forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			7010 lines
		
	
	
		
			270 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			7010 lines
		
	
	
		
			270 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements semantic analysis for initializers.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Sema/Designator.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <map>
 | |
| using namespace clang;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Sema Initialization Checking
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// \brief Check whether T is compatible with a wide character type (wchar_t,
 | |
| /// char16_t or char32_t).
 | |
| static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
 | |
|   if (Context.typesAreCompatible(Context.getWideCharType(), T))
 | |
|     return true;
 | |
|   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
 | |
|     return Context.typesAreCompatible(Context.Char16Ty, T) ||
 | |
|            Context.typesAreCompatible(Context.Char32Ty, T);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| enum StringInitFailureKind {
 | |
|   SIF_None,
 | |
|   SIF_NarrowStringIntoWideChar,
 | |
|   SIF_WideStringIntoChar,
 | |
|   SIF_IncompatWideStringIntoWideChar,
 | |
|   SIF_Other
 | |
| };
 | |
| 
 | |
| /// \brief Check whether the array of type AT can be initialized by the Init
 | |
| /// expression by means of string initialization. Returns SIF_None if so,
 | |
| /// otherwise returns a StringInitFailureKind that describes why the
 | |
| /// initialization would not work.
 | |
| static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
 | |
|                                           ASTContext &Context) {
 | |
|   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
 | |
|     return SIF_Other;
 | |
| 
 | |
|   // See if this is a string literal or @encode.
 | |
|   Init = Init->IgnoreParens();
 | |
| 
 | |
|   // Handle @encode, which is a narrow string.
 | |
|   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
 | |
|     return SIF_None;
 | |
| 
 | |
|   // Otherwise we can only handle string literals.
 | |
|   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
 | |
|   if (SL == 0)
 | |
|     return SIF_Other;
 | |
| 
 | |
|   const QualType ElemTy =
 | |
|       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
 | |
| 
 | |
|   switch (SL->getKind()) {
 | |
|   case StringLiteral::Ascii:
 | |
|   case StringLiteral::UTF8:
 | |
|     // char array can be initialized with a narrow string.
 | |
|     // Only allow char x[] = "foo";  not char x[] = L"foo";
 | |
|     if (ElemTy->isCharType())
 | |
|       return SIF_None;
 | |
|     if (IsWideCharCompatible(ElemTy, Context))
 | |
|       return SIF_NarrowStringIntoWideChar;
 | |
|     return SIF_Other;
 | |
|   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
 | |
|   // "An array with element type compatible with a qualified or unqualified
 | |
|   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
 | |
|   // string literal with the corresponding encoding prefix (L, u, or U,
 | |
|   // respectively), optionally enclosed in braces.
 | |
|   case StringLiteral::UTF16:
 | |
|     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
 | |
|       return SIF_None;
 | |
|     if (ElemTy->isCharType())
 | |
|       return SIF_WideStringIntoChar;
 | |
|     if (IsWideCharCompatible(ElemTy, Context))
 | |
|       return SIF_IncompatWideStringIntoWideChar;
 | |
|     return SIF_Other;
 | |
|   case StringLiteral::UTF32:
 | |
|     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
 | |
|       return SIF_None;
 | |
|     if (ElemTy->isCharType())
 | |
|       return SIF_WideStringIntoChar;
 | |
|     if (IsWideCharCompatible(ElemTy, Context))
 | |
|       return SIF_IncompatWideStringIntoWideChar;
 | |
|     return SIF_Other;
 | |
|   case StringLiteral::Wide:
 | |
|     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
 | |
|       return SIF_None;
 | |
|     if (ElemTy->isCharType())
 | |
|       return SIF_WideStringIntoChar;
 | |
|     if (IsWideCharCompatible(ElemTy, Context))
 | |
|       return SIF_IncompatWideStringIntoWideChar;
 | |
|     return SIF_Other;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("missed a StringLiteral kind?");
 | |
| }
 | |
| 
 | |
| static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
 | |
|                                           ASTContext &Context) {
 | |
|   const ArrayType *arrayType = Context.getAsArrayType(declType);
 | |
|   if (!arrayType)
 | |
|     return SIF_Other;
 | |
|   return IsStringInit(init, arrayType, Context);
 | |
| }
 | |
| 
 | |
| /// Update the type of a string literal, including any surrounding parentheses,
 | |
| /// to match the type of the object which it is initializing.
 | |
| static void updateStringLiteralType(Expr *E, QualType Ty) {
 | |
|   while (true) {
 | |
|     E->setType(Ty);
 | |
|     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
 | |
|       break;
 | |
|     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
 | |
|       E = PE->getSubExpr();
 | |
|     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
 | |
|       E = UO->getSubExpr();
 | |
|     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
 | |
|       E = GSE->getResultExpr();
 | |
|     else
 | |
|       llvm_unreachable("unexpected expr in string literal init");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
 | |
|                             Sema &S) {
 | |
|   // Get the length of the string as parsed.
 | |
|   uint64_t StrLength =
 | |
|     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
 | |
| 
 | |
| 
 | |
|   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
 | |
|     // C99 6.7.8p14. We have an array of character type with unknown size
 | |
|     // being initialized to a string literal.
 | |
|     llvm::APInt ConstVal(32, StrLength);
 | |
|     // Return a new array type (C99 6.7.8p22).
 | |
|     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
 | |
|                                            ConstVal,
 | |
|                                            ArrayType::Normal, 0);
 | |
|     updateStringLiteralType(Str, DeclT);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
 | |
| 
 | |
|   // We have an array of character type with known size.  However,
 | |
|   // the size may be smaller or larger than the string we are initializing.
 | |
|   // FIXME: Avoid truncation for 64-bit length strings.
 | |
|   if (S.getLangOpts().CPlusPlus) {
 | |
|     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
 | |
|       // For Pascal strings it's OK to strip off the terminating null character,
 | |
|       // so the example below is valid:
 | |
|       //
 | |
|       // unsigned char a[2] = "\pa";
 | |
|       if (SL->isPascal())
 | |
|         StrLength--;
 | |
|     }
 | |
|   
 | |
|     // [dcl.init.string]p2
 | |
|     if (StrLength > CAT->getSize().getZExtValue())
 | |
|       S.Diag(Str->getLocStart(),
 | |
|              diag::err_initializer_string_for_char_array_too_long)
 | |
|         << Str->getSourceRange();
 | |
|   } else {
 | |
|     // C99 6.7.8p14.
 | |
|     if (StrLength-1 > CAT->getSize().getZExtValue())
 | |
|       S.Diag(Str->getLocStart(),
 | |
|              diag::warn_initializer_string_for_char_array_too_long)
 | |
|         << Str->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   // Set the type to the actual size that we are initializing.  If we have
 | |
|   // something like:
 | |
|   //   char x[1] = "foo";
 | |
|   // then this will set the string literal's type to char[1].
 | |
|   updateStringLiteralType(Str, DeclT);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Semantic checking for initializer lists.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// @brief Semantic checking for initializer lists.
 | |
| ///
 | |
| /// The InitListChecker class contains a set of routines that each
 | |
| /// handle the initialization of a certain kind of entity, e.g.,
 | |
| /// arrays, vectors, struct/union types, scalars, etc. The
 | |
| /// InitListChecker itself performs a recursive walk of the subobject
 | |
| /// structure of the type to be initialized, while stepping through
 | |
| /// the initializer list one element at a time. The IList and Index
 | |
| /// parameters to each of the Check* routines contain the active
 | |
| /// (syntactic) initializer list and the index into that initializer
 | |
| /// list that represents the current initializer. Each routine is
 | |
| /// responsible for moving that Index forward as it consumes elements.
 | |
| ///
 | |
| /// Each Check* routine also has a StructuredList/StructuredIndex
 | |
| /// arguments, which contains the current "structured" (semantic)
 | |
| /// initializer list and the index into that initializer list where we
 | |
| /// are copying initializers as we map them over to the semantic
 | |
| /// list. Once we have completed our recursive walk of the subobject
 | |
| /// structure, we will have constructed a full semantic initializer
 | |
| /// list.
 | |
| ///
 | |
| /// C99 designators cause changes in the initializer list traversal,
 | |
| /// because they make the initialization "jump" into a specific
 | |
| /// subobject and then continue the initialization from that
 | |
| /// point. CheckDesignatedInitializer() recursively steps into the
 | |
| /// designated subobject and manages backing out the recursion to
 | |
| /// initialize the subobjects after the one designated.
 | |
| namespace {
 | |
| class InitListChecker {
 | |
|   Sema &SemaRef;
 | |
|   bool hadError;
 | |
|   bool VerifyOnly; // no diagnostics, no structure building
 | |
|   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
 | |
|   InitListExpr *FullyStructuredList;
 | |
| 
 | |
|   void CheckImplicitInitList(const InitializedEntity &Entity,
 | |
|                              InitListExpr *ParentIList, QualType T,
 | |
|                              unsigned &Index, InitListExpr *StructuredList,
 | |
|                              unsigned &StructuredIndex);
 | |
|   void CheckExplicitInitList(const InitializedEntity &Entity,
 | |
|                              InitListExpr *IList, QualType &T,
 | |
|                              unsigned &Index, InitListExpr *StructuredList,
 | |
|                              unsigned &StructuredIndex,
 | |
|                              bool TopLevelObject = false);
 | |
|   void CheckListElementTypes(const InitializedEntity &Entity,
 | |
|                              InitListExpr *IList, QualType &DeclType,
 | |
|                              bool SubobjectIsDesignatorContext,
 | |
|                              unsigned &Index,
 | |
|                              InitListExpr *StructuredList,
 | |
|                              unsigned &StructuredIndex,
 | |
|                              bool TopLevelObject = false);
 | |
|   void CheckSubElementType(const InitializedEntity &Entity,
 | |
|                            InitListExpr *IList, QualType ElemType,
 | |
|                            unsigned &Index,
 | |
|                            InitListExpr *StructuredList,
 | |
|                            unsigned &StructuredIndex);
 | |
|   void CheckComplexType(const InitializedEntity &Entity,
 | |
|                         InitListExpr *IList, QualType DeclType,
 | |
|                         unsigned &Index,
 | |
|                         InitListExpr *StructuredList,
 | |
|                         unsigned &StructuredIndex);
 | |
|   void CheckScalarType(const InitializedEntity &Entity,
 | |
|                        InitListExpr *IList, QualType DeclType,
 | |
|                        unsigned &Index,
 | |
|                        InitListExpr *StructuredList,
 | |
|                        unsigned &StructuredIndex);
 | |
|   void CheckReferenceType(const InitializedEntity &Entity,
 | |
|                           InitListExpr *IList, QualType DeclType,
 | |
|                           unsigned &Index,
 | |
|                           InitListExpr *StructuredList,
 | |
|                           unsigned &StructuredIndex);
 | |
|   void CheckVectorType(const InitializedEntity &Entity,
 | |
|                        InitListExpr *IList, QualType DeclType, unsigned &Index,
 | |
|                        InitListExpr *StructuredList,
 | |
|                        unsigned &StructuredIndex);
 | |
|   void CheckStructUnionTypes(const InitializedEntity &Entity,
 | |
|                              InitListExpr *IList, QualType DeclType,
 | |
|                              RecordDecl::field_iterator Field,
 | |
|                              bool SubobjectIsDesignatorContext, unsigned &Index,
 | |
|                              InitListExpr *StructuredList,
 | |
|                              unsigned &StructuredIndex,
 | |
|                              bool TopLevelObject = false);
 | |
|   void CheckArrayType(const InitializedEntity &Entity,
 | |
|                       InitListExpr *IList, QualType &DeclType,
 | |
|                       llvm::APSInt elementIndex,
 | |
|                       bool SubobjectIsDesignatorContext, unsigned &Index,
 | |
|                       InitListExpr *StructuredList,
 | |
|                       unsigned &StructuredIndex);
 | |
|   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
 | |
|                                   InitListExpr *IList, DesignatedInitExpr *DIE,
 | |
|                                   unsigned DesigIdx,
 | |
|                                   QualType &CurrentObjectType,
 | |
|                                   RecordDecl::field_iterator *NextField,
 | |
|                                   llvm::APSInt *NextElementIndex,
 | |
|                                   unsigned &Index,
 | |
|                                   InitListExpr *StructuredList,
 | |
|                                   unsigned &StructuredIndex,
 | |
|                                   bool FinishSubobjectInit,
 | |
|                                   bool TopLevelObject);
 | |
|   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
 | |
|                                            QualType CurrentObjectType,
 | |
|                                            InitListExpr *StructuredList,
 | |
|                                            unsigned StructuredIndex,
 | |
|                                            SourceRange InitRange);
 | |
|   void UpdateStructuredListElement(InitListExpr *StructuredList,
 | |
|                                    unsigned &StructuredIndex,
 | |
|                                    Expr *expr);
 | |
|   int numArrayElements(QualType DeclType);
 | |
|   int numStructUnionElements(QualType DeclType);
 | |
| 
 | |
|   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
 | |
|                                const InitializedEntity &ParentEntity,
 | |
|                                InitListExpr *ILE, bool &RequiresSecondPass);
 | |
|   void FillInValueInitializations(const InitializedEntity &Entity,
 | |
|                                   InitListExpr *ILE, bool &RequiresSecondPass);
 | |
|   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
 | |
|                               Expr *InitExpr, FieldDecl *Field,
 | |
|                               bool TopLevelObject);
 | |
|   void CheckValueInitializable(const InitializedEntity &Entity);
 | |
| 
 | |
| public:
 | |
|   InitListChecker(Sema &S, const InitializedEntity &Entity,
 | |
|                   InitListExpr *IL, QualType &T, bool VerifyOnly);
 | |
|   bool HadError() { return hadError; }
 | |
| 
 | |
|   // @brief Retrieves the fully-structured initializer list used for
 | |
|   // semantic analysis and code generation.
 | |
|   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
 | |
|   assert(VerifyOnly &&
 | |
|          "CheckValueInitializable is only inteded for verification mode.");
 | |
| 
 | |
|   SourceLocation Loc;
 | |
|   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
 | |
|                                                             true);
 | |
|   InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
 | |
|   if (InitSeq.Failed())
 | |
|     hadError = true;
 | |
| }
 | |
| 
 | |
| void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
 | |
|                                         const InitializedEntity &ParentEntity,
 | |
|                                               InitListExpr *ILE,
 | |
|                                               bool &RequiresSecondPass) {
 | |
|   SourceLocation Loc = ILE->getLocStart();
 | |
|   unsigned NumInits = ILE->getNumInits();
 | |
|   InitializedEntity MemberEntity
 | |
|     = InitializedEntity::InitializeMember(Field, &ParentEntity);
 | |
|   if (Init >= NumInits || !ILE->getInit(Init)) {
 | |
|     // If there's no explicit initializer but we have a default initializer, use
 | |
|     // that. This only happens in C++1y, since classes with default
 | |
|     // initializers are not aggregates in C++11.
 | |
|     if (Field->hasInClassInitializer()) {
 | |
|       Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
 | |
|                                              ILE->getRBraceLoc(), Field);
 | |
|       if (Init < NumInits)
 | |
|         ILE->setInit(Init, DIE);
 | |
|       else {
 | |
|         ILE->updateInit(SemaRef.Context, Init, DIE);
 | |
|         RequiresSecondPass = true;
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // FIXME: We probably don't need to handle references
 | |
|     // specially here, since value-initialization of references is
 | |
|     // handled in InitializationSequence.
 | |
|     if (Field->getType()->isReferenceType()) {
 | |
|       // C++ [dcl.init.aggr]p9:
 | |
|       //   If an incomplete or empty initializer-list leaves a
 | |
|       //   member of reference type uninitialized, the program is
 | |
|       //   ill-formed.
 | |
|       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
 | |
|         << Field->getType()
 | |
|         << ILE->getSyntacticForm()->getSourceRange();
 | |
|       SemaRef.Diag(Field->getLocation(),
 | |
|                    diag::note_uninit_reference_member);
 | |
|       hadError = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
 | |
|                                                               true);
 | |
|     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
 | |
|     if (!InitSeq) {
 | |
|       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
 | |
|       hadError = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     ExprResult MemberInit
 | |
|       = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
 | |
|     if (MemberInit.isInvalid()) {
 | |
|       hadError = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (hadError) {
 | |
|       // Do nothing
 | |
|     } else if (Init < NumInits) {
 | |
|       ILE->setInit(Init, MemberInit.takeAs<Expr>());
 | |
|     } else if (InitSeq.isConstructorInitialization()) {
 | |
|       // Value-initialization requires a constructor call, so
 | |
|       // extend the initializer list to include the constructor
 | |
|       // call and make a note that we'll need to take another pass
 | |
|       // through the initializer list.
 | |
|       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
 | |
|       RequiresSecondPass = true;
 | |
|     }
 | |
|   } else if (InitListExpr *InnerILE
 | |
|                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
 | |
|     FillInValueInitializations(MemberEntity, InnerILE,
 | |
|                                RequiresSecondPass);
 | |
| }
 | |
| 
 | |
| /// Recursively replaces NULL values within the given initializer list
 | |
| /// with expressions that perform value-initialization of the
 | |
| /// appropriate type.
 | |
| void
 | |
| InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
 | |
|                                             InitListExpr *ILE,
 | |
|                                             bool &RequiresSecondPass) {
 | |
|   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
 | |
|          "Should not have void type");
 | |
|   SourceLocation Loc = ILE->getLocStart();
 | |
|   if (ILE->getSyntacticForm())
 | |
|     Loc = ILE->getSyntacticForm()->getLocStart();
 | |
| 
 | |
|   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
 | |
|     const RecordDecl *RDecl = RType->getDecl();
 | |
|     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
 | |
|       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
 | |
|                               Entity, ILE, RequiresSecondPass);
 | |
|     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
 | |
|              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
 | |
|       for (RecordDecl::field_iterator Field = RDecl->field_begin(),
 | |
|                                       FieldEnd = RDecl->field_end();
 | |
|            Field != FieldEnd; ++Field) {
 | |
|         if (Field->hasInClassInitializer()) {
 | |
|           FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       unsigned Init = 0;
 | |
|       for (RecordDecl::field_iterator Field = RDecl->field_begin(),
 | |
|                                       FieldEnd = RDecl->field_end();
 | |
|            Field != FieldEnd; ++Field) {
 | |
|         if (Field->isUnnamedBitfield())
 | |
|           continue;
 | |
| 
 | |
|         if (hadError)
 | |
|           return;
 | |
| 
 | |
|         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
 | |
|         if (hadError)
 | |
|           return;
 | |
| 
 | |
|         ++Init;
 | |
| 
 | |
|         // Only look at the first initialization of a union.
 | |
|         if (RDecl->isUnion())
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   QualType ElementType;
 | |
| 
 | |
|   InitializedEntity ElementEntity = Entity;
 | |
|   unsigned NumInits = ILE->getNumInits();
 | |
|   unsigned NumElements = NumInits;
 | |
|   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
 | |
|     ElementType = AType->getElementType();
 | |
|     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
 | |
|       NumElements = CAType->getSize().getZExtValue();
 | |
|     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
 | |
|                                                          0, Entity);
 | |
|   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
 | |
|     ElementType = VType->getElementType();
 | |
|     NumElements = VType->getNumElements();
 | |
|     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
 | |
|                                                          0, Entity);
 | |
|   } else
 | |
|     ElementType = ILE->getType();
 | |
| 
 | |
| 
 | |
|   for (unsigned Init = 0; Init != NumElements; ++Init) {
 | |
|     if (hadError)
 | |
|       return;
 | |
| 
 | |
|     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
 | |
|         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
 | |
|       ElementEntity.setElementIndex(Init);
 | |
| 
 | |
|     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
 | |
|     if (!InitExpr && !ILE->hasArrayFiller()) {
 | |
|       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
 | |
|                                                                 true);
 | |
|       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
 | |
|       if (!InitSeq) {
 | |
|         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
 | |
|         hadError = true;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       ExprResult ElementInit
 | |
|         = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
 | |
|       if (ElementInit.isInvalid()) {
 | |
|         hadError = true;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (hadError) {
 | |
|         // Do nothing
 | |
|       } else if (Init < NumInits) {
 | |
|         // For arrays, just set the expression used for value-initialization
 | |
|         // of the "holes" in the array.
 | |
|         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
 | |
|           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
 | |
|         else
 | |
|           ILE->setInit(Init, ElementInit.takeAs<Expr>());
 | |
|       } else {
 | |
|         // For arrays, just set the expression used for value-initialization
 | |
|         // of the rest of elements and exit.
 | |
|         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
 | |
|           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         if (InitSeq.isConstructorInitialization()) {
 | |
|           // Value-initialization requires a constructor call, so
 | |
|           // extend the initializer list to include the constructor
 | |
|           // call and make a note that we'll need to take another pass
 | |
|           // through the initializer list.
 | |
|           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
 | |
|           RequiresSecondPass = true;
 | |
|         }
 | |
|       }
 | |
|     } else if (InitListExpr *InnerILE
 | |
|                  = dyn_cast_or_null<InitListExpr>(InitExpr))
 | |
|       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
 | |
|                                  InitListExpr *IL, QualType &T,
 | |
|                                  bool VerifyOnly)
 | |
|   : SemaRef(S), VerifyOnly(VerifyOnly) {
 | |
|   hadError = false;
 | |
| 
 | |
|   unsigned newIndex = 0;
 | |
|   unsigned newStructuredIndex = 0;
 | |
|   FullyStructuredList
 | |
|     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
 | |
|   CheckExplicitInitList(Entity, IL, T, newIndex,
 | |
|                         FullyStructuredList, newStructuredIndex,
 | |
|                         /*TopLevelObject=*/true);
 | |
| 
 | |
|   if (!hadError && !VerifyOnly) {
 | |
|     bool RequiresSecondPass = false;
 | |
|     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
 | |
|     if (RequiresSecondPass && !hadError)
 | |
|       FillInValueInitializations(Entity, FullyStructuredList,
 | |
|                                  RequiresSecondPass);
 | |
|   }
 | |
| }
 | |
| 
 | |
| int InitListChecker::numArrayElements(QualType DeclType) {
 | |
|   // FIXME: use a proper constant
 | |
|   int maxElements = 0x7FFFFFFF;
 | |
|   if (const ConstantArrayType *CAT =
 | |
|         SemaRef.Context.getAsConstantArrayType(DeclType)) {
 | |
|     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
 | |
|   }
 | |
|   return maxElements;
 | |
| }
 | |
| 
 | |
| int InitListChecker::numStructUnionElements(QualType DeclType) {
 | |
|   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
 | |
|   int InitializableMembers = 0;
 | |
|   for (RecordDecl::field_iterator
 | |
|          Field = structDecl->field_begin(),
 | |
|          FieldEnd = structDecl->field_end();
 | |
|        Field != FieldEnd; ++Field) {
 | |
|     if (!Field->isUnnamedBitfield())
 | |
|       ++InitializableMembers;
 | |
|   }
 | |
|   if (structDecl->isUnion())
 | |
|     return std::min(InitializableMembers, 1);
 | |
|   return InitializableMembers - structDecl->hasFlexibleArrayMember();
 | |
| }
 | |
| 
 | |
| void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
 | |
|                                             InitListExpr *ParentIList,
 | |
|                                             QualType T, unsigned &Index,
 | |
|                                             InitListExpr *StructuredList,
 | |
|                                             unsigned &StructuredIndex) {
 | |
|   int maxElements = 0;
 | |
| 
 | |
|   if (T->isArrayType())
 | |
|     maxElements = numArrayElements(T);
 | |
|   else if (T->isRecordType())
 | |
|     maxElements = numStructUnionElements(T);
 | |
|   else if (T->isVectorType())
 | |
|     maxElements = T->getAs<VectorType>()->getNumElements();
 | |
|   else
 | |
|     llvm_unreachable("CheckImplicitInitList(): Illegal type");
 | |
| 
 | |
|   if (maxElements == 0) {
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
 | |
|                    diag::err_implicit_empty_initializer);
 | |
|     ++Index;
 | |
|     hadError = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Build a structured initializer list corresponding to this subobject.
 | |
|   InitListExpr *StructuredSubobjectInitList
 | |
|     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
 | |
|                                  StructuredIndex,
 | |
|           SourceRange(ParentIList->getInit(Index)->getLocStart(),
 | |
|                       ParentIList->getSourceRange().getEnd()));
 | |
|   unsigned StructuredSubobjectInitIndex = 0;
 | |
| 
 | |
|   // Check the element types and build the structural subobject.
 | |
|   unsigned StartIndex = Index;
 | |
|   CheckListElementTypes(Entity, ParentIList, T,
 | |
|                         /*SubobjectIsDesignatorContext=*/false, Index,
 | |
|                         StructuredSubobjectInitList,
 | |
|                         StructuredSubobjectInitIndex);
 | |
| 
 | |
|   if (!VerifyOnly) {
 | |
|     StructuredSubobjectInitList->setType(T);
 | |
| 
 | |
|     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
 | |
|     // Update the structured sub-object initializer so that it's ending
 | |
|     // range corresponds with the end of the last initializer it used.
 | |
|     if (EndIndex < ParentIList->getNumInits()) {
 | |
|       SourceLocation EndLoc
 | |
|         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
 | |
|       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
 | |
|     }
 | |
| 
 | |
|     // Complain about missing braces.
 | |
|     if (T->isArrayType() || T->isRecordType()) {
 | |
|       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
 | |
|                    diag::warn_missing_braces)
 | |
|         << StructuredSubobjectInitList->getSourceRange()
 | |
|         << FixItHint::CreateInsertion(
 | |
|               StructuredSubobjectInitList->getLocStart(), "{")
 | |
|         << FixItHint::CreateInsertion(
 | |
|               SemaRef.PP.getLocForEndOfToken(
 | |
|                                       StructuredSubobjectInitList->getLocEnd()),
 | |
|               "}");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
 | |
|                                             InitListExpr *IList, QualType &T,
 | |
|                                             unsigned &Index,
 | |
|                                             InitListExpr *StructuredList,
 | |
|                                             unsigned &StructuredIndex,
 | |
|                                             bool TopLevelObject) {
 | |
|   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
 | |
|   if (!VerifyOnly) {
 | |
|     SyntacticToSemantic[IList] = StructuredList;
 | |
|     StructuredList->setSyntacticForm(IList);
 | |
|   }
 | |
|   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
 | |
|                         Index, StructuredList, StructuredIndex, TopLevelObject);
 | |
|   if (!VerifyOnly) {
 | |
|     QualType ExprTy = T;
 | |
|     if (!ExprTy->isArrayType())
 | |
|       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
 | |
|     IList->setType(ExprTy);
 | |
|     StructuredList->setType(ExprTy);
 | |
|   }
 | |
|   if (hadError)
 | |
|     return;
 | |
| 
 | |
|   if (Index < IList->getNumInits()) {
 | |
|     // We have leftover initializers
 | |
|     if (VerifyOnly) {
 | |
|       if (SemaRef.getLangOpts().CPlusPlus ||
 | |
|           (SemaRef.getLangOpts().OpenCL &&
 | |
|            IList->getType()->isVectorType())) {
 | |
|         hadError = true;
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (StructuredIndex == 1 &&
 | |
|         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
 | |
|             SIF_None) {
 | |
|       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
 | |
|       if (SemaRef.getLangOpts().CPlusPlus) {
 | |
|         DK = diag::err_excess_initializers_in_char_array_initializer;
 | |
|         hadError = true;
 | |
|       }
 | |
|       // Special-case
 | |
|       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
 | |
|         << IList->getInit(Index)->getSourceRange();
 | |
|     } else if (!T->isIncompleteType()) {
 | |
|       // Don't complain for incomplete types, since we'll get an error
 | |
|       // elsewhere
 | |
|       QualType CurrentObjectType = StructuredList->getType();
 | |
|       int initKind =
 | |
|         CurrentObjectType->isArrayType()? 0 :
 | |
|         CurrentObjectType->isVectorType()? 1 :
 | |
|         CurrentObjectType->isScalarType()? 2 :
 | |
|         CurrentObjectType->isUnionType()? 3 :
 | |
|         4;
 | |
| 
 | |
|       unsigned DK = diag::warn_excess_initializers;
 | |
|       if (SemaRef.getLangOpts().CPlusPlus) {
 | |
|         DK = diag::err_excess_initializers;
 | |
|         hadError = true;
 | |
|       }
 | |
|       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
 | |
|         DK = diag::err_excess_initializers;
 | |
|         hadError = true;
 | |
|       }
 | |
| 
 | |
|       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
 | |
|         << initKind << IList->getInit(Index)->getSourceRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
 | |
|       !TopLevelObject)
 | |
|     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
 | |
|       << IList->getSourceRange()
 | |
|       << FixItHint::CreateRemoval(IList->getLocStart())
 | |
|       << FixItHint::CreateRemoval(IList->getLocEnd());
 | |
| }
 | |
| 
 | |
| void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
 | |
|                                             InitListExpr *IList,
 | |
|                                             QualType &DeclType,
 | |
|                                             bool SubobjectIsDesignatorContext,
 | |
|                                             unsigned &Index,
 | |
|                                             InitListExpr *StructuredList,
 | |
|                                             unsigned &StructuredIndex,
 | |
|                                             bool TopLevelObject) {
 | |
|   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
 | |
|     // Explicitly braced initializer for complex type can be real+imaginary
 | |
|     // parts.
 | |
|     CheckComplexType(Entity, IList, DeclType, Index,
 | |
|                      StructuredList, StructuredIndex);
 | |
|   } else if (DeclType->isScalarType()) {
 | |
|     CheckScalarType(Entity, IList, DeclType, Index,
 | |
|                     StructuredList, StructuredIndex);
 | |
|   } else if (DeclType->isVectorType()) {
 | |
|     CheckVectorType(Entity, IList, DeclType, Index,
 | |
|                     StructuredList, StructuredIndex);
 | |
|   } else if (DeclType->isRecordType()) {
 | |
|     assert(DeclType->isAggregateType() &&
 | |
|            "non-aggregate records should be handed in CheckSubElementType");
 | |
|     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
 | |
|     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
 | |
|                           SubobjectIsDesignatorContext, Index,
 | |
|                           StructuredList, StructuredIndex,
 | |
|                           TopLevelObject);
 | |
|   } else if (DeclType->isArrayType()) {
 | |
|     llvm::APSInt Zero(
 | |
|                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
 | |
|                     false);
 | |
|     CheckArrayType(Entity, IList, DeclType, Zero,
 | |
|                    SubobjectIsDesignatorContext, Index,
 | |
|                    StructuredList, StructuredIndex);
 | |
|   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
 | |
|     // This type is invalid, issue a diagnostic.
 | |
|     ++Index;
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
 | |
|         << DeclType;
 | |
|     hadError = true;
 | |
|   } else if (DeclType->isReferenceType()) {
 | |
|     CheckReferenceType(Entity, IList, DeclType, Index,
 | |
|                        StructuredList, StructuredIndex);
 | |
|   } else if (DeclType->isObjCObjectType()) {
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
 | |
|         << DeclType;
 | |
|     hadError = true;
 | |
|   } else {
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
 | |
|         << DeclType;
 | |
|     hadError = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
 | |
|                                           InitListExpr *IList,
 | |
|                                           QualType ElemType,
 | |
|                                           unsigned &Index,
 | |
|                                           InitListExpr *StructuredList,
 | |
|                                           unsigned &StructuredIndex) {
 | |
|   Expr *expr = IList->getInit(Index);
 | |
| 
 | |
|   if (ElemType->isReferenceType())
 | |
|     return CheckReferenceType(Entity, IList, ElemType, Index,
 | |
|                               StructuredList, StructuredIndex);
 | |
| 
 | |
|   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
 | |
|     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
 | |
|       unsigned newIndex = 0;
 | |
|       unsigned newStructuredIndex = 0;
 | |
|       InitListExpr *newStructuredList
 | |
|         = getStructuredSubobjectInit(IList, Index, ElemType,
 | |
|                                      StructuredList, StructuredIndex,
 | |
|                                      SubInitList->getSourceRange());
 | |
|       CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
 | |
|                             newStructuredList, newStructuredIndex);
 | |
|       ++StructuredIndex;
 | |
|       ++Index;
 | |
|       return;
 | |
|     }
 | |
|     assert(SemaRef.getLangOpts().CPlusPlus &&
 | |
|            "non-aggregate records are only possible in C++");
 | |
|     // C++ initialization is handled later.
 | |
|   }
 | |
| 
 | |
|   if (ElemType->isScalarType())
 | |
|     return CheckScalarType(Entity, IList, ElemType, Index,
 | |
|                            StructuredList, StructuredIndex);
 | |
| 
 | |
|   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
 | |
|     // arrayType can be incomplete if we're initializing a flexible
 | |
|     // array member.  There's nothing we can do with the completed
 | |
|     // type here, though.
 | |
| 
 | |
|     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
 | |
|       if (!VerifyOnly) {
 | |
|         CheckStringInit(expr, ElemType, arrayType, SemaRef);
 | |
|         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
 | |
|       }
 | |
|       ++Index;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Fall through for subaggregate initialization.
 | |
| 
 | |
|   } else if (SemaRef.getLangOpts().CPlusPlus) {
 | |
|     // C++ [dcl.init.aggr]p12:
 | |
|     //   All implicit type conversions (clause 4) are considered when
 | |
|     //   initializing the aggregate member with an initializer from
 | |
|     //   an initializer-list. If the initializer can initialize a
 | |
|     //   member, the member is initialized. [...]
 | |
| 
 | |
|     // FIXME: Better EqualLoc?
 | |
|     InitializationKind Kind =
 | |
|       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
 | |
|     InitializationSequence Seq(SemaRef, Entity, Kind, expr);
 | |
| 
 | |
|     if (Seq) {
 | |
|       if (!VerifyOnly) {
 | |
|         ExprResult Result =
 | |
|           Seq.Perform(SemaRef, Entity, Kind, expr);
 | |
|         if (Result.isInvalid())
 | |
|           hadError = true;
 | |
| 
 | |
|         UpdateStructuredListElement(StructuredList, StructuredIndex,
 | |
|                                     Result.takeAs<Expr>());
 | |
|       }
 | |
|       ++Index;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Fall through for subaggregate initialization
 | |
|   } else {
 | |
|     // C99 6.7.8p13:
 | |
|     //
 | |
|     //   The initializer for a structure or union object that has
 | |
|     //   automatic storage duration shall be either an initializer
 | |
|     //   list as described below, or a single expression that has
 | |
|     //   compatible structure or union type. In the latter case, the
 | |
|     //   initial value of the object, including unnamed members, is
 | |
|     //   that of the expression.
 | |
|     ExprResult ExprRes = SemaRef.Owned(expr);
 | |
|     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
 | |
|         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
 | |
|                                                  !VerifyOnly)
 | |
|           == Sema::Compatible) {
 | |
|       if (ExprRes.isInvalid())
 | |
|         hadError = true;
 | |
|       else {
 | |
|         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
 | |
|           if (ExprRes.isInvalid())
 | |
|             hadError = true;
 | |
|       }
 | |
|       UpdateStructuredListElement(StructuredList, StructuredIndex,
 | |
|                                   ExprRes.takeAs<Expr>());
 | |
|       ++Index;
 | |
|       return;
 | |
|     }
 | |
|     ExprRes.release();
 | |
|     // Fall through for subaggregate initialization
 | |
|   }
 | |
| 
 | |
|   // C++ [dcl.init.aggr]p12:
 | |
|   //
 | |
|   //   [...] Otherwise, if the member is itself a non-empty
 | |
|   //   subaggregate, brace elision is assumed and the initializer is
 | |
|   //   considered for the initialization of the first member of
 | |
|   //   the subaggregate.
 | |
|   if (!SemaRef.getLangOpts().OpenCL && 
 | |
|       (ElemType->isAggregateType() || ElemType->isVectorType())) {
 | |
|     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
 | |
|                           StructuredIndex);
 | |
|     ++StructuredIndex;
 | |
|   } else {
 | |
|     if (!VerifyOnly) {
 | |
|       // We cannot initialize this element, so let
 | |
|       // PerformCopyInitialization produce the appropriate diagnostic.
 | |
|       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
 | |
|                                         SemaRef.Owned(expr),
 | |
|                                         /*TopLevelOfInitList=*/true);
 | |
|     }
 | |
|     hadError = true;
 | |
|     ++Index;
 | |
|     ++StructuredIndex;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
 | |
|                                        InitListExpr *IList, QualType DeclType,
 | |
|                                        unsigned &Index,
 | |
|                                        InitListExpr *StructuredList,
 | |
|                                        unsigned &StructuredIndex) {
 | |
|   assert(Index == 0 && "Index in explicit init list must be zero");
 | |
| 
 | |
|   // As an extension, clang supports complex initializers, which initialize
 | |
|   // a complex number component-wise.  When an explicit initializer list for
 | |
|   // a complex number contains two two initializers, this extension kicks in:
 | |
|   // it exepcts the initializer list to contain two elements convertible to
 | |
|   // the element type of the complex type. The first element initializes
 | |
|   // the real part, and the second element intitializes the imaginary part.
 | |
| 
 | |
|   if (IList->getNumInits() != 2)
 | |
|     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
 | |
|                            StructuredIndex);
 | |
| 
 | |
|   // This is an extension in C.  (The builtin _Complex type does not exist
 | |
|   // in the C++ standard.)
 | |
|   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
 | |
|     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
 | |
|       << IList->getSourceRange();
 | |
| 
 | |
|   // Initialize the complex number.
 | |
|   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
 | |
|   InitializedEntity ElementEntity =
 | |
|     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | |
| 
 | |
|   for (unsigned i = 0; i < 2; ++i) {
 | |
|     ElementEntity.setElementIndex(Index);
 | |
|     CheckSubElementType(ElementEntity, IList, elementType, Index,
 | |
|                         StructuredList, StructuredIndex);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
 | |
|                                       InitListExpr *IList, QualType DeclType,
 | |
|                                       unsigned &Index,
 | |
|                                       InitListExpr *StructuredList,
 | |
|                                       unsigned &StructuredIndex) {
 | |
|   if (Index >= IList->getNumInits()) {
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(IList->getLocStart(),
 | |
|                    SemaRef.getLangOpts().CPlusPlus11 ?
 | |
|                      diag::warn_cxx98_compat_empty_scalar_initializer :
 | |
|                      diag::err_empty_scalar_initializer)
 | |
|         << IList->getSourceRange();
 | |
|     hadError = !SemaRef.getLangOpts().CPlusPlus11;
 | |
|     ++Index;
 | |
|     ++StructuredIndex;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Expr *expr = IList->getInit(Index);
 | |
|   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(SubIList->getLocStart(),
 | |
|                    diag::warn_many_braces_around_scalar_init)
 | |
|         << SubIList->getSourceRange();
 | |
| 
 | |
|     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
 | |
|                     StructuredIndex);
 | |
|     return;
 | |
|   } else if (isa<DesignatedInitExpr>(expr)) {
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(expr->getLocStart(),
 | |
|                    diag::err_designator_for_scalar_init)
 | |
|         << DeclType << expr->getSourceRange();
 | |
|     hadError = true;
 | |
|     ++Index;
 | |
|     ++StructuredIndex;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (VerifyOnly) {
 | |
|     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
 | |
|       hadError = true;
 | |
|     ++Index;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   ExprResult Result =
 | |
|     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
 | |
|                                       SemaRef.Owned(expr),
 | |
|                                       /*TopLevelOfInitList=*/true);
 | |
| 
 | |
|   Expr *ResultExpr = 0;
 | |
| 
 | |
|   if (Result.isInvalid())
 | |
|     hadError = true; // types weren't compatible.
 | |
|   else {
 | |
|     ResultExpr = Result.takeAs<Expr>();
 | |
| 
 | |
|     if (ResultExpr != expr) {
 | |
|       // The type was promoted, update initializer list.
 | |
|       IList->setInit(Index, ResultExpr);
 | |
|     }
 | |
|   }
 | |
|   if (hadError)
 | |
|     ++StructuredIndex;
 | |
|   else
 | |
|     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
 | |
|   ++Index;
 | |
| }
 | |
| 
 | |
| void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
 | |
|                                          InitListExpr *IList, QualType DeclType,
 | |
|                                          unsigned &Index,
 | |
|                                          InitListExpr *StructuredList,
 | |
|                                          unsigned &StructuredIndex) {
 | |
|   if (Index >= IList->getNumInits()) {
 | |
|     // FIXME: It would be wonderful if we could point at the actual member. In
 | |
|     // general, it would be useful to pass location information down the stack,
 | |
|     // so that we know the location (or decl) of the "current object" being
 | |
|     // initialized.
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(IList->getLocStart(),
 | |
|                     diag::err_init_reference_member_uninitialized)
 | |
|         << DeclType
 | |
|         << IList->getSourceRange();
 | |
|     hadError = true;
 | |
|     ++Index;
 | |
|     ++StructuredIndex;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Expr *expr = IList->getInit(Index);
 | |
|   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
 | |
|         << DeclType << IList->getSourceRange();
 | |
|     hadError = true;
 | |
|     ++Index;
 | |
|     ++StructuredIndex;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (VerifyOnly) {
 | |
|     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
 | |
|       hadError = true;
 | |
|     ++Index;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   ExprResult Result =
 | |
|     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
 | |
|                                       SemaRef.Owned(expr),
 | |
|                                       /*TopLevelOfInitList=*/true);
 | |
| 
 | |
|   if (Result.isInvalid())
 | |
|     hadError = true;
 | |
| 
 | |
|   expr = Result.takeAs<Expr>();
 | |
|   IList->setInit(Index, expr);
 | |
| 
 | |
|   if (hadError)
 | |
|     ++StructuredIndex;
 | |
|   else
 | |
|     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
 | |
|   ++Index;
 | |
| }
 | |
| 
 | |
| void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
 | |
|                                       InitListExpr *IList, QualType DeclType,
 | |
|                                       unsigned &Index,
 | |
|                                       InitListExpr *StructuredList,
 | |
|                                       unsigned &StructuredIndex) {
 | |
|   const VectorType *VT = DeclType->getAs<VectorType>();
 | |
|   unsigned maxElements = VT->getNumElements();
 | |
|   unsigned numEltsInit = 0;
 | |
|   QualType elementType = VT->getElementType();
 | |
| 
 | |
|   if (Index >= IList->getNumInits()) {
 | |
|     // Make sure the element type can be value-initialized.
 | |
|     if (VerifyOnly)
 | |
|       CheckValueInitializable(
 | |
|           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!SemaRef.getLangOpts().OpenCL) {
 | |
|     // If the initializing element is a vector, try to copy-initialize
 | |
|     // instead of breaking it apart (which is doomed to failure anyway).
 | |
|     Expr *Init = IList->getInit(Index);
 | |
|     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
 | |
|       if (VerifyOnly) {
 | |
|         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
 | |
|           hadError = true;
 | |
|         ++Index;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       ExprResult Result =
 | |
|         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
 | |
|                                           SemaRef.Owned(Init),
 | |
|                                           /*TopLevelOfInitList=*/true);
 | |
| 
 | |
|       Expr *ResultExpr = 0;
 | |
|       if (Result.isInvalid())
 | |
|         hadError = true; // types weren't compatible.
 | |
|       else {
 | |
|         ResultExpr = Result.takeAs<Expr>();
 | |
| 
 | |
|         if (ResultExpr != Init) {
 | |
|           // The type was promoted, update initializer list.
 | |
|           IList->setInit(Index, ResultExpr);
 | |
|         }
 | |
|       }
 | |
|       if (hadError)
 | |
|         ++StructuredIndex;
 | |
|       else
 | |
|         UpdateStructuredListElement(StructuredList, StructuredIndex,
 | |
|                                     ResultExpr);
 | |
|       ++Index;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     InitializedEntity ElementEntity =
 | |
|       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | |
| 
 | |
|     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
 | |
|       // Don't attempt to go past the end of the init list
 | |
|       if (Index >= IList->getNumInits()) {
 | |
|         if (VerifyOnly)
 | |
|           CheckValueInitializable(ElementEntity);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       ElementEntity.setElementIndex(Index);
 | |
|       CheckSubElementType(ElementEntity, IList, elementType, Index,
 | |
|                           StructuredList, StructuredIndex);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   InitializedEntity ElementEntity =
 | |
|     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | |
| 
 | |
|   // OpenCL initializers allows vectors to be constructed from vectors.
 | |
|   for (unsigned i = 0; i < maxElements; ++i) {
 | |
|     // Don't attempt to go past the end of the init list
 | |
|     if (Index >= IList->getNumInits())
 | |
|       break;
 | |
| 
 | |
|     ElementEntity.setElementIndex(Index);
 | |
| 
 | |
|     QualType IType = IList->getInit(Index)->getType();
 | |
|     if (!IType->isVectorType()) {
 | |
|       CheckSubElementType(ElementEntity, IList, elementType, Index,
 | |
|                           StructuredList, StructuredIndex);
 | |
|       ++numEltsInit;
 | |
|     } else {
 | |
|       QualType VecType;
 | |
|       const VectorType *IVT = IType->getAs<VectorType>();
 | |
|       unsigned numIElts = IVT->getNumElements();
 | |
| 
 | |
|       if (IType->isExtVectorType())
 | |
|         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
 | |
|       else
 | |
|         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
 | |
|                                                 IVT->getVectorKind());
 | |
|       CheckSubElementType(ElementEntity, IList, VecType, Index,
 | |
|                           StructuredList, StructuredIndex);
 | |
|       numEltsInit += numIElts;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // OpenCL requires all elements to be initialized.
 | |
|   if (numEltsInit != maxElements) {
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(IList->getLocStart(),
 | |
|                    diag::err_vector_incorrect_num_initializers)
 | |
|         << (numEltsInit < maxElements) << maxElements << numEltsInit;
 | |
|     hadError = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
 | |
|                                      InitListExpr *IList, QualType &DeclType,
 | |
|                                      llvm::APSInt elementIndex,
 | |
|                                      bool SubobjectIsDesignatorContext,
 | |
|                                      unsigned &Index,
 | |
|                                      InitListExpr *StructuredList,
 | |
|                                      unsigned &StructuredIndex) {
 | |
|   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
 | |
| 
 | |
|   // Check for the special-case of initializing an array with a string.
 | |
|   if (Index < IList->getNumInits()) {
 | |
|     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
 | |
|         SIF_None) {
 | |
|       // We place the string literal directly into the resulting
 | |
|       // initializer list. This is the only place where the structure
 | |
|       // of the structured initializer list doesn't match exactly,
 | |
|       // because doing so would involve allocating one character
 | |
|       // constant for each string.
 | |
|       if (!VerifyOnly) {
 | |
|         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
 | |
|         UpdateStructuredListElement(StructuredList, StructuredIndex,
 | |
|                                     IList->getInit(Index));
 | |
|         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
 | |
|       }
 | |
|       ++Index;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
 | |
|     // Check for VLAs; in standard C it would be possible to check this
 | |
|     // earlier, but I don't know where clang accepts VLAs (gcc accepts
 | |
|     // them in all sorts of strange places).
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
 | |
|                     diag::err_variable_object_no_init)
 | |
|         << VAT->getSizeExpr()->getSourceRange();
 | |
|     hadError = true;
 | |
|     ++Index;
 | |
|     ++StructuredIndex;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We might know the maximum number of elements in advance.
 | |
|   llvm::APSInt maxElements(elementIndex.getBitWidth(),
 | |
|                            elementIndex.isUnsigned());
 | |
|   bool maxElementsKnown = false;
 | |
|   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
 | |
|     maxElements = CAT->getSize();
 | |
|     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
 | |
|     elementIndex.setIsUnsigned(maxElements.isUnsigned());
 | |
|     maxElementsKnown = true;
 | |
|   }
 | |
| 
 | |
|   QualType elementType = arrayType->getElementType();
 | |
|   while (Index < IList->getNumInits()) {
 | |
|     Expr *Init = IList->getInit(Index);
 | |
|     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
 | |
|       // If we're not the subobject that matches up with the '{' for
 | |
|       // the designator, we shouldn't be handling the
 | |
|       // designator. Return immediately.
 | |
|       if (!SubobjectIsDesignatorContext)
 | |
|         return;
 | |
| 
 | |
|       // Handle this designated initializer. elementIndex will be
 | |
|       // updated to be the next array element we'll initialize.
 | |
|       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
 | |
|                                      DeclType, 0, &elementIndex, Index,
 | |
|                                      StructuredList, StructuredIndex, true,
 | |
|                                      false)) {
 | |
|         hadError = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
 | |
|         maxElements = maxElements.extend(elementIndex.getBitWidth());
 | |
|       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
 | |
|         elementIndex = elementIndex.extend(maxElements.getBitWidth());
 | |
|       elementIndex.setIsUnsigned(maxElements.isUnsigned());
 | |
| 
 | |
|       // If the array is of incomplete type, keep track of the number of
 | |
|       // elements in the initializer.
 | |
|       if (!maxElementsKnown && elementIndex > maxElements)
 | |
|         maxElements = elementIndex;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we know the maximum number of elements, and we've already
 | |
|     // hit it, stop consuming elements in the initializer list.
 | |
|     if (maxElementsKnown && elementIndex == maxElements)
 | |
|       break;
 | |
| 
 | |
|     InitializedEntity ElementEntity =
 | |
|       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
 | |
|                                            Entity);
 | |
|     // Check this element.
 | |
|     CheckSubElementType(ElementEntity, IList, elementType, Index,
 | |
|                         StructuredList, StructuredIndex);
 | |
|     ++elementIndex;
 | |
| 
 | |
|     // If the array is of incomplete type, keep track of the number of
 | |
|     // elements in the initializer.
 | |
|     if (!maxElementsKnown && elementIndex > maxElements)
 | |
|       maxElements = elementIndex;
 | |
|   }
 | |
|   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
 | |
|     // If this is an incomplete array type, the actual type needs to
 | |
|     // be calculated here.
 | |
|     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
 | |
|     if (maxElements == Zero) {
 | |
|       // Sizing an array implicitly to zero is not allowed by ISO C,
 | |
|       // but is supported by GNU.
 | |
|       SemaRef.Diag(IList->getLocStart(),
 | |
|                     diag::ext_typecheck_zero_array_size);
 | |
|     }
 | |
| 
 | |
|     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
 | |
|                                                      ArrayType::Normal, 0);
 | |
|   }
 | |
|   if (!hadError && VerifyOnly) {
 | |
|     // Check if there are any members of the array that get value-initialized.
 | |
|     // If so, check if doing that is possible.
 | |
|     // FIXME: This needs to detect holes left by designated initializers too.
 | |
|     if (maxElementsKnown && elementIndex < maxElements)
 | |
|       CheckValueInitializable(InitializedEntity::InitializeElement(
 | |
|                                                   SemaRef.Context, 0, Entity));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
 | |
|                                              Expr *InitExpr,
 | |
|                                              FieldDecl *Field,
 | |
|                                              bool TopLevelObject) {
 | |
|   // Handle GNU flexible array initializers.
 | |
|   unsigned FlexArrayDiag;
 | |
|   if (isa<InitListExpr>(InitExpr) &&
 | |
|       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
 | |
|     // Empty flexible array init always allowed as an extension
 | |
|     FlexArrayDiag = diag::ext_flexible_array_init;
 | |
|   } else if (SemaRef.getLangOpts().CPlusPlus) {
 | |
|     // Disallow flexible array init in C++; it is not required for gcc
 | |
|     // compatibility, and it needs work to IRGen correctly in general.
 | |
|     FlexArrayDiag = diag::err_flexible_array_init;
 | |
|   } else if (!TopLevelObject) {
 | |
|     // Disallow flexible array init on non-top-level object
 | |
|     FlexArrayDiag = diag::err_flexible_array_init;
 | |
|   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
 | |
|     // Disallow flexible array init on anything which is not a variable.
 | |
|     FlexArrayDiag = diag::err_flexible_array_init;
 | |
|   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
 | |
|     // Disallow flexible array init on local variables.
 | |
|     FlexArrayDiag = diag::err_flexible_array_init;
 | |
|   } else {
 | |
|     // Allow other cases.
 | |
|     FlexArrayDiag = diag::ext_flexible_array_init;
 | |
|   }
 | |
| 
 | |
|   if (!VerifyOnly) {
 | |
|     SemaRef.Diag(InitExpr->getLocStart(),
 | |
|                  FlexArrayDiag)
 | |
|       << InitExpr->getLocStart();
 | |
|     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
 | |
|       << Field;
 | |
|   }
 | |
| 
 | |
|   return FlexArrayDiag != diag::ext_flexible_array_init;
 | |
| }
 | |
| 
 | |
| void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
 | |
|                                             InitListExpr *IList,
 | |
|                                             QualType DeclType,
 | |
|                                             RecordDecl::field_iterator Field,
 | |
|                                             bool SubobjectIsDesignatorContext,
 | |
|                                             unsigned &Index,
 | |
|                                             InitListExpr *StructuredList,
 | |
|                                             unsigned &StructuredIndex,
 | |
|                                             bool TopLevelObject) {
 | |
|   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
 | |
| 
 | |
|   // If the record is invalid, some of it's members are invalid. To avoid
 | |
|   // confusion, we forgo checking the intializer for the entire record.
 | |
|   if (structDecl->isInvalidDecl()) {
 | |
|     // Assume it was supposed to consume a single initializer.
 | |
|     ++Index;
 | |
|     hadError = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
 | |
|     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
 | |
| 
 | |
|     // If there's a default initializer, use it.
 | |
|     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
 | |
|       if (VerifyOnly)
 | |
|         return;
 | |
|       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
 | |
|            Field != FieldEnd; ++Field) {
 | |
|         if (Field->hasInClassInitializer()) {
 | |
|           StructuredList->setInitializedFieldInUnion(*Field);
 | |
|           // FIXME: Actually build a CXXDefaultInitExpr?
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Value-initialize the first named member of the union.
 | |
|     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
 | |
|          Field != FieldEnd; ++Field) {
 | |
|       if (Field->getDeclName()) {
 | |
|         if (VerifyOnly)
 | |
|           CheckValueInitializable(
 | |
|               InitializedEntity::InitializeMember(*Field, &Entity));
 | |
|         else
 | |
|           StructuredList->setInitializedFieldInUnion(*Field);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If structDecl is a forward declaration, this loop won't do
 | |
|   // anything except look at designated initializers; That's okay,
 | |
|   // because an error should get printed out elsewhere. It might be
 | |
|   // worthwhile to skip over the rest of the initializer, though.
 | |
|   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
 | |
|   RecordDecl::field_iterator FieldEnd = RD->field_end();
 | |
|   bool InitializedSomething = false;
 | |
|   bool CheckForMissingFields = true;
 | |
|   while (Index < IList->getNumInits()) {
 | |
|     Expr *Init = IList->getInit(Index);
 | |
| 
 | |
|     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
 | |
|       // If we're not the subobject that matches up with the '{' for
 | |
|       // the designator, we shouldn't be handling the
 | |
|       // designator. Return immediately.
 | |
|       if (!SubobjectIsDesignatorContext)
 | |
|         return;
 | |
| 
 | |
|       // Handle this designated initializer. Field will be updated to
 | |
|       // the next field that we'll be initializing.
 | |
|       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
 | |
|                                      DeclType, &Field, 0, Index,
 | |
|                                      StructuredList, StructuredIndex,
 | |
|                                      true, TopLevelObject))
 | |
|         hadError = true;
 | |
| 
 | |
|       InitializedSomething = true;
 | |
| 
 | |
|       // Disable check for missing fields when designators are used.
 | |
|       // This matches gcc behaviour.
 | |
|       CheckForMissingFields = false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Field == FieldEnd) {
 | |
|       // We've run out of fields. We're done.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We've already initialized a member of a union. We're done.
 | |
|     if (InitializedSomething && DeclType->isUnionType())
 | |
|       break;
 | |
| 
 | |
|     // If we've hit the flexible array member at the end, we're done.
 | |
|     if (Field->getType()->isIncompleteArrayType())
 | |
|       break;
 | |
| 
 | |
|     if (Field->isUnnamedBitfield()) {
 | |
|       // Don't initialize unnamed bitfields, e.g. "int : 20;"
 | |
|       ++Field;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Make sure we can use this declaration.
 | |
|     bool InvalidUse;
 | |
|     if (VerifyOnly)
 | |
|       InvalidUse = !SemaRef.CanUseDecl(*Field);
 | |
|     else
 | |
|       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
 | |
|                                           IList->getInit(Index)->getLocStart());
 | |
|     if (InvalidUse) {
 | |
|       ++Index;
 | |
|       ++Field;
 | |
|       hadError = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     InitializedEntity MemberEntity =
 | |
|       InitializedEntity::InitializeMember(*Field, &Entity);
 | |
|     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
 | |
|                         StructuredList, StructuredIndex);
 | |
|     InitializedSomething = true;
 | |
| 
 | |
|     if (DeclType->isUnionType() && !VerifyOnly) {
 | |
|       // Initialize the first field within the union.
 | |
|       StructuredList->setInitializedFieldInUnion(*Field);
 | |
|     }
 | |
| 
 | |
|     ++Field;
 | |
|   }
 | |
| 
 | |
|   // Emit warnings for missing struct field initializers.
 | |
|   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
 | |
|       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
 | |
|       !DeclType->isUnionType()) {
 | |
|     // It is possible we have one or more unnamed bitfields remaining.
 | |
|     // Find first (if any) named field and emit warning.
 | |
|     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
 | |
|          it != end; ++it) {
 | |
|       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
 | |
|         SemaRef.Diag(IList->getSourceRange().getEnd(),
 | |
|                      diag::warn_missing_field_initializers) << it->getName();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that any remaining fields can be value-initialized.
 | |
|   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
 | |
|       !Field->getType()->isIncompleteArrayType()) {
 | |
|     // FIXME: Should check for holes left by designated initializers too.
 | |
|     for (; Field != FieldEnd && !hadError; ++Field) {
 | |
|       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
 | |
|         CheckValueInitializable(
 | |
|             InitializedEntity::InitializeMember(*Field, &Entity));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
 | |
|       Index >= IList->getNumInits())
 | |
|     return;
 | |
| 
 | |
|   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
 | |
|                              TopLevelObject)) {
 | |
|     hadError = true;
 | |
|     ++Index;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   InitializedEntity MemberEntity =
 | |
|     InitializedEntity::InitializeMember(*Field, &Entity);
 | |
| 
 | |
|   if (isa<InitListExpr>(IList->getInit(Index)))
 | |
|     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
 | |
|                         StructuredList, StructuredIndex);
 | |
|   else
 | |
|     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
 | |
|                           StructuredList, StructuredIndex);
 | |
| }
 | |
| 
 | |
| /// \brief Expand a field designator that refers to a member of an
 | |
| /// anonymous struct or union into a series of field designators that
 | |
| /// refers to the field within the appropriate subobject.
 | |
| ///
 | |
| static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
 | |
|                                            DesignatedInitExpr *DIE,
 | |
|                                            unsigned DesigIdx,
 | |
|                                            IndirectFieldDecl *IndirectField) {
 | |
|   typedef DesignatedInitExpr::Designator Designator;
 | |
| 
 | |
|   // Build the replacement designators.
 | |
|   SmallVector<Designator, 4> Replacements;
 | |
|   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
 | |
|        PE = IndirectField->chain_end(); PI != PE; ++PI) {
 | |
|     if (PI + 1 == PE)
 | |
|       Replacements.push_back(Designator((IdentifierInfo *)0,
 | |
|                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
 | |
|                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
 | |
|     else
 | |
|       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
 | |
|                                         SourceLocation()));
 | |
|     assert(isa<FieldDecl>(*PI));
 | |
|     Replacements.back().setField(cast<FieldDecl>(*PI));
 | |
|   }
 | |
| 
 | |
|   // Expand the current designator into the set of replacement
 | |
|   // designators, so we have a full subobject path down to where the
 | |
|   // member of the anonymous struct/union is actually stored.
 | |
|   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
 | |
|                         &Replacements[0] + Replacements.size());
 | |
| }
 | |
| 
 | |
| /// \brief Given an implicit anonymous field, search the IndirectField that
 | |
| ///  corresponds to FieldName.
 | |
| static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
 | |
|                                                  IdentifierInfo *FieldName) {
 | |
|   if (!FieldName)
 | |
|     return 0;
 | |
| 
 | |
|   assert(AnonField->isAnonymousStructOrUnion());
 | |
|   Decl *NextDecl = AnonField->getNextDeclInContext();
 | |
|   while (IndirectFieldDecl *IF = 
 | |
|           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
 | |
|     if (FieldName == IF->getAnonField()->getIdentifier())
 | |
|       return IF;
 | |
|     NextDecl = NextDecl->getNextDeclInContext();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
 | |
|                                                    DesignatedInitExpr *DIE) {
 | |
|   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
 | |
|   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
 | |
|   for (unsigned I = 0; I < NumIndexExprs; ++I)
 | |
|     IndexExprs[I] = DIE->getSubExpr(I + 1);
 | |
|   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
 | |
|                                     DIE->size(), IndexExprs,
 | |
|                                     DIE->getEqualOrColonLoc(),
 | |
|                                     DIE->usesGNUSyntax(), DIE->getInit());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Callback to only accept typo corrections that are for field members of
 | |
| // the given struct or union.
 | |
| class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
 | |
|  public:
 | |
|   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
 | |
|       : Record(RD) {}
 | |
| 
 | |
|   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | |
|     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
 | |
|     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   RecordDecl *Record;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// @brief Check the well-formedness of a C99 designated initializer.
 | |
| ///
 | |
| /// Determines whether the designated initializer @p DIE, which
 | |
| /// resides at the given @p Index within the initializer list @p
 | |
| /// IList, is well-formed for a current object of type @p DeclType
 | |
| /// (C99 6.7.8). The actual subobject that this designator refers to
 | |
| /// within the current subobject is returned in either
 | |
| /// @p NextField or @p NextElementIndex (whichever is appropriate).
 | |
| ///
 | |
| /// @param IList  The initializer list in which this designated
 | |
| /// initializer occurs.
 | |
| ///
 | |
| /// @param DIE The designated initializer expression.
 | |
| ///
 | |
| /// @param DesigIdx  The index of the current designator.
 | |
| ///
 | |
| /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
 | |
| /// into which the designation in @p DIE should refer.
 | |
| ///
 | |
| /// @param NextField  If non-NULL and the first designator in @p DIE is
 | |
| /// a field, this will be set to the field declaration corresponding
 | |
| /// to the field named by the designator.
 | |
| ///
 | |
| /// @param NextElementIndex  If non-NULL and the first designator in @p
 | |
| /// DIE is an array designator or GNU array-range designator, this
 | |
| /// will be set to the last index initialized by this designator.
 | |
| ///
 | |
| /// @param Index  Index into @p IList where the designated initializer
 | |
| /// @p DIE occurs.
 | |
| ///
 | |
| /// @param StructuredList  The initializer list expression that
 | |
| /// describes all of the subobject initializers in the order they'll
 | |
| /// actually be initialized.
 | |
| ///
 | |
| /// @returns true if there was an error, false otherwise.
 | |
| bool
 | |
| InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
 | |
|                                             InitListExpr *IList,
 | |
|                                             DesignatedInitExpr *DIE,
 | |
|                                             unsigned DesigIdx,
 | |
|                                             QualType &CurrentObjectType,
 | |
|                                           RecordDecl::field_iterator *NextField,
 | |
|                                             llvm::APSInt *NextElementIndex,
 | |
|                                             unsigned &Index,
 | |
|                                             InitListExpr *StructuredList,
 | |
|                                             unsigned &StructuredIndex,
 | |
|                                             bool FinishSubobjectInit,
 | |
|                                             bool TopLevelObject) {
 | |
|   if (DesigIdx == DIE->size()) {
 | |
|     // Check the actual initialization for the designated object type.
 | |
|     bool prevHadError = hadError;
 | |
| 
 | |
|     // Temporarily remove the designator expression from the
 | |
|     // initializer list that the child calls see, so that we don't try
 | |
|     // to re-process the designator.
 | |
|     unsigned OldIndex = Index;
 | |
|     IList->setInit(OldIndex, DIE->getInit());
 | |
| 
 | |
|     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
 | |
|                         StructuredList, StructuredIndex);
 | |
| 
 | |
|     // Restore the designated initializer expression in the syntactic
 | |
|     // form of the initializer list.
 | |
|     if (IList->getInit(OldIndex) != DIE->getInit())
 | |
|       DIE->setInit(IList->getInit(OldIndex));
 | |
|     IList->setInit(OldIndex, DIE);
 | |
| 
 | |
|     return hadError && !prevHadError;
 | |
|   }
 | |
| 
 | |
|   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
 | |
|   bool IsFirstDesignator = (DesigIdx == 0);
 | |
|   if (!VerifyOnly) {
 | |
|     assert((IsFirstDesignator || StructuredList) &&
 | |
|            "Need a non-designated initializer list to start from");
 | |
| 
 | |
|     // Determine the structural initializer list that corresponds to the
 | |
|     // current subobject.
 | |
|     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
 | |
|       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
 | |
|                                    StructuredList, StructuredIndex,
 | |
|                                    SourceRange(D->getLocStart(),
 | |
|                                                DIE->getLocEnd()));
 | |
|     assert(StructuredList && "Expected a structured initializer list");
 | |
|   }
 | |
| 
 | |
|   if (D->isFieldDesignator()) {
 | |
|     // C99 6.7.8p7:
 | |
|     //
 | |
|     //   If a designator has the form
 | |
|     //
 | |
|     //      . identifier
 | |
|     //
 | |
|     //   then the current object (defined below) shall have
 | |
|     //   structure or union type and the identifier shall be the
 | |
|     //   name of a member of that type.
 | |
|     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
 | |
|     if (!RT) {
 | |
|       SourceLocation Loc = D->getDotLoc();
 | |
|       if (Loc.isInvalid())
 | |
|         Loc = D->getFieldLoc();
 | |
|       if (!VerifyOnly)
 | |
|         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
 | |
|           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
 | |
|       ++Index;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Note: we perform a linear search of the fields here, despite
 | |
|     // the fact that we have a faster lookup method, because we always
 | |
|     // need to compute the field's index.
 | |
|     FieldDecl *KnownField = D->getField();
 | |
|     IdentifierInfo *FieldName = D->getFieldName();
 | |
|     unsigned FieldIndex = 0;
 | |
|     RecordDecl::field_iterator
 | |
|       Field = RT->getDecl()->field_begin(),
 | |
|       FieldEnd = RT->getDecl()->field_end();
 | |
|     for (; Field != FieldEnd; ++Field) {
 | |
|       if (Field->isUnnamedBitfield())
 | |
|         continue;
 | |
| 
 | |
|       // If we find a field representing an anonymous field, look in the
 | |
|       // IndirectFieldDecl that follow for the designated initializer.
 | |
|       if (!KnownField && Field->isAnonymousStructOrUnion()) {
 | |
|         if (IndirectFieldDecl *IF =
 | |
|             FindIndirectFieldDesignator(*Field, FieldName)) {
 | |
|           // In verify mode, don't modify the original.
 | |
|           if (VerifyOnly)
 | |
|             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
 | |
|           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
 | |
|           D = DIE->getDesignator(DesigIdx);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (KnownField && KnownField == *Field)
 | |
|         break;
 | |
|       if (FieldName && FieldName == Field->getIdentifier())
 | |
|         break;
 | |
| 
 | |
|       ++FieldIndex;
 | |
|     }
 | |
| 
 | |
|     if (Field == FieldEnd) {
 | |
|       if (VerifyOnly) {
 | |
|         ++Index;
 | |
|         return true; // No typo correction when just trying this out.
 | |
|       }
 | |
| 
 | |
|       // There was no normal field in the struct with the designated
 | |
|       // name. Perform another lookup for this name, which may find
 | |
|       // something that we can't designate (e.g., a member function),
 | |
|       // may find nothing, or may find a member of an anonymous
 | |
|       // struct/union.
 | |
|       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
 | |
|       FieldDecl *ReplacementField = 0;
 | |
|       if (Lookup.empty()) {
 | |
|         // Name lookup didn't find anything. Determine whether this
 | |
|         // was a typo for another field name.
 | |
|         FieldInitializerValidatorCCC Validator(RT->getDecl());
 | |
|         TypoCorrection Corrected = SemaRef.CorrectTypo(
 | |
|             DeclarationNameInfo(FieldName, D->getFieldLoc()),
 | |
|             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
 | |
|             RT->getDecl());
 | |
|         if (Corrected) {
 | |
|           std::string CorrectedStr(
 | |
|               Corrected.getAsString(SemaRef.getLangOpts()));
 | |
|           std::string CorrectedQuotedStr(
 | |
|               Corrected.getQuoted(SemaRef.getLangOpts()));
 | |
|           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
 | |
|           SemaRef.Diag(D->getFieldLoc(),
 | |
|                        diag::err_field_designator_unknown_suggest)
 | |
|             << FieldName << CurrentObjectType << CorrectedQuotedStr
 | |
|             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
 | |
|           SemaRef.Diag(ReplacementField->getLocation(),
 | |
|                        diag::note_previous_decl) << CorrectedQuotedStr;
 | |
|           hadError = true;
 | |
|         } else {
 | |
|           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
 | |
|             << FieldName << CurrentObjectType;
 | |
|           ++Index;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!ReplacementField) {
 | |
|         // Name lookup found something, but it wasn't a field.
 | |
|         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
 | |
|           << FieldName;
 | |
|         SemaRef.Diag(Lookup.front()->getLocation(),
 | |
|                       diag::note_field_designator_found);
 | |
|         ++Index;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (!KnownField) {
 | |
|         // The replacement field comes from typo correction; find it
 | |
|         // in the list of fields.
 | |
|         FieldIndex = 0;
 | |
|         Field = RT->getDecl()->field_begin();
 | |
|         for (; Field != FieldEnd; ++Field) {
 | |
|           if (Field->isUnnamedBitfield())
 | |
|             continue;
 | |
| 
 | |
|           if (ReplacementField == *Field ||
 | |
|               Field->getIdentifier() == ReplacementField->getIdentifier())
 | |
|             break;
 | |
| 
 | |
|           ++FieldIndex;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // All of the fields of a union are located at the same place in
 | |
|     // the initializer list.
 | |
|     if (RT->getDecl()->isUnion()) {
 | |
|       FieldIndex = 0;
 | |
|       if (!VerifyOnly)
 | |
|         StructuredList->setInitializedFieldInUnion(*Field);
 | |
|     }
 | |
| 
 | |
|     // Make sure we can use this declaration.
 | |
|     bool InvalidUse;
 | |
|     if (VerifyOnly)
 | |
|       InvalidUse = !SemaRef.CanUseDecl(*Field);
 | |
|     else
 | |
|       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
 | |
|     if (InvalidUse) {
 | |
|       ++Index;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (!VerifyOnly) {
 | |
|       // Update the designator with the field declaration.
 | |
|       D->setField(*Field);
 | |
| 
 | |
|       // Make sure that our non-designated initializer list has space
 | |
|       // for a subobject corresponding to this field.
 | |
|       if (FieldIndex >= StructuredList->getNumInits())
 | |
|         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
 | |
|     }
 | |
| 
 | |
|     // This designator names a flexible array member.
 | |
|     if (Field->getType()->isIncompleteArrayType()) {
 | |
|       bool Invalid = false;
 | |
|       if ((DesigIdx + 1) != DIE->size()) {
 | |
|         // We can't designate an object within the flexible array
 | |
|         // member (because GCC doesn't allow it).
 | |
|         if (!VerifyOnly) {
 | |
|           DesignatedInitExpr::Designator *NextD
 | |
|             = DIE->getDesignator(DesigIdx + 1);
 | |
|           SemaRef.Diag(NextD->getLocStart(),
 | |
|                         diag::err_designator_into_flexible_array_member)
 | |
|             << SourceRange(NextD->getLocStart(),
 | |
|                            DIE->getLocEnd());
 | |
|           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
 | |
|             << *Field;
 | |
|         }
 | |
|         Invalid = true;
 | |
|       }
 | |
| 
 | |
|       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
 | |
|           !isa<StringLiteral>(DIE->getInit())) {
 | |
|         // The initializer is not an initializer list.
 | |
|         if (!VerifyOnly) {
 | |
|           SemaRef.Diag(DIE->getInit()->getLocStart(),
 | |
|                         diag::err_flexible_array_init_needs_braces)
 | |
|             << DIE->getInit()->getSourceRange();
 | |
|           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
 | |
|             << *Field;
 | |
|         }
 | |
|         Invalid = true;
 | |
|       }
 | |
| 
 | |
|       // Check GNU flexible array initializer.
 | |
|       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
 | |
|                                              TopLevelObject))
 | |
|         Invalid = true;
 | |
| 
 | |
|       if (Invalid) {
 | |
|         ++Index;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Initialize the array.
 | |
|       bool prevHadError = hadError;
 | |
|       unsigned newStructuredIndex = FieldIndex;
 | |
|       unsigned OldIndex = Index;
 | |
|       IList->setInit(Index, DIE->getInit());
 | |
| 
 | |
|       InitializedEntity MemberEntity =
 | |
|         InitializedEntity::InitializeMember(*Field, &Entity);
 | |
|       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
 | |
|                           StructuredList, newStructuredIndex);
 | |
| 
 | |
|       IList->setInit(OldIndex, DIE);
 | |
|       if (hadError && !prevHadError) {
 | |
|         ++Field;
 | |
|         ++FieldIndex;
 | |
|         if (NextField)
 | |
|           *NextField = Field;
 | |
|         StructuredIndex = FieldIndex;
 | |
|         return true;
 | |
|       }
 | |
|     } else {
 | |
|       // Recurse to check later designated subobjects.
 | |
|       QualType FieldType = Field->getType();
 | |
|       unsigned newStructuredIndex = FieldIndex;
 | |
| 
 | |
|       InitializedEntity MemberEntity =
 | |
|         InitializedEntity::InitializeMember(*Field, &Entity);
 | |
|       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
 | |
|                                      FieldType, 0, 0, Index,
 | |
|                                      StructuredList, newStructuredIndex,
 | |
|                                      true, false))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // Find the position of the next field to be initialized in this
 | |
|     // subobject.
 | |
|     ++Field;
 | |
|     ++FieldIndex;
 | |
| 
 | |
|     // If this the first designator, our caller will continue checking
 | |
|     // the rest of this struct/class/union subobject.
 | |
|     if (IsFirstDesignator) {
 | |
|       if (NextField)
 | |
|         *NextField = Field;
 | |
|       StructuredIndex = FieldIndex;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (!FinishSubobjectInit)
 | |
|       return false;
 | |
| 
 | |
|     // We've already initialized something in the union; we're done.
 | |
|     if (RT->getDecl()->isUnion())
 | |
|       return hadError;
 | |
| 
 | |
|     // Check the remaining fields within this class/struct/union subobject.
 | |
|     bool prevHadError = hadError;
 | |
| 
 | |
|     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
 | |
|                           StructuredList, FieldIndex);
 | |
|     return hadError && !prevHadError;
 | |
|   }
 | |
| 
 | |
|   // C99 6.7.8p6:
 | |
|   //
 | |
|   //   If a designator has the form
 | |
|   //
 | |
|   //      [ constant-expression ]
 | |
|   //
 | |
|   //   then the current object (defined below) shall have array
 | |
|   //   type and the expression shall be an integer constant
 | |
|   //   expression. If the array is of unknown size, any
 | |
|   //   nonnegative value is valid.
 | |
|   //
 | |
|   // Additionally, cope with the GNU extension that permits
 | |
|   // designators of the form
 | |
|   //
 | |
|   //      [ constant-expression ... constant-expression ]
 | |
|   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
 | |
|   if (!AT) {
 | |
|     if (!VerifyOnly)
 | |
|       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
 | |
|         << CurrentObjectType;
 | |
|     ++Index;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Expr *IndexExpr = 0;
 | |
|   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
 | |
|   if (D->isArrayDesignator()) {
 | |
|     IndexExpr = DIE->getArrayIndex(*D);
 | |
|     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
 | |
|     DesignatedEndIndex = DesignatedStartIndex;
 | |
|   } else {
 | |
|     assert(D->isArrayRangeDesignator() && "Need array-range designator");
 | |
| 
 | |
|     DesignatedStartIndex =
 | |
|       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
 | |
|     DesignatedEndIndex =
 | |
|       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
 | |
|     IndexExpr = DIE->getArrayRangeEnd(*D);
 | |
| 
 | |
|     // Codegen can't handle evaluating array range designators that have side
 | |
|     // effects, because we replicate the AST value for each initialized element.
 | |
|     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
 | |
|     // elements with something that has a side effect, so codegen can emit an
 | |
|     // "error unsupported" error instead of miscompiling the app.
 | |
|     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
 | |
|         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
 | |
|       FullyStructuredList->sawArrayRangeDesignator();
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantArrayType>(AT)) {
 | |
|     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
 | |
|     DesignatedStartIndex
 | |
|       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
 | |
|     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
 | |
|     DesignatedEndIndex
 | |
|       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
 | |
|     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
 | |
|     if (DesignatedEndIndex >= MaxElements) {
 | |
|       if (!VerifyOnly)
 | |
|         SemaRef.Diag(IndexExpr->getLocStart(),
 | |
|                       diag::err_array_designator_too_large)
 | |
|           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
 | |
|           << IndexExpr->getSourceRange();
 | |
|       ++Index;
 | |
|       return true;
 | |
|     }
 | |
|   } else {
 | |
|     // Make sure the bit-widths and signedness match.
 | |
|     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
 | |
|       DesignatedEndIndex
 | |
|         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
 | |
|     else if (DesignatedStartIndex.getBitWidth() <
 | |
|              DesignatedEndIndex.getBitWidth())
 | |
|       DesignatedStartIndex
 | |
|         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
 | |
|     DesignatedStartIndex.setIsUnsigned(true);
 | |
|     DesignatedEndIndex.setIsUnsigned(true);
 | |
|   }
 | |
| 
 | |
|   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
 | |
|     // We're modifying a string literal init; we have to decompose the string
 | |
|     // so we can modify the individual characters.
 | |
|     ASTContext &Context = SemaRef.Context;
 | |
|     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
 | |
| 
 | |
|     // Compute the character type
 | |
|     QualType CharTy = AT->getElementType();
 | |
| 
 | |
|     // Compute the type of the integer literals.
 | |
|     QualType PromotedCharTy = CharTy;
 | |
|     if (CharTy->isPromotableIntegerType())
 | |
|       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
 | |
|     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
 | |
| 
 | |
|     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
 | |
|       // Get the length of the string.
 | |
|       uint64_t StrLen = SL->getLength();
 | |
|       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
 | |
|         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
 | |
|       StructuredList->resizeInits(Context, StrLen);
 | |
| 
 | |
|       // Build a literal for each character in the string, and put them into
 | |
|       // the init list.
 | |
|       for (unsigned i = 0, e = StrLen; i != e; ++i) {
 | |
|         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
 | |
|         Expr *Init = new (Context) IntegerLiteral(
 | |
|             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
 | |
|         if (CharTy != PromotedCharTy)
 | |
|           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
 | |
|                                           Init, 0, VK_RValue);
 | |
|         StructuredList->updateInit(Context, i, Init);
 | |
|       }
 | |
|     } else {
 | |
|       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
 | |
|       std::string Str;
 | |
|       Context.getObjCEncodingForType(E->getEncodedType(), Str);
 | |
| 
 | |
|       // Get the length of the string.
 | |
|       uint64_t StrLen = Str.size();
 | |
|       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
 | |
|         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
 | |
|       StructuredList->resizeInits(Context, StrLen);
 | |
| 
 | |
|       // Build a literal for each character in the string, and put them into
 | |
|       // the init list.
 | |
|       for (unsigned i = 0, e = StrLen; i != e; ++i) {
 | |
|         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
 | |
|         Expr *Init = new (Context) IntegerLiteral(
 | |
|             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
 | |
|         if (CharTy != PromotedCharTy)
 | |
|           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
 | |
|                                           Init, 0, VK_RValue);
 | |
|         StructuredList->updateInit(Context, i, Init);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that our non-designated initializer list has space
 | |
|   // for a subobject corresponding to this array element.
 | |
|   if (!VerifyOnly &&
 | |
|       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
 | |
|     StructuredList->resizeInits(SemaRef.Context,
 | |
|                                 DesignatedEndIndex.getZExtValue() + 1);
 | |
| 
 | |
|   // Repeatedly perform subobject initializations in the range
 | |
|   // [DesignatedStartIndex, DesignatedEndIndex].
 | |
| 
 | |
|   // Move to the next designator
 | |
|   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
 | |
|   unsigned OldIndex = Index;
 | |
| 
 | |
|   InitializedEntity ElementEntity =
 | |
|     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
 | |
| 
 | |
|   while (DesignatedStartIndex <= DesignatedEndIndex) {
 | |
|     // Recurse to check later designated subobjects.
 | |
|     QualType ElementType = AT->getElementType();
 | |
|     Index = OldIndex;
 | |
| 
 | |
|     ElementEntity.setElementIndex(ElementIndex);
 | |
|     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
 | |
|                                    ElementType, 0, 0, Index,
 | |
|                                    StructuredList, ElementIndex,
 | |
|                                    (DesignatedStartIndex == DesignatedEndIndex),
 | |
|                                    false))
 | |
|       return true;
 | |
| 
 | |
|     // Move to the next index in the array that we'll be initializing.
 | |
|     ++DesignatedStartIndex;
 | |
|     ElementIndex = DesignatedStartIndex.getZExtValue();
 | |
|   }
 | |
| 
 | |
|   // If this the first designator, our caller will continue checking
 | |
|   // the rest of this array subobject.
 | |
|   if (IsFirstDesignator) {
 | |
|     if (NextElementIndex)
 | |
|       *NextElementIndex = DesignatedStartIndex;
 | |
|     StructuredIndex = ElementIndex;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!FinishSubobjectInit)
 | |
|     return false;
 | |
| 
 | |
|   // Check the remaining elements within this array subobject.
 | |
|   bool prevHadError = hadError;
 | |
|   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
 | |
|                  /*SubobjectIsDesignatorContext=*/false, Index,
 | |
|                  StructuredList, ElementIndex);
 | |
|   return hadError && !prevHadError;
 | |
| }
 | |
| 
 | |
| // Get the structured initializer list for a subobject of type
 | |
| // @p CurrentObjectType.
 | |
| InitListExpr *
 | |
| InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
 | |
|                                             QualType CurrentObjectType,
 | |
|                                             InitListExpr *StructuredList,
 | |
|                                             unsigned StructuredIndex,
 | |
|                                             SourceRange InitRange) {
 | |
|   if (VerifyOnly)
 | |
|     return 0; // No structured list in verification-only mode.
 | |
|   Expr *ExistingInit = 0;
 | |
|   if (!StructuredList)
 | |
|     ExistingInit = SyntacticToSemantic.lookup(IList);
 | |
|   else if (StructuredIndex < StructuredList->getNumInits())
 | |
|     ExistingInit = StructuredList->getInit(StructuredIndex);
 | |
| 
 | |
|   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
 | |
|     return Result;
 | |
| 
 | |
|   if (ExistingInit) {
 | |
|     // We are creating an initializer list that initializes the
 | |
|     // subobjects of the current object, but there was already an
 | |
|     // initialization that completely initialized the current
 | |
|     // subobject, e.g., by a compound literal:
 | |
|     //
 | |
|     // struct X { int a, b; };
 | |
|     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
 | |
|     //
 | |
|     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
 | |
|     // designated initializer re-initializes the whole
 | |
|     // subobject [0], overwriting previous initializers.
 | |
|     SemaRef.Diag(InitRange.getBegin(),
 | |
|                  diag::warn_subobject_initializer_overrides)
 | |
|       << InitRange;
 | |
|     SemaRef.Diag(ExistingInit->getLocStart(),
 | |
|                   diag::note_previous_initializer)
 | |
|       << /*FIXME:has side effects=*/0
 | |
|       << ExistingInit->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   InitListExpr *Result
 | |
|     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
 | |
|                                          InitRange.getBegin(), None,
 | |
|                                          InitRange.getEnd());
 | |
| 
 | |
|   QualType ResultType = CurrentObjectType;
 | |
|   if (!ResultType->isArrayType())
 | |
|     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
 | |
|   Result->setType(ResultType);
 | |
| 
 | |
|   // Pre-allocate storage for the structured initializer list.
 | |
|   unsigned NumElements = 0;
 | |
|   unsigned NumInits = 0;
 | |
|   bool GotNumInits = false;
 | |
|   if (!StructuredList) {
 | |
|     NumInits = IList->getNumInits();
 | |
|     GotNumInits = true;
 | |
|   } else if (Index < IList->getNumInits()) {
 | |
|     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
 | |
|       NumInits = SubList->getNumInits();
 | |
|       GotNumInits = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const ArrayType *AType
 | |
|       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
 | |
|     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
 | |
|       NumElements = CAType->getSize().getZExtValue();
 | |
|       // Simple heuristic so that we don't allocate a very large
 | |
|       // initializer with many empty entries at the end.
 | |
|       if (GotNumInits && NumElements > NumInits)
 | |
|         NumElements = 0;
 | |
|     }
 | |
|   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
 | |
|     NumElements = VType->getNumElements();
 | |
|   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
 | |
|     RecordDecl *RDecl = RType->getDecl();
 | |
|     if (RDecl->isUnion())
 | |
|       NumElements = 1;
 | |
|     else
 | |
|       NumElements = std::distance(RDecl->field_begin(),
 | |
|                                   RDecl->field_end());
 | |
|   }
 | |
| 
 | |
|   Result->reserveInits(SemaRef.Context, NumElements);
 | |
| 
 | |
|   // Link this new initializer list into the structured initializer
 | |
|   // lists.
 | |
|   if (StructuredList)
 | |
|     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
 | |
|   else {
 | |
|     Result->setSyntacticForm(IList);
 | |
|     SyntacticToSemantic[IList] = Result;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Update the initializer at index @p StructuredIndex within the
 | |
| /// structured initializer list to the value @p expr.
 | |
| void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
 | |
|                                                   unsigned &StructuredIndex,
 | |
|                                                   Expr *expr) {
 | |
|   // No structured initializer list to update
 | |
|   if (!StructuredList)
 | |
|     return;
 | |
| 
 | |
|   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
 | |
|                                                   StructuredIndex, expr)) {
 | |
|     // This initializer overwrites a previous initializer. Warn.
 | |
|     SemaRef.Diag(expr->getLocStart(),
 | |
|                   diag::warn_initializer_overrides)
 | |
|       << expr->getSourceRange();
 | |
|     SemaRef.Diag(PrevInit->getLocStart(),
 | |
|                   diag::note_previous_initializer)
 | |
|       << /*FIXME:has side effects=*/0
 | |
|       << PrevInit->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   ++StructuredIndex;
 | |
| }
 | |
| 
 | |
| /// Check that the given Index expression is a valid array designator
 | |
| /// value. This is essentially just a wrapper around
 | |
| /// VerifyIntegerConstantExpression that also checks for negative values
 | |
| /// and produces a reasonable diagnostic if there is a
 | |
| /// failure. Returns the index expression, possibly with an implicit cast
 | |
| /// added, on success.  If everything went okay, Value will receive the
 | |
| /// value of the constant expression.
 | |
| static ExprResult
 | |
| CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
 | |
|   SourceLocation Loc = Index->getLocStart();
 | |
| 
 | |
|   // Make sure this is an integer constant expression.
 | |
|   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
 | |
|   if (Result.isInvalid())
 | |
|     return Result;
 | |
| 
 | |
|   if (Value.isSigned() && Value.isNegative())
 | |
|     return S.Diag(Loc, diag::err_array_designator_negative)
 | |
|       << Value.toString(10) << Index->getSourceRange();
 | |
| 
 | |
|   Value.setIsUnsigned(true);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
 | |
|                                             SourceLocation Loc,
 | |
|                                             bool GNUSyntax,
 | |
|                                             ExprResult Init) {
 | |
|   typedef DesignatedInitExpr::Designator ASTDesignator;
 | |
| 
 | |
|   bool Invalid = false;
 | |
|   SmallVector<ASTDesignator, 32> Designators;
 | |
|   SmallVector<Expr *, 32> InitExpressions;
 | |
| 
 | |
|   // Build designators and check array designator expressions.
 | |
|   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
 | |
|     const Designator &D = Desig.getDesignator(Idx);
 | |
|     switch (D.getKind()) {
 | |
|     case Designator::FieldDesignator:
 | |
|       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
 | |
|                                           D.getFieldLoc()));
 | |
|       break;
 | |
| 
 | |
|     case Designator::ArrayDesignator: {
 | |
|       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
 | |
|       llvm::APSInt IndexValue;
 | |
|       if (!Index->isTypeDependent() && !Index->isValueDependent())
 | |
|         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
 | |
|       if (!Index)
 | |
|         Invalid = true;
 | |
|       else {
 | |
|         Designators.push_back(ASTDesignator(InitExpressions.size(),
 | |
|                                             D.getLBracketLoc(),
 | |
|                                             D.getRBracketLoc()));
 | |
|         InitExpressions.push_back(Index);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Designator::ArrayRangeDesignator: {
 | |
|       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
 | |
|       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
 | |
|       llvm::APSInt StartValue;
 | |
|       llvm::APSInt EndValue;
 | |
|       bool StartDependent = StartIndex->isTypeDependent() ||
 | |
|                             StartIndex->isValueDependent();
 | |
|       bool EndDependent = EndIndex->isTypeDependent() ||
 | |
|                           EndIndex->isValueDependent();
 | |
|       if (!StartDependent)
 | |
|         StartIndex =
 | |
|             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
 | |
|       if (!EndDependent)
 | |
|         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
 | |
| 
 | |
|       if (!StartIndex || !EndIndex)
 | |
|         Invalid = true;
 | |
|       else {
 | |
|         // Make sure we're comparing values with the same bit width.
 | |
|         if (StartDependent || EndDependent) {
 | |
|           // Nothing to compute.
 | |
|         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
 | |
|           EndValue = EndValue.extend(StartValue.getBitWidth());
 | |
|         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
 | |
|           StartValue = StartValue.extend(EndValue.getBitWidth());
 | |
| 
 | |
|         if (!StartDependent && !EndDependent && EndValue < StartValue) {
 | |
|           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
 | |
|             << StartValue.toString(10) << EndValue.toString(10)
 | |
|             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
 | |
|           Invalid = true;
 | |
|         } else {
 | |
|           Designators.push_back(ASTDesignator(InitExpressions.size(),
 | |
|                                               D.getLBracketLoc(),
 | |
|                                               D.getEllipsisLoc(),
 | |
|                                               D.getRBracketLoc()));
 | |
|           InitExpressions.push_back(StartIndex);
 | |
|           InitExpressions.push_back(EndIndex);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Invalid || Init.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Clear out the expressions within the designation.
 | |
|   Desig.ClearExprs(*this);
 | |
| 
 | |
|   DesignatedInitExpr *DIE
 | |
|     = DesignatedInitExpr::Create(Context,
 | |
|                                  Designators.data(), Designators.size(),
 | |
|                                  InitExpressions, Loc, GNUSyntax,
 | |
|                                  Init.takeAs<Expr>());
 | |
| 
 | |
|   if (!getLangOpts().C99)
 | |
|     Diag(DIE->getLocStart(), diag::ext_designated_init)
 | |
|       << DIE->getSourceRange();
 | |
| 
 | |
|   return Owned(DIE);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Initialization entity
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
 | |
|                                      const InitializedEntity &Parent)
 | |
|   : Parent(&Parent), Index(Index)
 | |
| {
 | |
|   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
 | |
|     Kind = EK_ArrayElement;
 | |
|     Type = AT->getElementType();
 | |
|   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
 | |
|     Kind = EK_VectorElement;
 | |
|     Type = VT->getElementType();
 | |
|   } else {
 | |
|     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
 | |
|     assert(CT && "Unexpected type");
 | |
|     Kind = EK_ComplexElement;
 | |
|     Type = CT->getElementType();
 | |
|   }
 | |
| }
 | |
| 
 | |
| InitializedEntity
 | |
| InitializedEntity::InitializeBase(ASTContext &Context,
 | |
|                                   const CXXBaseSpecifier *Base,
 | |
|                                   bool IsInheritedVirtualBase) {
 | |
|   InitializedEntity Result;
 | |
|   Result.Kind = EK_Base;
 | |
|   Result.Parent = 0;
 | |
|   Result.Base = reinterpret_cast<uintptr_t>(Base);
 | |
|   if (IsInheritedVirtualBase)
 | |
|     Result.Base |= 0x01;
 | |
| 
 | |
|   Result.Type = Base->getType();
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| DeclarationName InitializedEntity::getName() const {
 | |
|   switch (getKind()) {
 | |
|   case EK_Parameter:
 | |
|   case EK_Parameter_CF_Audited: {
 | |
|     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
 | |
|     return (D ? D->getDeclName() : DeclarationName());
 | |
|   }
 | |
| 
 | |
|   case EK_Variable:
 | |
|   case EK_Member:
 | |
|     return VariableOrMember->getDeclName();
 | |
| 
 | |
|   case EK_LambdaCapture:
 | |
|     return Capture.Var->getDeclName();
 | |
|       
 | |
|   case EK_Result:
 | |
|   case EK_Exception:
 | |
|   case EK_New:
 | |
|   case EK_Temporary:
 | |
|   case EK_Base:
 | |
|   case EK_Delegating:
 | |
|   case EK_ArrayElement:
 | |
|   case EK_VectorElement:
 | |
|   case EK_ComplexElement:
 | |
|   case EK_BlockElement:
 | |
|   case EK_CompoundLiteralInit:
 | |
|   case EK_RelatedResult:
 | |
|     return DeclarationName();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid EntityKind!");
 | |
| }
 | |
| 
 | |
| DeclaratorDecl *InitializedEntity::getDecl() const {
 | |
|   switch (getKind()) {
 | |
|   case EK_Variable:
 | |
|   case EK_Member:
 | |
|     return VariableOrMember;
 | |
| 
 | |
|   case EK_Parameter:
 | |
|   case EK_Parameter_CF_Audited:
 | |
|     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
 | |
| 
 | |
|   case EK_Result:
 | |
|   case EK_Exception:
 | |
|   case EK_New:
 | |
|   case EK_Temporary:
 | |
|   case EK_Base:
 | |
|   case EK_Delegating:
 | |
|   case EK_ArrayElement:
 | |
|   case EK_VectorElement:
 | |
|   case EK_ComplexElement:
 | |
|   case EK_BlockElement:
 | |
|   case EK_LambdaCapture:
 | |
|   case EK_CompoundLiteralInit:
 | |
|   case EK_RelatedResult:
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid EntityKind!");
 | |
| }
 | |
| 
 | |
| bool InitializedEntity::allowsNRVO() const {
 | |
|   switch (getKind()) {
 | |
|   case EK_Result:
 | |
|   case EK_Exception:
 | |
|     return LocAndNRVO.NRVO;
 | |
| 
 | |
|   case EK_Variable:
 | |
|   case EK_Parameter:
 | |
|   case EK_Parameter_CF_Audited:
 | |
|   case EK_Member:
 | |
|   case EK_New:
 | |
|   case EK_Temporary:
 | |
|   case EK_CompoundLiteralInit:
 | |
|   case EK_Base:
 | |
|   case EK_Delegating:
 | |
|   case EK_ArrayElement:
 | |
|   case EK_VectorElement:
 | |
|   case EK_ComplexElement:
 | |
|   case EK_BlockElement:
 | |
|   case EK_LambdaCapture:
 | |
|   case EK_RelatedResult:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
 | |
|   assert(getParent() != this);
 | |
|   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
 | |
|   for (unsigned I = 0; I != Depth; ++I)
 | |
|     OS << "`-";
 | |
| 
 | |
|   switch (getKind()) {
 | |
|   case EK_Variable: OS << "Variable"; break;
 | |
|   case EK_Parameter: OS << "Parameter"; break;
 | |
|   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
 | |
|     break;
 | |
|   case EK_Result: OS << "Result"; break;
 | |
|   case EK_Exception: OS << "Exception"; break;
 | |
|   case EK_Member: OS << "Member"; break;
 | |
|   case EK_New: OS << "New"; break;
 | |
|   case EK_Temporary: OS << "Temporary"; break;
 | |
|   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
 | |
|   case EK_RelatedResult: OS << "RelatedResult"; break;
 | |
|   case EK_Base: OS << "Base"; break;
 | |
|   case EK_Delegating: OS << "Delegating"; break;
 | |
|   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
 | |
|   case EK_VectorElement: OS << "VectorElement " << Index; break;
 | |
|   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
 | |
|   case EK_BlockElement: OS << "Block"; break;
 | |
|   case EK_LambdaCapture:
 | |
|     OS << "LambdaCapture ";
 | |
|     getCapturedVar()->printName(OS);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Decl *D = getDecl()) {
 | |
|     OS << " ";
 | |
|     cast<NamedDecl>(D)->printQualifiedName(OS);
 | |
|   }
 | |
| 
 | |
|   OS << " '" << getType().getAsString() << "'\n";
 | |
| 
 | |
|   return Depth + 1;
 | |
| }
 | |
| 
 | |
| void InitializedEntity::dump() const {
 | |
|   dumpImpl(llvm::errs());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Initialization sequence
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void InitializationSequence::Step::Destroy() {
 | |
|   switch (Kind) {
 | |
|   case SK_ResolveAddressOfOverloadedFunction:
 | |
|   case SK_CastDerivedToBaseRValue:
 | |
|   case SK_CastDerivedToBaseXValue:
 | |
|   case SK_CastDerivedToBaseLValue:
 | |
|   case SK_BindReference:
 | |
|   case SK_BindReferenceToTemporary:
 | |
|   case SK_ExtraneousCopyToTemporary:
 | |
|   case SK_UserConversion:
 | |
|   case SK_QualificationConversionRValue:
 | |
|   case SK_QualificationConversionXValue:
 | |
|   case SK_QualificationConversionLValue:
 | |
|   case SK_LValueToRValue:
 | |
|   case SK_ListInitialization:
 | |
|   case SK_ListConstructorCall:
 | |
|   case SK_UnwrapInitList:
 | |
|   case SK_RewrapInitList:
 | |
|   case SK_ConstructorInitialization:
 | |
|   case SK_ZeroInitialization:
 | |
|   case SK_CAssignment:
 | |
|   case SK_StringInit:
 | |
|   case SK_ObjCObjectConversion:
 | |
|   case SK_ArrayInit:
 | |
|   case SK_ParenthesizedArrayInit:
 | |
|   case SK_PassByIndirectCopyRestore:
 | |
|   case SK_PassByIndirectRestore:
 | |
|   case SK_ProduceObjCObject:
 | |
|   case SK_StdInitializerList:
 | |
|   case SK_OCLSamplerInit:
 | |
|   case SK_OCLZeroEvent:
 | |
|     break;
 | |
| 
 | |
|   case SK_ConversionSequence:
 | |
|     delete ICS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool InitializationSequence::isDirectReferenceBinding() const {
 | |
|   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
 | |
| }
 | |
| 
 | |
| bool InitializationSequence::isAmbiguous() const {
 | |
|   if (!Failed())
 | |
|     return false;
 | |
| 
 | |
|   switch (getFailureKind()) {
 | |
|   case FK_TooManyInitsForReference:
 | |
|   case FK_ArrayNeedsInitList:
 | |
|   case FK_ArrayNeedsInitListOrStringLiteral:
 | |
|   case FK_ArrayNeedsInitListOrWideStringLiteral:
 | |
|   case FK_NarrowStringIntoWideCharArray:
 | |
|   case FK_WideStringIntoCharArray:
 | |
|   case FK_IncompatWideStringIntoWideChar:
 | |
|   case FK_AddressOfOverloadFailed: // FIXME: Could do better
 | |
|   case FK_NonConstLValueReferenceBindingToTemporary:
 | |
|   case FK_NonConstLValueReferenceBindingToUnrelated:
 | |
|   case FK_RValueReferenceBindingToLValue:
 | |
|   case FK_ReferenceInitDropsQualifiers:
 | |
|   case FK_ReferenceInitFailed:
 | |
|   case FK_ConversionFailed:
 | |
|   case FK_ConversionFromPropertyFailed:
 | |
|   case FK_TooManyInitsForScalar:
 | |
|   case FK_ReferenceBindingToInitList:
 | |
|   case FK_InitListBadDestinationType:
 | |
|   case FK_DefaultInitOfConst:
 | |
|   case FK_Incomplete:
 | |
|   case FK_ArrayTypeMismatch:
 | |
|   case FK_NonConstantArrayInit:
 | |
|   case FK_ListInitializationFailed:
 | |
|   case FK_VariableLengthArrayHasInitializer:
 | |
|   case FK_PlaceholderType:
 | |
|   case FK_ExplicitConstructor:
 | |
|     return false;
 | |
| 
 | |
|   case FK_ReferenceInitOverloadFailed:
 | |
|   case FK_UserConversionOverloadFailed:
 | |
|   case FK_ConstructorOverloadFailed:
 | |
|   case FK_ListConstructorOverloadFailed:
 | |
|     return FailedOverloadResult == OR_Ambiguous;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid EntityKind!");
 | |
| }
 | |
| 
 | |
| bool InitializationSequence::isConstructorInitialization() const {
 | |
|   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
 | |
| }
 | |
| 
 | |
| void
 | |
| InitializationSequence
 | |
| ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
 | |
|                                    DeclAccessPair Found,
 | |
|                                    bool HadMultipleCandidates) {
 | |
|   Step S;
 | |
|   S.Kind = SK_ResolveAddressOfOverloadedFunction;
 | |
|   S.Type = Function->getType();
 | |
|   S.Function.HadMultipleCandidates = HadMultipleCandidates;
 | |
|   S.Function.Function = Function;
 | |
|   S.Function.FoundDecl = Found;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
 | |
|                                                       ExprValueKind VK) {
 | |
|   Step S;
 | |
|   switch (VK) {
 | |
|   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
 | |
|   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
 | |
|   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
 | |
|   }
 | |
|   S.Type = BaseType;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddReferenceBindingStep(QualType T,
 | |
|                                                      bool BindingTemporary) {
 | |
|   Step S;
 | |
|   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_ExtraneousCopyToTemporary;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void
 | |
| InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
 | |
|                                               DeclAccessPair FoundDecl,
 | |
|                                               QualType T,
 | |
|                                               bool HadMultipleCandidates) {
 | |
|   Step S;
 | |
|   S.Kind = SK_UserConversion;
 | |
|   S.Type = T;
 | |
|   S.Function.HadMultipleCandidates = HadMultipleCandidates;
 | |
|   S.Function.Function = Function;
 | |
|   S.Function.FoundDecl = FoundDecl;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddQualificationConversionStep(QualType Ty,
 | |
|                                                             ExprValueKind VK) {
 | |
|   Step S;
 | |
|   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
 | |
|   switch (VK) {
 | |
|   case VK_RValue:
 | |
|     S.Kind = SK_QualificationConversionRValue;
 | |
|     break;
 | |
|   case VK_XValue:
 | |
|     S.Kind = SK_QualificationConversionXValue;
 | |
|     break;
 | |
|   case VK_LValue:
 | |
|     S.Kind = SK_QualificationConversionLValue;
 | |
|     break;
 | |
|   }
 | |
|   S.Type = Ty;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
 | |
|   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
 | |
| 
 | |
|   Step S;
 | |
|   S.Kind = SK_LValueToRValue;
 | |
|   S.Type = Ty;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddConversionSequenceStep(
 | |
|                                        const ImplicitConversionSequence &ICS,
 | |
|                                                        QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_ConversionSequence;
 | |
|   S.Type = T;
 | |
|   S.ICS = new ImplicitConversionSequence(ICS);
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddListInitializationStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_ListInitialization;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void
 | |
| InitializationSequence
 | |
| ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
 | |
|                                    AccessSpecifier Access,
 | |
|                                    QualType T,
 | |
|                                    bool HadMultipleCandidates,
 | |
|                                    bool FromInitList, bool AsInitList) {
 | |
|   Step S;
 | |
|   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
 | |
|                                        : SK_ConstructorInitialization;
 | |
|   S.Type = T;
 | |
|   S.Function.HadMultipleCandidates = HadMultipleCandidates;
 | |
|   S.Function.Function = Constructor;
 | |
|   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddZeroInitializationStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_ZeroInitialization;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddCAssignmentStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_CAssignment;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddStringInitStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_StringInit;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_ObjCObjectConversion;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddArrayInitStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_ArrayInit;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_ParenthesizedArrayInit;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
 | |
|                                                               bool shouldCopy) {
 | |
|   Step s;
 | |
|   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
 | |
|                        : SK_PassByIndirectRestore);
 | |
|   s.Type = type;
 | |
|   Steps.push_back(s);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_ProduceObjCObject;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_StdInitializerList;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_OCLSamplerInit;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::AddOCLZeroEventStep(QualType T) {
 | |
|   Step S;
 | |
|   S.Kind = SK_OCLZeroEvent;
 | |
|   S.Type = T;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::RewrapReferenceInitList(QualType T,
 | |
|                                                      InitListExpr *Syntactic) {
 | |
|   assert(Syntactic->getNumInits() == 1 &&
 | |
|          "Can only rewrap trivial init lists.");
 | |
|   Step S;
 | |
|   S.Kind = SK_UnwrapInitList;
 | |
|   S.Type = Syntactic->getInit(0)->getType();
 | |
|   Steps.insert(Steps.begin(), S);
 | |
| 
 | |
|   S.Kind = SK_RewrapInitList;
 | |
|   S.Type = T;
 | |
|   S.WrappingSyntacticList = Syntactic;
 | |
|   Steps.push_back(S);
 | |
| }
 | |
| 
 | |
| void InitializationSequence::SetOverloadFailure(FailureKind Failure,
 | |
|                                                 OverloadingResult Result) {
 | |
|   setSequenceKind(FailedSequence);
 | |
|   this->Failure = Failure;
 | |
|   this->FailedOverloadResult = Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Attempt initialization
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static void MaybeProduceObjCObject(Sema &S,
 | |
|                                    InitializationSequence &Sequence,
 | |
|                                    const InitializedEntity &Entity) {
 | |
|   if (!S.getLangOpts().ObjCAutoRefCount) return;
 | |
| 
 | |
|   /// When initializing a parameter, produce the value if it's marked
 | |
|   /// __attribute__((ns_consumed)).
 | |
|   if (Entity.isParameterKind()) {
 | |
|     if (!Entity.isParameterConsumed())
 | |
|       return;
 | |
| 
 | |
|     assert(Entity.getType()->isObjCRetainableType() &&
 | |
|            "consuming an object of unretainable type?");
 | |
|     Sequence.AddProduceObjCObjectStep(Entity.getType());
 | |
| 
 | |
|   /// When initializing a return value, if the return type is a
 | |
|   /// retainable type, then returns need to immediately retain the
 | |
|   /// object.  If an autorelease is required, it will be done at the
 | |
|   /// last instant.
 | |
|   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
 | |
|     if (!Entity.getType()->isObjCRetainableType())
 | |
|       return;
 | |
| 
 | |
|     Sequence.AddProduceObjCObjectStep(Entity.getType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void TryListInitialization(Sema &S,
 | |
|                                   const InitializedEntity &Entity,
 | |
|                                   const InitializationKind &Kind,
 | |
|                                   InitListExpr *InitList,
 | |
|                                   InitializationSequence &Sequence);
 | |
| 
 | |
| /// \brief When initializing from init list via constructor, handle
 | |
| /// initialization of an object of type std::initializer_list<T>.
 | |
| ///
 | |
| /// \return true if we have handled initialization of an object of type
 | |
| /// std::initializer_list<T>, false otherwise.
 | |
| static bool TryInitializerListConstruction(Sema &S,
 | |
|                                            InitListExpr *List,
 | |
|                                            QualType DestType,
 | |
|                                            InitializationSequence &Sequence) {
 | |
|   QualType E;
 | |
|   if (!S.isStdInitializerList(DestType, &E))
 | |
|     return false;
 | |
| 
 | |
|   if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
 | |
|     Sequence.setIncompleteTypeFailure(E);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Try initializing a temporary array from the init list.
 | |
|   QualType ArrayType = S.Context.getConstantArrayType(
 | |
|       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
 | |
|                                  List->getNumInits()),
 | |
|       clang::ArrayType::Normal, 0);
 | |
|   InitializedEntity HiddenArray =
 | |
|       InitializedEntity::InitializeTemporary(ArrayType);
 | |
|   InitializationKind Kind =
 | |
|       InitializationKind::CreateDirectList(List->getExprLoc());
 | |
|   TryListInitialization(S, HiddenArray, Kind, List, Sequence);
 | |
|   if (Sequence)
 | |
|     Sequence.AddStdInitializerListConstructionStep(DestType);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static OverloadingResult
 | |
| ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
 | |
|                            MultiExprArg Args,
 | |
|                            OverloadCandidateSet &CandidateSet,
 | |
|                            ArrayRef<NamedDecl *> Ctors,
 | |
|                            OverloadCandidateSet::iterator &Best,
 | |
|                            bool CopyInitializing, bool AllowExplicit,
 | |
|                            bool OnlyListConstructors, bool InitListSyntax) {
 | |
|   CandidateSet.clear();
 | |
| 
 | |
|   for (ArrayRef<NamedDecl *>::iterator
 | |
|          Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
 | |
|     NamedDecl *D = *Con;
 | |
|     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | |
|     bool SuppressUserConversions = false;
 | |
| 
 | |
|     // Find the constructor (which may be a template).
 | |
|     CXXConstructorDecl *Constructor = 0;
 | |
|     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
 | |
|     if (ConstructorTmpl)
 | |
|       Constructor = cast<CXXConstructorDecl>(
 | |
|                                            ConstructorTmpl->getTemplatedDecl());
 | |
|     else {
 | |
|       Constructor = cast<CXXConstructorDecl>(D);
 | |
| 
 | |
|       // If we're performing copy initialization using a copy constructor, we
 | |
|       // suppress user-defined conversions on the arguments. We do the same for
 | |
|       // move constructors.
 | |
|       if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
 | |
|           Constructor->isCopyOrMoveConstructor())
 | |
|         SuppressUserConversions = true;
 | |
|     }
 | |
| 
 | |
|     if (!Constructor->isInvalidDecl() &&
 | |
|         (AllowExplicit || !Constructor->isExplicit()) &&
 | |
|         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
 | |
|       if (ConstructorTmpl)
 | |
|         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | |
|                                        /*ExplicitArgs*/ 0, Args,
 | |
|                                        CandidateSet, SuppressUserConversions);
 | |
|       else {
 | |
|         // C++ [over.match.copy]p1:
 | |
|         //   - When initializing a temporary to be bound to the first parameter 
 | |
|         //     of a constructor that takes a reference to possibly cv-qualified 
 | |
|         //     T as its first argument, called with a single argument in the 
 | |
|         //     context of direct-initialization, explicit conversion functions
 | |
|         //     are also considered.
 | |
|         bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 
 | |
|                                  Args.size() == 1 &&
 | |
|                                  Constructor->isCopyOrMoveConstructor();
 | |
|         S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
 | |
|                                SuppressUserConversions,
 | |
|                                /*PartialOverloading=*/false,
 | |
|                                /*AllowExplicit=*/AllowExplicitConv);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Perform overload resolution and return the result.
 | |
|   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
 | |
| }
 | |
| 
 | |
| /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
 | |
| /// enumerates the constructors of the initialized entity and performs overload
 | |
| /// resolution to select the best.
 | |
| /// If InitListSyntax is true, this is list-initialization of a non-aggregate
 | |
| /// class type.
 | |
| static void TryConstructorInitialization(Sema &S,
 | |
|                                          const InitializedEntity &Entity,
 | |
|                                          const InitializationKind &Kind,
 | |
|                                          MultiExprArg Args, QualType DestType,
 | |
|                                          InitializationSequence &Sequence,
 | |
|                                          bool InitListSyntax = false) {
 | |
|   assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
 | |
|          "InitListSyntax must come with a single initializer list argument.");
 | |
| 
 | |
|   // The type we're constructing needs to be complete.
 | |
|   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
 | |
|     Sequence.setIncompleteTypeFailure(DestType);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const RecordType *DestRecordType = DestType->getAs<RecordType>();
 | |
|   assert(DestRecordType && "Constructor initialization requires record type");
 | |
|   CXXRecordDecl *DestRecordDecl
 | |
|     = cast<CXXRecordDecl>(DestRecordType->getDecl());
 | |
| 
 | |
|   // Build the candidate set directly in the initialization sequence
 | |
|   // structure, so that it will persist if we fail.
 | |
|   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
 | |
| 
 | |
|   // Determine whether we are allowed to call explicit constructors or
 | |
|   // explicit conversion operators.
 | |
|   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
 | |
|   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
 | |
| 
 | |
|   //   - Otherwise, if T is a class type, constructors are considered. The
 | |
|   //     applicable constructors are enumerated, and the best one is chosen
 | |
|   //     through overload resolution.
 | |
|   DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
 | |
|   // The container holding the constructors can under certain conditions
 | |
|   // be changed while iterating (e.g. because of deserialization).
 | |
|   // To be safe we copy the lookup results to a new container.
 | |
|   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
 | |
| 
 | |
|   OverloadingResult Result = OR_No_Viable_Function;
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   bool AsInitializerList = false;
 | |
| 
 | |
|   // C++11 [over.match.list]p1:
 | |
|   //   When objects of non-aggregate type T are list-initialized, overload
 | |
|   //   resolution selects the constructor in two phases:
 | |
|   //   - Initially, the candidate functions are the initializer-list
 | |
|   //     constructors of the class T and the argument list consists of the
 | |
|   //     initializer list as a single argument.
 | |
|   if (InitListSyntax) {
 | |
|     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
 | |
|     AsInitializerList = true;
 | |
| 
 | |
|     // If the initializer list has no elements and T has a default constructor,
 | |
|     // the first phase is omitted.
 | |
|     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
 | |
|       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
 | |
|                                           CandidateSet, Ctors, Best,
 | |
|                                           CopyInitialization, AllowExplicit,
 | |
|                                           /*OnlyListConstructor=*/true,
 | |
|                                           InitListSyntax);
 | |
| 
 | |
|     // Time to unwrap the init list.
 | |
|     Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
 | |
|   }
 | |
| 
 | |
|   // C++11 [over.match.list]p1:
 | |
|   //   - If no viable initializer-list constructor is found, overload resolution
 | |
|   //     is performed again, where the candidate functions are all the
 | |
|   //     constructors of the class T and the argument list consists of the
 | |
|   //     elements of the initializer list.
 | |
|   if (Result == OR_No_Viable_Function) {
 | |
|     AsInitializerList = false;
 | |
|     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
 | |
|                                         CandidateSet, Ctors, Best,
 | |
|                                         CopyInitialization, AllowExplicit,
 | |
|                                         /*OnlyListConstructors=*/false,
 | |
|                                         InitListSyntax);
 | |
|   }
 | |
|   if (Result) {
 | |
|     Sequence.SetOverloadFailure(InitListSyntax ?
 | |
|                       InitializationSequence::FK_ListConstructorOverloadFailed :
 | |
|                       InitializationSequence::FK_ConstructorOverloadFailed,
 | |
|                                 Result);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // C++11 [dcl.init]p6:
 | |
|   //   If a program calls for the default initialization of an object
 | |
|   //   of a const-qualified type T, T shall be a class type with a
 | |
|   //   user-provided default constructor.
 | |
|   if (Kind.getKind() == InitializationKind::IK_Default &&
 | |
|       Entity.getType().isConstQualified() &&
 | |
|       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
 | |
|     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // C++11 [over.match.list]p1:
 | |
|   //   In copy-list-initialization, if an explicit constructor is chosen, the
 | |
|   //   initializer is ill-formed.
 | |
|   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
 | |
|   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
 | |
|     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Add the constructor initialization step. Any cv-qualification conversion is
 | |
|   // subsumed by the initialization.
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
|   Sequence.AddConstructorInitializationStep(CtorDecl,
 | |
|                                             Best->FoundDecl.getAccess(),
 | |
|                                             DestType, HadMultipleCandidates,
 | |
|                                             InitListSyntax, AsInitializerList);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| ResolveOverloadedFunctionForReferenceBinding(Sema &S,
 | |
|                                              Expr *Initializer,
 | |
|                                              QualType &SourceType,
 | |
|                                              QualType &UnqualifiedSourceType,
 | |
|                                              QualType UnqualifiedTargetType,
 | |
|                                              InitializationSequence &Sequence) {
 | |
|   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
 | |
|         S.Context.OverloadTy) {
 | |
|     DeclAccessPair Found;
 | |
|     bool HadMultipleCandidates = false;
 | |
|     if (FunctionDecl *Fn
 | |
|         = S.ResolveAddressOfOverloadedFunction(Initializer,
 | |
|                                                UnqualifiedTargetType,
 | |
|                                                false, Found,
 | |
|                                                &HadMultipleCandidates)) {
 | |
|       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
 | |
|                                                 HadMultipleCandidates);
 | |
|       SourceType = Fn->getType();
 | |
|       UnqualifiedSourceType = SourceType.getUnqualifiedType();
 | |
|     } else if (!UnqualifiedTargetType->isRecordType()) {
 | |
|       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void TryReferenceInitializationCore(Sema &S,
 | |
|                                            const InitializedEntity &Entity,
 | |
|                                            const InitializationKind &Kind,
 | |
|                                            Expr *Initializer,
 | |
|                                            QualType cv1T1, QualType T1,
 | |
|                                            Qualifiers T1Quals,
 | |
|                                            QualType cv2T2, QualType T2,
 | |
|                                            Qualifiers T2Quals,
 | |
|                                            InitializationSequence &Sequence);
 | |
| 
 | |
| static void TryValueInitialization(Sema &S,
 | |
|                                    const InitializedEntity &Entity,
 | |
|                                    const InitializationKind &Kind,
 | |
|                                    InitializationSequence &Sequence,
 | |
|                                    InitListExpr *InitList = 0);
 | |
| 
 | |
| /// \brief Attempt list initialization of a reference.
 | |
| static void TryReferenceListInitialization(Sema &S,
 | |
|                                            const InitializedEntity &Entity,
 | |
|                                            const InitializationKind &Kind,
 | |
|                                            InitListExpr *InitList,
 | |
|                                            InitializationSequence &Sequence) {
 | |
|   // First, catch C++03 where this isn't possible.
 | |
|   if (!S.getLangOpts().CPlusPlus11) {
 | |
|     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   QualType DestType = Entity.getType();
 | |
|   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
 | |
|   Qualifiers T1Quals;
 | |
|   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
 | |
| 
 | |
|   // Reference initialization via an initializer list works thus:
 | |
|   // If the initializer list consists of a single element that is
 | |
|   // reference-related to the referenced type, bind directly to that element
 | |
|   // (possibly creating temporaries).
 | |
|   // Otherwise, initialize a temporary with the initializer list and
 | |
|   // bind to that.
 | |
|   if (InitList->getNumInits() == 1) {
 | |
|     Expr *Initializer = InitList->getInit(0);
 | |
|     QualType cv2T2 = Initializer->getType();
 | |
|     Qualifiers T2Quals;
 | |
|     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
 | |
| 
 | |
|     // If this fails, creating a temporary wouldn't work either.
 | |
|     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
 | |
|                                                      T1, Sequence))
 | |
|       return;
 | |
| 
 | |
|     SourceLocation DeclLoc = Initializer->getLocStart();
 | |
|     bool dummy1, dummy2, dummy3;
 | |
|     Sema::ReferenceCompareResult RefRelationship
 | |
|       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
 | |
|                                        dummy2, dummy3);
 | |
|     if (RefRelationship >= Sema::Ref_Related) {
 | |
|       // Try to bind the reference here.
 | |
|       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
 | |
|                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
 | |
|       if (Sequence)
 | |
|         Sequence.RewrapReferenceInitList(cv1T1, InitList);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Update the initializer if we've resolved an overloaded function.
 | |
|     if (Sequence.step_begin() != Sequence.step_end())
 | |
|       Sequence.RewrapReferenceInitList(cv1T1, InitList);
 | |
|   }
 | |
| 
 | |
|   // Not reference-related. Create a temporary and bind to that.
 | |
|   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
 | |
| 
 | |
|   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
 | |
|   if (Sequence) {
 | |
|     if (DestType->isRValueReferenceType() ||
 | |
|         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
 | |
|       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
 | |
|     else
 | |
|       Sequence.SetFailed(
 | |
|           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Attempt list initialization (C++0x [dcl.init.list])
 | |
| static void TryListInitialization(Sema &S,
 | |
|                                   const InitializedEntity &Entity,
 | |
|                                   const InitializationKind &Kind,
 | |
|                                   InitListExpr *InitList,
 | |
|                                   InitializationSequence &Sequence) {
 | |
|   QualType DestType = Entity.getType();
 | |
| 
 | |
|   // C++ doesn't allow scalar initialization with more than one argument.
 | |
|   // But C99 complex numbers are scalars and it makes sense there.
 | |
|   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
 | |
|       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
 | |
|     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
 | |
|     return;
 | |
|   }
 | |
|   if (DestType->isReferenceType()) {
 | |
|     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
 | |
|     return;
 | |
|   }
 | |
|   if (DestType->isRecordType()) {
 | |
|     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
 | |
|       Sequence.setIncompleteTypeFailure(DestType);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // C++11 [dcl.init.list]p3:
 | |
|     //   - If T is an aggregate, aggregate initialization is performed.
 | |
|     if (!DestType->isAggregateType()) {
 | |
|       if (S.getLangOpts().CPlusPlus11) {
 | |
|         //   - Otherwise, if the initializer list has no elements and T is a
 | |
|         //     class type with a default constructor, the object is
 | |
|         //     value-initialized.
 | |
|         if (InitList->getNumInits() == 0) {
 | |
|           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
 | |
|           if (RD->hasDefaultConstructor()) {
 | |
|             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
 | |
|         //     an initializer_list object constructed [...]
 | |
|         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
 | |
|           return;
 | |
| 
 | |
|         //   - Otherwise, if T is a class type, constructors are considered.
 | |
|         Expr *InitListAsExpr = InitList;
 | |
|         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
 | |
|                                      Sequence, /*InitListSyntax*/true);
 | |
|       } else
 | |
|         Sequence.SetFailed(
 | |
|             InitializationSequence::FK_InitListBadDestinationType);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   InitListChecker CheckInitList(S, Entity, InitList,
 | |
|           DestType, /*VerifyOnly=*/true);
 | |
|   if (CheckInitList.HadError()) {
 | |
|     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Add the list initialization step with the built init list.
 | |
|   Sequence.AddListInitializationStep(DestType);
 | |
| }
 | |
| 
 | |
| /// \brief Try a reference initialization that involves calling a conversion
 | |
| /// function.
 | |
| static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
 | |
|                                              const InitializedEntity &Entity,
 | |
|                                              const InitializationKind &Kind,
 | |
|                                              Expr *Initializer,
 | |
|                                              bool AllowRValues,
 | |
|                                              InitializationSequence &Sequence) {
 | |
|   QualType DestType = Entity.getType();
 | |
|   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
 | |
|   QualType T1 = cv1T1.getUnqualifiedType();
 | |
|   QualType cv2T2 = Initializer->getType();
 | |
|   QualType T2 = cv2T2.getUnqualifiedType();
 | |
| 
 | |
|   bool DerivedToBase;
 | |
|   bool ObjCConversion;
 | |
|   bool ObjCLifetimeConversion;
 | |
|   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
 | |
|                                          T1, T2, DerivedToBase,
 | |
|                                          ObjCConversion,
 | |
|                                          ObjCLifetimeConversion) &&
 | |
|          "Must have incompatible references when binding via conversion");
 | |
|   (void)DerivedToBase;
 | |
|   (void)ObjCConversion;
 | |
|   (void)ObjCLifetimeConversion;
 | |
|   
 | |
|   // Build the candidate set directly in the initialization sequence
 | |
|   // structure, so that it will persist if we fail.
 | |
|   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
 | |
|   CandidateSet.clear();
 | |
| 
 | |
|   // Determine whether we are allowed to call explicit constructors or
 | |
|   // explicit conversion operators.
 | |
|   bool AllowExplicit = Kind.AllowExplicit();
 | |
|   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
 | |
|   
 | |
|   const RecordType *T1RecordType = 0;
 | |
|   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
 | |
|       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
 | |
|     // The type we're converting to is a class type. Enumerate its constructors
 | |
|     // to see if there is a suitable conversion.
 | |
|     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
 | |
| 
 | |
|     DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
 | |
|     // The container holding the constructors can under certain conditions
 | |
|     // be changed while iterating (e.g. because of deserialization).
 | |
|     // To be safe we copy the lookup results to a new container.
 | |
|     SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
 | |
|     for (SmallVectorImpl<NamedDecl *>::iterator
 | |
|            CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
 | |
|       NamedDecl *D = *CI;
 | |
|       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | |
| 
 | |
|       // Find the constructor (which may be a template).
 | |
|       CXXConstructorDecl *Constructor = 0;
 | |
|       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
 | |
|       if (ConstructorTmpl)
 | |
|         Constructor = cast<CXXConstructorDecl>(
 | |
|                                          ConstructorTmpl->getTemplatedDecl());
 | |
|       else
 | |
|         Constructor = cast<CXXConstructorDecl>(D);
 | |
| 
 | |
|       if (!Constructor->isInvalidDecl() &&
 | |
|           Constructor->isConvertingConstructor(AllowExplicit)) {
 | |
|         if (ConstructorTmpl)
 | |
|           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | |
|                                          /*ExplicitArgs*/ 0,
 | |
|                                          Initializer, CandidateSet,
 | |
|                                          /*SuppressUserConversions=*/true);
 | |
|         else
 | |
|           S.AddOverloadCandidate(Constructor, FoundDecl,
 | |
|                                  Initializer, CandidateSet,
 | |
|                                  /*SuppressUserConversions=*/true);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
 | |
|     return OR_No_Viable_Function;
 | |
| 
 | |
|   const RecordType *T2RecordType = 0;
 | |
|   if ((T2RecordType = T2->getAs<RecordType>()) &&
 | |
|       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
 | |
|     // The type we're converting from is a class type, enumerate its conversion
 | |
|     // functions.
 | |
|     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
 | |
| 
 | |
|     std::pair<CXXRecordDecl::conversion_iterator,
 | |
|               CXXRecordDecl::conversion_iterator>
 | |
|       Conversions = T2RecordDecl->getVisibleConversionFunctions();
 | |
|     for (CXXRecordDecl::conversion_iterator
 | |
|            I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | |
|       NamedDecl *D = *I;
 | |
|       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
 | |
|       if (isa<UsingShadowDecl>(D))
 | |
|         D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
 | |
|       CXXConversionDecl *Conv;
 | |
|       if (ConvTemplate)
 | |
|         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | |
|       else
 | |
|         Conv = cast<CXXConversionDecl>(D);
 | |
| 
 | |
|       // If the conversion function doesn't return a reference type,
 | |
|       // it can't be considered for this conversion unless we're allowed to
 | |
|       // consider rvalues.
 | |
|       // FIXME: Do we need to make sure that we only consider conversion
 | |
|       // candidates with reference-compatible results? That might be needed to
 | |
|       // break recursion.
 | |
|       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
 | |
|           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
 | |
|         if (ConvTemplate)
 | |
|           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
 | |
|                                            ActingDC, Initializer,
 | |
|                                            DestType, CandidateSet);
 | |
|         else
 | |
|           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
 | |
|                                    Initializer, DestType, CandidateSet);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
 | |
|     return OR_No_Viable_Function;
 | |
| 
 | |
|   SourceLocation DeclLoc = Initializer->getLocStart();
 | |
| 
 | |
|   // Perform overload resolution. If it fails, return the failed result.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   if (OverloadingResult Result
 | |
|         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
 | |
|     return Result;
 | |
| 
 | |
|   FunctionDecl *Function = Best->Function;
 | |
|   // This is the overload that will be used for this initialization step if we
 | |
|   // use this initialization. Mark it as referenced.
 | |
|   Function->setReferenced();
 | |
| 
 | |
|   // Compute the returned type of the conversion.
 | |
|   if (isa<CXXConversionDecl>(Function))
 | |
|     T2 = Function->getResultType();
 | |
|   else
 | |
|     T2 = cv1T1;
 | |
| 
 | |
|   // Add the user-defined conversion step.
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
|   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
 | |
|                                  T2.getNonLValueExprType(S.Context),
 | |
|                                  HadMultipleCandidates);
 | |
| 
 | |
|   // Determine whether we need to perform derived-to-base or
 | |
|   // cv-qualification adjustments.
 | |
|   ExprValueKind VK = VK_RValue;
 | |
|   if (T2->isLValueReferenceType())
 | |
|     VK = VK_LValue;
 | |
|   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
 | |
|     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
 | |
| 
 | |
|   bool NewDerivedToBase = false;
 | |
|   bool NewObjCConversion = false;
 | |
|   bool NewObjCLifetimeConversion = false;
 | |
|   Sema::ReferenceCompareResult NewRefRelationship
 | |
|     = S.CompareReferenceRelationship(DeclLoc, T1,
 | |
|                                      T2.getNonLValueExprType(S.Context),
 | |
|                                      NewDerivedToBase, NewObjCConversion,
 | |
|                                      NewObjCLifetimeConversion);
 | |
|   if (NewRefRelationship == Sema::Ref_Incompatible) {
 | |
|     // If the type we've converted to is not reference-related to the
 | |
|     // type we're looking for, then there is another conversion step
 | |
|     // we need to perform to produce a temporary of the right type
 | |
|     // that we'll be binding to.
 | |
|     ImplicitConversionSequence ICS;
 | |
|     ICS.setStandard();
 | |
|     ICS.Standard = Best->FinalConversion;
 | |
|     T2 = ICS.Standard.getToType(2);
 | |
|     Sequence.AddConversionSequenceStep(ICS, T2);
 | |
|   } else if (NewDerivedToBase)
 | |
|     Sequence.AddDerivedToBaseCastStep(
 | |
|                                 S.Context.getQualifiedType(T1,
 | |
|                                   T2.getNonReferenceType().getQualifiers()),
 | |
|                                       VK);
 | |
|   else if (NewObjCConversion)
 | |
|     Sequence.AddObjCObjectConversionStep(
 | |
|                                 S.Context.getQualifiedType(T1,
 | |
|                                   T2.getNonReferenceType().getQualifiers()));
 | |
| 
 | |
|   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
 | |
|     Sequence.AddQualificationConversionStep(cv1T1, VK);
 | |
| 
 | |
|   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
 | |
|   return OR_Success;
 | |
| }
 | |
| 
 | |
| static void CheckCXX98CompatAccessibleCopy(Sema &S,
 | |
|                                            const InitializedEntity &Entity,
 | |
|                                            Expr *CurInitExpr);
 | |
| 
 | |
| /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
 | |
| static void TryReferenceInitialization(Sema &S,
 | |
|                                        const InitializedEntity &Entity,
 | |
|                                        const InitializationKind &Kind,
 | |
|                                        Expr *Initializer,
 | |
|                                        InitializationSequence &Sequence) {
 | |
|   QualType DestType = Entity.getType();
 | |
|   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
 | |
|   Qualifiers T1Quals;
 | |
|   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
 | |
|   QualType cv2T2 = Initializer->getType();
 | |
|   Qualifiers T2Quals;
 | |
|   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
 | |
| 
 | |
|   // If the initializer is the address of an overloaded function, try
 | |
|   // to resolve the overloaded function. If all goes well, T2 is the
 | |
|   // type of the resulting function.
 | |
|   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
 | |
|                                                    T1, Sequence))
 | |
|     return;
 | |
| 
 | |
|   // Delegate everything else to a subfunction.
 | |
|   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
 | |
|                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
 | |
| }
 | |
| 
 | |
| /// Converts the target of reference initialization so that it has the
 | |
| /// appropriate qualifiers and value kind.
 | |
| ///
 | |
| /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
 | |
| /// \code
 | |
| ///   int x;
 | |
| ///   const int &r = x;
 | |
| /// \endcode
 | |
| ///
 | |
| /// In this case the reference is binding to a bitfield lvalue, which isn't
 | |
| /// valid. Perform a load to create a lifetime-extended temporary instead.
 | |
| /// \code
 | |
| ///   const int &r = someStruct.bitfield;
 | |
| /// \endcode
 | |
| static ExprValueKind
 | |
| convertQualifiersAndValueKindIfNecessary(Sema &S,
 | |
|                                          InitializationSequence &Sequence,
 | |
|                                          Expr *Initializer,
 | |
|                                          QualType cv1T1,
 | |
|                                          Qualifiers T1Quals,
 | |
|                                          Qualifiers T2Quals,
 | |
|                                          bool IsLValueRef) {
 | |
|   bool IsNonAddressableType = Initializer->refersToBitField() ||
 | |
|                               Initializer->refersToVectorElement();
 | |
| 
 | |
|   if (IsNonAddressableType) {
 | |
|     // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
 | |
|     // lvalue reference to a non-volatile const type, or the reference shall be
 | |
|     // an rvalue reference.
 | |
|     //
 | |
|     // If not, we can't make a temporary and bind to that. Give up and allow the
 | |
|     // error to be diagnosed later.
 | |
|     if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
 | |
|       assert(Initializer->isGLValue());
 | |
|       return Initializer->getValueKind();
 | |
|     }
 | |
| 
 | |
|     // Force a load so we can materialize a temporary.
 | |
|     Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
 | |
|     return VK_RValue;
 | |
|   }
 | |
| 
 | |
|   if (T1Quals != T2Quals) {
 | |
|     Sequence.AddQualificationConversionStep(cv1T1,
 | |
|                                             Initializer->getValueKind());
 | |
|   }
 | |
| 
 | |
|   return Initializer->getValueKind();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Reference initialization without resolving overloaded functions.
 | |
| static void TryReferenceInitializationCore(Sema &S,
 | |
|                                            const InitializedEntity &Entity,
 | |
|                                            const InitializationKind &Kind,
 | |
|                                            Expr *Initializer,
 | |
|                                            QualType cv1T1, QualType T1,
 | |
|                                            Qualifiers T1Quals,
 | |
|                                            QualType cv2T2, QualType T2,
 | |
|                                            Qualifiers T2Quals,
 | |
|                                            InitializationSequence &Sequence) {
 | |
|   QualType DestType = Entity.getType();
 | |
|   SourceLocation DeclLoc = Initializer->getLocStart();
 | |
|   // Compute some basic properties of the types and the initializer.
 | |
|   bool isLValueRef = DestType->isLValueReferenceType();
 | |
|   bool isRValueRef = !isLValueRef;
 | |
|   bool DerivedToBase = false;
 | |
|   bool ObjCConversion = false;
 | |
|   bool ObjCLifetimeConversion = false;
 | |
|   Expr::Classification InitCategory = Initializer->Classify(S.Context);
 | |
|   Sema::ReferenceCompareResult RefRelationship
 | |
|     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
 | |
|                                      ObjCConversion, ObjCLifetimeConversion);
 | |
| 
 | |
|   // C++0x [dcl.init.ref]p5:
 | |
|   //   A reference to type "cv1 T1" is initialized by an expression of type
 | |
|   //   "cv2 T2" as follows:
 | |
|   //
 | |
|   //     - If the reference is an lvalue reference and the initializer
 | |
|   //       expression
 | |
|   // Note the analogous bullet points for rvlaue refs to functions. Because
 | |
|   // there are no function rvalues in C++, rvalue refs to functions are treated
 | |
|   // like lvalue refs.
 | |
|   OverloadingResult ConvOvlResult = OR_Success;
 | |
|   bool T1Function = T1->isFunctionType();
 | |
|   if (isLValueRef || T1Function) {
 | |
|     if (InitCategory.isLValue() &&
 | |
|         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
 | |
|          (Kind.isCStyleOrFunctionalCast() &&
 | |
|           RefRelationship == Sema::Ref_Related))) {
 | |
|       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
 | |
|       //     reference-compatible with "cv2 T2," or
 | |
|       //
 | |
|       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
 | |
|       // bit-field when we're determining whether the reference initialization
 | |
|       // can occur. However, we do pay attention to whether it is a bit-field
 | |
|       // to decide whether we're actually binding to a temporary created from
 | |
|       // the bit-field.
 | |
|       if (DerivedToBase)
 | |
|         Sequence.AddDerivedToBaseCastStep(
 | |
|                          S.Context.getQualifiedType(T1, T2Quals),
 | |
|                          VK_LValue);
 | |
|       else if (ObjCConversion)
 | |
|         Sequence.AddObjCObjectConversionStep(
 | |
|                                      S.Context.getQualifiedType(T1, T2Quals));
 | |
| 
 | |
|       ExprValueKind ValueKind =
 | |
|         convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
 | |
|                                                  cv1T1, T1Quals, T2Quals,
 | |
|                                                  isLValueRef);
 | |
|       Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     //     - has a class type (i.e., T2 is a class type), where T1 is not
 | |
|     //       reference-related to T2, and can be implicitly converted to an
 | |
|     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
 | |
|     //       with "cv3 T3" (this conversion is selected by enumerating the
 | |
|     //       applicable conversion functions (13.3.1.6) and choosing the best
 | |
|     //       one through overload resolution (13.3)),
 | |
|     // If we have an rvalue ref to function type here, the rhs must be
 | |
|     // an rvalue.
 | |
|     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
 | |
|         (isLValueRef || InitCategory.isRValue())) {
 | |
|       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
 | |
|                                                        Initializer,
 | |
|                                                    /*AllowRValues=*/isRValueRef,
 | |
|                                                        Sequence);
 | |
|       if (ConvOvlResult == OR_Success)
 | |
|         return;
 | |
|       if (ConvOvlResult != OR_No_Viable_Function) {
 | |
|         Sequence.SetOverloadFailure(
 | |
|                       InitializationSequence::FK_ReferenceInitOverloadFailed,
 | |
|                                     ConvOvlResult);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //     - Otherwise, the reference shall be an lvalue reference to a
 | |
|   //       non-volatile const type (i.e., cv1 shall be const), or the reference
 | |
|   //       shall be an rvalue reference.
 | |
|   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
 | |
|     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
 | |
|       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | |
|     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
 | |
|       Sequence.SetOverloadFailure(
 | |
|                         InitializationSequence::FK_ReferenceInitOverloadFailed,
 | |
|                                   ConvOvlResult);
 | |
|     else
 | |
|       Sequence.SetFailed(InitCategory.isLValue()
 | |
|         ? (RefRelationship == Sema::Ref_Related
 | |
|              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
 | |
|              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
 | |
|         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //    - If the initializer expression
 | |
|   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
 | |
|   //        "cv1 T1" is reference-compatible with "cv2 T2"
 | |
|   // Note: functions are handled below.
 | |
|   if (!T1Function &&
 | |
|       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
 | |
|        (Kind.isCStyleOrFunctionalCast() &&
 | |
|         RefRelationship == Sema::Ref_Related)) &&
 | |
|       (InitCategory.isXValue() ||
 | |
|        (InitCategory.isPRValue() && T2->isRecordType()) ||
 | |
|        (InitCategory.isPRValue() && T2->isArrayType()))) {
 | |
|     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
 | |
|     if (InitCategory.isPRValue() && T2->isRecordType()) {
 | |
|       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
 | |
|       // compiler the freedom to perform a copy here or bind to the
 | |
|       // object, while C++0x requires that we bind directly to the
 | |
|       // object. Hence, we always bind to the object without making an
 | |
|       // extra copy. However, in C++03 requires that we check for the
 | |
|       // presence of a suitable copy constructor:
 | |
|       //
 | |
|       //   The constructor that would be used to make the copy shall
 | |
|       //   be callable whether or not the copy is actually done.
 | |
|       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
 | |
|         Sequence.AddExtraneousCopyToTemporary(cv2T2);
 | |
|       else if (S.getLangOpts().CPlusPlus11)
 | |
|         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
 | |
|     }
 | |
| 
 | |
|     if (DerivedToBase)
 | |
|       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
 | |
|                                         ValueKind);
 | |
|     else if (ObjCConversion)
 | |
|       Sequence.AddObjCObjectConversionStep(
 | |
|                                        S.Context.getQualifiedType(T1, T2Quals));
 | |
| 
 | |
|     ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
 | |
|                                                          Initializer, cv1T1,
 | |
|                                                          T1Quals, T2Quals,
 | |
|                                                          isLValueRef);
 | |
| 
 | |
|     Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //       - has a class type (i.e., T2 is a class type), where T1 is not
 | |
|   //         reference-related to T2, and can be implicitly converted to an
 | |
|   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
 | |
|   //         where "cv1 T1" is reference-compatible with "cv3 T3",
 | |
|   if (T2->isRecordType()) {
 | |
|     if (RefRelationship == Sema::Ref_Incompatible) {
 | |
|       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
 | |
|                                                        Kind, Initializer,
 | |
|                                                        /*AllowRValues=*/true,
 | |
|                                                        Sequence);
 | |
|       if (ConvOvlResult)
 | |
|         Sequence.SetOverloadFailure(
 | |
|                       InitializationSequence::FK_ReferenceInitOverloadFailed,
 | |
|                                     ConvOvlResult);
 | |
| 
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if ((RefRelationship == Sema::Ref_Compatible ||
 | |
|          RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
 | |
|         isRValueRef && InitCategory.isLValue()) {
 | |
|       Sequence.SetFailed(
 | |
|         InitializationSequence::FK_RValueReferenceBindingToLValue);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
 | |
|   //        from the initializer expression using the rules for a non-reference
 | |
|   //        copy-initialization (8.5). The reference is then bound to the
 | |
|   //        temporary. [...]
 | |
| 
 | |
|   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
 | |
| 
 | |
|   // FIXME: Why do we use an implicit conversion here rather than trying
 | |
|   // copy-initialization?
 | |
|   ImplicitConversionSequence ICS
 | |
|     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
 | |
|                               /*SuppressUserConversions=*/false,
 | |
|                               /*AllowExplicit=*/false,
 | |
|                               /*FIXME:InOverloadResolution=*/false,
 | |
|                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
 | |
|                               /*AllowObjCWritebackConversion=*/false);
 | |
|   
 | |
|   if (ICS.isBad()) {
 | |
|     // FIXME: Use the conversion function set stored in ICS to turn
 | |
|     // this into an overloading ambiguity diagnostic. However, we need
 | |
|     // to keep that set as an OverloadCandidateSet rather than as some
 | |
|     // other kind of set.
 | |
|     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
 | |
|       Sequence.SetOverloadFailure(
 | |
|                         InitializationSequence::FK_ReferenceInitOverloadFailed,
 | |
|                                   ConvOvlResult);
 | |
|     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
 | |
|       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | |
|     else
 | |
|       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
 | |
|     return;
 | |
|   } else {
 | |
|     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
 | |
|   }
 | |
| 
 | |
|   //        [...] If T1 is reference-related to T2, cv1 must be the
 | |
|   //        same cv-qualification as, or greater cv-qualification
 | |
|   //        than, cv2; otherwise, the program is ill-formed.
 | |
|   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
 | |
|   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
 | |
|   if (RefRelationship == Sema::Ref_Related &&
 | |
|       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
 | |
|     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
 | |
|   //   reference, the initializer expression shall not be an lvalue.
 | |
|   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
 | |
|       InitCategory.isLValue()) {
 | |
|     Sequence.SetFailed(
 | |
|                     InitializationSequence::FK_RValueReferenceBindingToLValue);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// \brief Attempt character array initialization from a string literal
 | |
| /// (C++ [dcl.init.string], C99 6.7.8).
 | |
| static void TryStringLiteralInitialization(Sema &S,
 | |
|                                            const InitializedEntity &Entity,
 | |
|                                            const InitializationKind &Kind,
 | |
|                                            Expr *Initializer,
 | |
|                                        InitializationSequence &Sequence) {
 | |
|   Sequence.AddStringInitStep(Entity.getType());
 | |
| }
 | |
| 
 | |
| /// \brief Attempt value initialization (C++ [dcl.init]p7).
 | |
| static void TryValueInitialization(Sema &S,
 | |
|                                    const InitializedEntity &Entity,
 | |
|                                    const InitializationKind &Kind,
 | |
|                                    InitializationSequence &Sequence,
 | |
|                                    InitListExpr *InitList) {
 | |
|   assert((!InitList || InitList->getNumInits() == 0) &&
 | |
|          "Shouldn't use value-init for non-empty init lists");
 | |
| 
 | |
|   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
 | |
|   //
 | |
|   //   To value-initialize an object of type T means:
 | |
|   QualType T = Entity.getType();
 | |
| 
 | |
|   //     -- if T is an array type, then each element is value-initialized;
 | |
|   T = S.Context.getBaseElementType(T);
 | |
| 
 | |
|   if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
 | |
|       bool NeedZeroInitialization = true;
 | |
|       if (!S.getLangOpts().CPlusPlus11) {
 | |
|         // C++98:
 | |
|         // -- if T is a class type (clause 9) with a user-declared constructor
 | |
|         //    (12.1), then the default constructor for T is called (and the
 | |
|         //    initialization is ill-formed if T has no accessible default
 | |
|         //    constructor);
 | |
|         if (ClassDecl->hasUserDeclaredConstructor())
 | |
|           NeedZeroInitialization = false;
 | |
|       } else {
 | |
|         // C++11:
 | |
|         // -- if T is a class type (clause 9) with either no default constructor
 | |
|         //    (12.1 [class.ctor]) or a default constructor that is user-provided
 | |
|         //    or deleted, then the object is default-initialized;
 | |
|         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
 | |
|         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
 | |
|           NeedZeroInitialization = false;
 | |
|       }
 | |
| 
 | |
|       // -- if T is a (possibly cv-qualified) non-union class type without a
 | |
|       //    user-provided or deleted default constructor, then the object is
 | |
|       //    zero-initialized and, if T has a non-trivial default constructor,
 | |
|       //    default-initialized;
 | |
|       // The 'non-union' here was removed by DR1502. The 'non-trivial default
 | |
|       // constructor' part was removed by DR1507.
 | |
|       if (NeedZeroInitialization)
 | |
|         Sequence.AddZeroInitializationStep(Entity.getType());
 | |
| 
 | |
|       // C++03:
 | |
|       // -- if T is a non-union class type without a user-declared constructor,
 | |
|       //    then every non-static data member and base class component of T is
 | |
|       //    value-initialized;
 | |
|       // [...] A program that calls for [...] value-initialization of an
 | |
|       // entity of reference type is ill-formed.
 | |
|       //
 | |
|       // C++11 doesn't need this handling, because value-initialization does not
 | |
|       // occur recursively there, and the implicit default constructor is
 | |
|       // defined as deleted in the problematic cases.
 | |
|       if (!S.getLangOpts().CPlusPlus11 &&
 | |
|           ClassDecl->hasUninitializedReferenceMember()) {
 | |
|         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // If this is list-value-initialization, pass the empty init list on when
 | |
|       // building the constructor call. This affects the semantics of a few
 | |
|       // things (such as whether an explicit default constructor can be called).
 | |
|       Expr *InitListAsExpr = InitList;
 | |
|       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
 | |
|       bool InitListSyntax = InitList;
 | |
| 
 | |
|       return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
 | |
|                                           InitListSyntax);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Sequence.AddZeroInitializationStep(Entity.getType());
 | |
| }
 | |
| 
 | |
| /// \brief Attempt default initialization (C++ [dcl.init]p6).
 | |
| static void TryDefaultInitialization(Sema &S,
 | |
|                                      const InitializedEntity &Entity,
 | |
|                                      const InitializationKind &Kind,
 | |
|                                      InitializationSequence &Sequence) {
 | |
|   assert(Kind.getKind() == InitializationKind::IK_Default);
 | |
| 
 | |
|   // C++ [dcl.init]p6:
 | |
|   //   To default-initialize an object of type T means:
 | |
|   //     - if T is an array type, each element is default-initialized;
 | |
|   QualType DestType = S.Context.getBaseElementType(Entity.getType());
 | |
|          
 | |
|   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
 | |
|   //       constructor for T is called (and the initialization is ill-formed if
 | |
|   //       T has no accessible default constructor);
 | |
|   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
 | |
|     TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //     - otherwise, no initialization is performed.
 | |
| 
 | |
|   //   If a program calls for the default initialization of an object of
 | |
|   //   a const-qualified type T, T shall be a class type with a user-provided
 | |
|   //   default constructor.
 | |
|   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
 | |
|     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the destination type has a lifetime property, zero-initialize it.
 | |
|   if (DestType.getQualifiers().hasObjCLifetime()) {
 | |
|     Sequence.AddZeroInitializationStep(Entity.getType());
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
 | |
| /// which enumerates all conversion functions and performs overload resolution
 | |
| /// to select the best.
 | |
| static void TryUserDefinedConversion(Sema &S,
 | |
|                                      const InitializedEntity &Entity,
 | |
|                                      const InitializationKind &Kind,
 | |
|                                      Expr *Initializer,
 | |
|                                      InitializationSequence &Sequence) {
 | |
|   QualType DestType = Entity.getType();
 | |
|   assert(!DestType->isReferenceType() && "References are handled elsewhere");
 | |
|   QualType SourceType = Initializer->getType();
 | |
|   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
 | |
|          "Must have a class type to perform a user-defined conversion");
 | |
| 
 | |
|   // Build the candidate set directly in the initialization sequence
 | |
|   // structure, so that it will persist if we fail.
 | |
|   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
 | |
|   CandidateSet.clear();
 | |
| 
 | |
|   // Determine whether we are allowed to call explicit constructors or
 | |
|   // explicit conversion operators.
 | |
|   bool AllowExplicit = Kind.AllowExplicit();
 | |
| 
 | |
|   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
 | |
|     // The type we're converting to is a class type. Enumerate its constructors
 | |
|     // to see if there is a suitable conversion.
 | |
|     CXXRecordDecl *DestRecordDecl
 | |
|       = cast<CXXRecordDecl>(DestRecordType->getDecl());
 | |
| 
 | |
|     // Try to complete the type we're converting to.
 | |
|     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
 | |
|       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
 | |
|       // The container holding the constructors can under certain conditions
 | |
|       // be changed while iterating. To be safe we copy the lookup results
 | |
|       // to a new container.
 | |
|       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
 | |
|       for (SmallVectorImpl<NamedDecl *>::iterator
 | |
|              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
 | |
|            Con != ConEnd; ++Con) {
 | |
|         NamedDecl *D = *Con;
 | |
|         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | |
| 
 | |
|         // Find the constructor (which may be a template).
 | |
|         CXXConstructorDecl *Constructor = 0;
 | |
|         FunctionTemplateDecl *ConstructorTmpl
 | |
|           = dyn_cast<FunctionTemplateDecl>(D);
 | |
|         if (ConstructorTmpl)
 | |
|           Constructor = cast<CXXConstructorDecl>(
 | |
|                                            ConstructorTmpl->getTemplatedDecl());
 | |
|         else
 | |
|           Constructor = cast<CXXConstructorDecl>(D);
 | |
| 
 | |
|         if (!Constructor->isInvalidDecl() &&
 | |
|             Constructor->isConvertingConstructor(AllowExplicit)) {
 | |
|           if (ConstructorTmpl)
 | |
|             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | |
|                                            /*ExplicitArgs*/ 0,
 | |
|                                            Initializer, CandidateSet,
 | |
|                                            /*SuppressUserConversions=*/true);
 | |
|           else
 | |
|             S.AddOverloadCandidate(Constructor, FoundDecl,
 | |
|                                    Initializer, CandidateSet,
 | |
|                                    /*SuppressUserConversions=*/true);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SourceLocation DeclLoc = Initializer->getLocStart();
 | |
| 
 | |
|   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
 | |
|     // The type we're converting from is a class type, enumerate its conversion
 | |
|     // functions.
 | |
| 
 | |
|     // We can only enumerate the conversion functions for a complete type; if
 | |
|     // the type isn't complete, simply skip this step.
 | |
|     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
 | |
|       CXXRecordDecl *SourceRecordDecl
 | |
|         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
 | |
| 
 | |
|       std::pair<CXXRecordDecl::conversion_iterator,
 | |
|                 CXXRecordDecl::conversion_iterator>
 | |
|         Conversions = SourceRecordDecl->getVisibleConversionFunctions();
 | |
|       for (CXXRecordDecl::conversion_iterator
 | |
|              I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | |
|         NamedDecl *D = *I;
 | |
|         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
 | |
|         if (isa<UsingShadowDecl>(D))
 | |
|           D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
 | |
|         CXXConversionDecl *Conv;
 | |
|         if (ConvTemplate)
 | |
|           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | |
|         else
 | |
|           Conv = cast<CXXConversionDecl>(D);
 | |
| 
 | |
|         if (AllowExplicit || !Conv->isExplicit()) {
 | |
|           if (ConvTemplate)
 | |
|             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
 | |
|                                              ActingDC, Initializer, DestType,
 | |
|                                              CandidateSet);
 | |
|           else
 | |
|             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
 | |
|                                      Initializer, DestType, CandidateSet);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Perform overload resolution. If it fails, return the failed result.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   if (OverloadingResult Result
 | |
|         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
 | |
|     Sequence.SetOverloadFailure(
 | |
|                         InitializationSequence::FK_UserConversionOverloadFailed,
 | |
|                                 Result);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *Function = Best->Function;
 | |
|   Function->setReferenced();
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   if (isa<CXXConstructorDecl>(Function)) {
 | |
|     // Add the user-defined conversion step. Any cv-qualification conversion is
 | |
|     // subsumed by the initialization. Per DR5, the created temporary is of the
 | |
|     // cv-unqualified type of the destination.
 | |
|     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
 | |
|                                    DestType.getUnqualifiedType(),
 | |
|                                    HadMultipleCandidates);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Add the user-defined conversion step that calls the conversion function.
 | |
|   QualType ConvType = Function->getCallResultType();
 | |
|   if (ConvType->getAs<RecordType>()) {
 | |
|     // If we're converting to a class type, there may be an copy of
 | |
|     // the resulting temporary object (possible to create an object of
 | |
|     // a base class type). That copy is not a separate conversion, so
 | |
|     // we just make a note of the actual destination type (possibly a
 | |
|     // base class of the type returned by the conversion function) and
 | |
|     // let the user-defined conversion step handle the conversion.
 | |
|     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
 | |
|                                    HadMultipleCandidates);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
 | |
|                                  HadMultipleCandidates);
 | |
| 
 | |
|   // If the conversion following the call to the conversion function
 | |
|   // is interesting, add it as a separate step.
 | |
|   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
 | |
|       Best->FinalConversion.Third) {
 | |
|     ImplicitConversionSequence ICS;
 | |
|     ICS.setStandard();
 | |
|     ICS.Standard = Best->FinalConversion;
 | |
|     Sequence.AddConversionSequenceStep(ICS, DestType);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
 | |
| /// a function with a pointer return type contains a 'return false;' statement.
 | |
| /// In C++11, 'false' is not a null pointer, so this breaks the build of any
 | |
| /// code using that header.
 | |
| ///
 | |
| /// Work around this by treating 'return false;' as zero-initializing the result
 | |
| /// if it's used in a pointer-returning function in a system header.
 | |
| static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
 | |
|                                               const InitializedEntity &Entity,
 | |
|                                               const Expr *Init) {
 | |
|   return S.getLangOpts().CPlusPlus11 &&
 | |
|          Entity.getKind() == InitializedEntity::EK_Result &&
 | |
|          Entity.getType()->isPointerType() &&
 | |
|          isa<CXXBoolLiteralExpr>(Init) &&
 | |
|          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
 | |
|          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
 | |
| }
 | |
| 
 | |
| /// The non-zero enum values here are indexes into diagnostic alternatives.
 | |
| enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
 | |
| 
 | |
| /// Determines whether this expression is an acceptable ICR source.
 | |
| static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
 | |
|                                          bool isAddressOf, bool &isWeakAccess) {
 | |
|   // Skip parens.
 | |
|   e = e->IgnoreParens();
 | |
| 
 | |
|   // Skip address-of nodes.
 | |
|   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
 | |
|     if (op->getOpcode() == UO_AddrOf)
 | |
|       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
 | |
|                                 isWeakAccess);
 | |
| 
 | |
|   // Skip certain casts.
 | |
|   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
 | |
|     switch (ce->getCastKind()) {
 | |
|     case CK_Dependent:
 | |
|     case CK_BitCast:
 | |
|     case CK_LValueBitCast:
 | |
|     case CK_NoOp:
 | |
|       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
 | |
| 
 | |
|     case CK_ArrayToPointerDecay:
 | |
|       return IIK_nonscalar;
 | |
| 
 | |
|     case CK_NullToPointer:
 | |
|       return IIK_okay;
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // If we have a declaration reference, it had better be a local variable.
 | |
|   } else if (isa<DeclRefExpr>(e)) {
 | |
|     // set isWeakAccess to true, to mean that there will be an implicit 
 | |
|     // load which requires a cleanup.
 | |
|     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
 | |
|       isWeakAccess = true;
 | |
|     
 | |
|     if (!isAddressOf) return IIK_nonlocal;
 | |
| 
 | |
|     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
 | |
|     if (!var) return IIK_nonlocal;
 | |
| 
 | |
|     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
 | |
| 
 | |
|   // If we have a conditional operator, check both sides.
 | |
|   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
 | |
|     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
 | |
|                                                 isWeakAccess))
 | |
|       return iik;
 | |
| 
 | |
|     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
 | |
| 
 | |
|   // These are never scalar.
 | |
|   } else if (isa<ArraySubscriptExpr>(e)) {
 | |
|     return IIK_nonscalar;
 | |
| 
 | |
|   // Otherwise, it needs to be a null pointer constant.
 | |
|   } else {
 | |
|     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
 | |
|             ? IIK_okay : IIK_nonlocal);
 | |
|   }
 | |
| 
 | |
|   return IIK_nonlocal;
 | |
| }
 | |
| 
 | |
| /// Check whether the given expression is a valid operand for an
 | |
| /// indirect copy/restore.
 | |
| static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
 | |
|   assert(src->isRValue());
 | |
|   bool isWeakAccess = false;
 | |
|   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
 | |
|   // If isWeakAccess to true, there will be an implicit 
 | |
|   // load which requires a cleanup.
 | |
|   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
 | |
|     S.ExprNeedsCleanups = true;
 | |
|   
 | |
|   if (iik == IIK_okay) return;
 | |
| 
 | |
|   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
 | |
|     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
 | |
|     << src->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether we have compatible array types for the
 | |
| /// purposes of GNU by-copy array initialization.
 | |
| static bool hasCompatibleArrayTypes(ASTContext &Context,
 | |
|                                     const ArrayType *Dest, 
 | |
|                                     const ArrayType *Source) {
 | |
|   // If the source and destination array types are equivalent, we're
 | |
|   // done.
 | |
|   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
 | |
|     return true;
 | |
| 
 | |
|   // Make sure that the element types are the same.
 | |
|   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
 | |
|     return false;
 | |
| 
 | |
|   // The only mismatch we allow is when the destination is an
 | |
|   // incomplete array type and the source is a constant array type.
 | |
|   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
 | |
| }
 | |
| 
 | |
| static bool tryObjCWritebackConversion(Sema &S,
 | |
|                                        InitializationSequence &Sequence,
 | |
|                                        const InitializedEntity &Entity,
 | |
|                                        Expr *Initializer) {
 | |
|   bool ArrayDecay = false;
 | |
|   QualType ArgType = Initializer->getType();
 | |
|   QualType ArgPointee;
 | |
|   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
 | |
|     ArrayDecay = true;
 | |
|     ArgPointee = ArgArrayType->getElementType();
 | |
|     ArgType = S.Context.getPointerType(ArgPointee);
 | |
|   }
 | |
|       
 | |
|   // Handle write-back conversion.
 | |
|   QualType ConvertedArgType;
 | |
|   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
 | |
|                                    ConvertedArgType))
 | |
|     return false;
 | |
| 
 | |
|   // We should copy unless we're passing to an argument explicitly
 | |
|   // marked 'out'.
 | |
|   bool ShouldCopy = true;
 | |
|   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
 | |
|     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
 | |
| 
 | |
|   // Do we need an lvalue conversion?
 | |
|   if (ArrayDecay || Initializer->isGLValue()) {
 | |
|     ImplicitConversionSequence ICS;
 | |
|     ICS.setStandard();
 | |
|     ICS.Standard.setAsIdentityConversion();
 | |
| 
 | |
|     QualType ResultType;
 | |
|     if (ArrayDecay) {
 | |
|       ICS.Standard.First = ICK_Array_To_Pointer;
 | |
|       ResultType = S.Context.getPointerType(ArgPointee);
 | |
|     } else {
 | |
|       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
 | |
|       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
 | |
|     }
 | |
|           
 | |
|     Sequence.AddConversionSequenceStep(ICS, ResultType);
 | |
|   }
 | |
|         
 | |
|   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool TryOCLSamplerInitialization(Sema &S,
 | |
|                                         InitializationSequence &Sequence,
 | |
|                                         QualType DestType,
 | |
|                                         Expr *Initializer) {
 | |
|   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
 | |
|     !Initializer->isIntegerConstantExpr(S.getASTContext()))
 | |
|     return false;
 | |
| 
 | |
|   Sequence.AddOCLSamplerInitStep(DestType);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // OpenCL 1.2 spec, s6.12.10
 | |
| //
 | |
| // The event argument can also be used to associate the
 | |
| // async_work_group_copy with a previous async copy allowing
 | |
| // an event to be shared by multiple async copies; otherwise
 | |
| // event should be zero.
 | |
| //
 | |
| static bool TryOCLZeroEventInitialization(Sema &S,
 | |
|                                           InitializationSequence &Sequence,
 | |
|                                           QualType DestType,
 | |
|                                           Expr *Initializer) {
 | |
|   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
 | |
|       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
 | |
|       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
 | |
|     return false;
 | |
| 
 | |
|   Sequence.AddOCLZeroEventStep(DestType);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| InitializationSequence::InitializationSequence(Sema &S,
 | |
|                                                const InitializedEntity &Entity,
 | |
|                                                const InitializationKind &Kind,
 | |
|                                                MultiExprArg Args)
 | |
|     : FailedCandidateSet(Kind.getLocation()) {
 | |
|   ASTContext &Context = S.Context;
 | |
| 
 | |
|   // Eliminate non-overload placeholder types in the arguments.  We
 | |
|   // need to do this before checking whether types are dependent
 | |
|   // because lowering a pseudo-object expression might well give us
 | |
|   // something of dependent type.
 | |
|   for (unsigned I = 0, E = Args.size(); I != E; ++I)
 | |
|     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
 | |
|       // FIXME: should we be doing this here?
 | |
|       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
 | |
|       if (result.isInvalid()) {
 | |
|         SetFailed(FK_PlaceholderType);
 | |
|         return;
 | |
|       }
 | |
|       Args[I] = result.take();
 | |
|     }
 | |
| 
 | |
|   // C++0x [dcl.init]p16:
 | |
|   //   The semantics of initializers are as follows. The destination type is
 | |
|   //   the type of the object or reference being initialized and the source
 | |
|   //   type is the type of the initializer expression. The source type is not
 | |
|   //   defined when the initializer is a braced-init-list or when it is a
 | |
|   //   parenthesized list of expressions.
 | |
|   QualType DestType = Entity.getType();
 | |
| 
 | |
|   if (DestType->isDependentType() ||
 | |
|       Expr::hasAnyTypeDependentArguments(Args)) {
 | |
|     SequenceKind = DependentSequence;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Almost everything is a normal sequence.
 | |
|   setSequenceKind(NormalSequence);
 | |
| 
 | |
|   QualType SourceType;
 | |
|   Expr *Initializer = 0;
 | |
|   if (Args.size() == 1) {
 | |
|     Initializer = Args[0];
 | |
|     if (!isa<InitListExpr>(Initializer))
 | |
|       SourceType = Initializer->getType();
 | |
|   }
 | |
| 
 | |
|   //     - If the initializer is a (non-parenthesized) braced-init-list, the
 | |
|   //       object is list-initialized (8.5.4).
 | |
|   if (Kind.getKind() != InitializationKind::IK_Direct) {
 | |
|     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
 | |
|       TryListInitialization(S, Entity, Kind, InitList, *this);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //     - If the destination type is a reference type, see 8.5.3.
 | |
|   if (DestType->isReferenceType()) {
 | |
|     // C++0x [dcl.init.ref]p1:
 | |
|     //   A variable declared to be a T& or T&&, that is, "reference to type T"
 | |
|     //   (8.3.2), shall be initialized by an object, or function, of type T or
 | |
|     //   by an object that can be converted into a T.
 | |
|     // (Therefore, multiple arguments are not permitted.)
 | |
|     if (Args.size() != 1)
 | |
|       SetFailed(FK_TooManyInitsForReference);
 | |
|     else
 | |
|       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //     - If the initializer is (), the object is value-initialized.
 | |
|   if (Kind.getKind() == InitializationKind::IK_Value ||
 | |
|       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
 | |
|     TryValueInitialization(S, Entity, Kind, *this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle default initialization.
 | |
|   if (Kind.getKind() == InitializationKind::IK_Default) {
 | |
|     TryDefaultInitialization(S, Entity, Kind, *this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //     - If the destination type is an array of characters, an array of
 | |
|   //       char16_t, an array of char32_t, or an array of wchar_t, and the
 | |
|   //       initializer is a string literal, see 8.5.2.
 | |
|   //     - Otherwise, if the destination type is an array, the program is
 | |
|   //       ill-formed.
 | |
|   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
 | |
|     if (Initializer && isa<VariableArrayType>(DestAT)) {
 | |
|       SetFailed(FK_VariableLengthArrayHasInitializer);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (Initializer) {
 | |
|       switch (IsStringInit(Initializer, DestAT, Context)) {
 | |
|       case SIF_None:
 | |
|         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
 | |
|         return;
 | |
|       case SIF_NarrowStringIntoWideChar:
 | |
|         SetFailed(FK_NarrowStringIntoWideCharArray);
 | |
|         return;
 | |
|       case SIF_WideStringIntoChar:
 | |
|         SetFailed(FK_WideStringIntoCharArray);
 | |
|         return;
 | |
|       case SIF_IncompatWideStringIntoWideChar:
 | |
|         SetFailed(FK_IncompatWideStringIntoWideChar);
 | |
|         return;
 | |
|       case SIF_Other:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Note: as an GNU C extension, we allow initialization of an
 | |
|     // array from a compound literal that creates an array of the same
 | |
|     // type, so long as the initializer has no side effects.
 | |
|     if (!S.getLangOpts().CPlusPlus && Initializer &&
 | |
|         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
 | |
|         Initializer->getType()->isArrayType()) {
 | |
|       const ArrayType *SourceAT
 | |
|         = Context.getAsArrayType(Initializer->getType());
 | |
|       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
 | |
|         SetFailed(FK_ArrayTypeMismatch);
 | |
|       else if (Initializer->HasSideEffects(S.Context))
 | |
|         SetFailed(FK_NonConstantArrayInit);
 | |
|       else {
 | |
|         AddArrayInitStep(DestType);
 | |
|       }
 | |
|     }
 | |
|     // Note: as a GNU C++ extension, we allow list-initialization of a
 | |
|     // class member of array type from a parenthesized initializer list.
 | |
|     else if (S.getLangOpts().CPlusPlus &&
 | |
|              Entity.getKind() == InitializedEntity::EK_Member &&
 | |
|              Initializer && isa<InitListExpr>(Initializer)) {
 | |
|       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
 | |
|                             *this);
 | |
|       AddParenthesizedArrayInitStep(DestType);
 | |
|     } else if (DestAT->getElementType()->isCharType())
 | |
|       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
 | |
|     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
 | |
|       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
 | |
|     else
 | |
|       SetFailed(FK_ArrayNeedsInitList);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Determine whether we should consider writeback conversions for 
 | |
|   // Objective-C ARC.
 | |
|   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
 | |
|          Entity.isParameterKind();
 | |
| 
 | |
|   // We're at the end of the line for C: it's either a write-back conversion
 | |
|   // or it's a C assignment. There's no need to check anything else.
 | |
|   if (!S.getLangOpts().CPlusPlus) {
 | |
|     // If allowed, check whether this is an Objective-C writeback conversion.
 | |
|     if (allowObjCWritebackConversion &&
 | |
|         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
 | |
|       return;
 | |
| 
 | |
|     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
 | |
|       return;
 | |
| 
 | |
|     // Handle initialization in C
 | |
|     AddCAssignmentStep(DestType);
 | |
|     MaybeProduceObjCObject(S, *this, Entity);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(S.getLangOpts().CPlusPlus);
 | |
|       
 | |
|   //     - If the destination type is a (possibly cv-qualified) class type:
 | |
|   if (DestType->isRecordType()) {
 | |
|     //     - If the initialization is direct-initialization, or if it is
 | |
|     //       copy-initialization where the cv-unqualified version of the
 | |
|     //       source type is the same class as, or a derived class of, the
 | |
|     //       class of the destination, constructors are considered. [...]
 | |
|     if (Kind.getKind() == InitializationKind::IK_Direct ||
 | |
|         (Kind.getKind() == InitializationKind::IK_Copy &&
 | |
|          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
 | |
|           S.IsDerivedFrom(SourceType, DestType))))
 | |
|       TryConstructorInitialization(S, Entity, Kind, Args,
 | |
|                                    Entity.getType(), *this);
 | |
|     //     - Otherwise (i.e., for the remaining copy-initialization cases),
 | |
|     //       user-defined conversion sequences that can convert from the source
 | |
|     //       type to the destination type or (when a conversion function is
 | |
|     //       used) to a derived class thereof are enumerated as described in
 | |
|     //       13.3.1.4, and the best one is chosen through overload resolution
 | |
|     //       (13.3).
 | |
|     else
 | |
|       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Args.size() > 1) {
 | |
|     SetFailed(FK_TooManyInitsForScalar);
 | |
|     return;
 | |
|   }
 | |
|   assert(Args.size() == 1 && "Zero-argument case handled above");
 | |
| 
 | |
|   //    - Otherwise, if the source type is a (possibly cv-qualified) class
 | |
|   //      type, conversion functions are considered.
 | |
|   if (!SourceType.isNull() && SourceType->isRecordType()) {
 | |
|     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
 | |
|     MaybeProduceObjCObject(S, *this, Entity);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //    - Otherwise, the initial value of the object being initialized is the
 | |
|   //      (possibly converted) value of the initializer expression. Standard
 | |
|   //      conversions (Clause 4) will be used, if necessary, to convert the
 | |
|   //      initializer expression to the cv-unqualified version of the
 | |
|   //      destination type; no user-defined conversions are considered.
 | |
|       
 | |
|   ImplicitConversionSequence ICS
 | |
|     = S.TryImplicitConversion(Initializer, Entity.getType(),
 | |
|                               /*SuppressUserConversions*/true,
 | |
|                               /*AllowExplicitConversions*/ false,
 | |
|                               /*InOverloadResolution*/ false,
 | |
|                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
 | |
|                               allowObjCWritebackConversion);
 | |
|       
 | |
|   if (ICS.isStandard() && 
 | |
|       ICS.Standard.Second == ICK_Writeback_Conversion) {
 | |
|     // Objective-C ARC writeback conversion.
 | |
|     
 | |
|     // We should copy unless we're passing to an argument explicitly
 | |
|     // marked 'out'.
 | |
|     bool ShouldCopy = true;
 | |
|     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
 | |
|       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
 | |
|     
 | |
|     // If there was an lvalue adjustment, add it as a separate conversion.
 | |
|     if (ICS.Standard.First == ICK_Array_To_Pointer ||
 | |
|         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
 | |
|       ImplicitConversionSequence LvalueICS;
 | |
|       LvalueICS.setStandard();
 | |
|       LvalueICS.Standard.setAsIdentityConversion();
 | |
|       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
 | |
|       LvalueICS.Standard.First = ICS.Standard.First;
 | |
|       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
 | |
|     }
 | |
|     
 | |
|     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
 | |
|   } else if (ICS.isBad()) {
 | |
|     DeclAccessPair dap;
 | |
|     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
 | |
|       AddZeroInitializationStep(Entity.getType());
 | |
|     } else if (Initializer->getType() == Context.OverloadTy &&
 | |
|                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
 | |
|                                                      false, dap))
 | |
|       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
 | |
|     else
 | |
|       SetFailed(InitializationSequence::FK_ConversionFailed);
 | |
|   } else {
 | |
|     AddConversionSequenceStep(ICS, Entity.getType());
 | |
| 
 | |
|     MaybeProduceObjCObject(S, *this, Entity);
 | |
|   }
 | |
| }
 | |
| 
 | |
| InitializationSequence::~InitializationSequence() {
 | |
|   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
 | |
|                                           StepEnd = Steps.end();
 | |
|        Step != StepEnd; ++Step)
 | |
|     Step->Destroy();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Perform initialization
 | |
| //===----------------------------------------------------------------------===//
 | |
| static Sema::AssignmentAction
 | |
| getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
 | |
|   switch(Entity.getKind()) {
 | |
|   case InitializedEntity::EK_Variable:
 | |
|   case InitializedEntity::EK_New:
 | |
|   case InitializedEntity::EK_Exception:
 | |
|   case InitializedEntity::EK_Base:
 | |
|   case InitializedEntity::EK_Delegating:
 | |
|     return Sema::AA_Initializing;
 | |
| 
 | |
|   case InitializedEntity::EK_Parameter:
 | |
|     if (Entity.getDecl() &&
 | |
|         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
 | |
|       return Sema::AA_Sending;
 | |
| 
 | |
|     return Sema::AA_Passing;
 | |
| 
 | |
|   case InitializedEntity::EK_Parameter_CF_Audited:
 | |
|     if (Entity.getDecl() &&
 | |
|       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
 | |
|       return Sema::AA_Sending;
 | |
|       
 | |
|     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
 | |
|       
 | |
|   case InitializedEntity::EK_Result:
 | |
|     return Sema::AA_Returning;
 | |
| 
 | |
|   case InitializedEntity::EK_Temporary:
 | |
|   case InitializedEntity::EK_RelatedResult:
 | |
|     // FIXME: Can we tell apart casting vs. converting?
 | |
|     return Sema::AA_Casting;
 | |
| 
 | |
|   case InitializedEntity::EK_Member:
 | |
|   case InitializedEntity::EK_ArrayElement:
 | |
|   case InitializedEntity::EK_VectorElement:
 | |
|   case InitializedEntity::EK_ComplexElement:
 | |
|   case InitializedEntity::EK_BlockElement:
 | |
|   case InitializedEntity::EK_LambdaCapture:
 | |
|   case InitializedEntity::EK_CompoundLiteralInit:
 | |
|     return Sema::AA_Initializing;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid EntityKind!");
 | |
| }
 | |
| 
 | |
| /// \brief Whether we should bind a created object as a temporary when
 | |
| /// initializing the given entity.
 | |
| static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
 | |
|   switch (Entity.getKind()) {
 | |
|   case InitializedEntity::EK_ArrayElement:
 | |
|   case InitializedEntity::EK_Member:
 | |
|   case InitializedEntity::EK_Result:
 | |
|   case InitializedEntity::EK_New:
 | |
|   case InitializedEntity::EK_Variable:
 | |
|   case InitializedEntity::EK_Base:
 | |
|   case InitializedEntity::EK_Delegating:
 | |
|   case InitializedEntity::EK_VectorElement:
 | |
|   case InitializedEntity::EK_ComplexElement:
 | |
|   case InitializedEntity::EK_Exception:
 | |
|   case InitializedEntity::EK_BlockElement:
 | |
|   case InitializedEntity::EK_LambdaCapture:
 | |
|   case InitializedEntity::EK_CompoundLiteralInit:
 | |
|     return false;
 | |
| 
 | |
|   case InitializedEntity::EK_Parameter:
 | |
|   case InitializedEntity::EK_Parameter_CF_Audited:
 | |
|   case InitializedEntity::EK_Temporary:
 | |
|   case InitializedEntity::EK_RelatedResult:
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("missed an InitializedEntity kind?");
 | |
| }
 | |
| 
 | |
| /// \brief Whether the given entity, when initialized with an object
 | |
| /// created for that initialization, requires destruction.
 | |
| static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
 | |
|   switch (Entity.getKind()) {
 | |
|     case InitializedEntity::EK_Result:
 | |
|     case InitializedEntity::EK_New:
 | |
|     case InitializedEntity::EK_Base:
 | |
|     case InitializedEntity::EK_Delegating:
 | |
|     case InitializedEntity::EK_VectorElement:
 | |
|     case InitializedEntity::EK_ComplexElement:
 | |
|     case InitializedEntity::EK_BlockElement:
 | |
|     case InitializedEntity::EK_LambdaCapture:
 | |
|       return false;
 | |
| 
 | |
|     case InitializedEntity::EK_Member:
 | |
|     case InitializedEntity::EK_Variable:
 | |
|     case InitializedEntity::EK_Parameter:
 | |
|     case InitializedEntity::EK_Parameter_CF_Audited:
 | |
|     case InitializedEntity::EK_Temporary:
 | |
|     case InitializedEntity::EK_ArrayElement:
 | |
|     case InitializedEntity::EK_Exception:
 | |
|     case InitializedEntity::EK_CompoundLiteralInit:
 | |
|     case InitializedEntity::EK_RelatedResult:
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("missed an InitializedEntity kind?");
 | |
| }
 | |
| 
 | |
| /// \brief Look for copy and move constructors and constructor templates, for
 | |
| /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
 | |
| static void LookupCopyAndMoveConstructors(Sema &S,
 | |
|                                           OverloadCandidateSet &CandidateSet,
 | |
|                                           CXXRecordDecl *Class,
 | |
|                                           Expr *CurInitExpr) {
 | |
|   DeclContext::lookup_result R = S.LookupConstructors(Class);
 | |
|   // The container holding the constructors can under certain conditions
 | |
|   // be changed while iterating (e.g. because of deserialization).
 | |
|   // To be safe we copy the lookup results to a new container.
 | |
|   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
 | |
|   for (SmallVectorImpl<NamedDecl *>::iterator
 | |
|          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
 | |
|     NamedDecl *D = *CI;
 | |
|     CXXConstructorDecl *Constructor = 0;
 | |
| 
 | |
|     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
 | |
|       // Handle copy/moveconstructors, only.
 | |
|       if (!Constructor || Constructor->isInvalidDecl() ||
 | |
|           !Constructor->isCopyOrMoveConstructor() ||
 | |
|           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
 | |
|         continue;
 | |
| 
 | |
|       DeclAccessPair FoundDecl
 | |
|         = DeclAccessPair::make(Constructor, Constructor->getAccess());
 | |
|       S.AddOverloadCandidate(Constructor, FoundDecl,
 | |
|                              CurInitExpr, CandidateSet);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle constructor templates.
 | |
|     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
 | |
|     if (ConstructorTmpl->isInvalidDecl())
 | |
|       continue;
 | |
| 
 | |
|     Constructor = cast<CXXConstructorDecl>(
 | |
|                                          ConstructorTmpl->getTemplatedDecl());
 | |
|     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
 | |
|       continue;
 | |
| 
 | |
|     // FIXME: Do we need to limit this to copy-constructor-like
 | |
|     // candidates?
 | |
|     DeclAccessPair FoundDecl
 | |
|       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
 | |
|     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
 | |
|                                    CurInitExpr, CandidateSet, true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Get the location at which initialization diagnostics should appear.
 | |
| static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
 | |
|                                            Expr *Initializer) {
 | |
|   switch (Entity.getKind()) {
 | |
|   case InitializedEntity::EK_Result:
 | |
|     return Entity.getReturnLoc();
 | |
| 
 | |
|   case InitializedEntity::EK_Exception:
 | |
|     return Entity.getThrowLoc();
 | |
| 
 | |
|   case InitializedEntity::EK_Variable:
 | |
|     return Entity.getDecl()->getLocation();
 | |
| 
 | |
|   case InitializedEntity::EK_LambdaCapture:
 | |
|     return Entity.getCaptureLoc();
 | |
|       
 | |
|   case InitializedEntity::EK_ArrayElement:
 | |
|   case InitializedEntity::EK_Member:
 | |
|   case InitializedEntity::EK_Parameter:
 | |
|   case InitializedEntity::EK_Parameter_CF_Audited:
 | |
|   case InitializedEntity::EK_Temporary:
 | |
|   case InitializedEntity::EK_New:
 | |
|   case InitializedEntity::EK_Base:
 | |
|   case InitializedEntity::EK_Delegating:
 | |
|   case InitializedEntity::EK_VectorElement:
 | |
|   case InitializedEntity::EK_ComplexElement:
 | |
|   case InitializedEntity::EK_BlockElement:
 | |
|   case InitializedEntity::EK_CompoundLiteralInit:
 | |
|   case InitializedEntity::EK_RelatedResult:
 | |
|     return Initializer->getLocStart();
 | |
|   }
 | |
|   llvm_unreachable("missed an InitializedEntity kind?");
 | |
| }
 | |
| 
 | |
| /// \brief Make a (potentially elidable) temporary copy of the object
 | |
| /// provided by the given initializer by calling the appropriate copy
 | |
| /// constructor.
 | |
| ///
 | |
| /// \param S The Sema object used for type-checking.
 | |
| ///
 | |
| /// \param T The type of the temporary object, which must either be
 | |
| /// the type of the initializer expression or a superclass thereof.
 | |
| ///
 | |
| /// \param Entity The entity being initialized.
 | |
| ///
 | |
| /// \param CurInit The initializer expression.
 | |
| ///
 | |
| /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
 | |
| /// is permitted in C++03 (but not C++0x) when binding a reference to
 | |
| /// an rvalue.
 | |
| ///
 | |
| /// \returns An expression that copies the initializer expression into
 | |
| /// a temporary object, or an error expression if a copy could not be
 | |
| /// created.
 | |
| static ExprResult CopyObject(Sema &S,
 | |
|                              QualType T,
 | |
|                              const InitializedEntity &Entity,
 | |
|                              ExprResult CurInit,
 | |
|                              bool IsExtraneousCopy) {
 | |
|   // Determine which class type we're copying to.
 | |
|   Expr *CurInitExpr = (Expr *)CurInit.get();
 | |
|   CXXRecordDecl *Class = 0;
 | |
|   if (const RecordType *Record = T->getAs<RecordType>())
 | |
|     Class = cast<CXXRecordDecl>(Record->getDecl());
 | |
|   if (!Class)
 | |
|     return CurInit;
 | |
| 
 | |
|   // C++0x [class.copy]p32:
 | |
|   //   When certain criteria are met, an implementation is allowed to
 | |
|   //   omit the copy/move construction of a class object, even if the
 | |
|   //   copy/move constructor and/or destructor for the object have
 | |
|   //   side effects. [...]
 | |
|   //     - when a temporary class object that has not been bound to a
 | |
|   //       reference (12.2) would be copied/moved to a class object
 | |
|   //       with the same cv-unqualified type, the copy/move operation
 | |
|   //       can be omitted by constructing the temporary object
 | |
|   //       directly into the target of the omitted copy/move
 | |
|   //
 | |
|   // Note that the other three bullets are handled elsewhere. Copy
 | |
|   // elision for return statements and throw expressions are handled as part
 | |
|   // of constructor initialization, while copy elision for exception handlers
 | |
|   // is handled by the run-time.
 | |
|   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
 | |
|   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
 | |
| 
 | |
|   // Make sure that the type we are copying is complete.
 | |
|   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
 | |
|     return CurInit;
 | |
| 
 | |
|   // Perform overload resolution using the class's copy/move constructors.
 | |
|   // Only consider constructors and constructor templates. Per
 | |
|   // C++0x [dcl.init]p16, second bullet to class types, this initialization
 | |
|   // is direct-initialization.
 | |
|   OverloadCandidateSet CandidateSet(Loc);
 | |
|   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
 | |
| 
 | |
|   bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | |
| 
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
 | |
|   case OR_Success:
 | |
|     break;
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
 | |
|            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
 | |
|            : diag::err_temp_copy_no_viable)
 | |
|       << (int)Entity.getKind() << CurInitExpr->getType()
 | |
|       << CurInitExpr->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
 | |
|     if (!IsExtraneousCopy || S.isSFINAEContext())
 | |
|       return ExprError();
 | |
|     return CurInit;
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     S.Diag(Loc, diag::err_temp_copy_ambiguous)
 | |
|       << (int)Entity.getKind() << CurInitExpr->getType()
 | |
|       << CurInitExpr->getSourceRange();
 | |
|     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
 | |
|     return ExprError();
 | |
| 
 | |
|   case OR_Deleted:
 | |
|     S.Diag(Loc, diag::err_temp_copy_deleted)
 | |
|       << (int)Entity.getKind() << CurInitExpr->getType()
 | |
|       << CurInitExpr->getSourceRange();
 | |
|     S.NoteDeletedFunction(Best->Function);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
 | |
|   SmallVector<Expr*, 8> ConstructorArgs;
 | |
|   CurInit.release(); // Ownership transferred into MultiExprArg, below.
 | |
| 
 | |
|   S.CheckConstructorAccess(Loc, Constructor, Entity,
 | |
|                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
 | |
| 
 | |
|   if (IsExtraneousCopy) {
 | |
|     // If this is a totally extraneous copy for C++03 reference
 | |
|     // binding purposes, just return the original initialization
 | |
|     // expression. We don't generate an (elided) copy operation here
 | |
|     // because doing so would require us to pass down a flag to avoid
 | |
|     // infinite recursion, where each step adds another extraneous,
 | |
|     // elidable copy.
 | |
| 
 | |
|     // Instantiate the default arguments of any extra parameters in
 | |
|     // the selected copy constructor, as if we were going to create a
 | |
|     // proper call to the copy constructor.
 | |
|     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
 | |
|       ParmVarDecl *Parm = Constructor->getParamDecl(I);
 | |
|       if (S.RequireCompleteType(Loc, Parm->getType(),
 | |
|                                 diag::err_call_incomplete_argument))
 | |
|         break;
 | |
| 
 | |
|       // Build the default argument expression; we don't actually care
 | |
|       // if this succeeds or not, because this routine will complain
 | |
|       // if there was a problem.
 | |
|       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
 | |
|     }
 | |
| 
 | |
|     return S.Owned(CurInitExpr);
 | |
|   }
 | |
| 
 | |
|   // Determine the arguments required to actually perform the
 | |
|   // constructor call (we might have derived-to-base conversions, or
 | |
|   // the copy constructor may have default arguments).
 | |
|   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Actually perform the constructor call.
 | |
|   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
 | |
|                                     ConstructorArgs,
 | |
|                                     HadMultipleCandidates,
 | |
|                                     /*ListInit*/ false,
 | |
|                                     /*ZeroInit*/ false,
 | |
|                                     CXXConstructExpr::CK_Complete,
 | |
|                                     SourceRange());
 | |
| 
 | |
|   // If we're supposed to bind temporaries, do so.
 | |
|   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
 | |
|     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
 | |
|   return CurInit;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether elidable copy construction for binding a reference to
 | |
| /// a temporary would have succeeded if we were building in C++98 mode, for
 | |
| /// -Wc++98-compat.
 | |
| static void CheckCXX98CompatAccessibleCopy(Sema &S,
 | |
|                                            const InitializedEntity &Entity,
 | |
|                                            Expr *CurInitExpr) {
 | |
|   assert(S.getLangOpts().CPlusPlus11);
 | |
| 
 | |
|   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
 | |
|   if (!Record)
 | |
|     return;
 | |
| 
 | |
|   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
 | |
|   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
 | |
|         == DiagnosticsEngine::Ignored)
 | |
|     return;
 | |
| 
 | |
|   // Find constructors which would have been considered.
 | |
|   OverloadCandidateSet CandidateSet(Loc);
 | |
|   LookupCopyAndMoveConstructors(
 | |
|       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
 | |
| 
 | |
|   // Perform overload resolution.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
 | |
| 
 | |
|   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
 | |
|     << OR << (int)Entity.getKind() << CurInitExpr->getType()
 | |
|     << CurInitExpr->getSourceRange();
 | |
| 
 | |
|   switch (OR) {
 | |
|   case OR_Success:
 | |
|     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
 | |
|                              Entity, Best->FoundDecl.getAccess(), Diag);
 | |
|     // FIXME: Check default arguments as far as that's possible.
 | |
|     break;
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     S.Diag(Loc, Diag);
 | |
|     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
 | |
|     break;
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     S.Diag(Loc, Diag);
 | |
|     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
 | |
|     break;
 | |
| 
 | |
|   case OR_Deleted:
 | |
|     S.Diag(Loc, Diag);
 | |
|     S.NoteDeletedFunction(Best->Function);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InitializationSequence::PrintInitLocationNote(Sema &S,
 | |
|                                               const InitializedEntity &Entity) {
 | |
|   if (Entity.isParameterKind() && Entity.getDecl()) {
 | |
|     if (Entity.getDecl()->getLocation().isInvalid())
 | |
|       return;
 | |
| 
 | |
|     if (Entity.getDecl()->getDeclName())
 | |
|       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
 | |
|         << Entity.getDecl()->getDeclName();
 | |
|     else
 | |
|       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
 | |
|   }
 | |
|   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
 | |
|            Entity.getMethodDecl())
 | |
|     S.Diag(Entity.getMethodDecl()->getLocation(),
 | |
|            diag::note_method_return_type_change)
 | |
|       << Entity.getMethodDecl()->getDeclName();
 | |
| }
 | |
| 
 | |
| static bool isReferenceBinding(const InitializationSequence::Step &s) {
 | |
|   return s.Kind == InitializationSequence::SK_BindReference ||
 | |
|          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
 | |
| }
 | |
| 
 | |
| /// Returns true if the parameters describe a constructor initialization of
 | |
| /// an explicit temporary object, e.g. "Point(x, y)".
 | |
| static bool isExplicitTemporary(const InitializedEntity &Entity,
 | |
|                                 const InitializationKind &Kind,
 | |
|                                 unsigned NumArgs) {
 | |
|   switch (Entity.getKind()) {
 | |
|   case InitializedEntity::EK_Temporary:
 | |
|   case InitializedEntity::EK_CompoundLiteralInit:
 | |
|   case InitializedEntity::EK_RelatedResult:
 | |
|     break;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   switch (Kind.getKind()) {
 | |
|   case InitializationKind::IK_DirectList:
 | |
|     return true;
 | |
|   // FIXME: Hack to work around cast weirdness.
 | |
|   case InitializationKind::IK_Direct:
 | |
|   case InitializationKind::IK_Value:
 | |
|     return NumArgs != 1;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static ExprResult
 | |
| PerformConstructorInitialization(Sema &S,
 | |
|                                  const InitializedEntity &Entity,
 | |
|                                  const InitializationKind &Kind,
 | |
|                                  MultiExprArg Args,
 | |
|                                  const InitializationSequence::Step& Step,
 | |
|                                  bool &ConstructorInitRequiresZeroInit,
 | |
|                                  bool IsListInitialization) {
 | |
|   unsigned NumArgs = Args.size();
 | |
|   CXXConstructorDecl *Constructor
 | |
|     = cast<CXXConstructorDecl>(Step.Function.Function);
 | |
|   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
 | |
| 
 | |
|   // Build a call to the selected constructor.
 | |
|   SmallVector<Expr*, 8> ConstructorArgs;
 | |
|   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
 | |
|                          ? Kind.getEqualLoc()
 | |
|                          : Kind.getLocation();
 | |
| 
 | |
|   if (Kind.getKind() == InitializationKind::IK_Default) {
 | |
|     // Force even a trivial, implicit default constructor to be
 | |
|     // semantically checked. We do this explicitly because we don't build
 | |
|     // the definition for completely trivial constructors.
 | |
|     assert(Constructor->getParent() && "No parent class for constructor.");
 | |
|     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
 | |
|         Constructor->isTrivial() && !Constructor->isUsed(false))
 | |
|       S.DefineImplicitDefaultConstructor(Loc, Constructor);
 | |
|   }
 | |
| 
 | |
|   ExprResult CurInit = S.Owned((Expr *)0);
 | |
| 
 | |
|   // C++ [over.match.copy]p1:
 | |
|   //   - When initializing a temporary to be bound to the first parameter 
 | |
|   //     of a constructor that takes a reference to possibly cv-qualified 
 | |
|   //     T as its first argument, called with a single argument in the 
 | |
|   //     context of direct-initialization, explicit conversion functions
 | |
|   //     are also considered.
 | |
|   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
 | |
|                            Args.size() == 1 && 
 | |
|                            Constructor->isCopyOrMoveConstructor();
 | |
| 
 | |
|   // Determine the arguments required to actually perform the constructor
 | |
|   // call.
 | |
|   if (S.CompleteConstructorCall(Constructor, Args,
 | |
|                                 Loc, ConstructorArgs,
 | |
|                                 AllowExplicitConv,
 | |
|                                 IsListInitialization))
 | |
|     return ExprError();
 | |
| 
 | |
| 
 | |
|   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
 | |
|     // An explicitly-constructed temporary, e.g., X(1, 2).
 | |
|     S.MarkFunctionReferenced(Loc, Constructor);
 | |
|     if (S.DiagnoseUseOfDecl(Constructor, Loc))
 | |
|       return ExprError();
 | |
| 
 | |
|     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
 | |
|     if (!TSInfo)
 | |
|       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
 | |
|     SourceRange ParenRange;
 | |
|     if (Kind.getKind() != InitializationKind::IK_DirectList)
 | |
|       ParenRange = Kind.getParenRange();
 | |
| 
 | |
|     CurInit = S.Owned(
 | |
|       new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
 | |
|                                              TSInfo, ConstructorArgs,
 | |
|                                              ParenRange, IsListInitialization,
 | |
|                                              HadMultipleCandidates,
 | |
|                                              ConstructorInitRequiresZeroInit));
 | |
|   } else {
 | |
|     CXXConstructExpr::ConstructionKind ConstructKind =
 | |
|       CXXConstructExpr::CK_Complete;
 | |
| 
 | |
|     if (Entity.getKind() == InitializedEntity::EK_Base) {
 | |
|       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
 | |
|         CXXConstructExpr::CK_VirtualBase :
 | |
|         CXXConstructExpr::CK_NonVirtualBase;
 | |
|     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
 | |
|       ConstructKind = CXXConstructExpr::CK_Delegating;
 | |
|     }
 | |
| 
 | |
|     // Only get the parenthesis range if it is a direct construction.
 | |
|     SourceRange parenRange =
 | |
|         Kind.getKind() == InitializationKind::IK_Direct ?
 | |
|         Kind.getParenRange() : SourceRange();
 | |
| 
 | |
|     // If the entity allows NRVO, mark the construction as elidable
 | |
|     // unconditionally.
 | |
|     if (Entity.allowsNRVO())
 | |
|       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
 | |
|                                         Constructor, /*Elidable=*/true,
 | |
|                                         ConstructorArgs,
 | |
|                                         HadMultipleCandidates,
 | |
|                                         IsListInitialization,
 | |
|                                         ConstructorInitRequiresZeroInit,
 | |
|                                         ConstructKind,
 | |
|                                         parenRange);
 | |
|     else
 | |
|       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
 | |
|                                         Constructor,
 | |
|                                         ConstructorArgs,
 | |
|                                         HadMultipleCandidates,
 | |
|                                         IsListInitialization,
 | |
|                                         ConstructorInitRequiresZeroInit,
 | |
|                                         ConstructKind,
 | |
|                                         parenRange);
 | |
|   }
 | |
|   if (CurInit.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Only check access if all of that succeeded.
 | |
|   S.CheckConstructorAccess(Loc, Constructor, Entity,
 | |
|                            Step.Function.FoundDecl.getAccess());
 | |
|   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (shouldBindAsTemporary(Entity))
 | |
|     CurInit = S.MaybeBindToTemporary(CurInit.take());
 | |
| 
 | |
|   return CurInit;
 | |
| }
 | |
| 
 | |
| /// Determine whether the specified InitializedEntity definitely has a lifetime
 | |
| /// longer than the current full-expression. Conservatively returns false if
 | |
| /// it's unclear.
 | |
| static bool
 | |
| InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
 | |
|   const InitializedEntity *Top = &Entity;
 | |
|   while (Top->getParent())
 | |
|     Top = Top->getParent();
 | |
| 
 | |
|   switch (Top->getKind()) {
 | |
|   case InitializedEntity::EK_Variable:
 | |
|   case InitializedEntity::EK_Result:
 | |
|   case InitializedEntity::EK_Exception:
 | |
|   case InitializedEntity::EK_Member:
 | |
|   case InitializedEntity::EK_New:
 | |
|   case InitializedEntity::EK_Base:
 | |
|   case InitializedEntity::EK_Delegating:
 | |
|     return true;
 | |
| 
 | |
|   case InitializedEntity::EK_ArrayElement:
 | |
|   case InitializedEntity::EK_VectorElement:
 | |
|   case InitializedEntity::EK_BlockElement:
 | |
|   case InitializedEntity::EK_ComplexElement:
 | |
|     // Could not determine what the full initialization is. Assume it might not
 | |
|     // outlive the full-expression.
 | |
|     return false;
 | |
| 
 | |
|   case InitializedEntity::EK_Parameter:
 | |
|   case InitializedEntity::EK_Parameter_CF_Audited:
 | |
|   case InitializedEntity::EK_Temporary:
 | |
|   case InitializedEntity::EK_LambdaCapture:
 | |
|   case InitializedEntity::EK_CompoundLiteralInit:
 | |
|   case InitializedEntity::EK_RelatedResult:
 | |
|     // The entity being initialized might not outlive the full-expression.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown entity kind");
 | |
| }
 | |
| 
 | |
| /// Determine the declaration which an initialized entity ultimately refers to,
 | |
| /// for the purpose of lifetime-extending a temporary bound to a reference in
 | |
| /// the initialization of \p Entity.
 | |
| static const ValueDecl *
 | |
| getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity,
 | |
|                                      const ValueDecl *FallbackDecl = 0) {
 | |
|   // C++11 [class.temporary]p5:
 | |
|   switch (Entity.getKind()) {
 | |
|   case InitializedEntity::EK_Variable:
 | |
|     //   The temporary [...] persists for the lifetime of the reference
 | |
|     return Entity.getDecl();
 | |
| 
 | |
|   case InitializedEntity::EK_Member:
 | |
|     // For subobjects, we look at the complete object.
 | |
|     if (Entity.getParent())
 | |
|       return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
 | |
|                                                   Entity.getDecl());
 | |
| 
 | |
|     //   except:
 | |
|     //   -- A temporary bound to a reference member in a constructor's
 | |
|     //      ctor-initializer persists until the constructor exits.
 | |
|     return Entity.getDecl();
 | |
| 
 | |
|   case InitializedEntity::EK_Parameter:
 | |
|   case InitializedEntity::EK_Parameter_CF_Audited:
 | |
|     //   -- A temporary bound to a reference parameter in a function call
 | |
|     //      persists until the completion of the full-expression containing
 | |
|     //      the call.
 | |
|   case InitializedEntity::EK_Result:
 | |
|     //   -- The lifetime of a temporary bound to the returned value in a
 | |
|     //      function return statement is not extended; the temporary is
 | |
|     //      destroyed at the end of the full-expression in the return statement.
 | |
|   case InitializedEntity::EK_New:
 | |
|     //   -- A temporary bound to a reference in a new-initializer persists
 | |
|     //      until the completion of the full-expression containing the
 | |
|     //      new-initializer.
 | |
|     return 0;
 | |
| 
 | |
|   case InitializedEntity::EK_Temporary:
 | |
|   case InitializedEntity::EK_CompoundLiteralInit:
 | |
|   case InitializedEntity::EK_RelatedResult:
 | |
|     // We don't yet know the storage duration of the surrounding temporary.
 | |
|     // Assume it's got full-expression duration for now, it will patch up our
 | |
|     // storage duration if that's not correct.
 | |
|     return 0;
 | |
| 
 | |
|   case InitializedEntity::EK_ArrayElement:
 | |
|     // For subobjects, we look at the complete object.
 | |
|     return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
 | |
|                                                 FallbackDecl);
 | |
| 
 | |
|   case InitializedEntity::EK_Base:
 | |
|   case InitializedEntity::EK_Delegating:
 | |
|     // We can reach this case for aggregate initialization in a constructor:
 | |
|     //   struct A { int &&r; };
 | |
|     //   struct B : A { B() : A{0} {} };
 | |
|     // In this case, use the innermost field decl as the context.
 | |
|     return FallbackDecl;
 | |
| 
 | |
|   case InitializedEntity::EK_BlockElement:
 | |
|   case InitializedEntity::EK_LambdaCapture:
 | |
|   case InitializedEntity::EK_Exception:
 | |
|   case InitializedEntity::EK_VectorElement:
 | |
|   case InitializedEntity::EK_ComplexElement:
 | |
|     return 0;
 | |
|   }
 | |
|   llvm_unreachable("unknown entity kind");
 | |
| }
 | |
| 
 | |
| static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD);
 | |
| 
 | |
| /// Update a glvalue expression that is used as the initializer of a reference
 | |
| /// to note that its lifetime is extended.
 | |
| /// \return \c true if any temporary had its lifetime extended.
 | |
| static bool performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) {
 | |
|   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
 | |
|     if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
 | |
|       // This is just redundant braces around an initializer. Step over it.
 | |
|       Init = ILE->getInit(0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Walk past any constructs which we can lifetime-extend across.
 | |
|   Expr *Old;
 | |
|   do {
 | |
|     Old = Init;
 | |
| 
 | |
|     // Step over any subobject adjustments; we may have a materialized
 | |
|     // temporary inside them.
 | |
|     SmallVector<const Expr *, 2> CommaLHSs;
 | |
|     SmallVector<SubobjectAdjustment, 2> Adjustments;
 | |
|     Init = const_cast<Expr *>(
 | |
|         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
 | |
| 
 | |
|     // Per current approach for DR1376, look through casts to reference type
 | |
|     // when performing lifetime extension.
 | |
|     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
 | |
|       if (CE->getSubExpr()->isGLValue())
 | |
|         Init = CE->getSubExpr();
 | |
| 
 | |
|     // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
 | |
|     // It's unclear if binding a reference to that xvalue extends the array
 | |
|     // temporary.
 | |
|   } while (Init != Old);
 | |
| 
 | |
|   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
 | |
|     // Update the storage duration of the materialized temporary.
 | |
|     // FIXME: Rebuild the expression instead of mutating it.
 | |
|     ME->setExtendingDecl(ExtendingD);
 | |
|     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Update a prvalue expression that is going to be materialized as a
 | |
| /// lifetime-extended temporary.
 | |
| static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) {
 | |
|   // Dig out the expression which constructs the extended temporary.
 | |
|   SmallVector<const Expr *, 2> CommaLHSs;
 | |
|   SmallVector<SubobjectAdjustment, 2> Adjustments;
 | |
|   Init = const_cast<Expr *>(
 | |
|       Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
 | |
| 
 | |
|   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
 | |
|     Init = BTE->getSubExpr();
 | |
| 
 | |
|   if (CXXStdInitializerListExpr *ILE =
 | |
|           dyn_cast<CXXStdInitializerListExpr>(Init)) {
 | |
|     performReferenceExtension(ILE->getSubExpr(), ExtendingD);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
 | |
|     if (ILE->getType()->isArrayType()) {
 | |
|       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
 | |
|         performLifetimeExtension(ILE->getInit(I), ExtendingD);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
 | |
|       assert(RD->isAggregate() && "aggregate init on non-aggregate");
 | |
| 
 | |
|       // If we lifetime-extend a braced initializer which is initializing an
 | |
|       // aggregate, and that aggregate contains reference members which are
 | |
|       // bound to temporaries, those temporaries are also lifetime-extended.
 | |
|       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
 | |
|           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
 | |
|         performReferenceExtension(ILE->getInit(0), ExtendingD);
 | |
|       else {
 | |
|         unsigned Index = 0;
 | |
|         for (RecordDecl::field_iterator I = RD->field_begin(),
 | |
|                                         E = RD->field_end();
 | |
|              I != E; ++I) {
 | |
|           if (Index >= ILE->getNumInits())
 | |
|             break;
 | |
|           if (I->isUnnamedBitfield())
 | |
|             continue;
 | |
|           Expr *SubInit = ILE->getInit(Index);
 | |
|           if (I->getType()->isReferenceType())
 | |
|             performReferenceExtension(SubInit, ExtendingD);
 | |
|           else if (isa<InitListExpr>(SubInit) ||
 | |
|                    isa<CXXStdInitializerListExpr>(SubInit))
 | |
|             // This may be either aggregate-initialization of a member or
 | |
|             // initialization of a std::initializer_list object. Either way,
 | |
|             // we should recursively lifetime-extend that initializer.
 | |
|             performLifetimeExtension(SubInit, ExtendingD);
 | |
|           ++Index;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
 | |
|                                     const Expr *Init, bool IsInitializerList,
 | |
|                                     const ValueDecl *ExtendingDecl) {
 | |
|   // Warn if a field lifetime-extends a temporary.
 | |
|   if (isa<FieldDecl>(ExtendingDecl)) {
 | |
|     if (IsInitializerList) {
 | |
|       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
 | |
|         << /*at end of constructor*/true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     bool IsSubobjectMember = false;
 | |
|     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
 | |
|          Ent = Ent->getParent()) {
 | |
|       if (Ent->getKind() != InitializedEntity::EK_Base) {
 | |
|         IsSubobjectMember = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     S.Diag(Init->getExprLoc(),
 | |
|            diag::warn_bind_ref_member_to_temporary)
 | |
|       << ExtendingDecl << Init->getSourceRange()
 | |
|       << IsSubobjectMember << IsInitializerList;
 | |
|     if (IsSubobjectMember)
 | |
|       S.Diag(ExtendingDecl->getLocation(),
 | |
|              diag::note_ref_subobject_of_member_declared_here);
 | |
|     else
 | |
|       S.Diag(ExtendingDecl->getLocation(),
 | |
|              diag::note_ref_or_ptr_member_declared_here)
 | |
|         << /*is pointer*/false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| InitializationSequence::Perform(Sema &S,
 | |
|                                 const InitializedEntity &Entity,
 | |
|                                 const InitializationKind &Kind,
 | |
|                                 MultiExprArg Args,
 | |
|                                 QualType *ResultType) {
 | |
|   if (Failed()) {
 | |
|     Diagnose(S, Entity, Kind, Args);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (getKind() == DependentSequence) {
 | |
|     // If the declaration is a non-dependent, incomplete array type
 | |
|     // that has an initializer, then its type will be completed once
 | |
|     // the initializer is instantiated.
 | |
|     if (ResultType && !Entity.getType()->isDependentType() &&
 | |
|         Args.size() == 1) {
 | |
|       QualType DeclType = Entity.getType();
 | |
|       if (const IncompleteArrayType *ArrayT
 | |
|                            = S.Context.getAsIncompleteArrayType(DeclType)) {
 | |
|         // FIXME: We don't currently have the ability to accurately
 | |
|         // compute the length of an initializer list without
 | |
|         // performing full type-checking of the initializer list
 | |
|         // (since we have to determine where braces are implicitly
 | |
|         // introduced and such).  So, we fall back to making the array
 | |
|         // type a dependently-sized array type with no specified
 | |
|         // bound.
 | |
|         if (isa<InitListExpr>((Expr *)Args[0])) {
 | |
|           SourceRange Brackets;
 | |
| 
 | |
|           // Scavange the location of the brackets from the entity, if we can.
 | |
|           if (DeclaratorDecl *DD = Entity.getDecl()) {
 | |
|             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
 | |
|               TypeLoc TL = TInfo->getTypeLoc();
 | |
|               if (IncompleteArrayTypeLoc ArrayLoc =
 | |
|                       TL.getAs<IncompleteArrayTypeLoc>())
 | |
|                 Brackets = ArrayLoc.getBracketsRange();
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           *ResultType
 | |
|             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
 | |
|                                                    /*NumElts=*/0,
 | |
|                                                    ArrayT->getSizeModifier(),
 | |
|                                        ArrayT->getIndexTypeCVRQualifiers(),
 | |
|                                                    Brackets);
 | |
|         }
 | |
| 
 | |
|       }
 | |
|     }
 | |
|     if (Kind.getKind() == InitializationKind::IK_Direct &&
 | |
|         !Kind.isExplicitCast()) {
 | |
|       // Rebuild the ParenListExpr.
 | |
|       SourceRange ParenRange = Kind.getParenRange();
 | |
|       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
 | |
|                                   Args);
 | |
|     }
 | |
|     assert(Kind.getKind() == InitializationKind::IK_Copy ||
 | |
|            Kind.isExplicitCast() || 
 | |
|            Kind.getKind() == InitializationKind::IK_DirectList);
 | |
|     return ExprResult(Args[0]);
 | |
|   }
 | |
| 
 | |
|   // No steps means no initialization.
 | |
|   if (Steps.empty())
 | |
|     return S.Owned((Expr *)0);
 | |
| 
 | |
|   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
 | |
|       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
 | |
|       !Entity.isParameterKind()) {
 | |
|     // Produce a C++98 compatibility warning if we are initializing a reference
 | |
|     // from an initializer list. For parameters, we produce a better warning
 | |
|     // elsewhere.
 | |
|     Expr *Init = Args[0];
 | |
|     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
 | |
|       << Init->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   // Diagnose cases where we initialize a pointer to an array temporary, and the
 | |
|   // pointer obviously outlives the temporary.
 | |
|   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
 | |
|       Entity.getType()->isPointerType() &&
 | |
|       InitializedEntityOutlivesFullExpression(Entity)) {
 | |
|     Expr *Init = Args[0];
 | |
|     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
 | |
|     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
 | |
|       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
 | |
|         << Init->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   QualType DestType = Entity.getType().getNonReferenceType();
 | |
|   // FIXME: Ugly hack around the fact that Entity.getType() is not
 | |
|   // the same as Entity.getDecl()->getType() in cases involving type merging,
 | |
|   //  and we want latter when it makes sense.
 | |
|   if (ResultType)
 | |
|     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
 | |
|                                      Entity.getType();
 | |
| 
 | |
|   ExprResult CurInit = S.Owned((Expr *)0);
 | |
| 
 | |
|   // For initialization steps that start with a single initializer,
 | |
|   // grab the only argument out the Args and place it into the "current"
 | |
|   // initializer.
 | |
|   switch (Steps.front().Kind) {
 | |
|   case SK_ResolveAddressOfOverloadedFunction:
 | |
|   case SK_CastDerivedToBaseRValue:
 | |
|   case SK_CastDerivedToBaseXValue:
 | |
|   case SK_CastDerivedToBaseLValue:
 | |
|   case SK_BindReference:
 | |
|   case SK_BindReferenceToTemporary:
 | |
|   case SK_ExtraneousCopyToTemporary:
 | |
|   case SK_UserConversion:
 | |
|   case SK_QualificationConversionLValue:
 | |
|   case SK_QualificationConversionXValue:
 | |
|   case SK_QualificationConversionRValue:
 | |
|   case SK_LValueToRValue:
 | |
|   case SK_ConversionSequence:
 | |
|   case SK_ListInitialization:
 | |
|   case SK_UnwrapInitList:
 | |
|   case SK_RewrapInitList:
 | |
|   case SK_CAssignment:
 | |
|   case SK_StringInit:
 | |
|   case SK_ObjCObjectConversion:
 | |
|   case SK_ArrayInit:
 | |
|   case SK_ParenthesizedArrayInit:
 | |
|   case SK_PassByIndirectCopyRestore:
 | |
|   case SK_PassByIndirectRestore:
 | |
|   case SK_ProduceObjCObject:
 | |
|   case SK_StdInitializerList:
 | |
|   case SK_OCLSamplerInit:
 | |
|   case SK_OCLZeroEvent: {
 | |
|     assert(Args.size() == 1);
 | |
|     CurInit = Args[0];
 | |
|     if (!CurInit.get()) return ExprError();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case SK_ConstructorInitialization:
 | |
|   case SK_ListConstructorCall:
 | |
|   case SK_ZeroInitialization:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Walk through the computed steps for the initialization sequence,
 | |
|   // performing the specified conversions along the way.
 | |
|   bool ConstructorInitRequiresZeroInit = false;
 | |
|   for (step_iterator Step = step_begin(), StepEnd = step_end();
 | |
|        Step != StepEnd; ++Step) {
 | |
|     if (CurInit.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
 | |
| 
 | |
|     switch (Step->Kind) {
 | |
|     case SK_ResolveAddressOfOverloadedFunction:
 | |
|       // Overload resolution determined which function invoke; update the
 | |
|       // initializer to reflect that choice.
 | |
|       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
 | |
|       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
 | |
|         return ExprError();
 | |
|       CurInit = S.FixOverloadedFunctionReference(CurInit,
 | |
|                                                  Step->Function.FoundDecl,
 | |
|                                                  Step->Function.Function);
 | |
|       break;
 | |
| 
 | |
|     case SK_CastDerivedToBaseRValue:
 | |
|     case SK_CastDerivedToBaseXValue:
 | |
|     case SK_CastDerivedToBaseLValue: {
 | |
|       // We have a derived-to-base cast that produces either an rvalue or an
 | |
|       // lvalue. Perform that cast.
 | |
| 
 | |
|       CXXCastPath BasePath;
 | |
| 
 | |
|       // Casts to inaccessible base classes are allowed with C-style casts.
 | |
|       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
 | |
|       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
 | |
|                                          CurInit.get()->getLocStart(),
 | |
|                                          CurInit.get()->getSourceRange(),
 | |
|                                          &BasePath, IgnoreBaseAccess))
 | |
|         return ExprError();
 | |
| 
 | |
|       if (S.BasePathInvolvesVirtualBase(BasePath)) {
 | |
|         QualType T = SourceType;
 | |
|         if (const PointerType *Pointer = T->getAs<PointerType>())
 | |
|           T = Pointer->getPointeeType();
 | |
|         if (const RecordType *RecordTy = T->getAs<RecordType>())
 | |
|           S.MarkVTableUsed(CurInit.get()->getLocStart(),
 | |
|                            cast<CXXRecordDecl>(RecordTy->getDecl()));
 | |
|       }
 | |
| 
 | |
|       ExprValueKind VK =
 | |
|           Step->Kind == SK_CastDerivedToBaseLValue ?
 | |
|               VK_LValue :
 | |
|               (Step->Kind == SK_CastDerivedToBaseXValue ?
 | |
|                    VK_XValue :
 | |
|                    VK_RValue);
 | |
|       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
 | |
|                                                  Step->Type,
 | |
|                                                  CK_DerivedToBase,
 | |
|                                                  CurInit.get(),
 | |
|                                                  &BasePath, VK));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_BindReference:
 | |
|       // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
 | |
|       if (CurInit.get()->refersToBitField()) {
 | |
|         // We don't necessarily have an unambiguous source bit-field.
 | |
|         FieldDecl *BitField = CurInit.get()->getSourceBitField();
 | |
|         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
 | |
|           << Entity.getType().isVolatileQualified()
 | |
|           << (BitField ? BitField->getDeclName() : DeclarationName())
 | |
|           << (BitField != NULL)
 | |
|           << CurInit.get()->getSourceRange();
 | |
|         if (BitField)
 | |
|           S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
 | |
| 
 | |
|         return ExprError();
 | |
|       }
 | |
| 
 | |
|       if (CurInit.get()->refersToVectorElement()) {
 | |
|         // References cannot bind to vector elements.
 | |
|         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
 | |
|           << Entity.getType().isVolatileQualified()
 | |
|           << CurInit.get()->getSourceRange();
 | |
|         PrintInitLocationNote(S, Entity);
 | |
|         return ExprError();
 | |
|       }
 | |
| 
 | |
|       // Reference binding does not have any corresponding ASTs.
 | |
| 
 | |
|       // Check exception specifications
 | |
|       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
 | |
|         return ExprError();
 | |
| 
 | |
|       // Even though we didn't materialize a temporary, the binding may still
 | |
|       // extend the lifetime of a temporary. This happens if we bind a reference
 | |
|       // to the result of a cast to reference type.
 | |
|       if (const ValueDecl *ExtendingDecl =
 | |
|               getDeclForTemporaryLifetimeExtension(Entity)) {
 | |
|         if (performReferenceExtension(CurInit.get(), ExtendingDecl))
 | |
|           warnOnLifetimeExtension(S, Entity, CurInit.get(), false,
 | |
|                                   ExtendingDecl);
 | |
|       }
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     case SK_BindReferenceToTemporary: {
 | |
|       // Make sure the "temporary" is actually an rvalue.
 | |
|       assert(CurInit.get()->isRValue() && "not a temporary");
 | |
| 
 | |
|       // Check exception specifications
 | |
|       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
 | |
|         return ExprError();
 | |
| 
 | |
|       // Maybe lifetime-extend the temporary's subobjects to match the
 | |
|       // entity's lifetime.
 | |
|       const ValueDecl *ExtendingDecl =
 | |
|           getDeclForTemporaryLifetimeExtension(Entity);
 | |
|       if (ExtendingDecl) {
 | |
|         performLifetimeExtension(CurInit.get(), ExtendingDecl);
 | |
|         warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl);
 | |
|       }
 | |
| 
 | |
|       // Materialize the temporary into memory.
 | |
|       MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
 | |
|           Entity.getType().getNonReferenceType(), CurInit.get(),
 | |
|           Entity.getType()->isLValueReferenceType(), ExtendingDecl);
 | |
| 
 | |
|       // If we're binding to an Objective-C object that has lifetime, we
 | |
|       // need cleanups. Likewise if we're extending this temporary to automatic
 | |
|       // storage duration -- we need to register its cleanup during the
 | |
|       // full-expression's cleanups.
 | |
|       if ((S.getLangOpts().ObjCAutoRefCount &&
 | |
|            MTE->getType()->isObjCLifetimeType()) ||
 | |
|           (MTE->getStorageDuration() == SD_Automatic &&
 | |
|            MTE->getType().isDestructedType()))
 | |
|         S.ExprNeedsCleanups = true;
 | |
| 
 | |
|       CurInit = S.Owned(MTE);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_ExtraneousCopyToTemporary:
 | |
|       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
 | |
|                            /*IsExtraneousCopy=*/true);
 | |
|       break;
 | |
| 
 | |
|     case SK_UserConversion: {
 | |
|       // We have a user-defined conversion that invokes either a constructor
 | |
|       // or a conversion function.
 | |
|       CastKind CastKind;
 | |
|       bool IsCopy = false;
 | |
|       FunctionDecl *Fn = Step->Function.Function;
 | |
|       DeclAccessPair FoundFn = Step->Function.FoundDecl;
 | |
|       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
 | |
|       bool CreatedObject = false;
 | |
|       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
 | |
|         // Build a call to the selected constructor.
 | |
|         SmallVector<Expr*, 8> ConstructorArgs;
 | |
|         SourceLocation Loc = CurInit.get()->getLocStart();
 | |
|         CurInit.release(); // Ownership transferred into MultiExprArg, below.
 | |
| 
 | |
|         // Determine the arguments required to actually perform the constructor
 | |
|         // call.
 | |
|         Expr *Arg = CurInit.get();
 | |
|         if (S.CompleteConstructorCall(Constructor,
 | |
|                                       MultiExprArg(&Arg, 1),
 | |
|                                       Loc, ConstructorArgs))
 | |
|           return ExprError();
 | |
| 
 | |
|         // Build an expression that constructs a temporary.
 | |
|         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
 | |
|                                           ConstructorArgs,
 | |
|                                           HadMultipleCandidates,
 | |
|                                           /*ListInit*/ false,
 | |
|                                           /*ZeroInit*/ false,
 | |
|                                           CXXConstructExpr::CK_Complete,
 | |
|                                           SourceRange());
 | |
|         if (CurInit.isInvalid())
 | |
|           return ExprError();
 | |
| 
 | |
|         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
 | |
|                                  FoundFn.getAccess());
 | |
|         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
 | |
|           return ExprError();
 | |
| 
 | |
|         CastKind = CK_ConstructorConversion;
 | |
|         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
 | |
|         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
 | |
|             S.IsDerivedFrom(SourceType, Class))
 | |
|           IsCopy = true;
 | |
| 
 | |
|         CreatedObject = true;
 | |
|       } else {
 | |
|         // Build a call to the conversion function.
 | |
|         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
 | |
|         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
 | |
|                                     FoundFn);
 | |
|         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
 | |
|           return ExprError();
 | |
| 
 | |
|         // FIXME: Should we move this initialization into a separate
 | |
|         // derived-to-base conversion? I believe the answer is "no", because
 | |
|         // we don't want to turn off access control here for c-style casts.
 | |
|         ExprResult CurInitExprRes =
 | |
|           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
 | |
|                                                 FoundFn, Conversion);
 | |
|         if(CurInitExprRes.isInvalid())
 | |
|           return ExprError();
 | |
|         CurInit = CurInitExprRes;
 | |
| 
 | |
|         // Build the actual call to the conversion function.
 | |
|         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
 | |
|                                            HadMultipleCandidates);
 | |
|         if (CurInit.isInvalid() || !CurInit.get())
 | |
|           return ExprError();
 | |
| 
 | |
|         CastKind = CK_UserDefinedConversion;
 | |
| 
 | |
|         CreatedObject = Conversion->getResultType()->isRecordType();
 | |
|       }
 | |
| 
 | |
|       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
 | |
|       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
 | |
| 
 | |
|       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
 | |
|         QualType T = CurInit.get()->getType();
 | |
|         if (const RecordType *Record = T->getAs<RecordType>()) {
 | |
|           CXXDestructorDecl *Destructor
 | |
|             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
 | |
|           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
 | |
|                                   S.PDiag(diag::err_access_dtor_temp) << T);
 | |
|           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
 | |
|           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
 | |
|             return ExprError();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
 | |
|                                                  CurInit.get()->getType(),
 | |
|                                                  CastKind, CurInit.get(), 0,
 | |
|                                                 CurInit.get()->getValueKind()));
 | |
|       if (MaybeBindToTemp)
 | |
|         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
 | |
|       if (RequiresCopy)
 | |
|         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
 | |
|                              CurInit, /*IsExtraneousCopy=*/false);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_QualificationConversionLValue:
 | |
|     case SK_QualificationConversionXValue:
 | |
|     case SK_QualificationConversionRValue: {
 | |
|       // Perform a qualification conversion; these can never go wrong.
 | |
|       ExprValueKind VK =
 | |
|           Step->Kind == SK_QualificationConversionLValue ?
 | |
|               VK_LValue :
 | |
|               (Step->Kind == SK_QualificationConversionXValue ?
 | |
|                    VK_XValue :
 | |
|                    VK_RValue);
 | |
|       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_LValueToRValue: {
 | |
|       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
 | |
|       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
 | |
|                                                  CK_LValueToRValue,
 | |
|                                                  CurInit.take(),
 | |
|                                                  /*BasePath=*/0,
 | |
|                                                  VK_RValue));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_ConversionSequence: {
 | |
|       Sema::CheckedConversionKind CCK 
 | |
|         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
 | |
|         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
 | |
|         : Kind.isExplicitCast()? Sema::CCK_OtherCast
 | |
|         : Sema::CCK_ImplicitConversion;
 | |
|       ExprResult CurInitExprRes =
 | |
|         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
 | |
|                                     getAssignmentAction(Entity), CCK);
 | |
|       if (CurInitExprRes.isInvalid())
 | |
|         return ExprError();
 | |
|       CurInit = CurInitExprRes;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_ListInitialization: {
 | |
|       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
 | |
|       // If we're not initializing the top-level entity, we need to create an
 | |
|       // InitializeTemporary entity for our target type.
 | |
|       QualType Ty = Step->Type;
 | |
|       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
 | |
|       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
 | |
|       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
 | |
|       InitListChecker PerformInitList(S, InitEntity,
 | |
|           InitList, Ty, /*VerifyOnly=*/false);
 | |
|       if (PerformInitList.HadError())
 | |
|         return ExprError();
 | |
| 
 | |
|       // Hack: We must update *ResultType if available in order to set the
 | |
|       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
 | |
|       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
 | |
|       if (ResultType &&
 | |
|           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
 | |
|         if ((*ResultType)->isRValueReferenceType())
 | |
|           Ty = S.Context.getRValueReferenceType(Ty);
 | |
|         else if ((*ResultType)->isLValueReferenceType())
 | |
|           Ty = S.Context.getLValueReferenceType(Ty,
 | |
|             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
 | |
|         *ResultType = Ty;
 | |
|       }
 | |
| 
 | |
|       InitListExpr *StructuredInitList =
 | |
|           PerformInitList.getFullyStructuredList();
 | |
|       CurInit.release();
 | |
|       CurInit = shouldBindAsTemporary(InitEntity)
 | |
|           ? S.MaybeBindToTemporary(StructuredInitList)
 | |
|           : S.Owned(StructuredInitList);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_ListConstructorCall: {
 | |
|       // When an initializer list is passed for a parameter of type "reference
 | |
|       // to object", we don't get an EK_Temporary entity, but instead an
 | |
|       // EK_Parameter entity with reference type.
 | |
|       // FIXME: This is a hack. What we really should do is create a user
 | |
|       // conversion step for this case, but this makes it considerably more
 | |
|       // complicated. For now, this will do.
 | |
|       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
 | |
|                                         Entity.getType().getNonReferenceType());
 | |
|       bool UseTemporary = Entity.getType()->isReferenceType();
 | |
|       assert(Args.size() == 1 && "expected a single argument for list init");
 | |
|       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
 | |
|       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
 | |
|         << InitList->getSourceRange();
 | |
|       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
 | |
|       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
 | |
|                                                                    Entity,
 | |
|                                                  Kind, Arg, *Step,
 | |
|                                                ConstructorInitRequiresZeroInit,
 | |
|                                                /*IsListInitialization*/ true);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_UnwrapInitList:
 | |
|       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
 | |
|       break;
 | |
| 
 | |
|     case SK_RewrapInitList: {
 | |
|       Expr *E = CurInit.take();
 | |
|       InitListExpr *Syntactic = Step->WrappingSyntacticList;
 | |
|       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
 | |
|           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
 | |
|       ILE->setSyntacticForm(Syntactic);
 | |
|       ILE->setType(E->getType());
 | |
|       ILE->setValueKind(E->getValueKind());
 | |
|       CurInit = S.Owned(ILE);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_ConstructorInitialization: {
 | |
|       // When an initializer list is passed for a parameter of type "reference
 | |
|       // to object", we don't get an EK_Temporary entity, but instead an
 | |
|       // EK_Parameter entity with reference type.
 | |
|       // FIXME: This is a hack. What we really should do is create a user
 | |
|       // conversion step for this case, but this makes it considerably more
 | |
|       // complicated. For now, this will do.
 | |
|       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
 | |
|                                         Entity.getType().getNonReferenceType());
 | |
|       bool UseTemporary = Entity.getType()->isReferenceType();
 | |
|       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
 | |
|                                                                  : Entity,
 | |
|                                                  Kind, Args, *Step,
 | |
|                                                ConstructorInitRequiresZeroInit,
 | |
|                                                /*IsListInitialization*/ false);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_ZeroInitialization: {
 | |
|       step_iterator NextStep = Step;
 | |
|       ++NextStep;
 | |
|       if (NextStep != StepEnd &&
 | |
|           (NextStep->Kind == SK_ConstructorInitialization ||
 | |
|            NextStep->Kind == SK_ListConstructorCall)) {
 | |
|         // The need for zero-initialization is recorded directly into
 | |
|         // the call to the object's constructor within the next step.
 | |
|         ConstructorInitRequiresZeroInit = true;
 | |
|       } else if (Kind.getKind() == InitializationKind::IK_Value &&
 | |
|                  S.getLangOpts().CPlusPlus &&
 | |
|                  !Kind.isImplicitValueInit()) {
 | |
|         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
 | |
|         if (!TSInfo)
 | |
|           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
 | |
|                                                     Kind.getRange().getBegin());
 | |
| 
 | |
|         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
 | |
|                               TSInfo->getType().getNonLValueExprType(S.Context),
 | |
|                                                                  TSInfo,
 | |
|                                                     Kind.getRange().getEnd()));
 | |
|       } else {
 | |
|         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_CAssignment: {
 | |
|       QualType SourceType = CurInit.get()->getType();
 | |
|       ExprResult Result = CurInit;
 | |
|       Sema::AssignConvertType ConvTy =
 | |
|         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
 | |
|             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
 | |
|       if (Result.isInvalid())
 | |
|         return ExprError();
 | |
|       CurInit = Result;
 | |
| 
 | |
|       // If this is a call, allow conversion to a transparent union.
 | |
|       ExprResult CurInitExprRes = CurInit;
 | |
|       if (ConvTy != Sema::Compatible &&
 | |
|           Entity.isParameterKind() &&
 | |
|           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
 | |
|             == Sema::Compatible)
 | |
|         ConvTy = Sema::Compatible;
 | |
|       if (CurInitExprRes.isInvalid())
 | |
|         return ExprError();
 | |
|       CurInit = CurInitExprRes;
 | |
| 
 | |
|       bool Complained;
 | |
|       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
 | |
|                                      Step->Type, SourceType,
 | |
|                                      CurInit.get(),
 | |
|                                      getAssignmentAction(Entity, true),
 | |
|                                      &Complained)) {
 | |
|         PrintInitLocationNote(S, Entity);
 | |
|         return ExprError();
 | |
|       } else if (Complained)
 | |
|         PrintInitLocationNote(S, Entity);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_StringInit: {
 | |
|       QualType Ty = Step->Type;
 | |
|       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
 | |
|                       S.Context.getAsArrayType(Ty), S);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_ObjCObjectConversion:
 | |
|       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
 | |
|                           CK_ObjCObjectLValueCast,
 | |
|                           CurInit.get()->getValueKind());
 | |
|       break;
 | |
| 
 | |
|     case SK_ArrayInit:
 | |
|       // Okay: we checked everything before creating this step. Note that
 | |
|       // this is a GNU extension.
 | |
|       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
 | |
|         << Step->Type << CurInit.get()->getType()
 | |
|         << CurInit.get()->getSourceRange();
 | |
| 
 | |
|       // If the destination type is an incomplete array type, update the
 | |
|       // type accordingly.
 | |
|       if (ResultType) {
 | |
|         if (const IncompleteArrayType *IncompleteDest
 | |
|                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
 | |
|           if (const ConstantArrayType *ConstantSource
 | |
|                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
 | |
|             *ResultType = S.Context.getConstantArrayType(
 | |
|                                              IncompleteDest->getElementType(),
 | |
|                                              ConstantSource->getSize(),
 | |
|                                              ArrayType::Normal, 0);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case SK_ParenthesizedArrayInit:
 | |
|       // Okay: we checked everything before creating this step. Note that
 | |
|       // this is a GNU extension.
 | |
|       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
 | |
|         << CurInit.get()->getSourceRange();
 | |
|       break;
 | |
| 
 | |
|     case SK_PassByIndirectCopyRestore:
 | |
|     case SK_PassByIndirectRestore:
 | |
|       checkIndirectCopyRestoreSource(S, CurInit.get());
 | |
|       CurInit = S.Owned(new (S.Context)
 | |
|                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
 | |
|                                 Step->Kind == SK_PassByIndirectCopyRestore));
 | |
|       break;
 | |
| 
 | |
|     case SK_ProduceObjCObject:
 | |
|       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
 | |
|                                                  CK_ARCProduceObject,
 | |
|                                                  CurInit.take(), 0, VK_RValue));
 | |
|       break;
 | |
| 
 | |
|     case SK_StdInitializerList: {
 | |
|       S.Diag(CurInit.get()->getExprLoc(),
 | |
|              diag::warn_cxx98_compat_initializer_list_init)
 | |
|         << CurInit.get()->getSourceRange();
 | |
| 
 | |
|       // Maybe lifetime-extend the array temporary's subobjects to match the
 | |
|       // entity's lifetime.
 | |
|       const ValueDecl *ExtendingDecl =
 | |
|           getDeclForTemporaryLifetimeExtension(Entity);
 | |
|       if (ExtendingDecl) {
 | |
|         performLifetimeExtension(CurInit.get(), ExtendingDecl);
 | |
|         warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl);
 | |
|       }
 | |
| 
 | |
|       // Materialize the temporary into memory.
 | |
|       MaterializeTemporaryExpr *MTE = new (S.Context)
 | |
|           MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
 | |
|                                    /*lvalue reference*/ false, ExtendingDecl);
 | |
| 
 | |
|       // Wrap it in a construction of a std::initializer_list<T>.
 | |
|       CurInit = S.Owned(
 | |
|           new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE));
 | |
| 
 | |
|       // Bind the result, in case the library has given initializer_list a
 | |
|       // non-trivial destructor.
 | |
|       if (shouldBindAsTemporary(Entity))
 | |
|         CurInit = S.MaybeBindToTemporary(CurInit.take());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SK_OCLSamplerInit: {
 | |
|       assert(Step->Type->isSamplerT() && 
 | |
|              "Sampler initialization on non sampler type.");
 | |
| 
 | |
|       QualType SourceType = CurInit.get()->getType();
 | |
| 
 | |
|       if (Entity.isParameterKind()) {
 | |
|         if (!SourceType->isSamplerT())
 | |
|           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
 | |
|             << SourceType;
 | |
|       } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
 | |
|         llvm_unreachable("Invalid EntityKind!");
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case SK_OCLZeroEvent: {
 | |
|       assert(Step->Type->isEventT() && 
 | |
|              "Event initialization on non event type.");
 | |
| 
 | |
|       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
 | |
|                                     CK_ZeroToOCLEvent,
 | |
|                                     CurInit.get()->getValueKind());
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Diagnose non-fatal problems with the completed initialization.
 | |
|   if (Entity.getKind() == InitializedEntity::EK_Member &&
 | |
|       cast<FieldDecl>(Entity.getDecl())->isBitField())
 | |
|     S.CheckBitFieldInitialization(Kind.getLocation(),
 | |
|                                   cast<FieldDecl>(Entity.getDecl()),
 | |
|                                   CurInit.get());
 | |
| 
 | |
|   return CurInit;
 | |
| }
 | |
| 
 | |
| /// Somewhere within T there is an uninitialized reference subobject.
 | |
| /// Dig it out and diagnose it.
 | |
| static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
 | |
|                                            QualType T) {
 | |
|   if (T->isReferenceType()) {
 | |
|     S.Diag(Loc, diag::err_reference_without_init)
 | |
|       << T.getNonReferenceType();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
 | |
|   if (!RD || !RD->hasUninitializedReferenceMember())
 | |
|     return false;
 | |
| 
 | |
|   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
 | |
|                                      FE = RD->field_end(); FI != FE; ++FI) {
 | |
|     if (FI->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
 | |
|       S.Diag(Loc, diag::note_value_initialization_here) << RD;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
 | |
|                                           BE = RD->bases_end();
 | |
|        BI != BE; ++BI) {
 | |
|     if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
 | |
|       S.Diag(Loc, diag::note_value_initialization_here) << RD;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Diagnose initialization failures
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Emit notes associated with an initialization that failed due to a
 | |
| /// "simple" conversion failure.
 | |
| static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
 | |
|                                    Expr *op) {
 | |
|   QualType destType = entity.getType();
 | |
|   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
 | |
|       op->getType()->isObjCObjectPointerType()) {
 | |
| 
 | |
|     // Emit a possible note about the conversion failing because the
 | |
|     // operand is a message send with a related result type.
 | |
|     S.EmitRelatedResultTypeNote(op);
 | |
| 
 | |
|     // Emit a possible note about a return failing because we're
 | |
|     // expecting a related result type.
 | |
|     if (entity.getKind() == InitializedEntity::EK_Result)
 | |
|       S.EmitRelatedResultTypeNoteForReturn(destType);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool InitializationSequence::Diagnose(Sema &S,
 | |
|                                       const InitializedEntity &Entity,
 | |
|                                       const InitializationKind &Kind,
 | |
|                                       ArrayRef<Expr *> Args) {
 | |
|   if (!Failed())
 | |
|     return false;
 | |
| 
 | |
|   QualType DestType = Entity.getType();
 | |
|   switch (Failure) {
 | |
|   case FK_TooManyInitsForReference:
 | |
|     // FIXME: Customize for the initialized entity?
 | |
|     if (Args.empty()) {
 | |
|       // Dig out the reference subobject which is uninitialized and diagnose it.
 | |
|       // If this is value-initialization, this could be nested some way within
 | |
|       // the target type.
 | |
|       assert(Kind.getKind() == InitializationKind::IK_Value ||
 | |
|              DestType->isReferenceType());
 | |
|       bool Diagnosed =
 | |
|         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
 | |
|       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
 | |
|       (void)Diagnosed;
 | |
|     } else  // FIXME: diagnostic below could be better!
 | |
|       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
 | |
|         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
 | |
|     break;
 | |
| 
 | |
|   case FK_ArrayNeedsInitList:
 | |
|     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
 | |
|     break;
 | |
|   case FK_ArrayNeedsInitListOrStringLiteral:
 | |
|     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
 | |
|     break;
 | |
|   case FK_ArrayNeedsInitListOrWideStringLiteral:
 | |
|     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
 | |
|     break;
 | |
|   case FK_NarrowStringIntoWideCharArray:
 | |
|     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
 | |
|     break;
 | |
|   case FK_WideStringIntoCharArray:
 | |
|     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
 | |
|     break;
 | |
|   case FK_IncompatWideStringIntoWideChar:
 | |
|     S.Diag(Kind.getLocation(),
 | |
|            diag::err_array_init_incompat_wide_string_into_wchar);
 | |
|     break;
 | |
|   case FK_ArrayTypeMismatch:
 | |
|   case FK_NonConstantArrayInit:
 | |
|     S.Diag(Kind.getLocation(), 
 | |
|            (Failure == FK_ArrayTypeMismatch
 | |
|               ? diag::err_array_init_different_type
 | |
|               : diag::err_array_init_non_constant_array))
 | |
|       << DestType.getNonReferenceType()
 | |
|       << Args[0]->getType()
 | |
|       << Args[0]->getSourceRange();
 | |
|     break;
 | |
| 
 | |
|   case FK_VariableLengthArrayHasInitializer:
 | |
|     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
 | |
|       << Args[0]->getSourceRange();
 | |
|     break;
 | |
| 
 | |
|   case FK_AddressOfOverloadFailed: {
 | |
|     DeclAccessPair Found;
 | |
|     S.ResolveAddressOfOverloadedFunction(Args[0],
 | |
|                                          DestType.getNonReferenceType(),
 | |
|                                          true,
 | |
|                                          Found);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case FK_ReferenceInitOverloadFailed:
 | |
|   case FK_UserConversionOverloadFailed:
 | |
|     switch (FailedOverloadResult) {
 | |
|     case OR_Ambiguous:
 | |
|       if (Failure == FK_UserConversionOverloadFailed)
 | |
|         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
 | |
|           << Args[0]->getType() << DestType
 | |
|           << Args[0]->getSourceRange();
 | |
|       else
 | |
|         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
 | |
|           << DestType << Args[0]->getType()
 | |
|           << Args[0]->getSourceRange();
 | |
| 
 | |
|       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
 | |
|       break;
 | |
| 
 | |
|     case OR_No_Viable_Function:
 | |
|       if (!S.RequireCompleteType(Kind.getLocation(),
 | |
|                                  DestType.getNonReferenceType(),
 | |
|                           diag::err_typecheck_nonviable_condition_incomplete,
 | |
|                                Args[0]->getType(), Args[0]->getSourceRange()))
 | |
|         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
 | |
|           << Args[0]->getType() << Args[0]->getSourceRange()
 | |
|           << DestType.getNonReferenceType();
 | |
| 
 | |
|       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
 | |
|       break;
 | |
| 
 | |
|     case OR_Deleted: {
 | |
|       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
 | |
|         << Args[0]->getType() << DestType.getNonReferenceType()
 | |
|         << Args[0]->getSourceRange();
 | |
|       OverloadCandidateSet::iterator Best;
 | |
|       OverloadingResult Ovl
 | |
|         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
 | |
|                                                 true);
 | |
|       if (Ovl == OR_Deleted) {
 | |
|         S.NoteDeletedFunction(Best->Function);
 | |
|       } else {
 | |
|         llvm_unreachable("Inconsistent overload resolution?");
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case OR_Success:
 | |
|       llvm_unreachable("Conversion did not fail!");
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case FK_NonConstLValueReferenceBindingToTemporary:
 | |
|     if (isa<InitListExpr>(Args[0])) {
 | |
|       S.Diag(Kind.getLocation(),
 | |
|              diag::err_lvalue_reference_bind_to_initlist)
 | |
|       << DestType.getNonReferenceType().isVolatileQualified()
 | |
|       << DestType.getNonReferenceType()
 | |
|       << Args[0]->getSourceRange();
 | |
|       break;
 | |
|     }
 | |
|     // Intentional fallthrough
 | |
| 
 | |
|   case FK_NonConstLValueReferenceBindingToUnrelated:
 | |
|     S.Diag(Kind.getLocation(),
 | |
|            Failure == FK_NonConstLValueReferenceBindingToTemporary
 | |
|              ? diag::err_lvalue_reference_bind_to_temporary
 | |
|              : diag::err_lvalue_reference_bind_to_unrelated)
 | |
|       << DestType.getNonReferenceType().isVolatileQualified()
 | |
|       << DestType.getNonReferenceType()
 | |
|       << Args[0]->getType()
 | |
|       << Args[0]->getSourceRange();
 | |
|     break;
 | |
| 
 | |
|   case FK_RValueReferenceBindingToLValue:
 | |
|     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
 | |
|       << DestType.getNonReferenceType() << Args[0]->getType()
 | |
|       << Args[0]->getSourceRange();
 | |
|     break;
 | |
| 
 | |
|   case FK_ReferenceInitDropsQualifiers:
 | |
|     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
 | |
|       << DestType.getNonReferenceType()
 | |
|       << Args[0]->getType()
 | |
|       << Args[0]->getSourceRange();
 | |
|     break;
 | |
| 
 | |
|   case FK_ReferenceInitFailed:
 | |
|     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
 | |
|       << DestType.getNonReferenceType()
 | |
|       << Args[0]->isLValue()
 | |
|       << Args[0]->getType()
 | |
|       << Args[0]->getSourceRange();
 | |
|     emitBadConversionNotes(S, Entity, Args[0]);
 | |
|     break;
 | |
| 
 | |
|   case FK_ConversionFailed: {
 | |
|     QualType FromType = Args[0]->getType();
 | |
|     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
 | |
|       << (int)Entity.getKind()
 | |
|       << DestType
 | |
|       << Args[0]->isLValue()
 | |
|       << FromType
 | |
|       << Args[0]->getSourceRange();
 | |
|     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
 | |
|     S.Diag(Kind.getLocation(), PDiag);
 | |
|     emitBadConversionNotes(S, Entity, Args[0]);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case FK_ConversionFromPropertyFailed:
 | |
|     // No-op. This error has already been reported.
 | |
|     break;
 | |
| 
 | |
|   case FK_TooManyInitsForScalar: {
 | |
|     SourceRange R;
 | |
| 
 | |
|     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
 | |
|       R = SourceRange(InitList->getInit(0)->getLocEnd(),
 | |
|                       InitList->getLocEnd());
 | |
|     else
 | |
|       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
 | |
| 
 | |
|     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
 | |
|     if (Kind.isCStyleOrFunctionalCast())
 | |
|       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
 | |
|         << R;
 | |
|     else
 | |
|       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
 | |
|         << /*scalar=*/2 << R;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case FK_ReferenceBindingToInitList:
 | |
|     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
 | |
|       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
 | |
|     break;
 | |
| 
 | |
|   case FK_InitListBadDestinationType:
 | |
|     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
 | |
|       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
 | |
|     break;
 | |
| 
 | |
|   case FK_ListConstructorOverloadFailed:
 | |
|   case FK_ConstructorOverloadFailed: {
 | |
|     SourceRange ArgsRange;
 | |
|     if (Args.size())
 | |
|       ArgsRange = SourceRange(Args.front()->getLocStart(),
 | |
|                               Args.back()->getLocEnd());
 | |
| 
 | |
|     if (Failure == FK_ListConstructorOverloadFailed) {
 | |
|       assert(Args.size() == 1 && "List construction from other than 1 argument.");
 | |
|       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
 | |
|       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
 | |
|     }
 | |
| 
 | |
|     // FIXME: Using "DestType" for the entity we're printing is probably
 | |
|     // bad.
 | |
|     switch (FailedOverloadResult) {
 | |
|       case OR_Ambiguous:
 | |
|         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
 | |
|           << DestType << ArgsRange;
 | |
|         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
 | |
|         break;
 | |
| 
 | |
|       case OR_No_Viable_Function:
 | |
|         if (Kind.getKind() == InitializationKind::IK_Default &&
 | |
|             (Entity.getKind() == InitializedEntity::EK_Base ||
 | |
|              Entity.getKind() == InitializedEntity::EK_Member) &&
 | |
|             isa<CXXConstructorDecl>(S.CurContext)) {
 | |
|           // This is implicit default initialization of a member or
 | |
|           // base within a constructor. If no viable function was
 | |
|           // found, notify the user that she needs to explicitly
 | |
|           // initialize this base/member.
 | |
|           CXXConstructorDecl *Constructor
 | |
|             = cast<CXXConstructorDecl>(S.CurContext);
 | |
|           if (Entity.getKind() == InitializedEntity::EK_Base) {
 | |
|             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
 | |
|               << (Constructor->getInheritedConstructor() ? 2 :
 | |
|                   Constructor->isImplicit() ? 1 : 0)
 | |
|               << S.Context.getTypeDeclType(Constructor->getParent())
 | |
|               << /*base=*/0
 | |
|               << Entity.getType();
 | |
| 
 | |
|             RecordDecl *BaseDecl
 | |
|               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
 | |
|                                                                   ->getDecl();
 | |
|             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
 | |
|               << S.Context.getTagDeclType(BaseDecl);
 | |
|           } else {
 | |
|             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
 | |
|               << (Constructor->getInheritedConstructor() ? 2 :
 | |
|                   Constructor->isImplicit() ? 1 : 0)
 | |
|               << S.Context.getTypeDeclType(Constructor->getParent())
 | |
|               << /*member=*/1
 | |
|               << Entity.getName();
 | |
|             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
 | |
| 
 | |
|             if (const RecordType *Record
 | |
|                                  = Entity.getType()->getAs<RecordType>())
 | |
|               S.Diag(Record->getDecl()->getLocation(),
 | |
|                      diag::note_previous_decl)
 | |
|                 << S.Context.getTagDeclType(Record->getDecl());
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
 | |
|           << DestType << ArgsRange;
 | |
|         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
 | |
|         break;
 | |
| 
 | |
|       case OR_Deleted: {
 | |
|         OverloadCandidateSet::iterator Best;
 | |
|         OverloadingResult Ovl
 | |
|           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
 | |
|         if (Ovl != OR_Deleted) {
 | |
|           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
 | |
|             << true << DestType << ArgsRange;
 | |
|           llvm_unreachable("Inconsistent overload resolution?");
 | |
|           break;
 | |
|         }
 | |
|        
 | |
|         // If this is a defaulted or implicitly-declared function, then
 | |
|         // it was implicitly deleted. Make it clear that the deletion was
 | |
|         // implicit.
 | |
|         if (S.isImplicitlyDeleted(Best->Function))
 | |
|           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
 | |
|             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
 | |
|             << DestType << ArgsRange;
 | |
|         else
 | |
|           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
 | |
|             << true << DestType << ArgsRange;
 | |
| 
 | |
|         S.NoteDeletedFunction(Best->Function);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case OR_Success:
 | |
|         llvm_unreachable("Conversion did not fail!");
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| 
 | |
|   case FK_DefaultInitOfConst:
 | |
|     if (Entity.getKind() == InitializedEntity::EK_Member &&
 | |
|         isa<CXXConstructorDecl>(S.CurContext)) {
 | |
|       // This is implicit default-initialization of a const member in
 | |
|       // a constructor. Complain that it needs to be explicitly
 | |
|       // initialized.
 | |
|       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
 | |
|       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
 | |
|         << (Constructor->getInheritedConstructor() ? 2 :
 | |
|             Constructor->isImplicit() ? 1 : 0)
 | |
|         << S.Context.getTypeDeclType(Constructor->getParent())
 | |
|         << /*const=*/1
 | |
|         << Entity.getName();
 | |
|       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
 | |
|         << Entity.getName();
 | |
|     } else {
 | |
|       S.Diag(Kind.getLocation(), diag::err_default_init_const)
 | |
|         << DestType << (bool)DestType->getAs<RecordType>();
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case FK_Incomplete:
 | |
|     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
 | |
|                           diag::err_init_incomplete_type);
 | |
|     break;
 | |
| 
 | |
|   case FK_ListInitializationFailed: {
 | |
|     // Run the init list checker again to emit diagnostics.
 | |
|     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
 | |
|     QualType DestType = Entity.getType();
 | |
|     InitListChecker DiagnoseInitList(S, Entity, InitList,
 | |
|             DestType, /*VerifyOnly=*/false);
 | |
|     assert(DiagnoseInitList.HadError() &&
 | |
|            "Inconsistent init list check result.");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case FK_PlaceholderType: {
 | |
|     // FIXME: Already diagnosed!
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case FK_ExplicitConstructor: {
 | |
|     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
 | |
|       << Args[0]->getSourceRange();
 | |
|     OverloadCandidateSet::iterator Best;
 | |
|     OverloadingResult Ovl
 | |
|       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
 | |
|     (void)Ovl;
 | |
|     assert(Ovl == OR_Success && "Inconsistent overload resolution");
 | |
|     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
 | |
|     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   PrintInitLocationNote(S, Entity);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void InitializationSequence::dump(raw_ostream &OS) const {
 | |
|   switch (SequenceKind) {
 | |
|   case FailedSequence: {
 | |
|     OS << "Failed sequence: ";
 | |
|     switch (Failure) {
 | |
|     case FK_TooManyInitsForReference:
 | |
|       OS << "too many initializers for reference";
 | |
|       break;
 | |
| 
 | |
|     case FK_ArrayNeedsInitList:
 | |
|       OS << "array requires initializer list";
 | |
|       break;
 | |
| 
 | |
|     case FK_ArrayNeedsInitListOrStringLiteral:
 | |
|       OS << "array requires initializer list or string literal";
 | |
|       break;
 | |
| 
 | |
|     case FK_ArrayNeedsInitListOrWideStringLiteral:
 | |
|       OS << "array requires initializer list or wide string literal";
 | |
|       break;
 | |
| 
 | |
|     case FK_NarrowStringIntoWideCharArray:
 | |
|       OS << "narrow string into wide char array";
 | |
|       break;
 | |
| 
 | |
|     case FK_WideStringIntoCharArray:
 | |
|       OS << "wide string into char array";
 | |
|       break;
 | |
| 
 | |
|     case FK_IncompatWideStringIntoWideChar:
 | |
|       OS << "incompatible wide string into wide char array";
 | |
|       break;
 | |
| 
 | |
|     case FK_ArrayTypeMismatch:
 | |
|       OS << "array type mismatch";
 | |
|       break;
 | |
| 
 | |
|     case FK_NonConstantArrayInit:
 | |
|       OS << "non-constant array initializer";
 | |
|       break;
 | |
| 
 | |
|     case FK_AddressOfOverloadFailed:
 | |
|       OS << "address of overloaded function failed";
 | |
|       break;
 | |
| 
 | |
|     case FK_ReferenceInitOverloadFailed:
 | |
|       OS << "overload resolution for reference initialization failed";
 | |
|       break;
 | |
| 
 | |
|     case FK_NonConstLValueReferenceBindingToTemporary:
 | |
|       OS << "non-const lvalue reference bound to temporary";
 | |
|       break;
 | |
| 
 | |
|     case FK_NonConstLValueReferenceBindingToUnrelated:
 | |
|       OS << "non-const lvalue reference bound to unrelated type";
 | |
|       break;
 | |
| 
 | |
|     case FK_RValueReferenceBindingToLValue:
 | |
|       OS << "rvalue reference bound to an lvalue";
 | |
|       break;
 | |
| 
 | |
|     case FK_ReferenceInitDropsQualifiers:
 | |
|       OS << "reference initialization drops qualifiers";
 | |
|       break;
 | |
| 
 | |
|     case FK_ReferenceInitFailed:
 | |
|       OS << "reference initialization failed";
 | |
|       break;
 | |
| 
 | |
|     case FK_ConversionFailed:
 | |
|       OS << "conversion failed";
 | |
|       break;
 | |
| 
 | |
|     case FK_ConversionFromPropertyFailed:
 | |
|       OS << "conversion from property failed";
 | |
|       break;
 | |
| 
 | |
|     case FK_TooManyInitsForScalar:
 | |
|       OS << "too many initializers for scalar";
 | |
|       break;
 | |
| 
 | |
|     case FK_ReferenceBindingToInitList:
 | |
|       OS << "referencing binding to initializer list";
 | |
|       break;
 | |
| 
 | |
|     case FK_InitListBadDestinationType:
 | |
|       OS << "initializer list for non-aggregate, non-scalar type";
 | |
|       break;
 | |
| 
 | |
|     case FK_UserConversionOverloadFailed:
 | |
|       OS << "overloading failed for user-defined conversion";
 | |
|       break;
 | |
| 
 | |
|     case FK_ConstructorOverloadFailed:
 | |
|       OS << "constructor overloading failed";
 | |
|       break;
 | |
| 
 | |
|     case FK_DefaultInitOfConst:
 | |
|       OS << "default initialization of a const variable";
 | |
|       break;
 | |
| 
 | |
|     case FK_Incomplete:
 | |
|       OS << "initialization of incomplete type";
 | |
|       break;
 | |
| 
 | |
|     case FK_ListInitializationFailed:
 | |
|       OS << "list initialization checker failure";
 | |
|       break;
 | |
| 
 | |
|     case FK_VariableLengthArrayHasInitializer:
 | |
|       OS << "variable length array has an initializer";
 | |
|       break;
 | |
| 
 | |
|     case FK_PlaceholderType:
 | |
|       OS << "initializer expression isn't contextually valid";
 | |
|       break;
 | |
| 
 | |
|     case FK_ListConstructorOverloadFailed:
 | |
|       OS << "list constructor overloading failed";
 | |
|       break;
 | |
| 
 | |
|     case FK_ExplicitConstructor:
 | |
|       OS << "list copy initialization chose explicit constructor";
 | |
|       break;
 | |
|     }
 | |
|     OS << '\n';
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case DependentSequence:
 | |
|     OS << "Dependent sequence\n";
 | |
|     return;
 | |
| 
 | |
|   case NormalSequence:
 | |
|     OS << "Normal sequence: ";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
 | |
|     if (S != step_begin()) {
 | |
|       OS << " -> ";
 | |
|     }
 | |
| 
 | |
|     switch (S->Kind) {
 | |
|     case SK_ResolveAddressOfOverloadedFunction:
 | |
|       OS << "resolve address of overloaded function";
 | |
|       break;
 | |
| 
 | |
|     case SK_CastDerivedToBaseRValue:
 | |
|       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
 | |
|       break;
 | |
| 
 | |
|     case SK_CastDerivedToBaseXValue:
 | |
|       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
 | |
|       break;
 | |
| 
 | |
|     case SK_CastDerivedToBaseLValue:
 | |
|       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
 | |
|       break;
 | |
| 
 | |
|     case SK_BindReference:
 | |
|       OS << "bind reference to lvalue";
 | |
|       break;
 | |
| 
 | |
|     case SK_BindReferenceToTemporary:
 | |
|       OS << "bind reference to a temporary";
 | |
|       break;
 | |
| 
 | |
|     case SK_ExtraneousCopyToTemporary:
 | |
|       OS << "extraneous C++03 copy to temporary";
 | |
|       break;
 | |
| 
 | |
|     case SK_UserConversion:
 | |
|       OS << "user-defined conversion via " << *S->Function.Function;
 | |
|       break;
 | |
| 
 | |
|     case SK_QualificationConversionRValue:
 | |
|       OS << "qualification conversion (rvalue)";
 | |
|       break;
 | |
| 
 | |
|     case SK_QualificationConversionXValue:
 | |
|       OS << "qualification conversion (xvalue)";
 | |
|       break;
 | |
| 
 | |
|     case SK_QualificationConversionLValue:
 | |
|       OS << "qualification conversion (lvalue)";
 | |
|       break;
 | |
| 
 | |
|     case SK_LValueToRValue:
 | |
|       OS << "load (lvalue to rvalue)";
 | |
|       break;
 | |
| 
 | |
|     case SK_ConversionSequence:
 | |
|       OS << "implicit conversion sequence (";
 | |
|       S->ICS->DebugPrint(); // FIXME: use OS
 | |
|       OS << ")";
 | |
|       break;
 | |
| 
 | |
|     case SK_ListInitialization:
 | |
|       OS << "list aggregate initialization";
 | |
|       break;
 | |
| 
 | |
|     case SK_ListConstructorCall:
 | |
|       OS << "list initialization via constructor";
 | |
|       break;
 | |
| 
 | |
|     case SK_UnwrapInitList:
 | |
|       OS << "unwrap reference initializer list";
 | |
|       break;
 | |
| 
 | |
|     case SK_RewrapInitList:
 | |
|       OS << "rewrap reference initializer list";
 | |
|       break;
 | |
| 
 | |
|     case SK_ConstructorInitialization:
 | |
|       OS << "constructor initialization";
 | |
|       break;
 | |
| 
 | |
|     case SK_ZeroInitialization:
 | |
|       OS << "zero initialization";
 | |
|       break;
 | |
| 
 | |
|     case SK_CAssignment:
 | |
|       OS << "C assignment";
 | |
|       break;
 | |
| 
 | |
|     case SK_StringInit:
 | |
|       OS << "string initialization";
 | |
|       break;
 | |
| 
 | |
|     case SK_ObjCObjectConversion:
 | |
|       OS << "Objective-C object conversion";
 | |
|       break;
 | |
| 
 | |
|     case SK_ArrayInit:
 | |
|       OS << "array initialization";
 | |
|       break;
 | |
| 
 | |
|     case SK_ParenthesizedArrayInit:
 | |
|       OS << "parenthesized array initialization";
 | |
|       break;
 | |
| 
 | |
|     case SK_PassByIndirectCopyRestore:
 | |
|       OS << "pass by indirect copy and restore";
 | |
|       break;
 | |
| 
 | |
|     case SK_PassByIndirectRestore:
 | |
|       OS << "pass by indirect restore";
 | |
|       break;
 | |
| 
 | |
|     case SK_ProduceObjCObject:
 | |
|       OS << "Objective-C object retension";
 | |
|       break;
 | |
| 
 | |
|     case SK_StdInitializerList:
 | |
|       OS << "std::initializer_list from initializer list";
 | |
|       break;
 | |
| 
 | |
|     case SK_OCLSamplerInit:
 | |
|       OS << "OpenCL sampler_t from integer constant";
 | |
|       break;
 | |
| 
 | |
|     case SK_OCLZeroEvent:
 | |
|       OS << "OpenCL event_t from zero";
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     OS << " [" << S->Type.getAsString() << ']';
 | |
|   }
 | |
| 
 | |
|   OS << '\n';
 | |
| }
 | |
| 
 | |
| void InitializationSequence::dump() const {
 | |
|   dump(llvm::errs());
 | |
| }
 | |
| 
 | |
| static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
 | |
|                                         QualType EntityType,
 | |
|                                         const Expr *PreInit,
 | |
|                                         const Expr *PostInit) {
 | |
|   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   // A narrowing conversion can only appear as the final implicit conversion in
 | |
|   // an initialization sequence.
 | |
|   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
 | |
|   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
 | |
|     return;
 | |
| 
 | |
|   const ImplicitConversionSequence &ICS = *LastStep.ICS;
 | |
|   const StandardConversionSequence *SCS = 0;
 | |
|   switch (ICS.getKind()) {
 | |
|   case ImplicitConversionSequence::StandardConversion:
 | |
|     SCS = &ICS.Standard;
 | |
|     break;
 | |
|   case ImplicitConversionSequence::UserDefinedConversion:
 | |
|     SCS = &ICS.UserDefined.After;
 | |
|     break;
 | |
|   case ImplicitConversionSequence::AmbiguousConversion:
 | |
|   case ImplicitConversionSequence::EllipsisConversion:
 | |
|   case ImplicitConversionSequence::BadConversion:
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Determine the type prior to the narrowing conversion. If a conversion
 | |
|   // operator was used, this may be different from both the type of the entity
 | |
|   // and of the pre-initialization expression.
 | |
|   QualType PreNarrowingType = PreInit->getType();
 | |
|   if (Seq.step_begin() + 1 != Seq.step_end())
 | |
|     PreNarrowingType = Seq.step_end()[-2].Type;
 | |
| 
 | |
|   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
 | |
|   APValue ConstantValue;
 | |
|   QualType ConstantType;
 | |
|   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
 | |
|                                 ConstantType)) {
 | |
|   case NK_Not_Narrowing:
 | |
|     // No narrowing occurred.
 | |
|     return;
 | |
| 
 | |
|   case NK_Type_Narrowing:
 | |
|     // This was a floating-to-integer conversion, which is always considered a
 | |
|     // narrowing conversion even if the value is a constant and can be
 | |
|     // represented exactly as an integer.
 | |
|     S.Diag(PostInit->getLocStart(),
 | |
|            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11? 
 | |
|              diag::warn_init_list_type_narrowing
 | |
|            : S.isSFINAEContext()?
 | |
|              diag::err_init_list_type_narrowing_sfinae
 | |
|            : diag::err_init_list_type_narrowing)
 | |
|       << PostInit->getSourceRange()
 | |
|       << PreNarrowingType.getLocalUnqualifiedType()
 | |
|       << EntityType.getLocalUnqualifiedType();
 | |
|     break;
 | |
| 
 | |
|   case NK_Constant_Narrowing:
 | |
|     // A constant value was narrowed.
 | |
|     S.Diag(PostInit->getLocStart(),
 | |
|            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11? 
 | |
|              diag::warn_init_list_constant_narrowing
 | |
|            : S.isSFINAEContext()?
 | |
|              diag::err_init_list_constant_narrowing_sfinae
 | |
|            : diag::err_init_list_constant_narrowing)
 | |
|       << PostInit->getSourceRange()
 | |
|       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
 | |
|       << EntityType.getLocalUnqualifiedType();
 | |
|     break;
 | |
| 
 | |
|   case NK_Variable_Narrowing:
 | |
|     // A variable's value may have been narrowed.
 | |
|     S.Diag(PostInit->getLocStart(),
 | |
|            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11? 
 | |
|              diag::warn_init_list_variable_narrowing
 | |
|            : S.isSFINAEContext()?
 | |
|              diag::err_init_list_variable_narrowing_sfinae
 | |
|            : diag::err_init_list_variable_narrowing)
 | |
|       << PostInit->getSourceRange()
 | |
|       << PreNarrowingType.getLocalUnqualifiedType()
 | |
|       << EntityType.getLocalUnqualifiedType();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   SmallString<128> StaticCast;
 | |
|   llvm::raw_svector_ostream OS(StaticCast);
 | |
|   OS << "static_cast<";
 | |
|   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
 | |
|     // It's important to use the typedef's name if there is one so that the
 | |
|     // fixit doesn't break code using types like int64_t.
 | |
|     //
 | |
|     // FIXME: This will break if the typedef requires qualification.  But
 | |
|     // getQualifiedNameAsString() includes non-machine-parsable components.
 | |
|     OS << *TT->getDecl();
 | |
|   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
 | |
|     OS << BT->getName(S.getLangOpts());
 | |
|   else {
 | |
|     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
 | |
|     // with a broken cast.
 | |
|     return;
 | |
|   }
 | |
|   OS << ">(";
 | |
|   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
 | |
|     << PostInit->getSourceRange()
 | |
|     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
 | |
|     << FixItHint::CreateInsertion(
 | |
|       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Initialization helper functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| bool
 | |
| Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
 | |
|                                    ExprResult Init) {
 | |
|   if (Init.isInvalid())
 | |
|     return false;
 | |
| 
 | |
|   Expr *InitE = Init.get();
 | |
|   assert(InitE && "No initialization expression");
 | |
| 
 | |
|   InitializationKind Kind
 | |
|     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
 | |
|   InitializationSequence Seq(*this, Entity, Kind, InitE);
 | |
|   return !Seq.Failed();
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::PerformCopyInitialization(const InitializedEntity &Entity,
 | |
|                                 SourceLocation EqualLoc,
 | |
|                                 ExprResult Init,
 | |
|                                 bool TopLevelOfInitList,
 | |
|                                 bool AllowExplicit) {
 | |
|   if (Init.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   Expr *InitE = Init.get();
 | |
|   assert(InitE && "No initialization expression?");
 | |
| 
 | |
|   if (EqualLoc.isInvalid())
 | |
|     EqualLoc = InitE->getLocStart();
 | |
| 
 | |
|   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
 | |
|                                                            EqualLoc,
 | |
|                                                            AllowExplicit);
 | |
|   InitializationSequence Seq(*this, Entity, Kind, InitE);
 | |
|   Init.release();
 | |
| 
 | |
|   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
 | |
| 
 | |
|   if (!Result.isInvalid() && TopLevelOfInitList)
 | |
|     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
 | |
|                                 InitE, Result.get());
 | |
| 
 | |
|   return Result;
 | |
| }
 |