                                                      Const);
 | |
| 
 | |
|   DeclarationName Name
 | |
|     = Context.DeclarationNames.getCXXConstructorName(
 | |
|                                            Context.getCanonicalType(ClassType));
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
| 
 | |
|   //   An implicitly-declared copy constructor is an inline public
 | |
|   //   member of its class.
 | |
|   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
 | |
|       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
 | |
|       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
 | |
|       Constexpr);
 | |
|   CopyConstructor->setAccess(AS_public);
 | |
|   CopyConstructor->setDefaulted();
 | |
| 
 | |
|   // Build an exception specification pointing back at this member.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = EST_Unevaluated;
 | |
|   EPI.ExceptionSpecDecl = CopyConstructor;
 | |
|   CopyConstructor->setType(
 | |
|       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
 | |
| 
 | |
|   // Add the parameter to the constructor.
 | |
|   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
 | |
|                                                ClassLoc, ClassLoc,
 | |
|                                                /*IdentifierInfo=*/0,
 | |
|                                                ArgType, /*TInfo=*/0,
 | |
|                                                SC_None, 0);
 | |
|   CopyConstructor->setParams(FromParam);
 | |
| 
 | |
|   CopyConstructor->setTrivial(
 | |
|     ClassDecl->needsOverloadResolutionForCopyConstructor()
 | |
|       ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
 | |
|       : ClassDecl->hasTrivialCopyConstructor());
 | |
| 
 | |
|   // C++11 [class.copy]p8:
 | |
|   //   ... If the class definition does not explicitly declare a copy
 | |
|   //   constructor, there is no user-declared move constructor, and there is no
 | |
|   //   user-declared move assignment operator, a copy constructor is implicitly
 | |
|   //   declared as defaulted.
 | |
|   if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
 | |
|     SetDeclDeleted(CopyConstructor, ClassLoc);
 | |
| 
 | |
|   // Note that we have declared this constructor.
 | |
|   ++ASTContext::NumImplicitCopyConstructorsDeclared;
 | |
| 
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(CopyConstructor, S, false);
 | |
|   ClassDecl->addDecl(CopyConstructor);
 | |
| 
 | |
|   return CopyConstructor;
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
 | |
|                                    CXXConstructorDecl *CopyConstructor) {
 | |
|   assert((CopyConstructor->isDefaulted() &&
 | |
|           CopyConstructor->isCopyConstructor() &&
 | |
|           !CopyConstructor->doesThisDeclarationHaveABody() &&
 | |
|           !CopyConstructor->isDeleted()) &&
 | |
|          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
 | |
|   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
 | |
| 
 | |
|   // C++11 [class.copy]p7:
 | |
|   //   The [definition of an implicitly declared copy constructro] is
 | |
|   //   deprecated if the class has a user-declared copy assignment operator
 | |
|   //   or a user-declared destructor.
 | |
|   if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
 | |
|     diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
 | |
| 
 | |
|   SynthesizedFunctionScope Scope(*this, CopyConstructor);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
| 
 | |
|   if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
 | |
|       Trap.hasErrorOccurred()) {
 | |
|     Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
 | |
|     CopyConstructor->setInvalidDecl();
 | |
|   }  else {
 | |
|     Sema::CompoundScopeRAII CompoundScope(*this);
 | |
|     CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
 | |
|                                                CopyConstructor->getLocation(),
 | |
|                                                MultiStmtArg(),
 | |
|                                                /*isStmtExpr=*/false)
 | |
|                                                               .takeAs<Stmt>());
 | |
|   }
 | |
|   
 | |
|   CopyConstructor->setUsed();
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(CopyConstructor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::ImplicitExceptionSpecification
 | |
| Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
 | |
|   CXXRecordDecl *ClassDecl = MD->getParent();
 | |
| 
 | |
|   // C++ [except.spec]p14:
 | |
|   //   An implicitly declared special member function (Clause 12) shall have an 
 | |
|   //   exception-specification. [...]
 | |
|   ImplicitExceptionSpecification ExceptSpec(*this);
 | |
|   if (ClassDecl->isInvalidDecl())
 | |
|     return ExceptSpec;
 | |
| 
 | |
|   // Direct base-class constructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
 | |
|                                        BEnd = ClassDecl->bases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (B->isVirtual()) // Handled below.
 | |
|       continue;
 | |
|     
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       CXXConstructorDecl *Constructor =
 | |
|           LookupMovingConstructor(BaseClassDecl, 0);
 | |
|       // If this is a deleted function, add it anyway. This might be conformant
 | |
|       // with the standard. This might not. I'm not sure. It might not matter.
 | |
|       if (Constructor)
 | |
|         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Virtual base-class constructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
 | |
|                                        BEnd = ClassDecl->vbases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       CXXConstructorDecl *Constructor =
 | |
|           LookupMovingConstructor(BaseClassDecl, 0);
 | |
|       // If this is a deleted function, add it anyway. This might be conformant
 | |
|       // with the standard. This might not. I'm not sure. It might not matter.
 | |
|       if (Constructor)
 | |
|         ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Field constructors.
 | |
|   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
 | |
|                                FEnd = ClassDecl->field_end();
 | |
|        F != FEnd; ++F) {
 | |
|     QualType FieldType = Context.getBaseElementType(F->getType());
 | |
|     if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
 | |
|       CXXConstructorDecl *Constructor =
 | |
|           LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
 | |
|       // If this is a deleted function, add it anyway. This might be conformant
 | |
|       // with the standard. This might not. I'm not sure. It might not matter.
 | |
|       // In particular, the problem is that this function never gets called. It
 | |
|       // might just be ill-formed because this function attempts to refer to
 | |
|       // a deleted function here.
 | |
|       if (Constructor)
 | |
|         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ExceptSpec;
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
 | |
|                                                     CXXRecordDecl *ClassDecl) {
 | |
|   // C++11 [class.copy]p9:
 | |
|   //   If the definition of a class X does not explicitly declare a move
 | |
|   //   constructor, one will be implicitly declared as defaulted if and only if:
 | |
|   //
 | |
|   //   - [first 4 bullets]
 | |
|   assert(ClassDecl->needsImplicitMoveConstructor());
 | |
| 
 | |
|   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
 | |
|   if (DSM.isAlreadyBeingDeclared())
 | |
|     return 0;
 | |
| 
 | |
|   // [Checked after we build the declaration]
 | |
|   //   - the move assignment operator would not be implicitly defined as
 | |
|   //     deleted,
 | |
| 
 | |
|   // [DR1402]:
 | |
|   //   - each of X's non-static data members and direct or virtual base classes
 | |
|   //     has a type that either has a move constructor or is trivially copyable.
 | |
|   if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
 | |
|     ClassDecl->setFailedImplicitMoveConstructor();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   QualType ClassType = Context.getTypeDeclType(ClassDecl);
 | |
|   QualType ArgType = Context.getRValueReferenceType(ClassType);
 | |
| 
 | |
|   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
 | |
|                                                      CXXMoveConstructor,
 | |
|                                                      false);
 | |
| 
 | |
|   DeclarationName Name
 | |
|     = Context.DeclarationNames.getCXXConstructorName(
 | |
|                                            Context.getCanonicalType(ClassType));
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
| 
 | |
|   // C++11 [class.copy]p11:
 | |
|   //   An implicitly-declared copy/move constructor is an inline public
 | |
|   //   member of its class.
 | |
|   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
 | |
|       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
 | |
|       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
 | |
|       Constexpr);
 | |
|   MoveConstructor->setAccess(AS_public);
 | |
|   MoveConstructor->setDefaulted();
 | |
| 
 | |
|   // Build an exception specification pointing back at this member.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = EST_Unevaluated;
 | |
|   EPI.ExceptionSpecDecl = MoveConstructor;
 | |
|   MoveConstructor->setType(
 | |
|       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
 | |
| 
 | |
|   // Add the parameter to the constructor.
 | |
|   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
 | |
|                                                ClassLoc, ClassLoc,
 | |
|                                                /*IdentifierInfo=*/0,
 | |
|                                                ArgType, /*TInfo=*/0,
 | |
|                                                SC_None, 0);
 | |
|   MoveConstructor->setParams(FromParam);
 | |
| 
 | |
|   MoveConstructor->setTrivial(
 | |
|     ClassDecl->needsOverloadResolutionForMoveConstructor()
 | |
|       ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
 | |
|       : ClassDecl->hasTrivialMoveConstructor());
 | |
| 
 | |
|   // C++0x [class.copy]p9:
 | |
|   //   If the definition of a class X does not explicitly declare a move
 | |
|   //   constructor, one will be implicitly declared as defaulted if and only if:
 | |
|   //   [...]
 | |
|   //   - the move constructor would not be implicitly defined as deleted.
 | |
|   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
 | |
|     // Cache this result so that we don't try to generate this over and over
 | |
|     // on every lookup, leaking memory and wasting time.
 | |
|     ClassDecl->setFailedImplicitMoveConstructor();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Note that we have declared this constructor.
 | |
|   ++ASTContext::NumImplicitMoveConstructorsDeclared;
 | |
| 
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(MoveConstructor, S, false);
 | |
|   ClassDecl->addDecl(MoveConstructor);
 | |
| 
 | |
|   return MoveConstructor;
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
 | |
|                                    CXXConstructorDecl *MoveConstructor) {
 | |
|   assert((MoveConstructor->isDefaulted() &&
 | |
|           MoveConstructor->isMoveConstructor() &&
 | |
|           !MoveConstructor->doesThisDeclarationHaveABody() &&
 | |
|           !MoveConstructor->isDeleted()) &&
 | |
|          "DefineImplicitMoveConstructor - call it for implicit move ctor");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
 | |
|   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
 | |
| 
 | |
|   SynthesizedFunctionScope Scope(*this, MoveConstructor);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
| 
 | |
|   if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
 | |
|       Trap.hasErrorOccurred()) {
 | |
|     Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|       << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
 | |
|     MoveConstructor->setInvalidDecl();
 | |
|   }  else {
 | |
|     Sema::CompoundScopeRAII CompoundScope(*this);
 | |
|     MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
 | |
|                                                MoveConstructor->getLocation(),
 | |
|                                                MultiStmtArg(),
 | |
|                                                /*isStmtExpr=*/false)
 | |
|                                                               .takeAs<Stmt>());
 | |
|   }
 | |
| 
 | |
|   MoveConstructor->setUsed();
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(MoveConstructor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
 | |
|   return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
 | |
| }
 | |
| 
 | |
| /// \brief Mark the call operator of the given lambda closure type as "used".
 | |
| static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
 | |
|   CXXMethodDecl *CallOperator 
 | |
|     = cast<CXXMethodDecl>(
 | |
|         Lambda->lookup(
 | |
|           S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
 | |
|   CallOperator->setReferenced();
 | |
|   CallOperator->setUsed();
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitLambdaToFunctionPointerConversion(
 | |
|        SourceLocation CurrentLocation,
 | |
|        CXXConversionDecl *Conv) 
 | |
| {
 | |
|   CXXRecordDecl *Lambda = Conv->getParent();
 | |
|   
 | |
|   // Make sure that the lambda call operator is marked used.
 | |
|   markLambdaCallOperatorUsed(*this, Lambda);
 | |
|   
 | |
|   Conv->setUsed();
 | |
|   
 | |
|   SynthesizedFunctionScope Scope(*this, Conv);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
|   
 | |
|   // Return the address of the __invoke function.
 | |
|   DeclarationName InvokeName = &Context.Idents.get("__invoke");
 | |
|   CXXMethodDecl *Invoke 
 | |
|     = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
 | |
|   Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
 | |
|                                        VK_LValue, Conv->getLocation()).take();
 | |
|   assert(FunctionRef && "Can't refer to __invoke function?");
 | |
|   Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
 | |
|   Conv->setBody(new (Context) CompoundStmt(Context, Return,
 | |
|                                            Conv->getLocation(),
 | |
|                                            Conv->getLocation()));
 | |
|     
 | |
|   // Fill in the __invoke function with a dummy implementation. IR generation
 | |
|   // will fill in the actual details.
 | |
|   Invoke->setUsed();
 | |
|   Invoke->setReferenced();
 | |
|   Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
 | |
|   
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(Conv);
 | |
|     L->CompletedImplicitDefinition(Invoke);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitLambdaToBlockPointerConversion(
 | |
|        SourceLocation CurrentLocation,
 | |
|        CXXConversionDecl *Conv) 
 | |
| {
 | |
|   Conv->setUsed();
 | |
|   
 | |
|   SynthesizedFunctionScope Scope(*this, Conv);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
|   
 | |
|   // Copy-initialize the lambda object as needed to capture it.
 | |
|   Expr *This = ActOnCXXThis(CurrentLocation).take();
 | |
|   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
 | |
|   
 | |
|   ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
 | |
|                                                         Conv->getLocation(),
 | |
|                                                         Conv, DerefThis);
 | |
| 
 | |
|   // If we're not under ARC, make sure we still get the _Block_copy/autorelease
 | |
|   // behavior.  Note that only the general conversion function does this
 | |
|   // (since it's unusable otherwise); in the case where we inline the
 | |
|   // block literal, it has block literal lifetime semantics.
 | |
|   if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
 | |
|     BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
 | |
|                                           CK_CopyAndAutoreleaseBlockObject,
 | |
|                                           BuildBlock.get(), 0, VK_RValue);
 | |
| 
 | |
|   if (BuildBlock.isInvalid()) {
 | |
|     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
 | |
|     Conv->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Create the return statement that returns the block from the conversion
 | |
|   // function.
 | |
|   StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
 | |
|   if (Return.isInvalid()) {
 | |
|     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
 | |
|     Conv->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Set the body of the conversion function.
 | |
|   Stmt *ReturnS = Return.take();
 | |
|   Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
 | |
|                                            Conv->getLocation(), 
 | |
|                                            Conv->getLocation()));
 | |
|   
 | |
|   // We're done; notify the mutation listener, if any.
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(Conv);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given list arguments contains exactly one 
 | |
| /// "real" (non-default) argument.
 | |
| static bool hasOneRealArgument(MultiExprArg Args) {
 | |
|   switch (Args.size()) {
 | |
|   case 0:
 | |
|     return false;
 | |
|     
 | |
|   default:
 | |
|     if (!Args[1]->isDefaultArgument())
 | |
|       return false;
 | |
|     
 | |
|     // fall through
 | |
|   case 1:
 | |
|     return !Args[0]->isDefaultArgument();
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
 | |
|                             CXXConstructorDecl *Constructor,
 | |
|                             MultiExprArg ExprArgs,
 | |
|                             bool HadMultipleCandidates,
 | |
|                             bool IsListInitialization,
 | |
|                             bool RequiresZeroInit,
 | |
|                             unsigned ConstructKind,
 | |
|                             SourceRange ParenRange) {
 | |
|   bool Elidable = false;
 | |
| 
 | |
|   // C++0x [class.copy]p34:
 | |
|   //   When certain criteria are met, an implementation is allowed to
 | |
|   //   omit the copy/move construction of a class object, even if the
 | |
|   //   copy/move constructor and/or destructor for the object have
 | |
|   //   side effects. [...]
 | |
|   //     - when a temporary class object that has not been bound to a
 | |
|   //       reference (12.2) would be copied/moved to a class object
 | |
|   //       with the same cv-unqualified type, the copy/move operation
 | |
|   //       can be omitted by constructing the temporary object
 | |
|   //       directly into the target of the omitted copy/move
 | |
|   if (ConstructKind == CXXConstructExpr::CK_Complete &&
 | |
|       Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
 | |
|     Expr *SubExpr = ExprArgs[0];
 | |
|     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
 | |
|   }
 | |
| 
 | |
|   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
 | |
|                                Elidable, ExprArgs, HadMultipleCandidates,
 | |
|                                IsListInitialization, RequiresZeroInit,
 | |
|                                ConstructKind, ParenRange);
 | |
| }
 | |
| 
 | |
| /// BuildCXXConstructExpr - Creates a complete call to a constructor,
 | |
| /// including handling of its default argument expressions.
 | |
| ExprResult
 | |
| Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
 | |
|                             CXXConstructorDecl *Constructor, bool Elidable,
 | |
|                             MultiExprArg ExprArgs,
 | |
|                             bool HadMultipleCandidates,
 | |
|                             bool IsListInitialization,
 | |
|                             bool RequiresZeroInit,
 | |
|                             unsigned ConstructKind,
 | |
|                             SourceRange ParenRange) {
 | |
|   MarkFunctionReferenced(ConstructLoc, Constructor);
 | |
|   return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
 | |
|                                         Constructor, Elidable, ExprArgs,
 | |
|                                         HadMultipleCandidates,
 | |
|                                         IsListInitialization, RequiresZeroInit,
 | |
|               static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
 | |
|                                         ParenRange));
 | |
| }
 | |
| 
 | |
| void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
 | |
|   if (VD->isInvalidDecl()) return;
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
 | |
|   if (ClassDecl->isInvalidDecl()) return;
 | |
|   if (ClassDecl->hasIrrelevantDestructor()) return;
 | |
|   if (ClassDecl->isDependentContext()) return;
 | |
| 
 | |
|   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
 | |
|   MarkFunctionReferenced(VD->getLocation(), Destructor);
 | |
|   CheckDestructorAccess(VD->getLocation(), Destructor,
 | |
|                         PDiag(diag::err_access_dtor_var)
 | |
|                         << VD->getDeclName()
 | |
|                         << VD->getType());
 | |
|   DiagnoseUseOfDecl(Destructor, VD->getLocation());
 | |
| 
 | |
|   if (!VD->hasGlobalStorage()) return;
 | |
| 
 | |
|   // Emit warning for non-trivial dtor in global scope (a real global,
 | |
|   // class-static, function-static).
 | |
|   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
 | |
| 
 | |
|   // TODO: this should be re-enabled for static locals by !CXAAtExit
 | |
|   if (!VD->isStaticLocal())
 | |
|     Diag(VD->getLocation(), diag::warn_global_destructor);
 | |
| }
 | |
| 
 | |
| /// \brief Given a constructor and the set of arguments provided for the
 | |
| /// constructor, convert the arguments and add any required default arguments
 | |
| /// to form a proper call to this constructor.
 | |
| ///
 | |
| /// \returns true if an error occurred, false otherwise.
 | |
| bool 
 | |
| Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
 | |
|                               MultiExprArg ArgsPtr,
 | |
|                               SourceLocation Loc,
 | |
|                               SmallVectorImpl<Expr*> &ConvertedArgs,
 | |
|                               bool AllowExplicit,
 | |
|                               bool IsListInitialization) {
 | |
|   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
 | |
|   unsigned NumArgs = ArgsPtr.size();
 | |
|   Expr **Args = ArgsPtr.data();
 | |
| 
 | |
|   const FunctionProtoType *Proto 
 | |
|     = Constructor->getType()->getAs<FunctionProtoType>();
 | |
|   assert(Proto && "Constructor without a prototype?");
 | |
|   unsigned NumArgsInProto = Proto->getNumArgs();
 | |
|   
 | |
|   // If too few arguments are available, we'll fill in the rest with defaults.
 | |
|   if (NumArgs < NumArgsInProto)
 | |
|     ConvertedArgs.reserve(NumArgsInProto);
 | |
|   else
 | |
|     ConvertedArgs.reserve(NumArgs);
 | |
| 
 | |
|   VariadicCallType CallType = 
 | |
|     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
 | |
|   SmallVector<Expr *, 8> AllArgs;
 | |
|   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
 | |
|                                         Proto, 0,
 | |
|                                         llvm::makeArrayRef(Args, NumArgs),
 | |
|                                         AllArgs,
 | |
|                                         CallType, AllowExplicit,
 | |
|                                         IsListInitialization);
 | |
|   ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
 | |
| 
 | |
|   DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
 | |
| 
 | |
|   CheckConstructorCall(Constructor,
 | |
|                        llvm::makeArrayRef<const Expr *>(AllArgs.data(),
 | |
|                                                         AllArgs.size()),
 | |
|                        Proto, Loc);
 | |
| 
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 
 | |
|                                        const FunctionDecl *FnDecl) {
 | |
|   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
 | |
|   if (isa<NamespaceDecl>(DC)) {
 | |
|     return SemaRef.Diag(FnDecl->getLocation(), 
 | |
|                         diag::err_operator_new_delete_declared_in_namespace)
 | |
|       << FnDecl->getDeclName();
 | |
|   }
 | |
|   
 | |
|   if (isa<TranslationUnitDecl>(DC) && 
 | |
|       FnDecl->getStorageClass() == SC_Static) {
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_delete_declared_static)
 | |
|       << FnDecl->getDeclName();
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
 | |
|                             CanQualType ExpectedResultType,
 | |
|                             CanQualType ExpectedFirstParamType,
 | |
|                             unsigned DependentParamTypeDiag,
 | |
|                             unsigned InvalidParamTypeDiag) {
 | |
|   QualType ResultType = 
 | |
|     FnDecl->getType()->getAs<FunctionType>()->getResultType();
 | |
| 
 | |
|   // Check that the result type is not dependent.
 | |
|   if (ResultType->isDependentType())
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_delete_dependent_result_type)
 | |
|     << FnDecl->getDeclName() << ExpectedResultType;
 | |
| 
 | |
|   // Check that the result type is what we expect.
 | |
|   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_delete_invalid_result_type) 
 | |
|     << FnDecl->getDeclName() << ExpectedResultType;
 | |
|   
 | |
|   // A function template must have at least 2 parameters.
 | |
|   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                       diag::err_operator_new_delete_template_too_few_parameters)
 | |
|         << FnDecl->getDeclName();
 | |
|   
 | |
|   // The function decl must have at least 1 parameter.
 | |
|   if (FnDecl->getNumParams() == 0)
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_delete_too_few_parameters)
 | |
|       << FnDecl->getDeclName();
 | |
|  
 | |
|   // Check the first parameter type is not dependent.
 | |
|   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
 | |
|   if (FirstParamType->isDependentType())
 | |
|     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
 | |
|       << FnDecl->getDeclName() << ExpectedFirstParamType;
 | |
| 
 | |
|   // Check that the first parameter type is what we expect.
 | |
|   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 
 | |
|       ExpectedFirstParamType)
 | |
|     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
 | |
|     << FnDecl->getDeclName() << ExpectedFirstParamType;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
 | |
|   // C++ [basic.stc.dynamic.allocation]p1:
 | |
|   //   A program is ill-formed if an allocation function is declared in a
 | |
|   //   namespace scope other than global scope or declared static in global 
 | |
|   //   scope.
 | |
|   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
 | |
|     return true;
 | |
| 
 | |
|   CanQualType SizeTy = 
 | |
|     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.allocation]p1:
 | |
|   //  The return type shall be void*. The first parameter shall have type 
 | |
|   //  std::size_t.
 | |
|   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 
 | |
|                                   SizeTy,
 | |
|                                   diag::err_operator_new_dependent_param_type,
 | |
|                                   diag::err_operator_new_param_type))
 | |
|     return true;
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.allocation]p1:
 | |
|   //  The first parameter shall not have an associated default argument.
 | |
|   if (FnDecl->getParamDecl(0)->hasDefaultArg())
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_default_arg)
 | |
|       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
 | |
|   // C++ [basic.stc.dynamic.deallocation]p1:
 | |
|   //   A program is ill-formed if deallocation functions are declared in a
 | |
|   //   namespace scope other than global scope or declared static in global 
 | |
|   //   scope.
 | |
|   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
 | |
|     return true;
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.deallocation]p2:
 | |
|   //   Each deallocation function shall return void and its first parameter 
 | |
|   //   shall be void*.
 | |
|   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, 
 | |
|                                   SemaRef.Context.VoidPtrTy,
 | |
|                                  diag::err_operator_delete_dependent_param_type,
 | |
|                                  diag::err_operator_delete_param_type))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckOverloadedOperatorDeclaration - Check whether the declaration
 | |
| /// of this overloaded operator is well-formed. If so, returns false;
 | |
| /// otherwise, emits appropriate diagnostics and returns true.
 | |
| bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
 | |
|   assert(FnDecl && FnDecl->isOverloadedOperator() &&
 | |
|          "Expected an overloaded operator declaration");
 | |
| 
 | |
|   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
 | |
| 
 | |
|   // C++ [over.oper]p5:
 | |
|   //   The allocation and deallocation functions, operator new,
 | |
|   //   operator new[], operator delete and operator delete[], are
 | |
|   //   described completely in 3.7.3. The attributes and restrictions
 | |
|   //   found in the rest of this subclause do not apply to them unless
 | |
|   //   explicitly stated in 3.7.3.
 | |
|   if (Op == OO_Delete || Op == OO_Array_Delete)
 | |
|     return CheckOperatorDeleteDeclaration(*this, FnDecl);
 | |
|   
 | |
|   if (Op == OO_New || Op == OO_Array_New)
 | |
|     return CheckOperatorNewDeclaration(*this, FnDecl);
 | |
| 
 | |
|   // C++ [over.oper]p6:
 | |
|   //   An operator function shall either be a non-static member
 | |
|   //   function or be a non-member function and have at least one
 | |
|   //   parameter whose type is a class, a reference to a class, an
 | |
|   //   enumeration, or a reference to an enumeration.
 | |
|   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
 | |
|     if (MethodDecl->isStatic())
 | |
|       return Diag(FnDecl->getLocation(),
 | |
|                   diag::err_operator_overload_static) << FnDecl->getDeclName();
 | |
|   } else {
 | |
|     bool ClassOrEnumParam = false;
 | |
|     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
 | |
|                                    ParamEnd = FnDecl->param_end();
 | |
|          Param != ParamEnd; ++Param) {
 | |
|       QualType ParamType = (*Param)->getType().getNonReferenceType();
 | |
|       if (ParamType->isDependentType() || ParamType->isRecordType() ||
 | |
|           ParamType->isEnumeralType()) {
 | |
|         ClassOrEnumParam = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!ClassOrEnumParam)
 | |
|       return Diag(FnDecl->getLocation(),
 | |
|                   diag::err_operator_overload_needs_class_or_enum)
 | |
|         << FnDecl->getDeclName();
 | |
|   }
 | |
| 
 | |
|   // C++ [over.oper]p8:
 | |
|   //   An operator function cannot have default arguments (8.3.6),
 | |
|   //   except where explicitly stated below.
 | |
|   //
 | |
|   // Only the function-call operator allows default arguments
 | |
|   // (C++ [over.call]p1).
 | |
|   if (Op != OO_Call) {
 | |
|     for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
 | |
|          Param != FnDecl->param_end(); ++Param) {
 | |
|       if ((*Param)->hasDefaultArg())
 | |
|         return Diag((*Param)->getLocation(),
 | |
|                     diag::err_operator_overload_default_arg)
 | |
|           << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
 | |
|     { false, false, false }
 | |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
 | |
|     , { Unary, Binary, MemberOnly }
 | |
| #include "clang/Basic/OperatorKinds.def"
 | |
|   };
 | |
| 
 | |
|   bool CanBeUnaryOperator = OperatorUses[Op][0];
 | |
|   bool CanBeBinaryOperator = OperatorUses[Op][1];
 | |
|   bool MustBeMemberOperator = OperatorUses[Op][2];
 | |
| 
 | |
|   // C++ [over.oper]p8:
 | |
|   //   [...] Operator functions cannot have more or fewer parameters
 | |
|   //   than the number required for the corresponding operator, as
 | |
|   //   described in the rest of this subclause.
 | |
|   unsigned NumParams = FnDecl->getNumParams()
 | |
|                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
 | |
|   if (Op != OO_Call &&
 | |
|       ((NumParams == 1 && !CanBeUnaryOperator) ||
 | |
|        (NumParams == 2 && !CanBeBinaryOperator) ||
 | |
|        (NumParams < 1) || (NumParams > 2))) {
 | |
|     // We have the wrong number of parameters.
 | |
|     unsigned ErrorKind;
 | |
|     if (CanBeUnaryOperator && CanBeBinaryOperator) {
 | |
|       ErrorKind = 2;  // 2 -> unary or binary.
 | |
|     } else if (CanBeUnaryOperator) {
 | |
|       ErrorKind = 0;  // 0 -> unary
 | |
|     } else {
 | |
|       assert(CanBeBinaryOperator &&
 | |
|              "All non-call overloaded operators are unary or binary!");
 | |
|       ErrorKind = 1;  // 1 -> binary
 | |
|     }
 | |
| 
 | |
|     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
 | |
|       << FnDecl->getDeclName() << NumParams << ErrorKind;
 | |
|   }
 | |
| 
 | |
|   // Overloaded operators other than operator() cannot be variadic.
 | |
|   if (Op != OO_Call &&
 | |
|       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
 | |
|     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
 | |
|       << FnDecl->getDeclName();
 | |
|   }
 | |
| 
 | |
|   // Some operators must be non-static member functions.
 | |
|   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
 | |
|     return Diag(FnDecl->getLocation(),
 | |
|                 diag::err_operator_overload_must_be_member)
 | |
|       << FnDecl->getDeclName();
 | |
|   }
 | |
| 
 | |
|   // C++ [over.inc]p1:
 | |
|   //   The user-defined function called operator++ implements the
 | |
|   //   prefix and postfix ++ operator. If this function is a member
 | |
|   //   function with no parameters, or a non-member function with one
 | |
|   //   parameter of class or enumeration type, it defines the prefix
 | |
|   //   increment operator ++ for objects of that type. If the function
 | |
|   //   is a member function with one parameter (which shall be of type
 | |
|   //   int) or a non-member function with two parameters (the second
 | |
|   //   of which shall be of type int), it defines the postfix
 | |
|   //   increment operator ++ for objects of that type.
 | |
|   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
 | |
|     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
 | |
|     bool ParamIsInt = false;
 | |
|     if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
 | |
|       ParamIsInt = BT->getKind() == BuiltinType::Int;
 | |
| 
 | |
|     if (!ParamIsInt)
 | |
|       return Diag(LastParam->getLocation(),
 | |
|                   diag::err_operator_overload_post_incdec_must_be_int)
 | |
|         << LastParam->getType() << (Op == OO_MinusMinus);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckLiteralOperatorDeclaration - Check whether the declaration
 | |
| /// of this literal operator function is well-formed. If so, returns
 | |
| /// false; otherwise, emits appropriate diagnostics and returns true.
 | |
| bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
 | |
|   if (isa<CXXMethodDecl>(FnDecl)) {
 | |
|     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
 | |
|       << FnDecl->getDeclName();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (FnDecl->isExternC()) {
 | |
|     Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool Valid = false;
 | |
| 
 | |
|   // This might be the definition of a literal operator template.
 | |
|   FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
 | |
|   // This might be a specialization of a literal operator template.
 | |
|   if (!TpDecl)
 | |
|     TpDecl = FnDecl->getPrimaryTemplate();
 | |
| 
 | |
|   // template <char...> type operator "" name() is the only valid template
 | |
|   // signature, and the only valid signature with no parameters.
 | |
|   if (TpDecl) {
 | |
|     if (FnDecl->param_size() == 0) {
 | |
|       // Must have only one template parameter
 | |
|       TemplateParameterList *Params = TpDecl->getTemplateParameters();
 | |
|       if (Params->size() == 1) {
 | |
|         NonTypeTemplateParmDecl *PmDecl =
 | |
|           dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
 | |
| 
 | |
|         // The template parameter must be a char parameter pack.
 | |
|         if (PmDecl && PmDecl->isTemplateParameterPack() &&
 | |
|             Context.hasSameType(PmDecl->getType(), Context.CharTy))
 | |
|           Valid = true;
 | |
|       }
 | |
|     }
 | |
|   } else if (FnDecl->param_size()) {
 | |
|     // Check the first parameter
 | |
|     FunctionDecl::param_iterator Param = FnDecl->param_begin();
 | |
| 
 | |
|     QualType T = (*Param)->getType().getUnqualifiedType();
 | |
| 
 | |
|     // unsigned long long int, long double, and any character type are allowed
 | |
|     // as the only parameters.
 | |
|     if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
 | |
|         Context.hasSameType(T, Context.LongDoubleTy) ||
 | |
|         Context.hasSameType(T, Context.CharTy) ||
 | |
|         Context.hasSameType(T, Context.WideCharTy) ||
 | |
|         Context.hasSameType(T, Context.Char16Ty) ||
 | |
|         Context.hasSameType(T, Context.Char32Ty)) {
 | |
|       if (++Param == FnDecl->param_end())
 | |
|         Valid = true;
 | |
|       goto FinishedParams;
 | |
|     }
 | |
| 
 | |
|     // Otherwise it must be a pointer to const; let's strip those qualifiers.
 | |
|     const PointerType *PT = T->getAs<PointerType>();
 | |
|     if (!PT)
 | |
|       goto FinishedParams;
 | |
|     T = PT->getPointeeType();
 | |
|     if (!T.isConstQualified() || T.isVolatileQualified())
 | |
|       goto FinishedParams;
 | |
|     T = T.getUnqualifiedType();
 | |
| 
 | |
|     // Move on to the second parameter;
 | |
|     ++Param;
 | |
| 
 | |
|     // If there is no second parameter, the first must be a const char *
 | |
|     if (Param == FnDecl->param_end()) {
 | |
|       if (Context.hasSameType(T, Context.CharTy))
 | |
|         Valid = true;
 | |
|       goto FinishedParams;
 | |
|     }
 | |
| 
 | |
|     // const char *, const wchar_t*, const char16_t*, and const char32_t*
 | |
|     // are allowed as the first parameter to a two-parameter function
 | |
|     if (!(Context.hasSameType(T, Context.CharTy) ||
 | |
|           Context.hasSameType(T, Context.WideCharTy) ||
 | |
|           Context.hasSameType(T, Context.Char16Ty) ||
 | |
|           Context.hasSameType(T, Context.Char32Ty)))
 | |
|       goto FinishedParams;
 | |
| 
 | |
|     // The second and final parameter must be an std::size_t
 | |
|     T = (*Param)->getType().getUnqualifiedType();
 | |
|     if (Context.hasSameType(T, Context.getSizeType()) &&
 | |
|         ++Param == FnDecl->param_end())
 | |
|       Valid = true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: This diagnostic is absolutely terrible.
 | |
| FinishedParams:
 | |
|   if (!Valid) {
 | |
|     Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
 | |
|       << FnDecl->getDeclName();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // A parameter-declaration-clause containing a default argument is not
 | |
|   // equivalent to any of the permitted forms.
 | |
|   for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
 | |
|                                     ParamEnd = FnDecl->param_end();
 | |
|        Param != ParamEnd; ++Param) {
 | |
|     if ((*Param)->hasDefaultArg()) {
 | |
|       Diag((*Param)->getDefaultArgRange().getBegin(),
 | |
|            diag::err_literal_operator_default_argument)
 | |
|         << (*Param)->getDefaultArgRange();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   StringRef LiteralName
 | |
|     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
 | |
|   if (LiteralName[0] != '_') {
 | |
|     // C++11 [usrlit.suffix]p1:
 | |
|     //   Literal suffix identifiers that do not start with an underscore
 | |
|     //   are reserved for future standardization.
 | |
|     Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
 | |
|       << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
 | |
| /// linkage specification, including the language and (if present)
 | |
| /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
 | |
| /// the location of the language string literal, which is provided
 | |
| /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
 | |
| /// the '{' brace. Otherwise, this linkage specification does not
 | |
| /// have any braces.
 | |
| Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
 | |
|                                            SourceLocation LangLoc,
 | |
|                                            StringRef Lang,
 | |
|                                            SourceLocation LBraceLoc) {
 | |
|   LinkageSpecDecl::LanguageIDs Language;
 | |
|   if (Lang == "\"C\"")
 | |
|     Language = LinkageSpecDecl::lang_c;
 | |
|   else if (Lang == "\"C++\"")
 | |
|     Language = LinkageSpecDecl::lang_cxx;
 | |
|   else {
 | |
|     Diag(LangLoc, diag::err_bad_language);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Add all the various semantics of linkage specifications
 | |
| 
 | |
|   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
 | |
|                                                ExternLoc, LangLoc, Language,
 | |
|                                                LBraceLoc.isValid());
 | |
|   CurContext->addDecl(D);
 | |
|   PushDeclContext(S, D);
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| /// ActOnFinishLinkageSpecification - Complete the definition of
 | |
| /// the C++ linkage specification LinkageSpec. If RBraceLoc is
 | |
| /// valid, it's the position of the closing '}' brace in a linkage
 | |
| /// specification that uses braces.
 | |
| Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
 | |
|                                             Decl *LinkageSpec,
 | |
|                                             SourceLocation RBraceLoc) {
 | |
|   if (LinkageSpec) {
 | |
|     if (RBraceLoc.isValid()) {
 | |
|       LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
 | |
|       LSDecl->setRBraceLoc(RBraceLoc);
 | |
|     }
 | |
|     PopDeclContext();
 | |
|   }
 | |
|   return LinkageSpec;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnEmptyDeclaration(Scope *S,
 | |
|                                   AttributeList *AttrList,
 | |
|                                   SourceLocation SemiLoc) {
 | |
|   Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
 | |
|   // Attribute declarations appertain to empty declaration so we handle
 | |
|   // them here.
 | |
|   if (AttrList)
 | |
|     ProcessDeclAttributeList(S, ED, AttrList);
 | |
| 
 | |
|   CurContext->addDecl(ED);
 | |
|   return ED;
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic analysis for the variable declaration that
 | |
| /// occurs within a C++ catch clause, returning the newly-created
 | |
| /// variable.
 | |
| VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
 | |
|                                          TypeSourceInfo *TInfo,
 | |
|                                          SourceLocation StartLoc,
 | |
|                                          SourceLocation Loc,
 | |
|                                          IdentifierInfo *Name) {
 | |
|   bool Invalid = false;
 | |
|   QualType ExDeclType = TInfo->getType();
 | |
|   
 | |
|   // Arrays and functions decay.
 | |
|   if (ExDeclType->isArrayType())
 | |
|     ExDeclType = Context.getArrayDecayedType(ExDeclType);
 | |
|   else if (ExDeclType->isFunctionType())
 | |
|     ExDeclType = Context.getPointerType(ExDeclType);
 | |
| 
 | |
|   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
 | |
|   // The exception-declaration shall not denote a pointer or reference to an
 | |
|   // incomplete type, other than [cv] void*.
 | |
|   // N2844 forbids rvalue references.
 | |
|   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
 | |
|     Diag(Loc, diag::err_catch_rvalue_ref);
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   QualType BaseType = ExDeclType;
 | |
|   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
 | |
|   unsigned DK = diag::err_catch_incomplete;
 | |
|   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
 | |
|     BaseType = Ptr->getPointeeType();
 | |
|     Mode = 1;
 | |
|     DK = diag::err_catch_incomplete_ptr;
 | |
|   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
 | |
|     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
 | |
|     BaseType = Ref->getPointeeType();
 | |
|     Mode = 2;
 | |
|     DK = diag::err_catch_incomplete_ref;
 | |
|   }
 | |
|   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
 | |
|       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
 | |
|     Invalid = true;
 | |
| 
 | |
|   if (!Invalid && !ExDeclType->isDependentType() &&
 | |
|       RequireNonAbstractType(Loc, ExDeclType,
 | |
|                              diag::err_abstract_type_in_decl,
 | |
|                              AbstractVariableType))
 | |
|     Invalid = true;
 | |
| 
 | |
|   // Only the non-fragile NeXT runtime currently supports C++ catches
 | |
|   // of ObjC types, and no runtime supports catching ObjC types by value.
 | |
|   if (!Invalid && getLangOpts().ObjC1) {
 | |
|     QualType T = ExDeclType;
 | |
|     if (const ReferenceType *RT = T->getAs<ReferenceType>())
 | |
|       T = RT->getPointeeType();
 | |
| 
 | |
|     if (T->isObjCObjectType()) {
 | |
|       Diag(Loc, diag::err_objc_object_catch);
 | |
|       Invalid = true;
 | |
|     } else if (T->isObjCObjectPointerType()) {
 | |
|       // FIXME: should this be a test for macosx-fragile specifically?
 | |
|       if (getLangOpts().ObjCRuntime.isFragile())
 | |
|         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
 | |
|                                     ExDeclType, TInfo, SC_None);
 | |
|   ExDecl->setExceptionVariable(true);
 | |
|   
 | |
|   // In ARC, infer 'retaining' for variables of retainable type.
 | |
|   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
 | |
|     Invalid = true;
 | |
| 
 | |
|   if (!Invalid && !ExDeclType->isDependentType()) {
 | |
|     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
 | |
|       // Insulate this from anything else we might currently be parsing.
 | |
|       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
 | |
| 
 | |
|       // C++ [except.handle]p16:
 | |
|       //   The object declared in an exception-declaration or, if the 
 | |
|       //   exception-declaration does not specify a name, a temporary (12.2) is 
 | |
|       //   copy-initialized (8.5) from the exception object. [...]
 | |
|       //   The object is destroyed when the handler exits, after the destruction
 | |
|       //   of any automatic objects initialized within the handler.
 | |
|       //
 | |
|       // We just pretend to initialize the object with itself, then make sure 
 | |
|       // it can be destroyed later.
 | |
|       QualType initType = ExDeclType;
 | |
| 
 | |
|       InitializedEntity entity =
 | |
|         InitializedEntity::InitializeVariable(ExDecl);
 | |
|       InitializationKind initKind =
 | |
|         InitializationKind::CreateCopy(Loc, SourceLocation());
 | |
| 
 | |
|       Expr *opaqueValue =
 | |
|         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
 | |
|       InitializationSequence sequence(*this, entity, initKind, opaqueValue);
 | |
|       ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
 | |
|       if (result.isInvalid())
 | |
|         Invalid = true;
 | |
|       else {
 | |
|         // If the constructor used was non-trivial, set this as the
 | |
|         // "initializer".
 | |
|         CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
 | |
|         if (!construct->getConstructor()->isTrivial()) {
 | |
|           Expr *init = MaybeCreateExprWithCleanups(construct);
 | |
|           ExDecl->setInit(init);
 | |
|         }
 | |
|         
 | |
|         // And make sure it's destructable.
 | |
|         FinalizeVarWithDestructor(ExDecl, recordType);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Invalid)
 | |
|     ExDecl->setInvalidDecl();
 | |
| 
 | |
|   return ExDecl;
 | |
| }
 | |
| 
 | |
| /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
 | |
| /// handler.
 | |
| Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   bool Invalid = D.isInvalidType();
 | |
| 
 | |
|   // Check for unexpanded parameter packs.
 | |
|   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | |
|                                       UPPC_ExceptionType)) {
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 
 | |
|                                              D.getIdentifierLoc());
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   IdentifierInfo *II = D.getIdentifier();
 | |
|   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
 | |
|                                              LookupOrdinaryName,
 | |
|                                              ForRedeclaration)) {
 | |
|     // The scope should be freshly made just for us. There is just no way
 | |
|     // it contains any previous declaration.
 | |
|     assert(!S->isDeclScope(PrevDecl));
 | |
|     if (PrevDecl->isTemplateParameter()) {
 | |
|       // Maybe we will complain about the shadowed template parameter.
 | |
|       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | |
|       PrevDecl = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (D.getCXXScopeSpec().isSet() && !Invalid) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
 | |
|       << D.getCXXScopeSpec().getRange();
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
 | |
|                                               D.getLocStart(),
 | |
|                                               D.getIdentifierLoc(),
 | |
|                                               D.getIdentifier());
 | |
|   if (Invalid)
 | |
|     ExDecl->setInvalidDecl();
 | |
| 
 | |
|   // Add the exception declaration into this scope.
 | |
|   if (II)
 | |
|     PushOnScopeChains(ExDecl, S);
 | |
|   else
 | |
|     CurContext->addDecl(ExDecl);
 | |
| 
 | |
|   ProcessDeclAttributes(S, ExDecl, D);
 | |
|   return ExDecl;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
 | |
|                                          Expr *AssertExpr,
 | |
|                                          Expr *AssertMessageExpr,
 | |
|                                          SourceLocation RParenLoc) {
 | |
|   StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
 | |
|     return 0;
 | |
| 
 | |
|   return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
 | |
|                                       AssertMessage, RParenLoc, false);
 | |
| }
 | |
| 
 | |
| Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
 | |
|                                          Expr *AssertExpr,
 | |
|                                          StringLiteral *AssertMessage,
 | |
|                                          SourceLocation RParenLoc,
 | |
|                                          bool Failed) {
 | |
|   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
 | |
|       !Failed) {
 | |
|     // In a static_assert-declaration, the constant-expression shall be a
 | |
|     // constant expression that can be contextually converted to bool.
 | |
|     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
 | |
|     if (Converted.isInvalid())
 | |
|       Failed = true;
 | |
| 
 | |
|     llvm::APSInt Cond;
 | |
|     if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
 | |
|           diag::err_static_assert_expression_is_not_constant,
 | |
|           /*AllowFold=*/false).isInvalid())
 | |
|       Failed = true;
 | |
| 
 | |
|     if (!Failed && !Cond) {
 | |
|       SmallString<256> MsgBuffer;
 | |
|       llvm::raw_svector_ostream Msg(MsgBuffer);
 | |
|       AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
 | |
|       Diag(StaticAssertLoc, diag::err_static_assert_failed)
 | |
|         << Msg.str() << AssertExpr->getSourceRange();
 | |
|       Failed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
 | |
|                                         AssertExpr, AssertMessage, RParenLoc,
 | |
|                                         Failed);
 | |
| 
 | |
|   CurContext->addDecl(Decl);
 | |
|   return Decl;
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic analysis of the given friend type declaration.
 | |
| ///
 | |
| /// \returns A friend declaration that.
 | |
| FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
 | |
|                                       SourceLocation FriendLoc,
 | |
|                                       TypeSourceInfo *TSInfo) {
 | |
|   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
 | |
|   
 | |
|   QualType T = TSInfo->getType();
 | |
|   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
 | |
|   
 | |
|   // C++03 [class.friend]p2:
 | |
|   //   An elaborated-type-specifier shall be used in a friend declaration
 | |
|   //   for a class.*
 | |
|   //
 | |
|   //   * The class-key of the elaborated-type-specifier is required.
 | |
|   if (!ActiveTemplateInstantiations.empty()) {
 | |
|     // Do not complain about the form of friend template types during
 | |
|     // template instantiation; we will already have complained when the
 | |
|     // template was declared.
 | |
|   } else {
 | |
|     if (!T->isElaboratedTypeSpecifier()) {
 | |
|       // If we evaluated the type to a record type, suggest putting
 | |
|       // a tag in front.
 | |
|       if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|         RecordDecl *RD = RT->getDecl();
 | |
|       
 | |
|         std::string InsertionText = std::string(" ") + RD->getKindName();
 | |
|       
 | |
|         Diag(TypeRange.getBegin(),
 | |
|              getLangOpts().CPlusPlus11 ?
 | |
|                diag::warn_cxx98_compat_unelaborated_friend_type :
 | |
|                diag::ext_unelaborated_friend_type)
 | |
|           << (unsigned) RD->getTagKind()
 | |
|           << T
 | |
|           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
 | |
|                                         InsertionText);
 | |
|       } else {
 | |
|         Diag(FriendLoc,
 | |
|              getLangOpts().CPlusPlus11 ?
 | |
|                diag::warn_cxx98_compat_nonclass_type_friend :
 | |
|                diag::ext_nonclass_type_friend)
 | |
|           << T
 | |
|           << TypeRange;
 | |
|       }
 | |
|     } else if (T->getAs<EnumType>()) {
 | |
|       Diag(FriendLoc,
 | |
|            getLangOpts().CPlusPlus11 ?
 | |
|              diag::warn_cxx98_compat_enum_friend :
 | |
|              diag::ext_enum_friend)
 | |
|         << T
 | |
|         << TypeRange;
 | |
|     }
 | |
|   
 | |
|     // C++11 [class.friend]p3:
 | |
|     //   A friend declaration that does not declare a function shall have one
 | |
|     //   of the following forms:
 | |
|     //     friend elaborated-type-specifier ;
 | |
|     //     friend simple-type-specifier ;
 | |
|     //     friend typename-specifier ;
 | |
|     if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
 | |
|       Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
 | |
|   }
 | |
| 
 | |
|   //   If the type specifier in a friend declaration designates a (possibly
 | |
|   //   cv-qualified) class type, that class is declared as a friend; otherwise,
 | |
|   //   the friend declaration is ignored.
 | |
|   return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
 | |
| }
 | |
| 
 | |
| /// Handle a friend tag declaration where the scope specifier was
 | |
| /// templated.
 | |
| Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
 | |
|                                     unsigned TagSpec, SourceLocation TagLoc,
 | |
|                                     CXXScopeSpec &SS,
 | |
|                                     IdentifierInfo *Name,
 | |
|                                     SourceLocation NameLoc,
 | |
|                                     AttributeList *Attr,
 | |
|                                     MultiTemplateParamsArg TempParamLists) {
 | |
|   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | |
| 
 | |
|   bool isExplicitSpecialization = false;
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   if (TemplateParameterList *TemplateParams =
 | |
|           MatchTemplateParametersToScopeSpecifier(
 | |
|               TagLoc, NameLoc, SS, TempParamLists, /*friend*/ true,
 | |
|               isExplicitSpecialization, Invalid)) {
 | |
|     if (TemplateParams->size() > 0) {
 | |
|       // This is a declaration of a class template.
 | |
|       if (Invalid)
 | |
|         return 0;
 | |
| 
 | |
|       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
 | |
|                                 SS, Name, NameLoc, Attr,
 | |
|                                 TemplateParams, AS_public,
 | |
|                                 /*ModulePrivateLoc=*/SourceLocation(),
 | |
|                                 TempParamLists.size() - 1,
 | |
|                                 TempParamLists.data()).take();
 | |
|     } else {
 | |
|       // The "template<>" header is extraneous.
 | |
|       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
 | |
|         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
 | |
|       isExplicitSpecialization = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Invalid) return 0;
 | |
| 
 | |
|   bool isAllExplicitSpecializations = true;
 | |
|   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
 | |
|     if (TempParamLists[I]->size()) {
 | |
|       isAllExplicitSpecializations = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: don't ignore attributes.
 | |
| 
 | |
|   // If it's explicit specializations all the way down, just forget
 | |
|   // about the template header and build an appropriate non-templated
 | |
|   // friend.  TODO: for source fidelity, remember the headers.
 | |
|   if (isAllExplicitSpecializations) {
 | |
|     if (SS.isEmpty()) {
 | |
|       bool Owned = false;
 | |
|       bool IsDependent = false;
 | |
|       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
 | |
|                       Attr, AS_public, 
 | |
|                       /*ModulePrivateLoc=*/SourceLocation(),
 | |
|                       MultiTemplateParamsArg(), Owned, IsDependent, 
 | |
|                       /*ScopedEnumKWLoc=*/SourceLocation(),
 | |
|                       /*ScopedEnumUsesClassTag=*/false,
 | |
|                       /*UnderlyingType=*/TypeResult());          
 | |
|     }
 | |
|     
 | |
|     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | |
|     ElaboratedTypeKeyword Keyword
 | |
|       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
 | |
|     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
 | |
|                                    *Name, NameLoc);
 | |
|     if (T.isNull())
 | |
|       return 0;
 | |
| 
 | |
|     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
 | |
|     if (isa<DependentNameType>(T)) {
 | |
|       DependentNameTypeLoc TL =
 | |
|           TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
 | |
|       TL.setElaboratedKeywordLoc(TagLoc);
 | |
|       TL.setQualifierLoc(QualifierLoc);
 | |
|       TL.setNameLoc(NameLoc);
 | |
|     } else {
 | |
|       ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
 | |
|       TL.setElaboratedKeywordLoc(TagLoc);
 | |
|       TL.setQualifierLoc(QualifierLoc);
 | |
|       TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
 | |
|     }
 | |
| 
 | |
|     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
 | |
|                                             TSI, FriendLoc, TempParamLists);
 | |
|     Friend->setAccess(AS_public);
 | |
|     CurContext->addDecl(Friend);
 | |
|     return Friend;
 | |
|   }
 | |
|   
 | |
|   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
 | |
|   
 | |
| 
 | |
| 
 | |
|   // Handle the case of a templated-scope friend class.  e.g.
 | |
|   //   template <class T> class A<T>::B;
 | |
|   // FIXME: we don't support these right now.
 | |
|   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
 | |
|   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
 | |
|   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
 | |
|   DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
 | |
|   TL.setElaboratedKeywordLoc(TagLoc);
 | |
|   TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|   TL.setNameLoc(NameLoc);
 | |
| 
 | |
|   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
 | |
|                                           TSI, FriendLoc, TempParamLists);
 | |
|   Friend->setAccess(AS_public);
 | |
|   Friend->setUnsupportedFriend(true);
 | |
|   CurContext->addDecl(Friend);
 | |
|   return Friend;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Handle a friend type declaration.  This works in tandem with
 | |
| /// ActOnTag.
 | |
| ///
 | |
| /// Notes on friend class templates:
 | |
| ///
 | |
| /// We generally treat friend class declarations as if they were
 | |
| /// declaring a class.  So, for example, the elaborated type specifier
 | |
| /// in a friend declaration is required to obey the restrictions of a
 | |
| /// class-head (i.e. no typedefs in the scope chain), template
 | |
| /// parameters are required to match up with simple template-ids, &c.
 | |
| /// However, unlike when declaring a template specialization, it's
 | |
| /// okay to refer to a template specialization without an empty
 | |
| /// template parameter declaration, e.g.
 | |
| ///   friend class A<T>::B<unsigned>;
 | |
| /// We permit this as a special case; if there are any template
 | |
| /// parameters present at all, require proper matching, i.e.
 | |
| ///   template <> template \<class T> friend class A<int>::B;
 | |
| Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
 | |
|                                 MultiTemplateParamsArg TempParams) {
 | |
|   SourceLocation Loc = DS.getLocStart();
 | |
| 
 | |
|   assert(DS.isFriendSpecified());
 | |
|   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
 | |
| 
 | |
|   // Try to convert the decl specifier to a type.  This works for
 | |
|   // friend templates because ActOnTag never produces a ClassTemplateDecl
 | |
|   // for a TUK_Friend.
 | |
|   Declarator TheDeclarator(DS, Declarator::MemberContext);
 | |
|   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
 | |
|   QualType T = TSI->getType();
 | |
|   if (TheDeclarator.isInvalidType())
 | |
|     return 0;
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
 | |
|     return 0;
 | |
| 
 | |
|   // This is definitely an error in C++98.  It's probably meant to
 | |
|   // be forbidden in C++0x, too, but the specification is just
 | |
|   // poorly written.
 | |
|   //
 | |
|   // The problem is with declarations like the following:
 | |
|   //   template <T> friend A<T>::foo;
 | |
|   // where deciding whether a class C is a friend or not now hinges
 | |
|   // on whether there exists an instantiation of A that causes
 | |
|   // 'foo' to equal C.  There are restrictions on class-heads
 | |
|   // (which we declare (by fiat) elaborated friend declarations to
 | |
|   // be) that makes this tractable.
 | |
|   //
 | |
|   // FIXME: handle "template <> friend class A<T>;", which
 | |
|   // is possibly well-formed?  Who even knows?
 | |
|   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
 | |
|     Diag(Loc, diag::err_tagless_friend_type_template)
 | |
|       << DS.getSourceRange();
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   // C++98 [class.friend]p1: A friend of a class is a function
 | |
|   //   or class that is not a member of the class . . .
 | |
|   // This is fixed in DR77, which just barely didn't make the C++03
 | |
|   // deadline.  It's also a very silly restriction that seriously
 | |
|   // affects inner classes and which nobody else seems to implement;
 | |
|   // thus we never diagnose it, not even in -pedantic.
 | |
|   //
 | |
|   // But note that we could warn about it: it's always useless to
 | |
|   // friend one of your own members (it's not, however, worthless to
 | |
|   // friend a member of an arbitrary specialization of your template).
 | |
| 
 | |
|   Decl *D;
 | |
|   if (unsigned NumTempParamLists = TempParams.size())
 | |
|     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
 | |
|                                    NumTempParamLists,
 | |
|                                    TempParams.data(),
 | |
|                                    TSI,
 | |
|                                    DS.getFriendSpecLoc());
 | |
|   else
 | |
|     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
 | |
|   
 | |
|   if (!D)
 | |
|     return 0;
 | |
|   
 | |
|   D->setAccess(AS_public);
 | |
|   CurContext->addDecl(D);
 | |
| 
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
 | |
|                                         MultiTemplateParamsArg TemplateParams) {
 | |
|   const DeclSpec &DS = D.getDeclSpec();
 | |
| 
 | |
|   assert(DS.isFriendSpecified());
 | |
|   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
 | |
| 
 | |
|   SourceLocation Loc = D.getIdentifierLoc();
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
| 
 | |
|   // C++ [class.friend]p1
 | |
|   //   A friend of a class is a function or class....
 | |
|   // Note that this sees through typedefs, which is intended.
 | |
|   // It *doesn't* see through dependent types, which is correct
 | |
|   // according to [temp.arg.type]p3:
 | |
|   //   If a declaration acquires a function type through a
 | |
|   //   type dependent on a template-parameter and this causes
 | |
|   //   a declaration that does not use the syntactic form of a
 | |
|   //   function declarator to have a function type, the program
 | |
|   //   is ill-formed.
 | |
|   if (!TInfo->getType()->isFunctionType()) {
 | |
|     Diag(Loc, diag::err_unexpected_friend);
 | |
| 
 | |
|     // It might be worthwhile to try to recover by creating an
 | |
|     // appropriate declaration.
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // C++ [namespace.memdef]p3
 | |
|   //  - If a friend declaration in a non-local class first declares a
 | |
|   //    class or function, the friend class or function is a member
 | |
|   //    of the innermost enclosing namespace.
 | |
|   //  - The name of the friend is not found by simple name lookup
 | |
|   //    until a matching declaration is provided in that namespace
 | |
|   //    scope (either before or after the class declaration granting
 | |
|   //    friendship).
 | |
|   //  - If a friend function is called, its name may be found by the
 | |
|   //    name lookup that considers functions from namespaces and
 | |
|   //    classes associated with the types of the function arguments.
 | |
|   //  - When looking for a prior declaration of a class or a function
 | |
|   //    declared as a friend, scopes outside the innermost enclosing
 | |
|   //    namespace scope are not considered.
 | |
| 
 | |
|   CXXScopeSpec &SS = D.getCXXScopeSpec();
 | |
|   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   assert(Name);
 | |
| 
 | |
|   // Check for unexpanded parameter packs.
 | |
|   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
 | |
|       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
 | |
|       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
 | |
|     return 0;
 | |
| 
 | |
|   // The context we found the declaration in, or in which we should
 | |
|   // create the declaration.
 | |
|   DeclContext *DC;
 | |
|   Scope *DCScope = S;
 | |
|   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
 | |
|                         ForRedeclaration);
 | |
| 
 | |
|   // FIXME: there are different rules in local classes
 | |
| 
 | |
|   // There are four cases here.
 | |
|   //   - There's no scope specifier, in which case we just go to the
 | |
|   //     appropriate scope and look for a function or function template
 | |
|   //     there as appropriate.
 | |
|   // Recover from invalid scope qualifiers as if they just weren't there.
 | |
|   if (SS.isInvalid() || !SS.isSet()) {
 | |
|     // C++0x [namespace.memdef]p3:
 | |
|     //   If the name in a friend declaration is neither qualified nor
 | |
|     //   a template-id and the declaration is a function or an
 | |
|     //   elaborated-type-specifier, the lookup to determine whether
 | |
|     //   the entity has been previously declared shall not consider
 | |
|     //   any scopes outside the innermost enclosing namespace.
 | |
|     // C++0x [class.friend]p11:
 | |
|     //   If a friend declaration appears in a local class and the name
 | |
|     //   specified is an unqualified name, a prior declaration is
 | |
|     //   looked up without considering scopes that are outside the
 | |
|     //   innermost enclosing non-class scope. For a friend function
 | |
|     //   declaration, if there is no prior declaration, the program is
 | |
|     //   ill-formed.
 | |
|     bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
 | |
|     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
 | |
| 
 | |
|     // Find the appropriate context according to the above.
 | |
|     DC = CurContext;
 | |
| 
 | |
|     // Skip class contexts.  If someone can cite chapter and verse
 | |
|     // for this behavior, that would be nice --- it's what GCC and
 | |
|     // EDG do, and it seems like a reasonable intent, but the spec
 | |
|     // really only says that checks for unqualified existing
 | |
|     // declarations should stop at the nearest enclosing namespace,
 | |
|     // not that they should only consider the nearest enclosing
 | |
|     // namespace.
 | |
|     while (DC->isRecord())
 | |
|       DC = DC->getParent();
 | |
| 
 | |
|     DeclContext *LookupDC = DC;
 | |
|     while (LookupDC->isTransparentContext())
 | |
|       LookupDC = LookupDC->getParent();
 | |
| 
 | |
|     while (true) {
 | |
|       LookupQualifiedName(Previous, LookupDC);
 | |
| 
 | |
|       // TODO: decide what we think about using declarations.
 | |
|       if (isLocal)
 | |
|         break;
 | |
| 
 | |
|       if (!Previous.empty()) {
 | |
|         DC = LookupDC;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (isTemplateId) {
 | |
|         if (isa<TranslationUnitDecl>(LookupDC)) break;
 | |
|       } else {
 | |
|         if (LookupDC->isFileContext()) break;
 | |
|       }
 | |
|       LookupDC = LookupDC->getParent();
 | |
|     }
 | |
| 
 | |
|     DCScope = getScopeForDeclContext(S, DC);
 | |
|     
 | |
|     // C++ [class.friend]p6:
 | |
|     //   A function can be defined in a friend declaration of a class if and 
 | |
|     //   only if the class is a non-local class (9.8), the function name is
 | |
|     //   unqualified, and the function has namespace scope.
 | |
|     if (isLocal && D.isFunctionDefinition()) {
 | |
|       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
 | |
|     }
 | |
|     
 | |
|   //   - There's a non-dependent scope specifier, in which case we
 | |
|   //     compute it and do a previous lookup there for a function
 | |
|   //     or function template.
 | |
|   } else if (!SS.getScopeRep()->isDependent()) {
 | |
|     DC = computeDeclContext(SS);
 | |
|     if (!DC) return 0;
 | |
| 
 | |
|     if (RequireCompleteDeclContext(SS, DC)) return 0;
 | |
| 
 | |
|     LookupQualifiedName(Previous, DC);
 | |
| 
 | |
|     // Ignore things found implicitly in the wrong scope.
 | |
|     // TODO: better diagnostics for this case.  Suggesting the right
 | |
|     // qualified scope would be nice...
 | |
|     LookupResult::Filter F = Previous.makeFilter();
 | |
|     while (F.hasNext()) {
 | |
|       NamedDecl *D = F.next();
 | |
|       if (!DC->InEnclosingNamespaceSetOf(
 | |
|               D->getDeclContext()->getRedeclContext()))
 | |
|         F.erase();
 | |
|     }
 | |
|     F.done();
 | |
| 
 | |
|     if (Previous.empty()) {
 | |
|       D.setInvalidType();
 | |
|       Diag(Loc, diag::err_qualified_friend_not_found)
 | |
|           << Name << TInfo->getType();
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // C++ [class.friend]p1: A friend of a class is a function or
 | |
|     //   class that is not a member of the class . . .
 | |
|     if (DC->Equals(CurContext))
 | |
|       Diag(DS.getFriendSpecLoc(),
 | |
|            getLangOpts().CPlusPlus11 ?
 | |
|              diag::warn_cxx98_compat_friend_is_member :
 | |
|              diag::err_friend_is_member);
 | |
|     
 | |
|     if (D.isFunctionDefinition()) {
 | |
|       // C++ [class.friend]p6:
 | |
|       //   A function can be defined in a friend declaration of a class if and 
 | |
|       //   only if the class is a non-local class (9.8), the function name is
 | |
|       //   unqualified, and the function has namespace scope.
 | |
|       SemaDiagnosticBuilder DB
 | |
|         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
 | |
|       
 | |
|       DB << SS.getScopeRep();
 | |
|       if (DC->isFileContext())
 | |
|         DB << FixItHint::CreateRemoval(SS.getRange());
 | |
|       SS.clear();
 | |
|     }
 | |
| 
 | |
|   //   - There's a scope specifier that does not match any template
 | |
|   //     parameter lists, in which case we use some arbitrary context,
 | |
|   //     create a method or method template, and wait for instantiation.
 | |
|   //   - There's a scope specifier that does match some template
 | |
|   //     parameter lists, which we don't handle right now.
 | |
|   } else {
 | |
|     if (D.isFunctionDefinition()) {
 | |
|       // C++ [class.friend]p6:
 | |
|       //   A function can be defined in a friend declaration of a class if and 
 | |
|       //   only if the class is a non-local class (9.8), the function name is
 | |
|       //   unqualified, and the function has namespace scope.
 | |
|       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
 | |
|         << SS.getScopeRep();
 | |
|     }
 | |
|     
 | |
|     DC = CurContext;
 | |
|     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
 | |
|   }
 | |
|   
 | |
|   if (!DC->isRecord()) {
 | |
|     // This implies that it has to be an operator or function.
 | |
|     if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
 | |
|         D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
 | |
|         D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
 | |
|       Diag(Loc, diag::err_introducing_special_friend) <<
 | |
|         (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
 | |
|          D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: This is an egregious hack to cope with cases where the scope stack
 | |
|   // does not contain the declaration context, i.e., in an out-of-line 
 | |
|   // definition of a class.
 | |
|   Scope FakeDCScope(S, Scope::DeclScope, Diags);
 | |
|   if (!DCScope) {
 | |
|     FakeDCScope.setEntity(DC);
 | |
|     DCScope = &FakeDCScope;
 | |
|   }
 | |
|   
 | |
|   bool AddToScope = true;
 | |
|   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
 | |
|                                           TemplateParams, AddToScope);
 | |
|   if (!ND) return 0;
 | |
| 
 | |
|   assert(ND->getDeclContext() == DC);
 | |
|   assert(ND->getLexicalDeclContext() == CurContext);
 | |
| 
 | |
|   // Add the function declaration to the appropriate lookup tables,
 | |
|   // adjusting the redeclarations list as necessary.  We don't
 | |
|   // want to do this yet if the friending class is dependent.
 | |
|   //
 | |
|   // Also update the scope-based lookup if the target context's
 | |
|   // lookup context is in lexical scope.
 | |
|   if (!CurContext->isDependentContext()) {
 | |
|     DC = DC->getRedeclContext();
 | |
|     DC->makeDeclVisibleInContext(ND);
 | |
|     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | |
|       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
 | |
|   }
 | |
| 
 | |
|   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
 | |
|                                        D.getIdentifierLoc(), ND,
 | |
|                                        DS.getFriendSpecLoc());
 | |
|   FrD->setAccess(AS_public);
 | |
|   CurContext->addDecl(FrD);
 | |
| 
 | |
|   if (ND->isInvalidDecl()) {
 | |
|     FrD->setInvalidDecl();
 | |
|   } else {
 | |
|     if (DC->isRecord()) CheckFriendAccess(ND);
 | |
| 
 | |
|     FunctionDecl *FD;
 | |
|     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
 | |
|       FD = FTD->getTemplatedDecl();
 | |
|     else
 | |
|       FD = cast<FunctionDecl>(ND);
 | |
| 
 | |
|     // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
 | |
|     // default argument expression, that declaration shall be a definition
 | |
|     // and shall be the only declaration of the function or function
 | |
|     // template in the translation unit.
 | |
|     if (functionDeclHasDefaultArgument(FD)) {
 | |
|       if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
 | |
|         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
 | |
|         Diag(OldFD->getLocation(), diag::note_previous_declaration);
 | |
|       } else if (!D.isFunctionDefinition())
 | |
|         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
 | |
|     }
 | |
| 
 | |
|     // Mark templated-scope function declarations as unsupported.
 | |
|     if (FD->getNumTemplateParameterLists())
 | |
|       FrD->setUnsupportedFriend(true);
 | |
|   }
 | |
| 
 | |
|   return ND;
 | |
| }
 | |
| 
 | |
| void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
 | |
|   AdjustDeclIfTemplate(Dcl);
 | |
| 
 | |
|   FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
 | |
|   if (!Fn) {
 | |
|     Diag(DelLoc, diag::err_deleted_non_function);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
 | |
|     // Don't consider the implicit declaration we generate for explicit
 | |
|     // specializations. FIXME: Do not generate these implicit declarations.
 | |
|     if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
 | |
|         || Prev->getPreviousDecl()) && !Prev->isDefined()) {
 | |
|       Diag(DelLoc, diag::err_deleted_decl_not_first);
 | |
|       Diag(Prev->getLocation(), diag::note_previous_declaration);
 | |
|     }
 | |
|     // If the declaration wasn't the first, we delete the function anyway for
 | |
|     // recovery.
 | |
|     Fn = Fn->getCanonicalDecl();
 | |
|   }
 | |
| 
 | |
|   if (Fn->isDeleted())
 | |
|     return;
 | |
| 
 | |
|   // See if we're deleting a function which is already known to override a
 | |
|   // non-deleted virtual function.
 | |
|   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
 | |
|     bool IssuedDiagnostic = false;
 | |
|     for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
 | |
|                                         E = MD->end_overridden_methods();
 | |
|          I != E; ++I) {
 | |
|       if (!(*MD->begin_overridden_methods())->isDeleted()) {
 | |
|         if (!IssuedDiagnostic) {
 | |
|           Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
 | |
|           IssuedDiagnostic = true;
 | |
|         }
 | |
|         Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Fn->setDeletedAsWritten();
 | |
| }
 | |
| 
 | |
| void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
 | |
|   CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
 | |
| 
 | |
|   if (MD) {
 | |
|     if (MD->getParent()->isDependentType()) {
 | |
|       MD->setDefaulted();
 | |
|       MD->setExplicitlyDefaulted();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     CXXSpecialMember Member = getSpecialMember(MD);
 | |
|     if (Member == CXXInvalid) {
 | |
|       if (!MD->isInvalidDecl())
 | |
|         Diag(DefaultLoc, diag::err_default_special_members);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     MD->setDefaulted();
 | |
|     MD->setExplicitlyDefaulted();
 | |
| 
 | |
|     // If this definition appears within the record, do the checking when
 | |
|     // the record is complete.
 | |
|     const FunctionDecl *Primary = MD;
 | |
|     if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
 | |
|       // Find the uninstantiated declaration that actually had the '= default'
 | |
|       // on it.
 | |
|       Pattern->isDefined(Primary);
 | |
| 
 | |
|     // If the method was defaulted on its first declaration, we will have
 | |
|     // already performed the checking in CheckCompletedCXXClass. Such a
 | |
|     // declaration doesn't trigger an implicit definition.
 | |
|     if (Primary == Primary->getCanonicalDecl())
 | |
|       return;
 | |
| 
 | |
|     CheckExplicitlyDefaultedSpecialMember(MD);
 | |
| 
 | |
|     // The exception specification is needed because we are defining the
 | |
|     // function.
 | |
|     ResolveExceptionSpec(DefaultLoc,
 | |
|                          MD->getType()->castAs<FunctionProtoType>());
 | |
| 
 | |
|     if (MD->isInvalidDecl())
 | |
|       return;
 | |
| 
 | |
|     switch (Member) {
 | |
|     case CXXDefaultConstructor:
 | |
|       DefineImplicitDefaultConstructor(DefaultLoc,
 | |
|                                        cast<CXXConstructorDecl>(MD));
 | |
|       break;
 | |
|     case CXXCopyConstructor:
 | |
|       DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
 | |
|       break;
 | |
|     case CXXCopyAssignment:
 | |
|       DefineImplicitCopyAssignment(DefaultLoc, MD);
 | |
|       break;
 | |
|     case CXXDestructor:
 | |
|       DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
 | |
|       break;
 | |
|     case CXXMoveConstructor:
 | |
|       DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
 | |
|       break;
 | |
|     case CXXMoveAssignment:
 | |
|       DefineImplicitMoveAssignment(DefaultLoc, MD);
 | |
|       break;
 | |
|     case CXXInvalid:
 | |
|       llvm_unreachable("Invalid special member.");
 | |
|     }
 | |
|   } else {
 | |
|     Diag(DefaultLoc, diag::err_default_special_members);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
 | |
|   for (Stmt::child_range CI = S->children(); CI; ++CI) {
 | |
|     Stmt *SubStmt = *CI;
 | |
|     if (!SubStmt)
 | |
|       continue;
 | |
|     if (isa<ReturnStmt>(SubStmt))
 | |
|       Self.Diag(SubStmt->getLocStart(),
 | |
|            diag::err_return_in_constructor_handler);
 | |
|     if (!isa<Expr>(SubStmt))
 | |
|       SearchForReturnInStmt(Self, SubStmt);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
 | |
|   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
 | |
|     CXXCatchStmt *Handler = TryBlock->getHandler(I);
 | |
|     SearchForReturnInStmt(*this, Handler);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
 | |
|                                              const CXXMethodDecl *Old) {
 | |
|   const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
 | |
|   const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
 | |
| 
 | |
|   CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
 | |
| 
 | |
|   // If the calling conventions match, everything is fine
 | |
|   if (NewCC == OldCC)
 | |
|     return false;
 | |
| 
 | |
|   // If either of the calling conventions are set to "default", we need to pick
 | |
|   // something more sensible based on the target. This supports code where the
 | |
|   // one method explicitly sets thiscall, and another has no explicit calling
 | |
|   // convention.
 | |
|   CallingConv Default = 
 | |
|     Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
 | |
|   if (NewCC == CC_Default)
 | |
|     NewCC = Default;
 | |
|   if (OldCC == CC_Default)
 | |
|     OldCC = Default;
 | |
| 
 | |
|   // If the calling conventions still don't match, then report the error
 | |
|   if (NewCC != OldCC) {
 | |
|     Diag(New->getLocation(),
 | |
|          diag::err_conflicting_overriding_cc_attributes)
 | |
|       << New->getDeclName() << New->getType() << Old->getType();
 | |
|     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
 | |
|                                              const CXXMethodDecl *Old) {
 | |
|   QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
 | |
|   QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
 | |
| 
 | |
|   if (Context.hasSameType(NewTy, OldTy) ||
 | |
|       NewTy->isDependentType() || OldTy->isDependentType())
 | |
|     return false;
 | |
| 
 | |
|   // Check if the return types are covariant
 | |
|   QualType NewClassTy, OldClassTy;
 | |
| 
 | |
|   /// Both types must be pointers or references to classes.
 | |
|   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
 | |
|     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
 | |
|       NewClassTy = NewPT->getPointeeType();
 | |
|       OldClassTy = OldPT->getPointeeType();
 | |
|     }
 | |
|   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
 | |
|     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
 | |
|       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
 | |
|         NewClassTy = NewRT->getPointeeType();
 | |
|         OldClassTy = OldRT->getPointeeType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The return types aren't either both pointers or references to a class type.
 | |
|   if (NewClassTy.isNull()) {
 | |
|     Diag(New->getLocation(),
 | |
|          diag::err_different_return_type_for_overriding_virtual_function)
 | |
|       << New->getDeclName() << NewTy << OldTy;
 | |
|     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++ [class.virtual]p6:
 | |
|   //   If the return type of D::f differs from the return type of B::f, the 
 | |
|   //   class type in the return type of D::f shall be complete at the point of
 | |
|   //   declaration of D::f or shall be the class type D.
 | |
|   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
 | |
|     if (!RT->isBeingDefined() &&
 | |
|         RequireCompleteType(New->getLocation(), NewClassTy, 
 | |
|                             diag::err_covariant_return_incomplete,
 | |
|                             New->getDeclName()))
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
 | |
|     // Check if the new class derives from the old class.
 | |
|     if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
 | |
|       Diag(New->getLocation(),
 | |
|            diag::err_covariant_return_not_derived)
 | |
|       << New->getDeclName() << NewTy << OldTy;
 | |
|       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Check if we the conversion from derived to base is valid.
 | |
|     if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
 | |
|                     diag::err_covariant_return_inaccessible_base,
 | |
|                     diag::err_covariant_return_ambiguous_derived_to_base_conv,
 | |
|                     // FIXME: Should this point to the return type?
 | |
|                     New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
 | |
|       // FIXME: this note won't trigger for delayed access control
 | |
|       // diagnostics, and it's impossible to get an undelayed error
 | |
|       // here from access control during the original parse because
 | |
|       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
 | |
|       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The qualifiers of the return types must be the same.
 | |
|   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
 | |
|     Diag(New->getLocation(),
 | |
|          diag::err_covariant_return_type_different_qualifications)
 | |
|     << New->getDeclName() << NewTy << OldTy;
 | |
|     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   // The new class type must have the same or less qualifiers as the old type.
 | |
|   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
 | |
|     Diag(New->getLocation(),
 | |
|          diag::err_covariant_return_type_class_type_more_qualified)
 | |
|     << New->getDeclName() << NewTy << OldTy;
 | |
|     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Mark the given method pure.
 | |
| ///
 | |
| /// \param Method the method to be marked pure.
 | |
| ///
 | |
| /// \param InitRange the source range that covers the "0" initializer.
 | |
| bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
 | |
|   SourceLocation EndLoc = InitRange.getEnd();
 | |
|   if (EndLoc.isValid())
 | |
|     Method->setRangeEnd(EndLoc);
 | |
| 
 | |
|   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
 | |
|     Method->setPure();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Method->isInvalidDecl())
 | |
|     Diag(Method->getLocation(), diag::err_non_virtual_pure)
 | |
|       << Method->getDeclName() << InitRange;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given declaration is a static data member.
 | |
| static bool isStaticDataMember(const Decl *D) {
 | |
|   if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
 | |
|     return Var->isStaticDataMember();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
 | |
| /// an initializer for the out-of-line declaration 'Dcl'.  The scope
 | |
| /// is a fresh scope pushed for just this purpose.
 | |
| ///
 | |
| /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
 | |
| /// static data member of class X, names should be looked up in the scope of
 | |
| /// class X.
 | |
| void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
 | |
|   // If there is no declaration, there was an error parsing it.
 | |
|   if (D == 0 || D->isInvalidDecl()) return;
 | |
| 
 | |
|   // We should only get called for declarations with scope specifiers, like:
 | |
|   //   int foo::bar;
 | |
|   assert(D->isOutOfLine());
 | |
|   EnterDeclaratorContext(S, D->getDeclContext());
 | |
|   
 | |
|   // If we are parsing the initializer for a static data member, push a
 | |
|   // new expression evaluation context that is associated with this static
 | |
|   // data member.
 | |
|   if (isStaticDataMember(D))
 | |
|     PushExpressionEvaluationContext(PotentiallyEvaluated, D);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
 | |
| /// initializer for the out-of-line declaration 'D'.
 | |
| void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
 | |
|   // If there is no declaration, there was an error parsing it.
 | |
|   if (D == 0 || D->isInvalidDecl()) return;
 | |
| 
 | |
|   if (isStaticDataMember(D))
 | |
|     PopExpressionEvaluationContext();  
 | |
| 
 | |
|   assert(D->isOutOfLine());
 | |
|   ExitDeclaratorContext(S);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
 | |
| /// C++ if/switch/while/for statement.
 | |
| /// e.g: "if (int x = f()) {...}"
 | |
| DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
 | |
|   // C++ 6.4p2:
 | |
|   // The declarator shall not specify a function or an array.
 | |
|   // The type-specifier-seq shall not contain typedef and shall not declare a
 | |
|   // new class or enumeration.
 | |
|   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
 | |
|          "Parser allowed 'typedef' as storage class of condition decl.");
 | |
| 
 | |
|   Decl *Dcl = ActOnDeclarator(S, D);
 | |
|   if (!Dcl)
 | |
|     return true;
 | |
| 
 | |
|   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
 | |
|     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
 | |
|       << D.getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return Dcl;
 | |
| }
 | |
| 
 | |
| void Sema::LoadExternalVTableUses() {
 | |
|   if (!ExternalSource)
 | |
|     return;
 | |
|   
 | |
|   SmallVector<ExternalVTableUse, 4> VTables;
 | |
|   ExternalSource->ReadUsedVTables(VTables);
 | |
|   SmallVector<VTableUse, 4> NewUses;
 | |
|   for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
 | |
|     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
 | |
|       = VTablesUsed.find(VTables[I].Record);
 | |
|     // Even if a definition wasn't required before, it may be required now.
 | |
|     if (Pos != VTablesUsed.end()) {
 | |
|       if (!Pos->second && VTables[I].DefinitionRequired)
 | |
|         Pos->second = true;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
 | |
|     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
 | |
|   }
 | |
|   
 | |
|   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
 | |
| }
 | |
| 
 | |
| void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
 | |
|                           bool DefinitionRequired) {
 | |
|   // Ignore any vtable uses in unevaluated operands or for classes that do
 | |
|   // not have a vtable.
 | |
|   if (!Class->isDynamicClass() || Class->isDependentContext() ||
 | |
|       CurContext->isDependentContext() || isUnevaluatedContext())
 | |
|     return;
 | |
| 
 | |
|   // Try to insert this class into the map.
 | |
|   LoadExternalVTableUses();
 | |
|   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
 | |
|   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
 | |
|     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
 | |
|   if (!Pos.second) {
 | |
|     // If we already had an entry, check to see if we are promoting this vtable
 | |
|     // to required a definition. If so, we need to reappend to the VTableUses
 | |
|     // list, since we may have already processed the first entry.
 | |
|     if (DefinitionRequired && !Pos.first->second) {
 | |
|       Pos.first->second = true;
 | |
|     } else {
 | |
|       // Otherwise, we can early exit.
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Local classes need to have their virtual members marked
 | |
|   // immediately. For all other classes, we mark their virtual members
 | |
|   // at the end of the translation unit.
 | |
|   if (Class->isLocalClass())
 | |
|     MarkVirtualMembersReferenced(Loc, Class);
 | |
|   else
 | |
|     VTableUses.push_back(std::make_pair(Class, Loc));
 | |
| }
 | |
| 
 | |
| bool Sema::DefineUsedVTables() {
 | |
|   LoadExternalVTableUses();
 | |
|   if (VTableUses.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Note: The VTableUses vector could grow as a result of marking
 | |
|   // the members of a class as "used", so we check the size each
 | |
|   // time through the loop and prefer indices (which are stable) to
 | |
|   // iterators (which are not).
 | |
|   bool DefinedAnything = false;
 | |
|   for (unsigned I = 0; I != VTableUses.size(); ++I) {
 | |
|     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
 | |
|     if (!Class)
 | |
|       continue;
 | |
| 
 | |
|     SourceLocation Loc = VTableUses[I].second;
 | |
| 
 | |
|     bool DefineVTable = true;
 | |
| 
 | |
|     // If this class has a key function, but that key function is
 | |
|     // defined in another translation unit, we don't need to emit the
 | |
|     // vtable even though we're using it.
 | |
|     const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
 | |
|     if (KeyFunction && !KeyFunction->hasBody()) {
 | |
|       switch (KeyFunction->getTemplateSpecializationKind()) {
 | |
|       case TSK_Undeclared:
 | |
|       case TSK_ExplicitSpecialization:
 | |
|       case TSK_ExplicitInstantiationDeclaration:
 | |
|         // The key function is in another translation unit.
 | |
|         DefineVTable = false;
 | |
|         break;
 | |
| 
 | |
|       case TSK_ExplicitInstantiationDefinition:
 | |
|       case TSK_ImplicitInstantiation:
 | |
|         // We will be instantiating the key function.
 | |
|         break;
 | |
|       }
 | |
|     } else if (!KeyFunction) {
 | |
|       // If we have a class with no key function that is the subject
 | |
|       // of an explicit instantiation declaration, suppress the
 | |
|       // vtable; it will live with the explicit instantiation
 | |
|       // definition.
 | |
|       bool IsExplicitInstantiationDeclaration
 | |
|         = Class->getTemplateSpecializationKind()
 | |
|                                       == TSK_ExplicitInstantiationDeclaration;
 | |
|       for (TagDecl::redecl_iterator R = Class->redecls_begin(),
 | |
|                                  REnd = Class->redecls_end();
 | |
|            R != REnd; ++R) {
 | |
|         TemplateSpecializationKind TSK
 | |
|           = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
 | |
|         if (TSK == TSK_ExplicitInstantiationDeclaration)
 | |
|           IsExplicitInstantiationDeclaration = true;
 | |
|         else if (TSK == TSK_ExplicitInstantiationDefinition) {
 | |
|           IsExplicitInstantiationDeclaration = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (IsExplicitInstantiationDeclaration)
 | |
|         DefineVTable = false;
 | |
|     }
 | |
| 
 | |
|     // The exception specifications for all virtual members may be needed even
 | |
|     // if we are not providing an authoritative form of the vtable in this TU.
 | |
|     // We may choose to emit it available_externally anyway.
 | |
|     if (!DefineVTable) {
 | |
|       MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Mark all of the virtual members of this class as referenced, so
 | |
|     // that we can build a vtable. Then, tell the AST consumer that a
 | |
|     // vtable for this class is required.
 | |
|     DefinedAnything = true;
 | |
|     MarkVirtualMembersReferenced(Loc, Class);
 | |
|     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
 | |
|     Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
 | |
| 
 | |
|     // Optionally warn if we're emitting a weak vtable.
 | |
|     if (Class->isExternallyVisible() &&
 | |
|         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
 | |
|       const FunctionDecl *KeyFunctionDef = 0;
 | |
|       if (!KeyFunction || 
 | |
|           (KeyFunction->hasBody(KeyFunctionDef) && 
 | |
|            KeyFunctionDef->isInlined()))
 | |
|         Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
 | |
|              TSK_ExplicitInstantiationDefinition 
 | |
|              ? diag::warn_weak_template_vtable : diag::warn_weak_vtable) 
 | |
|           << Class;
 | |
|     }
 | |
|   }
 | |
|   VTableUses.clear();
 | |
| 
 | |
|   return DefinedAnything;
 | |
| }
 | |
| 
 | |
| void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
 | |
|                                                  const CXXRecordDecl *RD) {
 | |
|   for (CXXRecordDecl::method_iterator I = RD->method_begin(),
 | |
|                                       E = RD->method_end(); I != E; ++I)
 | |
|     if ((*I)->isVirtual() && !(*I)->isPure())
 | |
|       ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
 | |
| }
 | |
| 
 | |
| void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
 | |
|                                         const CXXRecordDecl *RD) {
 | |
|   // Mark all functions which will appear in RD's vtable as used.
 | |
|   CXXFinalOverriderMap FinalOverriders;
 | |
|   RD->getFinalOverriders(FinalOverriders);
 | |
|   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
 | |
|                                             E = FinalOverriders.end();
 | |
|        I != E; ++I) {
 | |
|     for (OverridingMethods::const_iterator OI = I->second.begin(),
 | |
|                                            OE = I->second.end();
 | |
|          OI != OE; ++OI) {
 | |
|       assert(OI->second.size() > 0 && "no final overrider");
 | |
|       CXXMethodDecl *Overrider = OI->second.front().Method;
 | |
| 
 | |
|       // C++ [basic.def.odr]p2:
 | |
|       //   [...] A virtual member function is used if it is not pure. [...]
 | |
|       if (!Overrider->isPure())
 | |
|         MarkFunctionReferenced(Loc, Overrider);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Only classes that have virtual bases need a VTT.
 | |
|   if (RD->getNumVBases() == 0)
 | |
|     return;
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
 | |
|            e = RD->bases_end(); i != e; ++i) {
 | |
|     const CXXRecordDecl *Base =
 | |
|         cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (Base->getNumVBases() == 0)
 | |
|       continue;
 | |
|     MarkVirtualMembersReferenced(Loc, Base);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SetIvarInitializers - This routine builds initialization ASTs for the
 | |
| /// Objective-C implementation whose ivars need be initialized.
 | |
| void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
 | |
|   if (!getLangOpts().CPlusPlus)
 | |
|     return;
 | |
|   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
 | |
|     SmallVector<ObjCIvarDecl*, 8> ivars;
 | |
|     CollectIvarsToConstructOrDestruct(OID, ivars);
 | |
|     if (ivars.empty())
 | |
|       return;
 | |
|     SmallVector<CXXCtorInitializer*, 32> AllToInit;
 | |
|     for (unsigned i = 0; i < ivars.size(); i++) {
 | |
|       FieldDecl *Field = ivars[i];
 | |
|       if (Field->isInvalidDecl())
 | |
|         continue;
 | |
|       
 | |
|       CXXCtorInitializer *Member;
 | |
|       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
 | |
|       InitializationKind InitKind = 
 | |
|         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
 | |
| 
 | |
|       InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
 | |
|       ExprResult MemberInit =
 | |
|         InitSeq.Perform(*this, InitEntity, InitKind, None);
 | |
|       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
 | |
|       // Note, MemberInit could actually come back empty if no initialization 
 | |
|       // is required (e.g., because it would call a trivial default constructor)
 | |
|       if (!MemberInit.get() || MemberInit.isInvalid())
 | |
|         continue;
 | |
| 
 | |
|       Member =
 | |
|         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
 | |
|                                          SourceLocation(),
 | |
|                                          MemberInit.takeAs<Expr>(),
 | |
|                                          SourceLocation());
 | |
|       AllToInit.push_back(Member);
 | |
|       
 | |
|       // Be sure that the destructor is accessible and is marked as referenced.
 | |
|       if (const RecordType *RecordTy
 | |
|                   = Context.getBaseElementType(Field->getType())
 | |
|                                                         ->getAs<RecordType>()) {
 | |
|                     CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
 | |
|           MarkFunctionReferenced(Field->getLocation(), Destructor);
 | |
|           CheckDestructorAccess(Field->getLocation(), Destructor,
 | |
|                             PDiag(diag::err_access_dtor_ivar)
 | |
|                               << Context.getBaseElementType(Field->getType()));
 | |
|         }
 | |
|       }      
 | |
|     }
 | |
|     ObjCImplementation->setIvarInitializers(Context, 
 | |
|                                             AllToInit.data(), AllToInit.size());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static
 | |
| void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
 | |
|                            llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
 | |
|                            llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
 | |
|                            llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
 | |
|                            Sema &S) {
 | |
|   if (Ctor->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   CXXConstructorDecl *Target = Ctor->getTargetConstructor();
 | |
| 
 | |
|   // Target may not be determinable yet, for instance if this is a dependent
 | |
|   // call in an uninstantiated template.
 | |
|   if (Target) {
 | |
|     const FunctionDecl *FNTarget = 0;
 | |
|     (void)Target->hasBody(FNTarget);
 | |
|     Target = const_cast<CXXConstructorDecl*>(
 | |
|       cast_or_null<CXXConstructorDecl>(FNTarget));
 | |
|   }
 | |
| 
 | |
|   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
 | |
|                      // Avoid dereferencing a null pointer here.
 | |
|                      *TCanonical = Target ? Target->getCanonicalDecl() : 0;
 | |
| 
 | |
|   if (!Current.insert(Canonical))
 | |
|     return;
 | |
| 
 | |
|   // We know that beyond here, we aren't chaining into a cycle.
 | |
|   if (!Target || !Target->isDelegatingConstructor() ||
 | |
|       Target->isInvalidDecl() || Valid.count(TCanonical)) {
 | |
|     Valid.insert(Current.begin(), Current.end());
 | |
|     Current.clear();
 | |
|   // We've hit a cycle.
 | |
|   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
 | |
|              Current.count(TCanonical)) {
 | |
|     // If we haven't diagnosed this cycle yet, do so now.
 | |
|     if (!Invalid.count(TCanonical)) {
 | |
|       S.Diag((*Ctor->init_begin())->getSourceLocation(),
 | |
|              diag::warn_delegating_ctor_cycle)
 | |
|         << Ctor;
 | |
| 
 | |
|       // Don't add a note for a function delegating directly to itself.
 | |
|       if (TCanonical != Canonical)
 | |
|         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
 | |
| 
 | |
|       CXXConstructorDecl *C = Target;
 | |
|       while (C->getCanonicalDecl() != Canonical) {
 | |
|         const FunctionDecl *FNTarget = 0;
 | |
|         (void)C->getTargetConstructor()->hasBody(FNTarget);
 | |
|         assert(FNTarget && "Ctor cycle through bodiless function");
 | |
| 
 | |
|         C = const_cast<CXXConstructorDecl*>(
 | |
|           cast<CXXConstructorDecl>(FNTarget));
 | |
|         S.Diag(C->getLocation(), diag::note_which_delegates_to);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Invalid.insert(Current.begin(), Current.end());
 | |
|     Current.clear();
 | |
|   } else {
 | |
|     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
 | |
|   }
 | |
| }
 | |
|    
 | |
| 
 | |
| void Sema::CheckDelegatingCtorCycles() {
 | |
|   llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
 | |
| 
 | |
|   for (DelegatingCtorDeclsType::iterator
 | |
|          I = DelegatingCtorDecls.begin(ExternalSource),
 | |
|          E = DelegatingCtorDecls.end();
 | |
|        I != E; ++I)
 | |
|     DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
 | |
| 
 | |
|   for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
 | |
|                                                          CE = Invalid.end();
 | |
|        CI != CE; ++CI)
 | |
|     (*CI)->setInvalidDecl();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief AST visitor that finds references to the 'this' expression.
 | |
|   class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
 | |
|     Sema &S;
 | |
|     
 | |
|   public:
 | |
|     explicit FindCXXThisExpr(Sema &S) : S(S) { }
 | |
|     
 | |
|     bool VisitCXXThisExpr(CXXThisExpr *E) {
 | |
|       S.Diag(E->getLocation(), diag::err_this_static_member_func)
 | |
|         << E->isImplicit();
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
 | |
|   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
 | |
|   if (!TSInfo)
 | |
|     return false;
 | |
|   
 | |
|   TypeLoc TL = TSInfo->getTypeLoc();
 | |
|   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
 | |
|   if (!ProtoTL)
 | |
|     return false;
 | |
|   
 | |
|   // C++11 [expr.prim.general]p3:
 | |
|   //   [The expression this] shall not appear before the optional 
 | |
|   //   cv-qualifier-seq and it shall not appear within the declaration of a 
 | |
|   //   static member function (although its type and value category are defined
 | |
|   //   within a static member function as they are within a non-static member
 | |
|   //   function). [ Note: this is because declaration matching does not occur
 | |
|   //  until the complete declarator is known. - end note ]
 | |
|   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
 | |
|   FindCXXThisExpr Finder(*this);
 | |
|   
 | |
|   // If the return type came after the cv-qualifier-seq, check it now.
 | |
|   if (Proto->hasTrailingReturn() &&
 | |
|       !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
 | |
|     return true;
 | |
| 
 | |
|   // Check the exception specification.
 | |
|   if (checkThisInStaticMemberFunctionExceptionSpec(Method))
 | |
|     return true;
 | |
|   
 | |
|   return checkThisInStaticMemberFunctionAttributes(Method);
 | |
| }
 | |
| 
 | |
| bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
 | |
|   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
 | |
|   if (!TSInfo)
 | |
|     return false;
 | |
|   
 | |
|   TypeLoc TL = TSInfo->getTypeLoc();
 | |
|   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
 | |
|   if (!ProtoTL)
 | |
|     return false;
 | |
|   
 | |
|   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
 | |
|   FindCXXThisExpr Finder(*this);
 | |
| 
 | |
|   switch (Proto->getExceptionSpecType()) {
 | |
|   case EST_Uninstantiated:
 | |
|   case EST_Unevaluated:
 | |
|   case EST_BasicNoexcept:
 | |
|   case EST_DynamicNone:
 | |
|   case EST_MSAny:
 | |
|   case EST_None:
 | |
|     break;
 | |
|     
 | |
|   case EST_ComputedNoexcept:
 | |
|     if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
 | |
|       return true;
 | |
|     
 | |
|   case EST_Dynamic:
 | |
|     for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
 | |
|          EEnd = Proto->exception_end();
 | |
|          E != EEnd; ++E) {
 | |
|       if (!Finder.TraverseType(*E))
 | |
|         return true;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
 | |
|   FindCXXThisExpr Finder(*this);
 | |
| 
 | |
|   // Check attributes.
 | |
|   for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
 | |
|        A != AEnd; ++A) {
 | |
|     // FIXME: This should be emitted by tblgen.
 | |
|     Expr *Arg = 0;
 | |
|     ArrayRef<Expr *> Args;
 | |
|     if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
 | |
|       Arg = G->getArg();
 | |
|     else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
 | |
|       Arg = G->getArg();
 | |
|     else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
 | |
|       Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
 | |
|     else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
 | |
|       Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
 | |
|     else if (ExclusiveLockFunctionAttr *ELF 
 | |
|                = dyn_cast<ExclusiveLockFunctionAttr>(*A))
 | |
|       Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
 | |
|     else if (SharedLockFunctionAttr *SLF 
 | |
|                = dyn_cast<SharedLockFunctionAttr>(*A))
 | |
|       Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
 | |
|     else if (ExclusiveTrylockFunctionAttr *ETLF
 | |
|                = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
 | |
|       Arg = ETLF->getSuccessValue();
 | |
|       Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
 | |
|     } else if (SharedTrylockFunctionAttr *STLF
 | |
|                  = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
 | |
|       Arg = STLF->getSuccessValue();
 | |
|       Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
 | |
|     } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
 | |
|       Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
 | |
|     else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
 | |
|       Arg = LR->getArg();
 | |
|     else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
 | |
|       Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
 | |
|     else if (ExclusiveLocksRequiredAttr *ELR 
 | |
|                = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
 | |
|       Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
 | |
|     else if (SharedLocksRequiredAttr *SLR 
 | |
|                = dyn_cast<SharedLocksRequiredAttr>(*A))
 | |
|       Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
 | |
| 
 | |
|     if (Arg && !Finder.TraverseStmt(Arg))
 | |
|       return true;
 | |
|     
 | |
|     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
 | |
|       if (!Finder.TraverseStmt(Args[I]))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
 | |
|                                   ArrayRef<ParsedType> DynamicExceptions,
 | |
|                                   ArrayRef<SourceRange> DynamicExceptionRanges,
 | |
|                                   Expr *NoexceptExpr,
 | |
|                                   SmallVectorImpl<QualType> &Exceptions,
 | |
|                                   FunctionProtoType::ExtProtoInfo &EPI) {
 | |
|   Exceptions.clear();
 | |
|   EPI.ExceptionSpecType = EST;
 | |
|   if (EST == EST_Dynamic) {
 | |
|     Exceptions.reserve(DynamicExceptions.size());
 | |
|     for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
 | |
|       // FIXME: Preserve type source info.
 | |
|       QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
 | |
| 
 | |
|       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
|       collectUnexpandedParameterPacks(ET, Unexpanded);
 | |
|       if (!Unexpanded.empty()) {
 | |
|         DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
 | |
|                                          UPPC_ExceptionType,
 | |
|                                          Unexpanded);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check that the type is valid for an exception spec, and
 | |
|       // drop it if not.
 | |
|       if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
 | |
|         Exceptions.push_back(ET);
 | |
|     }
 | |
|     EPI.NumExceptions = Exceptions.size();
 | |
|     EPI.Exceptions = Exceptions.data();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (EST == EST_ComputedNoexcept) {
 | |
|     // If an error occurred, there's no expression here.
 | |
|     if (NoexceptExpr) {
 | |
|       assert((NoexceptExpr->isTypeDependent() ||
 | |
|               NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
 | |
|               Context.BoolTy) &&
 | |
|              "Parser should have made sure that the expression is boolean");
 | |
|       if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
 | |
|         EPI.ExceptionSpecType = EST_BasicNoexcept;
 | |
|         return;
 | |
|       }
 | |
|       
 | |
|       if (!NoexceptExpr->isValueDependent())
 | |
|         NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
 | |
|                          diag::err_noexcept_needs_constant_expression,
 | |
|                          /*AllowFold*/ false).take();
 | |
|       EPI.NoexceptExpr = NoexceptExpr;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
 | |
| Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
 | |
|   // Implicitly declared functions (e.g. copy constructors) are
 | |
|   // __host__ __device__
 | |
|   if (D->isImplicit())
 | |
|     return CFT_HostDevice;
 | |
| 
 | |
|   if (D->hasAttr<CUDAGlobalAttr>())
 | |
|     return CFT_Global;
 | |
| 
 | |
|   if (D->hasAttr<CUDADeviceAttr>()) {
 | |
|     if (D->hasAttr<CUDAHostAttr>())
 | |
|       return CFT_HostDevice;
 | |
|     return CFT_Device;
 | |
|   }
 | |
| 
 | |
|   return CFT_Host;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
 | |
|                            CUDAFunctionTarget CalleeTarget) {
 | |
|   // CUDA B.1.1 "The __device__ qualifier declares a function that is...
 | |
|   // Callable from the device only."
 | |
|   if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
 | |
|     return true;
 | |
| 
 | |
|   // CUDA B.1.2 "The __global__ qualifier declares a function that is...
 | |
|   // Callable from the host only."
 | |
|   // CUDA B.1.3 "The __host__ qualifier declares a function that is...
 | |
|   // Callable from the host only."
 | |
|   if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
 | |
|       (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
 | |
|     return true;
 | |
| 
 | |
|   if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
 | |
| ///
 | |
| MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
 | |
|                                        SourceLocation DeclStart,
 | |
|                                        Declarator &D, Expr *BitWidth,
 | |
|                                        InClassInitStyle InitStyle,
 | |
|                                        AccessSpecifier AS,
 | |
|                                        AttributeList *MSPropertyAttr) {
 | |
|   IdentifierInfo *II = D.getIdentifier();
 | |
|   if (!II) {
 | |
|     Diag(DeclStart, diag::err_anonymous_property);
 | |
|     return NULL;
 | |
|   }
 | |
|   SourceLocation Loc = D.getIdentifierLoc();
 | |
| 
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType T = TInfo->getType();
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
| 
 | |
|     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | |
|                                         UPPC_DataMemberType)) {
 | |
|       D.setInvalidType();
 | |
|       T = Context.IntTy;
 | |
|       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D.getDeclSpec());
 | |
| 
 | |
|   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
 | |
|     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | |
|          diag::err_invalid_thread)
 | |
|       << DeclSpec::getSpecifierName(TSCS);
 | |
| 
 | |
|   // Check to see if this name was declared as a member previously
 | |
|   NamedDecl *PrevDecl = 0;
 | |
|   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
 | |
|   LookupName(Previous, S);
 | |
|   switch (Previous.getResultKind()) {
 | |
|   case LookupResult::Found:
 | |
|   case LookupResult::FoundUnresolvedValue:
 | |
|     PrevDecl = Previous.getAsSingle<NamedDecl>();
 | |
|     break;
 | |
| 
 | |
|   case LookupResult::FoundOverloaded:
 | |
|     PrevDecl = Previous.getRepresentativeDecl();
 | |
|     break;
 | |
| 
 | |
|   case LookupResult::NotFound:
 | |
|   case LookupResult::NotFoundInCurrentInstantiation:
 | |
|   case LookupResult::Ambiguous:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     PrevDecl = 0;
 | |
|   }
 | |
| 
 | |
|   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
 | |
|     PrevDecl = 0;
 | |
| 
 | |
|   SourceLocation TSSL = D.getLocStart();
 | |
|   MSPropertyDecl *NewPD;
 | |
|   const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
 | |
|   NewPD = new (Context) MSPropertyDecl(Record, Loc,
 | |
|                                        II, T, TInfo, TSSL,
 | |
|                                        Data.GetterId, Data.SetterId);
 | |
|   ProcessDeclAttributes(TUScope, NewPD, D);
 | |
|   NewPD->setAccess(AS);
 | |
| 
 | |
|   if (NewPD->isInvalidDecl())
 | |
|     Record->setInvalidDecl();
 | |
| 
 | |
|   if (D.getDeclSpec().isModulePrivateSpecified())
 | |
|     NewPD->setModulePrivate();
 | |
| 
 | |
|   if (NewPD->isInvalidDecl() && PrevDecl) {
 | |
|     // Don't introduce NewFD into scope; there's already something
 | |
|     // with the same name in the same scope.
 | |
|   } else if (II) {
 | |
|     PushOnScopeChains(NewPD, S);
 | |
|   } else
 | |
|     Record->addDecl(NewPD);
 | |
| 
 | |
|   return NewPD;
 | |
| }
 |