forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1108 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1108 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file provides Sema routines for C++ exception specification testing.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/Diagnostic.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| 
 | |
| namespace clang {
 | |
| 
 | |
| static const FunctionProtoType *GetUnderlyingFunction(QualType T)
 | |
| {
 | |
|   if (const PointerType *PtrTy = T->getAs<PointerType>())
 | |
|     T = PtrTy->getPointeeType();
 | |
|   else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
 | |
|     T = RefTy->getPointeeType();
 | |
|   else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
 | |
|     T = MPTy->getPointeeType();
 | |
|   return T->getAs<FunctionProtoType>();
 | |
| }
 | |
| 
 | |
| /// CheckSpecifiedExceptionType - Check if the given type is valid in an
 | |
| /// exception specification. Incomplete types, or pointers to incomplete types
 | |
| /// other than void are not allowed.
 | |
| ///
 | |
| /// \param[in,out] T  The exception type. This will be decayed to a pointer type
 | |
| ///                   when the input is an array or a function type.
 | |
| bool Sema::CheckSpecifiedExceptionType(QualType &T, const SourceRange &Range) {
 | |
|   // C++11 [except.spec]p2:
 | |
|   //   A type cv T, "array of T", or "function returning T" denoted
 | |
|   //   in an exception-specification is adjusted to type T, "pointer to T", or
 | |
|   //   "pointer to function returning T", respectively.
 | |
|   //
 | |
|   // We also apply this rule in C++98.
 | |
|   if (T->isArrayType())
 | |
|     T = Context.getArrayDecayedType(T);
 | |
|   else if (T->isFunctionType())
 | |
|     T = Context.getPointerType(T);
 | |
| 
 | |
|   int Kind = 0;
 | |
|   QualType PointeeT = T;
 | |
|   if (const PointerType *PT = T->getAs<PointerType>()) {
 | |
|     PointeeT = PT->getPointeeType();
 | |
|     Kind = 1;
 | |
| 
 | |
|     // cv void* is explicitly permitted, despite being a pointer to an
 | |
|     // incomplete type.
 | |
|     if (PointeeT->isVoidType())
 | |
|       return false;
 | |
|   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
 | |
|     PointeeT = RT->getPointeeType();
 | |
|     Kind = 2;
 | |
| 
 | |
|     if (RT->isRValueReferenceType()) {
 | |
|       // C++11 [except.spec]p2:
 | |
|       //   A type denoted in an exception-specification shall not denote [...]
 | |
|       //   an rvalue reference type.
 | |
|       Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
 | |
|         << T << Range;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++11 [except.spec]p2:
 | |
|   //   A type denoted in an exception-specification shall not denote an
 | |
|   //   incomplete type other than a class currently being defined [...].
 | |
|   //   A type denoted in an exception-specification shall not denote a
 | |
|   //   pointer or reference to an incomplete type, other than (cv) void* or a
 | |
|   //   pointer or reference to a class currently being defined.
 | |
|   if (!(PointeeT->isRecordType() &&
 | |
|         PointeeT->getAs<RecordType>()->isBeingDefined()) &&
 | |
|       RequireCompleteType(Range.getBegin(), PointeeT,
 | |
|                           diag::err_incomplete_in_exception_spec, Kind, Range))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
 | |
| /// to member to a function with an exception specification. This means that
 | |
| /// it is invalid to add another level of indirection.
 | |
| bool Sema::CheckDistantExceptionSpec(QualType T) {
 | |
|   if (const PointerType *PT = T->getAs<PointerType>())
 | |
|     T = PT->getPointeeType();
 | |
|   else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
 | |
|     T = PT->getPointeeType();
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
 | |
|   if (!FnT)
 | |
|     return false;
 | |
| 
 | |
|   return FnT->hasExceptionSpec();
 | |
| }
 | |
| 
 | |
| const FunctionProtoType *
 | |
| Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
 | |
|   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
 | |
|     return FPT;
 | |
| 
 | |
|   FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
 | |
|   const FunctionProtoType *SourceFPT =
 | |
|       SourceDecl->getType()->castAs<FunctionProtoType>();
 | |
| 
 | |
|   // If the exception specification has already been resolved, just return it.
 | |
|   if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
 | |
|     return SourceFPT;
 | |
| 
 | |
|   // Compute or instantiate the exception specification now.
 | |
|   if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
 | |
|     EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
 | |
|   else
 | |
|     InstantiateExceptionSpec(Loc, SourceDecl);
 | |
| 
 | |
|   return SourceDecl->getType()->castAs<FunctionProtoType>();
 | |
| }
 | |
| 
 | |
| /// Determine whether a function has an implicitly-generated exception
 | |
| /// specification.
 | |
| static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
 | |
|   if (!isa<CXXDestructorDecl>(Decl) &&
 | |
|       Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
 | |
|       Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
 | |
|     return false;
 | |
| 
 | |
|   // If the user didn't declare the function, its exception specification must
 | |
|   // be implicit.
 | |
|   if (!Decl->getTypeSourceInfo())
 | |
|     return true;
 | |
| 
 | |
|   const FunctionProtoType *Ty =
 | |
|     Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
 | |
|   return !Ty->hasExceptionSpec();
 | |
| }
 | |
| 
 | |
| bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
 | |
|   OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
 | |
|   bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
 | |
|   bool MissingExceptionSpecification = false;
 | |
|   bool MissingEmptyExceptionSpecification = false;
 | |
|   unsigned DiagID = diag::err_mismatched_exception_spec;
 | |
|   if (getLangOpts().MicrosoftExt)
 | |
|     DiagID = diag::warn_mismatched_exception_spec; 
 | |
| 
 | |
|   // Check the types as written: they must match before any exception
 | |
|   // specification adjustment is applied.
 | |
|   if (!CheckEquivalentExceptionSpec(
 | |
|         PDiag(DiagID), PDiag(diag::note_previous_declaration),
 | |
|         Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
 | |
|         New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
 | |
|         &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
 | |
|         /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
 | |
|     // C++11 [except.spec]p4 [DR1492]:
 | |
|     //   If a declaration of a function has an implicit
 | |
|     //   exception-specification, other declarations of the function shall
 | |
|     //   not specify an exception-specification.
 | |
|     if (getLangOpts().CPlusPlus11 &&
 | |
|         hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
 | |
|       Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
 | |
|         << hasImplicitExceptionSpec(Old);
 | |
|       if (!Old->getLocation().isInvalid())
 | |
|         Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // The failure was something other than an missing exception
 | |
|   // specification; return an error.
 | |
|   if (!MissingExceptionSpecification)
 | |
|     return true;
 | |
| 
 | |
|   const FunctionProtoType *NewProto =
 | |
|     New->getType()->castAs<FunctionProtoType>();
 | |
| 
 | |
|   // The new function declaration is only missing an empty exception
 | |
|   // specification "throw()". If the throw() specification came from a
 | |
|   // function in a system header that has C linkage, just add an empty
 | |
|   // exception specification to the "new" declaration. This is an
 | |
|   // egregious workaround for glibc, which adds throw() specifications
 | |
|   // to many libc functions as an optimization. Unfortunately, that
 | |
|   // optimization isn't permitted by the C++ standard, so we're forced
 | |
|   // to work around it here.
 | |
|   if (MissingEmptyExceptionSpecification && NewProto &&
 | |
|       (Old->getLocation().isInvalid() ||
 | |
|        Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
 | |
|       Old->isExternC()) {
 | |
|     FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
 | |
|     EPI.ExceptionSpecType = EST_DynamicNone;
 | |
|     QualType NewType = Context.getFunctionType(NewProto->getResultType(),
 | |
|                                                NewProto->getArgTypes(), EPI);
 | |
|     New->setType(NewType);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const FunctionProtoType *OldProto =
 | |
|     Old->getType()->castAs<FunctionProtoType>();
 | |
| 
 | |
|   FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
 | |
|   EPI.ExceptionSpecType = OldProto->getExceptionSpecType();
 | |
|   if (EPI.ExceptionSpecType == EST_Dynamic) {
 | |
|     EPI.NumExceptions = OldProto->getNumExceptions();
 | |
|     EPI.Exceptions = OldProto->exception_begin();
 | |
|   } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
 | |
|     // FIXME: We can't just take the expression from the old prototype. It
 | |
|     // likely contains references to the old prototype's parameters.
 | |
|   }
 | |
| 
 | |
|   // Update the type of the function with the appropriate exception
 | |
|   // specification.
 | |
|   QualType NewType = Context.getFunctionType(NewProto->getResultType(),
 | |
|                                              NewProto->getArgTypes(), EPI);
 | |
|   New->setType(NewType);
 | |
| 
 | |
|   // Warn about the lack of exception specification.
 | |
|   SmallString<128> ExceptionSpecString;
 | |
|   llvm::raw_svector_ostream OS(ExceptionSpecString);
 | |
|   switch (OldProto->getExceptionSpecType()) {
 | |
|   case EST_DynamicNone:
 | |
|     OS << "throw()";
 | |
|     break;
 | |
| 
 | |
|   case EST_Dynamic: {
 | |
|     OS << "throw(";
 | |
|     bool OnFirstException = true;
 | |
|     for (FunctionProtoType::exception_iterator E = OldProto->exception_begin(),
 | |
|                                             EEnd = OldProto->exception_end();
 | |
|          E != EEnd;
 | |
|          ++E) {
 | |
|       if (OnFirstException)
 | |
|         OnFirstException = false;
 | |
|       else
 | |
|         OS << ", ";
 | |
|       
 | |
|       OS << E->getAsString(getPrintingPolicy());
 | |
|     }
 | |
|     OS << ")";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case EST_BasicNoexcept:
 | |
|     OS << "noexcept";
 | |
|     break;
 | |
| 
 | |
|   case EST_ComputedNoexcept:
 | |
|     OS << "noexcept(";
 | |
|     OldProto->getNoexceptExpr()->printPretty(OS, 0, getPrintingPolicy());
 | |
|     OS << ")";
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("This spec type is compatible with none.");
 | |
|   }
 | |
|   OS.flush();
 | |
| 
 | |
|   SourceLocation FixItLoc;
 | |
|   if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
 | |
|     TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
 | |
|     if (FunctionTypeLoc FTLoc = TL.getAs<FunctionTypeLoc>())
 | |
|       FixItLoc = PP.getLocForEndOfToken(FTLoc.getLocalRangeEnd());
 | |
|   }
 | |
| 
 | |
|   if (FixItLoc.isInvalid())
 | |
|     Diag(New->getLocation(), diag::warn_missing_exception_specification)
 | |
|       << New << OS.str();
 | |
|   else {
 | |
|     // FIXME: This will get more complicated with C++0x
 | |
|     // late-specified return types.
 | |
|     Diag(New->getLocation(), diag::warn_missing_exception_specification)
 | |
|       << New << OS.str()
 | |
|       << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
 | |
|   }
 | |
| 
 | |
|   if (!Old->getLocation().isInvalid())
 | |
|     Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
 | |
| /// exception specifications. Exception specifications are equivalent if
 | |
| /// they allow exactly the same set of exception types. It does not matter how
 | |
| /// that is achieved. See C++ [except.spec]p2.
 | |
| bool Sema::CheckEquivalentExceptionSpec(
 | |
|     const FunctionProtoType *Old, SourceLocation OldLoc,
 | |
|     const FunctionProtoType *New, SourceLocation NewLoc) {
 | |
|   unsigned DiagID = diag::err_mismatched_exception_spec;
 | |
|   if (getLangOpts().MicrosoftExt)
 | |
|     DiagID = diag::warn_mismatched_exception_spec; 
 | |
|   return CheckEquivalentExceptionSpec(PDiag(DiagID),
 | |
|                                       PDiag(diag::note_previous_declaration),
 | |
|                                       Old, OldLoc, New, NewLoc);
 | |
| }
 | |
| 
 | |
| /// CheckEquivalentExceptionSpec - Check if the two types have compatible
 | |
| /// exception specifications. See C++ [except.spec]p3.
 | |
| ///
 | |
| /// \return \c false if the exception specifications match, \c true if there is
 | |
| /// a problem. If \c true is returned, either a diagnostic has already been
 | |
| /// produced or \c *MissingExceptionSpecification is set to \c true.
 | |
| bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
 | |
|                                         const PartialDiagnostic & NoteID,
 | |
|                                         const FunctionProtoType *Old,
 | |
|                                         SourceLocation OldLoc,
 | |
|                                         const FunctionProtoType *New,
 | |
|                                         SourceLocation NewLoc,
 | |
|                                         bool *MissingExceptionSpecification,
 | |
|                                         bool*MissingEmptyExceptionSpecification,
 | |
|                                         bool AllowNoexceptAllMatchWithNoSpec,
 | |
|                                         bool IsOperatorNew) {
 | |
|   // Just completely ignore this under -fno-exceptions.
 | |
|   if (!getLangOpts().CXXExceptions)
 | |
|     return false;
 | |
| 
 | |
|   if (MissingExceptionSpecification)
 | |
|     *MissingExceptionSpecification = false;
 | |
| 
 | |
|   if (MissingEmptyExceptionSpecification)
 | |
|     *MissingEmptyExceptionSpecification = false;
 | |
| 
 | |
|   Old = ResolveExceptionSpec(NewLoc, Old);
 | |
|   if (!Old)
 | |
|     return false;
 | |
|   New = ResolveExceptionSpec(NewLoc, New);
 | |
|   if (!New)
 | |
|     return false;
 | |
| 
 | |
|   // C++0x [except.spec]p3: Two exception-specifications are compatible if:
 | |
|   //   - both are non-throwing, regardless of their form,
 | |
|   //   - both have the form noexcept(constant-expression) and the constant-
 | |
|   //     expressions are equivalent,
 | |
|   //   - both are dynamic-exception-specifications that have the same set of
 | |
|   //     adjusted types.
 | |
|   //
 | |
|   // C++0x [except.spec]p12: An exception-specifcation is non-throwing if it is
 | |
|   //   of the form throw(), noexcept, or noexcept(constant-expression) where the
 | |
|   //   constant-expression yields true.
 | |
|   //
 | |
|   // C++0x [except.spec]p4: If any declaration of a function has an exception-
 | |
|   //   specifier that is not a noexcept-specification allowing all exceptions,
 | |
|   //   all declarations [...] of that function shall have a compatible
 | |
|   //   exception-specification.
 | |
|   //
 | |
|   // That last point basically means that noexcept(false) matches no spec.
 | |
|   // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
 | |
| 
 | |
|   ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
 | |
|   ExceptionSpecificationType NewEST = New->getExceptionSpecType();
 | |
| 
 | |
|   assert(!isUnresolvedExceptionSpec(OldEST) &&
 | |
|          !isUnresolvedExceptionSpec(NewEST) &&
 | |
|          "Shouldn't see unknown exception specifications here");
 | |
| 
 | |
|   // Shortcut the case where both have no spec.
 | |
|   if (OldEST == EST_None && NewEST == EST_None)
 | |
|     return false;
 | |
| 
 | |
|   FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context);
 | |
|   FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context);
 | |
|   if (OldNR == FunctionProtoType::NR_BadNoexcept ||
 | |
|       NewNR == FunctionProtoType::NR_BadNoexcept)
 | |
|     return false;
 | |
| 
 | |
|   // Dependent noexcept specifiers are compatible with each other, but nothing
 | |
|   // else.
 | |
|   // One noexcept is compatible with another if the argument is the same
 | |
|   if (OldNR == NewNR &&
 | |
|       OldNR != FunctionProtoType::NR_NoNoexcept &&
 | |
|       NewNR != FunctionProtoType::NR_NoNoexcept)
 | |
|     return false;
 | |
|   if (OldNR != NewNR &&
 | |
|       OldNR != FunctionProtoType::NR_NoNoexcept &&
 | |
|       NewNR != FunctionProtoType::NR_NoNoexcept) {
 | |
|     Diag(NewLoc, DiagID);
 | |
|     if (NoteID.getDiagID() != 0)
 | |
|       Diag(OldLoc, NoteID);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The MS extension throw(...) is compatible with itself.
 | |
|   if (OldEST == EST_MSAny && NewEST == EST_MSAny)
 | |
|     return false;
 | |
| 
 | |
|   // It's also compatible with no spec.
 | |
|   if ((OldEST == EST_None && NewEST == EST_MSAny) ||
 | |
|       (OldEST == EST_MSAny && NewEST == EST_None))
 | |
|     return false;
 | |
| 
 | |
|   // It's also compatible with noexcept(false).
 | |
|   if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw)
 | |
|     return false;
 | |
|   if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw)
 | |
|     return false;
 | |
| 
 | |
|   // As described above, noexcept(false) matches no spec only for functions.
 | |
|   if (AllowNoexceptAllMatchWithNoSpec) {
 | |
|     if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw)
 | |
|       return false;
 | |
|     if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Any non-throwing specifications are compatible.
 | |
|   bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow ||
 | |
|                         OldEST == EST_DynamicNone;
 | |
|   bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow ||
 | |
|                         NewEST == EST_DynamicNone;
 | |
|   if (OldNonThrowing && NewNonThrowing)
 | |
|     return false;
 | |
| 
 | |
|   // As a special compatibility feature, under C++0x we accept no spec and
 | |
|   // throw(std::bad_alloc) as equivalent for operator new and operator new[].
 | |
|   // This is because the implicit declaration changed, but old code would break.
 | |
|   if (getLangOpts().CPlusPlus11 && IsOperatorNew) {
 | |
|     const FunctionProtoType *WithExceptions = 0;
 | |
|     if (OldEST == EST_None && NewEST == EST_Dynamic)
 | |
|       WithExceptions = New;
 | |
|     else if (OldEST == EST_Dynamic && NewEST == EST_None)
 | |
|       WithExceptions = Old;
 | |
|     if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
 | |
|       // One has no spec, the other throw(something). If that something is
 | |
|       // std::bad_alloc, all conditions are met.
 | |
|       QualType Exception = *WithExceptions->exception_begin();
 | |
|       if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
 | |
|         IdentifierInfo* Name = ExRecord->getIdentifier();
 | |
|         if (Name && Name->getName() == "bad_alloc") {
 | |
|           // It's called bad_alloc, but is it in std?
 | |
|           DeclContext* DC = ExRecord->getDeclContext();
 | |
|           DC = DC->getEnclosingNamespaceContext();
 | |
|           if (NamespaceDecl* NS = dyn_cast<NamespaceDecl>(DC)) {
 | |
|             IdentifierInfo* NSName = NS->getIdentifier();
 | |
|             DC = DC->getParent();
 | |
|             if (NSName && NSName->getName() == "std" &&
 | |
|                 DC->getEnclosingNamespaceContext()->isTranslationUnit()) {
 | |
|               return false;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // At this point, the only remaining valid case is two matching dynamic
 | |
|   // specifications. We return here unless both specifications are dynamic.
 | |
|   if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) {
 | |
|     if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
 | |
|         !New->hasExceptionSpec()) {
 | |
|       // The old type has an exception specification of some sort, but
 | |
|       // the new type does not.
 | |
|       *MissingExceptionSpecification = true;
 | |
| 
 | |
|       if (MissingEmptyExceptionSpecification && OldNonThrowing) {
 | |
|         // The old type has a throw() or noexcept(true) exception specification
 | |
|         // and the new type has no exception specification, and the caller asked
 | |
|         // to handle this itself.
 | |
|         *MissingEmptyExceptionSpecification = true;
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     Diag(NewLoc, DiagID);
 | |
|     if (NoteID.getDiagID() != 0)
 | |
|       Diag(OldLoc, NoteID);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic &&
 | |
|       "Exception compatibility logic error: non-dynamic spec slipped through.");
 | |
| 
 | |
|   bool Success = true;
 | |
|   // Both have a dynamic exception spec. Collect the first set, then compare
 | |
|   // to the second.
 | |
|   llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
 | |
|   for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
 | |
|        E = Old->exception_end(); I != E; ++I)
 | |
|     OldTypes.insert(Context.getCanonicalType(*I).getUnqualifiedType());
 | |
| 
 | |
|   for (FunctionProtoType::exception_iterator I = New->exception_begin(),
 | |
|        E = New->exception_end(); I != E && Success; ++I) {
 | |
|     CanQualType TypePtr = Context.getCanonicalType(*I).getUnqualifiedType();
 | |
|     if(OldTypes.count(TypePtr))
 | |
|       NewTypes.insert(TypePtr);
 | |
|     else
 | |
|       Success = false;
 | |
|   }
 | |
| 
 | |
|   Success = Success && OldTypes.size() == NewTypes.size();
 | |
| 
 | |
|   if (Success) {
 | |
|     return false;
 | |
|   }
 | |
|   Diag(NewLoc, DiagID);
 | |
|   if (NoteID.getDiagID() != 0)
 | |
|     Diag(OldLoc, NoteID);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CheckExceptionSpecSubset - Check whether the second function type's
 | |
| /// exception specification is a subset (or equivalent) of the first function
 | |
| /// type. This is used by override and pointer assignment checks.
 | |
| bool Sema::CheckExceptionSpecSubset(
 | |
|     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
 | |
|     const FunctionProtoType *Superset, SourceLocation SuperLoc,
 | |
|     const FunctionProtoType *Subset, SourceLocation SubLoc) {
 | |
| 
 | |
|   // Just auto-succeed under -fno-exceptions.
 | |
|   if (!getLangOpts().CXXExceptions)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: As usual, we could be more specific in our error messages, but
 | |
|   // that better waits until we've got types with source locations.
 | |
| 
 | |
|   if (!SubLoc.isValid())
 | |
|     SubLoc = SuperLoc;
 | |
| 
 | |
|   // Resolve the exception specifications, if needed.
 | |
|   Superset = ResolveExceptionSpec(SuperLoc, Superset);
 | |
|   if (!Superset)
 | |
|     return false;
 | |
|   Subset = ResolveExceptionSpec(SubLoc, Subset);
 | |
|   if (!Subset)
 | |
|     return false;
 | |
| 
 | |
|   ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
 | |
| 
 | |
|   // If superset contains everything, we're done.
 | |
|   if (SuperEST == EST_None || SuperEST == EST_MSAny)
 | |
|     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
 | |
| 
 | |
|   // If there are dependent noexcept specs, assume everything is fine. Unlike
 | |
|   // with the equivalency check, this is safe in this case, because we don't
 | |
|   // want to merge declarations. Checks after instantiation will catch any
 | |
|   // omissions we make here.
 | |
|   // We also shortcut checking if a noexcept expression was bad.
 | |
| 
 | |
|   FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context);
 | |
|   if (SuperNR == FunctionProtoType::NR_BadNoexcept ||
 | |
|       SuperNR == FunctionProtoType::NR_Dependent)
 | |
|     return false;
 | |
| 
 | |
|   // Another case of the superset containing everything.
 | |
|   if (SuperNR == FunctionProtoType::NR_Throw)
 | |
|     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
 | |
| 
 | |
|   ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
 | |
| 
 | |
|   assert(!isUnresolvedExceptionSpec(SuperEST) &&
 | |
|          !isUnresolvedExceptionSpec(SubEST) &&
 | |
|          "Shouldn't see unknown exception specifications here");
 | |
| 
 | |
|   // It does not. If the subset contains everything, we've failed.
 | |
|   if (SubEST == EST_None || SubEST == EST_MSAny) {
 | |
|     Diag(SubLoc, DiagID);
 | |
|     if (NoteID.getDiagID() != 0)
 | |
|       Diag(SuperLoc, NoteID);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context);
 | |
|   if (SubNR == FunctionProtoType::NR_BadNoexcept ||
 | |
|       SubNR == FunctionProtoType::NR_Dependent)
 | |
|     return false;
 | |
| 
 | |
|   // Another case of the subset containing everything.
 | |
|   if (SubNR == FunctionProtoType::NR_Throw) {
 | |
|     Diag(SubLoc, DiagID);
 | |
|     if (NoteID.getDiagID() != 0)
 | |
|       Diag(SuperLoc, NoteID);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If the subset contains nothing, we're done.
 | |
|   if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow)
 | |
|     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
 | |
| 
 | |
|   // Otherwise, if the superset contains nothing, we've failed.
 | |
|   if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) {
 | |
|     Diag(SubLoc, DiagID);
 | |
|     if (NoteID.getDiagID() != 0)
 | |
|       Diag(SuperLoc, NoteID);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
 | |
|          "Exception spec subset: non-dynamic case slipped through.");
 | |
| 
 | |
|   // Neither contains everything or nothing. Do a proper comparison.
 | |
|   for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
 | |
|        SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
 | |
|     // Take one type from the subset.
 | |
|     QualType CanonicalSubT = Context.getCanonicalType(*SubI);
 | |
|     // Unwrap pointers and references so that we can do checks within a class
 | |
|     // hierarchy. Don't unwrap member pointers; they don't have hierarchy
 | |
|     // conversions on the pointee.
 | |
|     bool SubIsPointer = false;
 | |
|     if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
 | |
|       CanonicalSubT = RefTy->getPointeeType();
 | |
|     if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
 | |
|       CanonicalSubT = PtrTy->getPointeeType();
 | |
|       SubIsPointer = true;
 | |
|     }
 | |
|     bool SubIsClass = CanonicalSubT->isRecordType();
 | |
|     CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
 | |
| 
 | |
|     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | |
|                        /*DetectVirtual=*/false);
 | |
| 
 | |
|     bool Contained = false;
 | |
|     // Make sure it's in the superset.
 | |
|     for (FunctionProtoType::exception_iterator SuperI =
 | |
|            Superset->exception_begin(), SuperE = Superset->exception_end();
 | |
|          SuperI != SuperE; ++SuperI) {
 | |
|       QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
 | |
|       // SubT must be SuperT or derived from it, or pointer or reference to
 | |
|       // such types.
 | |
|       if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
 | |
|         CanonicalSuperT = RefTy->getPointeeType();
 | |
|       if (SubIsPointer) {
 | |
|         if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
 | |
|           CanonicalSuperT = PtrTy->getPointeeType();
 | |
|         else {
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
 | |
|       // If the types are the same, move on to the next type in the subset.
 | |
|       if (CanonicalSubT == CanonicalSuperT) {
 | |
|         Contained = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Otherwise we need to check the inheritance.
 | |
|       if (!SubIsClass || !CanonicalSuperT->isRecordType())
 | |
|         continue;
 | |
| 
 | |
|       Paths.clear();
 | |
|       if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
 | |
|         continue;
 | |
| 
 | |
|       if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
 | |
|         continue;
 | |
| 
 | |
|       // Do this check from a context without privileges.
 | |
|       switch (CheckBaseClassAccess(SourceLocation(),
 | |
|                                    CanonicalSuperT, CanonicalSubT,
 | |
|                                    Paths.front(),
 | |
|                                    /*Diagnostic*/ 0,
 | |
|                                    /*ForceCheck*/ true,
 | |
|                                    /*ForceUnprivileged*/ true)) {
 | |
|       case AR_accessible: break;
 | |
|       case AR_inaccessible: continue;
 | |
|       case AR_dependent:
 | |
|         llvm_unreachable("access check dependent for unprivileged context");
 | |
|       case AR_delayed:
 | |
|         llvm_unreachable("access check delayed in non-declaration");
 | |
|       }
 | |
| 
 | |
|       Contained = true;
 | |
|       break;
 | |
|     }
 | |
|     if (!Contained) {
 | |
|       Diag(SubLoc, DiagID);
 | |
|       if (NoteID.getDiagID() != 0)
 | |
|         Diag(SuperLoc, NoteID);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   // We've run half the gauntlet.
 | |
|   return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
 | |
| }
 | |
| 
 | |
| static bool CheckSpecForTypesEquivalent(Sema &S,
 | |
|     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
 | |
|     QualType Target, SourceLocation TargetLoc,
 | |
|     QualType Source, SourceLocation SourceLoc)
 | |
| {
 | |
|   const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
 | |
|   if (!TFunc)
 | |
|     return false;
 | |
|   const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
 | |
|   if (!SFunc)
 | |
|     return false;
 | |
| 
 | |
|   return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
 | |
|                                         SFunc, SourceLoc);
 | |
| }
 | |
| 
 | |
| /// CheckParamExceptionSpec - Check if the parameter and return types of the
 | |
| /// two functions have equivalent exception specs. This is part of the
 | |
| /// assignment and override compatibility check. We do not check the parameters
 | |
| /// of parameter function pointers recursively, as no sane programmer would
 | |
| /// even be able to write such a function type.
 | |
| bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
 | |
|     const FunctionProtoType *Target, SourceLocation TargetLoc,
 | |
|     const FunctionProtoType *Source, SourceLocation SourceLoc)
 | |
| {
 | |
|   if (CheckSpecForTypesEquivalent(*this,
 | |
|                            PDiag(diag::err_deep_exception_specs_differ) << 0, 
 | |
|                                   PDiag(),
 | |
|                                   Target->getResultType(), TargetLoc,
 | |
|                                   Source->getResultType(), SourceLoc))
 | |
|     return true;
 | |
| 
 | |
|   // We shouldn't even be testing this unless the arguments are otherwise
 | |
|   // compatible.
 | |
|   assert(Target->getNumArgs() == Source->getNumArgs() &&
 | |
|          "Functions have different argument counts.");
 | |
|   for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) {
 | |
|     if (CheckSpecForTypesEquivalent(*this,
 | |
|                            PDiag(diag::err_deep_exception_specs_differ) << 1, 
 | |
|                                     PDiag(),
 | |
|                                     Target->getArgType(i), TargetLoc,
 | |
|                                     Source->getArgType(i), SourceLoc))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType)
 | |
| {
 | |
|   // First we check for applicability.
 | |
|   // Target type must be a function, function pointer or function reference.
 | |
|   const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
 | |
|   if (!ToFunc)
 | |
|     return false;
 | |
| 
 | |
|   // SourceType must be a function or function pointer.
 | |
|   const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
 | |
|   if (!FromFunc)
 | |
|     return false;
 | |
| 
 | |
|   // Now we've got the correct types on both sides, check their compatibility.
 | |
|   // This means that the source of the conversion can only throw a subset of
 | |
|   // the exceptions of the target, and any exception specs on arguments or
 | |
|   // return types must be equivalent.
 | |
|   return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
 | |
|                                   PDiag(), ToFunc, 
 | |
|                                   From->getSourceRange().getBegin(),
 | |
|                                   FromFunc, SourceLocation());
 | |
| }
 | |
| 
 | |
| bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
 | |
|                                                 const CXXMethodDecl *Old) {
 | |
|   if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) {
 | |
|     // Don't check uninstantiated template destructors at all. We can only
 | |
|     // synthesize correct specs after the template is instantiated.
 | |
|     if (New->getParent()->isDependentType())
 | |
|       return false;
 | |
|     if (New->getParent()->isBeingDefined()) {
 | |
|       // The destructor might be updated once the definition is finished. So
 | |
|       // remember it and check later.
 | |
|       DelayedDestructorExceptionSpecChecks.push_back(std::make_pair(
 | |
|         cast<CXXDestructorDecl>(New), cast<CXXDestructorDecl>(Old)));
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   unsigned DiagID = diag::err_override_exception_spec;
 | |
|   if (getLangOpts().MicrosoftExt)
 | |
|     DiagID = diag::warn_override_exception_spec;
 | |
|   return CheckExceptionSpecSubset(PDiag(DiagID),
 | |
|                                   PDiag(diag::note_overridden_virtual_function),
 | |
|                                   Old->getType()->getAs<FunctionProtoType>(),
 | |
|                                   Old->getLocation(),
 | |
|                                   New->getType()->getAs<FunctionProtoType>(),
 | |
|                                   New->getLocation());
 | |
| }
 | |
| 
 | |
| static CanThrowResult canSubExprsThrow(Sema &S, const Expr *CE) {
 | |
|   Expr *E = const_cast<Expr*>(CE);
 | |
|   CanThrowResult R = CT_Cannot;
 | |
|   for (Expr::child_range I = E->children(); I && R != CT_Can; ++I)
 | |
|     R = mergeCanThrow(R, S.canThrow(cast<Expr>(*I)));
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) {
 | |
|   assert(D && "Expected decl");
 | |
| 
 | |
|   // See if we can get a function type from the decl somehow.
 | |
|   const ValueDecl *VD = dyn_cast<ValueDecl>(D);
 | |
|   if (!VD) // If we have no clue what we're calling, assume the worst.
 | |
|     return CT_Can;
 | |
| 
 | |
|   // As an extension, we assume that __attribute__((nothrow)) functions don't
 | |
|   // throw.
 | |
|   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
 | |
|     return CT_Cannot;
 | |
| 
 | |
|   QualType T = VD->getType();
 | |
|   const FunctionProtoType *FT;
 | |
|   if ((FT = T->getAs<FunctionProtoType>())) {
 | |
|   } else if (const PointerType *PT = T->getAs<PointerType>())
 | |
|     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
 | |
|   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
 | |
|     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
 | |
|   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
 | |
|     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
 | |
|   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
 | |
|     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|   if (!FT)
 | |
|     return CT_Can;
 | |
| 
 | |
|   FT = S.ResolveExceptionSpec(E->getLocStart(), FT);
 | |
|   if (!FT)
 | |
|     return CT_Can;
 | |
| 
 | |
|   return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can;
 | |
| }
 | |
| 
 | |
| static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
 | |
|   if (DC->isTypeDependent())
 | |
|     return CT_Dependent;
 | |
| 
 | |
|   if (!DC->getTypeAsWritten()->isReferenceType())
 | |
|     return CT_Cannot;
 | |
| 
 | |
|   if (DC->getSubExpr()->isTypeDependent())
 | |
|     return CT_Dependent;
 | |
| 
 | |
|   return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
 | |
| }
 | |
| 
 | |
| static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
 | |
|   if (DC->isTypeOperand())
 | |
|     return CT_Cannot;
 | |
| 
 | |
|   Expr *Op = DC->getExprOperand();
 | |
|   if (Op->isTypeDependent())
 | |
|     return CT_Dependent;
 | |
| 
 | |
|   const RecordType *RT = Op->getType()->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return CT_Cannot;
 | |
| 
 | |
|   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
 | |
|     return CT_Cannot;
 | |
| 
 | |
|   if (Op->Classify(S.Context).isPRValue())
 | |
|     return CT_Cannot;
 | |
| 
 | |
|   return CT_Can;
 | |
| }
 | |
| 
 | |
| CanThrowResult Sema::canThrow(const Expr *E) {
 | |
|   // C++ [expr.unary.noexcept]p3:
 | |
|   //   [Can throw] if in a potentially-evaluated context the expression would
 | |
|   //   contain:
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Expr::CXXThrowExprClass:
 | |
|     //   - a potentially evaluated throw-expression
 | |
|     return CT_Can;
 | |
| 
 | |
|   case Expr::CXXDynamicCastExprClass: {
 | |
|     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
 | |
|     //     where T is a reference type, that requires a run-time check
 | |
|     CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXTypeidExprClass:
 | |
|     //   - a potentially evaluated typeid expression applied to a glvalue
 | |
|     //     expression whose type is a polymorphic class type
 | |
|     return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
 | |
| 
 | |
|     //   - a potentially evaluated call to a function, member function, function
 | |
|     //     pointer, or member function pointer that does not have a non-throwing
 | |
|     //     exception-specification
 | |
|   case Expr::CallExprClass:
 | |
|   case Expr::CXXMemberCallExprClass:
 | |
|   case Expr::CXXOperatorCallExprClass:
 | |
|   case Expr::UserDefinedLiteralClass: {
 | |
|     const CallExpr *CE = cast<CallExpr>(E);
 | |
|     CanThrowResult CT;
 | |
|     if (E->isTypeDependent())
 | |
|       CT = CT_Dependent;
 | |
|     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
 | |
|       CT = CT_Cannot;
 | |
|     else if (CE->getCalleeDecl())
 | |
|       CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
 | |
|     else
 | |
|       CT = CT_Can;
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXConstructExprClass:
 | |
|   case Expr::CXXTemporaryObjectExprClass: {
 | |
|     CanThrowResult CT = canCalleeThrow(*this, E,
 | |
|         cast<CXXConstructExpr>(E)->getConstructor());
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
 | |
|   }
 | |
| 
 | |
|   case Expr::LambdaExprClass: {
 | |
|     const LambdaExpr *Lambda = cast<LambdaExpr>(E);
 | |
|     CanThrowResult CT = CT_Cannot;
 | |
|     for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
 | |
|                                         CapEnd = Lambda->capture_init_end();
 | |
|          Cap != CapEnd; ++Cap)
 | |
|       CT = mergeCanThrow(CT, canThrow(*Cap));
 | |
|     return CT;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXNewExprClass: {
 | |
|     CanThrowResult CT;
 | |
|     if (E->isTypeDependent())
 | |
|       CT = CT_Dependent;
 | |
|     else
 | |
|       CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXDeleteExprClass: {
 | |
|     CanThrowResult CT;
 | |
|     QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
 | |
|     if (DTy.isNull() || DTy->isDependentType()) {
 | |
|       CT = CT_Dependent;
 | |
|     } else {
 | |
|       CT = canCalleeThrow(*this, E,
 | |
|                           cast<CXXDeleteExpr>(E)->getOperatorDelete());
 | |
|       if (const RecordType *RT = DTy->getAs<RecordType>()) {
 | |
|         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|         const CXXDestructorDecl *DD = RD->getDestructor();
 | |
|         if (DD)
 | |
|           CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD));
 | |
|       }
 | |
|       if (CT == CT_Can)
 | |
|         return CT;
 | |
|     }
 | |
|     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXBindTemporaryExprClass: {
 | |
|     // The bound temporary has to be destroyed again, which might throw.
 | |
|     CanThrowResult CT = canCalleeThrow(*this, E,
 | |
|       cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
 | |
|   }
 | |
| 
 | |
|     // ObjC message sends are like function calls, but never have exception
 | |
|     // specs.
 | |
|   case Expr::ObjCMessageExprClass:
 | |
|   case Expr::ObjCPropertyRefExprClass:
 | |
|   case Expr::ObjCSubscriptRefExprClass:
 | |
|     return CT_Can;
 | |
| 
 | |
|     // All the ObjC literals that are implemented as calls are
 | |
|     // potentially throwing unless we decide to close off that
 | |
|     // possibility.
 | |
|   case Expr::ObjCArrayLiteralClass:
 | |
|   case Expr::ObjCDictionaryLiteralClass:
 | |
|   case Expr::ObjCBoxedExprClass:
 | |
|     return CT_Can;
 | |
| 
 | |
|     // Many other things have subexpressions, so we have to test those.
 | |
|     // Some are simple:
 | |
|   case Expr::ConditionalOperatorClass:
 | |
|   case Expr::CompoundLiteralExprClass:
 | |
|   case Expr::CXXConstCastExprClass:
 | |
|   case Expr::CXXReinterpretCastExprClass:
 | |
|   case Expr::CXXStdInitializerListExprClass:
 | |
|   case Expr::DesignatedInitExprClass:
 | |
|   case Expr::ExprWithCleanupsClass:
 | |
|   case Expr::ExtVectorElementExprClass:
 | |
|   case Expr::InitListExprClass:
 | |
|   case Expr::MemberExprClass:
 | |
|   case Expr::ObjCIsaExprClass:
 | |
|   case Expr::ObjCIvarRefExprClass:
 | |
|   case Expr::ParenExprClass:
 | |
|   case Expr::ParenListExprClass:
 | |
|   case Expr::ShuffleVectorExprClass:
 | |
|   case Expr::VAArgExprClass:
 | |
|     return canSubExprsThrow(*this, E);
 | |
| 
 | |
|     // Some might be dependent for other reasons.
 | |
|   case Expr::ArraySubscriptExprClass:
 | |
|   case Expr::BinaryOperatorClass:
 | |
|   case Expr::CompoundAssignOperatorClass:
 | |
|   case Expr::CStyleCastExprClass:
 | |
|   case Expr::CXXStaticCastExprClass:
 | |
|   case Expr::CXXFunctionalCastExprClass:
 | |
|   case Expr::ImplicitCastExprClass:
 | |
|   case Expr::MaterializeTemporaryExprClass:
 | |
|   case Expr::UnaryOperatorClass: {
 | |
|     CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
 | |
|     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
 | |
|   }
 | |
| 
 | |
|     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
 | |
|   case Expr::StmtExprClass:
 | |
|     return CT_Can;
 | |
| 
 | |
|   case Expr::CXXDefaultArgExprClass:
 | |
|     return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
 | |
| 
 | |
|   case Expr::CXXDefaultInitExprClass:
 | |
|     return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
 | |
| 
 | |
|   case Expr::ChooseExprClass:
 | |
|     if (E->isTypeDependent() || E->isValueDependent())
 | |
|       return CT_Dependent;
 | |
|     return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr());
 | |
| 
 | |
|   case Expr::GenericSelectionExprClass:
 | |
|     if (cast<GenericSelectionExpr>(E)->isResultDependent())
 | |
|       return CT_Dependent;
 | |
|     return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
 | |
| 
 | |
|     // Some expressions are always dependent.
 | |
|   case Expr::CXXDependentScopeMemberExprClass:
 | |
|   case Expr::CXXUnresolvedConstructExprClass:
 | |
|   case Expr::DependentScopeDeclRefExprClass:
 | |
|     return CT_Dependent;
 | |
| 
 | |
|   case Expr::AsTypeExprClass:
 | |
|   case Expr::BinaryConditionalOperatorClass:
 | |
|   case Expr::BlockExprClass:
 | |
|   case Expr::CUDAKernelCallExprClass:
 | |
|   case Expr::DeclRefExprClass:
 | |
|   case Expr::ObjCBridgedCastExprClass:
 | |
|   case Expr::ObjCIndirectCopyRestoreExprClass:
 | |
|   case Expr::ObjCProtocolExprClass:
 | |
|   case Expr::ObjCSelectorExprClass:
 | |
|   case Expr::OffsetOfExprClass:
 | |
|   case Expr::PackExpansionExprClass:
 | |
|   case Expr::PseudoObjectExprClass:
 | |
|   case Expr::SubstNonTypeTemplateParmExprClass:
 | |
|   case Expr::SubstNonTypeTemplateParmPackExprClass:
 | |
|   case Expr::FunctionParmPackExprClass:
 | |
|   case Expr::UnaryExprOrTypeTraitExprClass:
 | |
|   case Expr::UnresolvedLookupExprClass:
 | |
|   case Expr::UnresolvedMemberExprClass:
 | |
|     // FIXME: Can any of the above throw?  If so, when?
 | |
|     return CT_Cannot;
 | |
| 
 | |
|   case Expr::AddrLabelExprClass:
 | |
|   case Expr::ArrayTypeTraitExprClass:
 | |
|   case Expr::AtomicExprClass:
 | |
|   case Expr::BinaryTypeTraitExprClass:
 | |
|   case Expr::TypeTraitExprClass:
 | |
|   case Expr::CXXBoolLiteralExprClass:
 | |
|   case Expr::CXXNoexceptExprClass:
 | |
|   case Expr::CXXNullPtrLiteralExprClass:
 | |
|   case Expr::CXXPseudoDestructorExprClass:
 | |
|   case Expr::CXXScalarValueInitExprClass:
 | |
|   case Expr::CXXThisExprClass:
 | |
|   case Expr::CXXUuidofExprClass:
 | |
|   case Expr::CharacterLiteralClass:
 | |
|   case Expr::ExpressionTraitExprClass:
 | |
|   case Expr::FloatingLiteralClass:
 | |
|   case Expr::GNUNullExprClass:
 | |
|   case Expr::ImaginaryLiteralClass:
 | |
|   case Expr::ImplicitValueInitExprClass:
 | |
|   case Expr::IntegerLiteralClass:
 | |
|   case Expr::ObjCEncodeExprClass:
 | |
|   case Expr::ObjCStringLiteralClass:
 | |
|   case Expr::ObjCBoolLiteralExprClass:
 | |
|   case Expr::OpaqueValueExprClass:
 | |
|   case Expr::PredefinedExprClass:
 | |
|   case Expr::SizeOfPackExprClass:
 | |
|   case Expr::StringLiteralClass:
 | |
|   case Expr::UnaryTypeTraitExprClass:
 | |
|     // These expressions can never throw.
 | |
|     return CT_Cannot;
 | |
| 
 | |
|   case Expr::MSPropertyRefExprClass:
 | |
|     llvm_unreachable("Invalid class for expression");
 | |
| 
 | |
| #define STMT(CLASS, PARENT) case Expr::CLASS##Class:
 | |
| #define STMT_RANGE(Base, First, Last)
 | |
| #define LAST_STMT_RANGE(BASE, FIRST, LAST)
 | |
| #define EXPR(CLASS, PARENT)
 | |
| #define ABSTRACT_STMT(STMT)
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|   case Expr::NoStmtClass:
 | |
|     llvm_unreachable("Invalid class for expression");
 | |
|   }
 | |
|   llvm_unreachable("Bogus StmtClass");
 | |
| }
 | |
| 
 | |
| } // end namespace clang
 |