forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4944 lines
		
	
	
		
			199 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4944 lines
		
	
	
		
			199 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //===----------------------------------------------------------------------===/
 | |
| //
 | |
| //  This file implements C++ template argument deduction.
 | |
| //
 | |
| //===----------------------------------------------------------------------===/
 | |
| 
 | |
| #include "clang/Sema/TemplateDeduction.h"
 | |
| #include "TreeTransform.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/Sema.h"
 | |
| #include "clang/Sema/Template.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace clang {
 | |
|   using namespace sema;
 | |
| 
 | |
|   /// \brief Various flags that control template argument deduction.
 | |
|   ///
 | |
|   /// These flags can be bitwise-OR'd together.
 | |
|   enum TemplateDeductionFlags {
 | |
|     /// \brief No template argument deduction flags, which indicates the
 | |
|     /// strictest results for template argument deduction (as used for, e.g.,
 | |
|     /// matching class template partial specializations).
 | |
|     TDF_None = 0,
 | |
|     /// \brief Within template argument deduction from a function call, we are
 | |
|     /// matching with a parameter type for which the original parameter was
 | |
|     /// a reference.
 | |
|     TDF_ParamWithReferenceType = 0x1,
 | |
|     /// \brief Within template argument deduction from a function call, we
 | |
|     /// are matching in a case where we ignore cv-qualifiers.
 | |
|     TDF_IgnoreQualifiers = 0x02,
 | |
|     /// \brief Within template argument deduction from a function call,
 | |
|     /// we are matching in a case where we can perform template argument
 | |
|     /// deduction from a template-id of a derived class of the argument type.
 | |
|     TDF_DerivedClass = 0x04,
 | |
|     /// \brief Allow non-dependent types to differ, e.g., when performing
 | |
|     /// template argument deduction from a function call where conversions
 | |
|     /// may apply.
 | |
|     TDF_SkipNonDependent = 0x08,
 | |
|     /// \brief Whether we are performing template argument deduction for
 | |
|     /// parameters and arguments in a top-level template argument
 | |
|     TDF_TopLevelParameterTypeList = 0x10,
 | |
|     /// \brief Within template argument deduction from overload resolution per
 | |
|     /// C++ [over.over] allow matching function types that are compatible in
 | |
|     /// terms of noreturn and default calling convention adjustments.
 | |
|     TDF_InOverloadResolution = 0x20
 | |
|   };
 | |
| }
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| /// \brief Compare two APSInts, extending and switching the sign as
 | |
| /// necessary to compare their values regardless of underlying type.
 | |
| static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
 | |
|   if (Y.getBitWidth() > X.getBitWidth())
 | |
|     X = X.extend(Y.getBitWidth());
 | |
|   else if (Y.getBitWidth() < X.getBitWidth())
 | |
|     Y = Y.extend(X.getBitWidth());
 | |
| 
 | |
|   // If there is a signedness mismatch, correct it.
 | |
|   if (X.isSigned() != Y.isSigned()) {
 | |
|     // If the signed value is negative, then the values cannot be the same.
 | |
|     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
 | |
|       return false;
 | |
| 
 | |
|     Y.setIsSigned(true);
 | |
|     X.setIsSigned(true);
 | |
|   }
 | |
| 
 | |
|   return X == Y;
 | |
| }
 | |
| 
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArguments(Sema &S,
 | |
|                         TemplateParameterList *TemplateParams,
 | |
|                         const TemplateArgument &Param,
 | |
|                         TemplateArgument Arg,
 | |
|                         TemplateDeductionInfo &Info,
 | |
|                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
 | |
| 
 | |
| /// \brief Whether template argument deduction for two reference parameters
 | |
| /// resulted in the argument type, parameter type, or neither type being more
 | |
| /// qualified than the other.
 | |
| enum DeductionQualifierComparison {
 | |
|   NeitherMoreQualified = 0,
 | |
|   ParamMoreQualified,
 | |
|   ArgMoreQualified
 | |
| };
 | |
| 
 | |
| /// \brief Stores the result of comparing two reference parameters while
 | |
| /// performing template argument deduction for partial ordering of function
 | |
| /// templates.
 | |
| struct RefParamPartialOrderingComparison {
 | |
|   /// \brief Whether the parameter type is an rvalue reference type.
 | |
|   bool ParamIsRvalueRef;
 | |
|   /// \brief Whether the argument type is an rvalue reference type.
 | |
|   bool ArgIsRvalueRef;
 | |
| 
 | |
|   /// \brief Whether the parameter or argument (or neither) is more qualified.
 | |
|   DeductionQualifierComparison Qualifiers;
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArgumentsByTypeMatch(Sema &S,
 | |
|                                    TemplateParameterList *TemplateParams,
 | |
|                                    QualType Param,
 | |
|                                    QualType Arg,
 | |
|                                    TemplateDeductionInfo &Info,
 | |
|                                    SmallVectorImpl<DeducedTemplateArgument> &
 | |
|                                                       Deduced,
 | |
|                                    unsigned TDF,
 | |
|                                    bool PartialOrdering = false,
 | |
|                             SmallVectorImpl<RefParamPartialOrderingComparison> *
 | |
|                                                       RefParamComparisons = 0);
 | |
| 
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArguments(Sema &S,
 | |
|                         TemplateParameterList *TemplateParams,
 | |
|                         const TemplateArgument *Params, unsigned NumParams,
 | |
|                         const TemplateArgument *Args, unsigned NumArgs,
 | |
|                         TemplateDeductionInfo &Info,
 | |
|                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
 | |
| 
 | |
| /// \brief If the given expression is of a form that permits the deduction
 | |
| /// of a non-type template parameter, return the declaration of that
 | |
| /// non-type template parameter.
 | |
| static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
 | |
|   // If we are within an alias template, the expression may have undergone
 | |
|   // any number of parameter substitutions already.
 | |
|   while (1) {
 | |
|     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
 | |
|       E = IC->getSubExpr();
 | |
|     else if (SubstNonTypeTemplateParmExpr *Subst =
 | |
|                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
 | |
|       E = Subst->getReplacement();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether two declaration pointers refer to the same
 | |
| /// declaration.
 | |
| static bool isSameDeclaration(Decl *X, Decl *Y) {
 | |
|   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
 | |
|     X = NX->getUnderlyingDecl();
 | |
|   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
 | |
|     Y = NY->getUnderlyingDecl();
 | |
| 
 | |
|   return X->getCanonicalDecl() == Y->getCanonicalDecl();
 | |
| }
 | |
| 
 | |
| /// \brief Verify that the given, deduced template arguments are compatible.
 | |
| ///
 | |
| /// \returns The deduced template argument, or a NULL template argument if
 | |
| /// the deduced template arguments were incompatible.
 | |
| static DeducedTemplateArgument
 | |
| checkDeducedTemplateArguments(ASTContext &Context,
 | |
|                               const DeducedTemplateArgument &X,
 | |
|                               const DeducedTemplateArgument &Y) {
 | |
|   // We have no deduction for one or both of the arguments; they're compatible.
 | |
|   if (X.isNull())
 | |
|     return Y;
 | |
|   if (Y.isNull())
 | |
|     return X;
 | |
| 
 | |
|   switch (X.getKind()) {
 | |
|   case TemplateArgument::Null:
 | |
|     llvm_unreachable("Non-deduced template arguments handled above");
 | |
| 
 | |
|   case TemplateArgument::Type:
 | |
|     // If two template type arguments have the same type, they're compatible.
 | |
|     if (Y.getKind() == TemplateArgument::Type &&
 | |
|         Context.hasSameType(X.getAsType(), Y.getAsType()))
 | |
|       return X;
 | |
| 
 | |
|     return DeducedTemplateArgument();
 | |
| 
 | |
|   case TemplateArgument::Integral:
 | |
|     // If we deduced a constant in one case and either a dependent expression or
 | |
|     // declaration in another case, keep the integral constant.
 | |
|     // If both are integral constants with the same value, keep that value.
 | |
|     if (Y.getKind() == TemplateArgument::Expression ||
 | |
|         Y.getKind() == TemplateArgument::Declaration ||
 | |
|         (Y.getKind() == TemplateArgument::Integral &&
 | |
|          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
 | |
|       return DeducedTemplateArgument(X,
 | |
|                                      X.wasDeducedFromArrayBound() &&
 | |
|                                      Y.wasDeducedFromArrayBound());
 | |
| 
 | |
|     // All other combinations are incompatible.
 | |
|     return DeducedTemplateArgument();
 | |
| 
 | |
|   case TemplateArgument::Template:
 | |
|     if (Y.getKind() == TemplateArgument::Template &&
 | |
|         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
 | |
|       return X;
 | |
| 
 | |
|     // All other combinations are incompatible.
 | |
|     return DeducedTemplateArgument();
 | |
| 
 | |
|   case TemplateArgument::TemplateExpansion:
 | |
|     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
 | |
|         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
 | |
|                                     Y.getAsTemplateOrTemplatePattern()))
 | |
|       return X;
 | |
| 
 | |
|     // All other combinations are incompatible.
 | |
|     return DeducedTemplateArgument();
 | |
| 
 | |
|   case TemplateArgument::Expression:
 | |
|     // If we deduced a dependent expression in one case and either an integral
 | |
|     // constant or a declaration in another case, keep the integral constant
 | |
|     // or declaration.
 | |
|     if (Y.getKind() == TemplateArgument::Integral ||
 | |
|         Y.getKind() == TemplateArgument::Declaration)
 | |
|       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
 | |
|                                      Y.wasDeducedFromArrayBound());
 | |
| 
 | |
|     if (Y.getKind() == TemplateArgument::Expression) {
 | |
|       // Compare the expressions for equality
 | |
|       llvm::FoldingSetNodeID ID1, ID2;
 | |
|       X.getAsExpr()->Profile(ID1, Context, true);
 | |
|       Y.getAsExpr()->Profile(ID2, Context, true);
 | |
|       if (ID1 == ID2)
 | |
|         return X;
 | |
|     }
 | |
| 
 | |
|     // All other combinations are incompatible.
 | |
|     return DeducedTemplateArgument();
 | |
| 
 | |
|   case TemplateArgument::Declaration:
 | |
|     // If we deduced a declaration and a dependent expression, keep the
 | |
|     // declaration.
 | |
|     if (Y.getKind() == TemplateArgument::Expression)
 | |
|       return X;
 | |
| 
 | |
|     // If we deduced a declaration and an integral constant, keep the
 | |
|     // integral constant.
 | |
|     if (Y.getKind() == TemplateArgument::Integral)
 | |
|       return Y;
 | |
| 
 | |
|     // If we deduced two declarations, make sure they they refer to the
 | |
|     // same declaration.
 | |
|     if (Y.getKind() == TemplateArgument::Declaration &&
 | |
|         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
 | |
|         X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
 | |
|       return X;
 | |
| 
 | |
|     // All other combinations are incompatible.
 | |
|     return DeducedTemplateArgument();
 | |
| 
 | |
|   case TemplateArgument::NullPtr:
 | |
|     // If we deduced a null pointer and a dependent expression, keep the
 | |
|     // null pointer.
 | |
|     if (Y.getKind() == TemplateArgument::Expression)
 | |
|       return X;
 | |
| 
 | |
|     // If we deduced a null pointer and an integral constant, keep the
 | |
|     // integral constant.
 | |
|     if (Y.getKind() == TemplateArgument::Integral)
 | |
|       return Y;
 | |
| 
 | |
|     // If we deduced two null pointers, make sure they have the same type.
 | |
|     if (Y.getKind() == TemplateArgument::NullPtr &&
 | |
|         Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
 | |
|       return X;
 | |
| 
 | |
|     // All other combinations are incompatible.
 | |
|     return DeducedTemplateArgument();
 | |
| 
 | |
|   case TemplateArgument::Pack:
 | |
|     if (Y.getKind() != TemplateArgument::Pack ||
 | |
|         X.pack_size() != Y.pack_size())
 | |
|       return DeducedTemplateArgument();
 | |
| 
 | |
|     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
 | |
|                                       XAEnd = X.pack_end(),
 | |
|                                          YA = Y.pack_begin();
 | |
|          XA != XAEnd; ++XA, ++YA) {
 | |
|       if (checkDeducedTemplateArguments(Context,
 | |
|                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
 | |
|                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
 | |
|             .isNull())
 | |
|         return DeducedTemplateArgument();
 | |
|     }
 | |
| 
 | |
|     return X;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid TemplateArgument Kind!");
 | |
| }
 | |
| 
 | |
| /// \brief Deduce the value of the given non-type template parameter
 | |
| /// from the given constant.
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceNonTypeTemplateArgument(Sema &S,
 | |
|                               NonTypeTemplateParmDecl *NTTP,
 | |
|                               llvm::APSInt Value, QualType ValueType,
 | |
|                               bool DeducedFromArrayBound,
 | |
|                               TemplateDeductionInfo &Info,
 | |
|                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | |
|   assert(NTTP->getDepth() == 0 &&
 | |
|          "Cannot deduce non-type template argument with depth > 0");
 | |
| 
 | |
|   DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
 | |
|                                      DeducedFromArrayBound);
 | |
|   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | |
|                                                      Deduced[NTTP->getIndex()],
 | |
|                                                                  NewDeduced);
 | |
|   if (Result.isNull()) {
 | |
|     Info.Param = NTTP;
 | |
|     Info.FirstArg = Deduced[NTTP->getIndex()];
 | |
|     Info.SecondArg = NewDeduced;
 | |
|     return Sema::TDK_Inconsistent;
 | |
|   }
 | |
| 
 | |
|   Deduced[NTTP->getIndex()] = Result;
 | |
|   return Sema::TDK_Success;
 | |
| }
 | |
| 
 | |
| /// \brief Deduce the value of the given non-type template parameter
 | |
| /// from the given type- or value-dependent expression.
 | |
| ///
 | |
| /// \returns true if deduction succeeded, false otherwise.
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceNonTypeTemplateArgument(Sema &S,
 | |
|                               NonTypeTemplateParmDecl *NTTP,
 | |
|                               Expr *Value,
 | |
|                               TemplateDeductionInfo &Info,
 | |
|                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | |
|   assert(NTTP->getDepth() == 0 &&
 | |
|          "Cannot deduce non-type template argument with depth > 0");
 | |
|   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
 | |
|          "Expression template argument must be type- or value-dependent.");
 | |
| 
 | |
|   DeducedTemplateArgument NewDeduced(Value);
 | |
|   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | |
|                                                      Deduced[NTTP->getIndex()],
 | |
|                                                                  NewDeduced);
 | |
| 
 | |
|   if (Result.isNull()) {
 | |
|     Info.Param = NTTP;
 | |
|     Info.FirstArg = Deduced[NTTP->getIndex()];
 | |
|     Info.SecondArg = NewDeduced;
 | |
|     return Sema::TDK_Inconsistent;
 | |
|   }
 | |
| 
 | |
|   Deduced[NTTP->getIndex()] = Result;
 | |
|   return Sema::TDK_Success;
 | |
| }
 | |
| 
 | |
| /// \brief Deduce the value of the given non-type template parameter
 | |
| /// from the given declaration.
 | |
| ///
 | |
| /// \returns true if deduction succeeded, false otherwise.
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceNonTypeTemplateArgument(Sema &S,
 | |
|                             NonTypeTemplateParmDecl *NTTP,
 | |
|                             ValueDecl *D,
 | |
|                             TemplateDeductionInfo &Info,
 | |
|                             SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | |
|   assert(NTTP->getDepth() == 0 &&
 | |
|          "Cannot deduce non-type template argument with depth > 0");
 | |
| 
 | |
|   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : 0;
 | |
|   TemplateArgument New(D, NTTP->getType()->isReferenceType());
 | |
|   DeducedTemplateArgument NewDeduced(New);
 | |
|   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | |
|                                                      Deduced[NTTP->getIndex()],
 | |
|                                                                  NewDeduced);
 | |
|   if (Result.isNull()) {
 | |
|     Info.Param = NTTP;
 | |
|     Info.FirstArg = Deduced[NTTP->getIndex()];
 | |
|     Info.SecondArg = NewDeduced;
 | |
|     return Sema::TDK_Inconsistent;
 | |
|   }
 | |
| 
 | |
|   Deduced[NTTP->getIndex()] = Result;
 | |
|   return Sema::TDK_Success;
 | |
| }
 | |
| 
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArguments(Sema &S,
 | |
|                         TemplateParameterList *TemplateParams,
 | |
|                         TemplateName Param,
 | |
|                         TemplateName Arg,
 | |
|                         TemplateDeductionInfo &Info,
 | |
|                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | |
|   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
 | |
|   if (!ParamDecl) {
 | |
|     // The parameter type is dependent and is not a template template parameter,
 | |
|     // so there is nothing that we can deduce.
 | |
|     return Sema::TDK_Success;
 | |
|   }
 | |
| 
 | |
|   if (TemplateTemplateParmDecl *TempParam
 | |
|         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
 | |
|     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
 | |
|     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | |
|                                                  Deduced[TempParam->getIndex()],
 | |
|                                                                    NewDeduced);
 | |
|     if (Result.isNull()) {
 | |
|       Info.Param = TempParam;
 | |
|       Info.FirstArg = Deduced[TempParam->getIndex()];
 | |
|       Info.SecondArg = NewDeduced;
 | |
|       return Sema::TDK_Inconsistent;
 | |
|     }
 | |
| 
 | |
|     Deduced[TempParam->getIndex()] = Result;
 | |
|     return Sema::TDK_Success;
 | |
|   }
 | |
| 
 | |
|   // Verify that the two template names are equivalent.
 | |
|   if (S.Context.hasSameTemplateName(Param, Arg))
 | |
|     return Sema::TDK_Success;
 | |
| 
 | |
|   // Mismatch of non-dependent template parameter to argument.
 | |
|   Info.FirstArg = TemplateArgument(Param);
 | |
|   Info.SecondArg = TemplateArgument(Arg);
 | |
|   return Sema::TDK_NonDeducedMismatch;
 | |
| }
 | |
| 
 | |
| /// \brief Deduce the template arguments by comparing the template parameter
 | |
| /// type (which is a template-id) with the template argument type.
 | |
| ///
 | |
| /// \param S the Sema
 | |
| ///
 | |
| /// \param TemplateParams the template parameters that we are deducing
 | |
| ///
 | |
| /// \param Param the parameter type
 | |
| ///
 | |
| /// \param Arg the argument type
 | |
| ///
 | |
| /// \param Info information about the template argument deduction itself
 | |
| ///
 | |
| /// \param Deduced the deduced template arguments
 | |
| ///
 | |
| /// \returns the result of template argument deduction so far. Note that a
 | |
| /// "success" result means that template argument deduction has not yet failed,
 | |
| /// but it may still fail, later, for other reasons.
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArguments(Sema &S,
 | |
|                         TemplateParameterList *TemplateParams,
 | |
|                         const TemplateSpecializationType *Param,
 | |
|                         QualType Arg,
 | |
|                         TemplateDeductionInfo &Info,
 | |
|                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | |
|   assert(Arg.isCanonical() && "Argument type must be canonical");
 | |
| 
 | |
|   // Check whether the template argument is a dependent template-id.
 | |
|   if (const TemplateSpecializationType *SpecArg
 | |
|         = dyn_cast<TemplateSpecializationType>(Arg)) {
 | |
|     // Perform template argument deduction for the template name.
 | |
|     if (Sema::TemplateDeductionResult Result
 | |
|           = DeduceTemplateArguments(S, TemplateParams,
 | |
|                                     Param->getTemplateName(),
 | |
|                                     SpecArg->getTemplateName(),
 | |
|                                     Info, Deduced))
 | |
|       return Result;
 | |
| 
 | |
| 
 | |
|     // Perform template argument deduction on each template
 | |
|     // argument. Ignore any missing/extra arguments, since they could be
 | |
|     // filled in by default arguments.
 | |
|     return DeduceTemplateArguments(S, TemplateParams,
 | |
|                                    Param->getArgs(), Param->getNumArgs(),
 | |
|                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
 | |
|                                    Info, Deduced);
 | |
|   }
 | |
| 
 | |
|   // If the argument type is a class template specialization, we
 | |
|   // perform template argument deduction using its template
 | |
|   // arguments.
 | |
|   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
 | |
|   if (!RecordArg) {
 | |
|     Info.FirstArg = TemplateArgument(QualType(Param, 0));
 | |
|     Info.SecondArg = TemplateArgument(Arg);
 | |
|     return Sema::TDK_NonDeducedMismatch;
 | |
|   }
 | |
| 
 | |
|   ClassTemplateSpecializationDecl *SpecArg
 | |
|     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
 | |
|   if (!SpecArg) {
 | |
|     Info.FirstArg = TemplateArgument(QualType(Param, 0));
 | |
|     Info.SecondArg = TemplateArgument(Arg);
 | |
|     return Sema::TDK_NonDeducedMismatch;
 | |
|   }
 | |
| 
 | |
|   // Perform template argument deduction for the template name.
 | |
|   if (Sema::TemplateDeductionResult Result
 | |
|         = DeduceTemplateArguments(S,
 | |
|                                   TemplateParams,
 | |
|                                   Param->getTemplateName(),
 | |
|                                TemplateName(SpecArg->getSpecializedTemplate()),
 | |
|                                   Info, Deduced))
 | |
|     return Result;
 | |
| 
 | |
|   // Perform template argument deduction for the template arguments.
 | |
|   return DeduceTemplateArguments(S, TemplateParams,
 | |
|                                  Param->getArgs(), Param->getNumArgs(),
 | |
|                                  SpecArg->getTemplateArgs().data(),
 | |
|                                  SpecArg->getTemplateArgs().size(),
 | |
|                                  Info, Deduced);
 | |
| }
 | |
| 
 | |
| /// \brief Determines whether the given type is an opaque type that
 | |
| /// might be more qualified when instantiated.
 | |
| static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
 | |
|   switch (T->getTypeClass()) {
 | |
|   case Type::TypeOfExpr:
 | |
|   case Type::TypeOf:
 | |
|   case Type::DependentName:
 | |
|   case Type::Decltype:
 | |
|   case Type::UnresolvedUsing:
 | |
|   case Type::TemplateTypeParm:
 | |
|     return true;
 | |
| 
 | |
|   case Type::ConstantArray:
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::VariableArray:
 | |
|   case Type::DependentSizedArray:
 | |
|     return IsPossiblyOpaquelyQualifiedType(
 | |
|                                       cast<ArrayType>(T)->getElementType());
 | |
| 
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the depth and index of a template parameter.
 | |
| static std::pair<unsigned, unsigned>
 | |
| getDepthAndIndex(NamedDecl *ND) {
 | |
|   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
 | |
|     return std::make_pair(TTP->getDepth(), TTP->getIndex());
 | |
| 
 | |
|   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
 | |
|     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
 | |
| 
 | |
|   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
 | |
|   return std::make_pair(TTP->getDepth(), TTP->getIndex());
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the depth and index of an unexpanded parameter pack.
 | |
| static std::pair<unsigned, unsigned>
 | |
| getDepthAndIndex(UnexpandedParameterPack UPP) {
 | |
|   if (const TemplateTypeParmType *TTP
 | |
|                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
 | |
|     return std::make_pair(TTP->getDepth(), TTP->getIndex());
 | |
| 
 | |
|   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
 | |
| }
 | |
| 
 | |
| /// \brief Helper function to build a TemplateParameter when we don't
 | |
| /// know its type statically.
 | |
| static TemplateParameter makeTemplateParameter(Decl *D) {
 | |
|   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
 | |
|     return TemplateParameter(TTP);
 | |
|   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
 | |
|     return TemplateParameter(NTTP);
 | |
| 
 | |
|   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
 | |
| }
 | |
| 
 | |
| typedef SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
 | |
|   NewlyDeducedPacksType;
 | |
| 
 | |
| /// \brief Prepare to perform template argument deduction for all of the
 | |
| /// arguments in a set of argument packs.
 | |
| static void
 | |
| PrepareArgumentPackDeduction(Sema &S,
 | |
|                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | |
|                            ArrayRef<unsigned> PackIndices,
 | |
|                            SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
 | |
|                            NewlyDeducedPacksType &NewlyDeducedPacks) {
 | |
|   // Save the deduced template arguments for each parameter pack expanded
 | |
|   // by this pack expansion, then clear out the deduction.
 | |
|   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | |
|     // Save the previously-deduced argument pack, then clear it out so that we
 | |
|     // can deduce a new argument pack.
 | |
|     SavedPacks[I] = Deduced[PackIndices[I]];
 | |
|     Deduced[PackIndices[I]] = TemplateArgument();
 | |
| 
 | |
|     if (!S.CurrentInstantiationScope)
 | |
|       continue;
 | |
| 
 | |
|     // If the template argument pack was explicitly specified, add that to
 | |
|     // the set of deduced arguments.
 | |
|     const TemplateArgument *ExplicitArgs;
 | |
|     unsigned NumExplicitArgs;
 | |
|     if (NamedDecl *PartiallySubstitutedPack
 | |
|         = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
 | |
|                                                            &ExplicitArgs,
 | |
|                                                            &NumExplicitArgs)) {
 | |
|       if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
 | |
|         NewlyDeducedPacks[I].append(ExplicitArgs,
 | |
|                                     ExplicitArgs + NumExplicitArgs);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Finish template argument deduction for a set of argument packs,
 | |
| /// producing the argument packs and checking for consistency with prior
 | |
| /// deductions.
 | |
| static Sema::TemplateDeductionResult
 | |
| FinishArgumentPackDeduction(Sema &S,
 | |
|                            TemplateParameterList *TemplateParams,
 | |
|                            bool HasAnyArguments,
 | |
|                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | |
|                            ArrayRef<unsigned> PackIndices,
 | |
|                            SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
 | |
|                            NewlyDeducedPacksType &NewlyDeducedPacks,
 | |
|                            TemplateDeductionInfo &Info) {
 | |
|   // Build argument packs for each of the parameter packs expanded by this
 | |
|   // pack expansion.
 | |
|   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | |
|     if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
 | |
|       // We were not able to deduce anything for this parameter pack,
 | |
|       // so just restore the saved argument pack.
 | |
|       Deduced[PackIndices[I]] = SavedPacks[I];
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     DeducedTemplateArgument NewPack;
 | |
| 
 | |
|     if (NewlyDeducedPacks[I].empty()) {
 | |
|       // If we deduced an empty argument pack, create it now.
 | |
|       NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
 | |
|     } else {
 | |
|       TemplateArgument *ArgumentPack
 | |
|         = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
 | |
|       std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
 | |
|                 ArgumentPack);
 | |
|       NewPack
 | |
|         = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
 | |
|                                                    NewlyDeducedPacks[I].size()),
 | |
|                             NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
 | |
|     }
 | |
| 
 | |
|     DeducedTemplateArgument Result
 | |
|       = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
 | |
|     if (Result.isNull()) {
 | |
|       Info.Param
 | |
|         = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
 | |
|       Info.FirstArg = SavedPacks[I];
 | |
|       Info.SecondArg = NewPack;
 | |
|       return Sema::TDK_Inconsistent;
 | |
|     }
 | |
| 
 | |
|     Deduced[PackIndices[I]] = Result;
 | |
|   }
 | |
| 
 | |
|   return Sema::TDK_Success;
 | |
| }
 | |
| 
 | |
| /// \brief Deduce the template arguments by comparing the list of parameter
 | |
| /// types to the list of argument types, as in the parameter-type-lists of
 | |
| /// function types (C++ [temp.deduct.type]p10).
 | |
| ///
 | |
| /// \param S The semantic analysis object within which we are deducing
 | |
| ///
 | |
| /// \param TemplateParams The template parameters that we are deducing
 | |
| ///
 | |
| /// \param Params The list of parameter types
 | |
| ///
 | |
| /// \param NumParams The number of types in \c Params
 | |
| ///
 | |
| /// \param Args The list of argument types
 | |
| ///
 | |
| /// \param NumArgs The number of types in \c Args
 | |
| ///
 | |
| /// \param Info information about the template argument deduction itself
 | |
| ///
 | |
| /// \param Deduced the deduced template arguments
 | |
| ///
 | |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
 | |
| /// how template argument deduction is performed.
 | |
| ///
 | |
| /// \param PartialOrdering If true, we are performing template argument
 | |
| /// deduction for during partial ordering for a call
 | |
| /// (C++0x [temp.deduct.partial]).
 | |
| ///
 | |
| /// \param RefParamComparisons If we're performing template argument deduction
 | |
| /// in the context of partial ordering, the set of qualifier comparisons.
 | |
| ///
 | |
| /// \returns the result of template argument deduction so far. Note that a
 | |
| /// "success" result means that template argument deduction has not yet failed,
 | |
| /// but it may still fail, later, for other reasons.
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArguments(Sema &S,
 | |
|                         TemplateParameterList *TemplateParams,
 | |
|                         const QualType *Params, unsigned NumParams,
 | |
|                         const QualType *Args, unsigned NumArgs,
 | |
|                         TemplateDeductionInfo &Info,
 | |
|                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | |
|                         unsigned TDF,
 | |
|                         bool PartialOrdering = false,
 | |
|                         SmallVectorImpl<RefParamPartialOrderingComparison> *
 | |
|                                                      RefParamComparisons = 0) {
 | |
|   // Fast-path check to see if we have too many/too few arguments.
 | |
|   if (NumParams != NumArgs &&
 | |
|       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
 | |
|       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
 | |
|     return Sema::TDK_MiscellaneousDeductionFailure;
 | |
| 
 | |
|   // C++0x [temp.deduct.type]p10:
 | |
|   //   Similarly, if P has a form that contains (T), then each parameter type
 | |
|   //   Pi of the respective parameter-type- list of P is compared with the
 | |
|   //   corresponding parameter type Ai of the corresponding parameter-type-list
 | |
|   //   of A. [...]
 | |
|   unsigned ArgIdx = 0, ParamIdx = 0;
 | |
|   for (; ParamIdx != NumParams; ++ParamIdx) {
 | |
|     // Check argument types.
 | |
|     const PackExpansionType *Expansion
 | |
|                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
 | |
|     if (!Expansion) {
 | |
|       // Simple case: compare the parameter and argument types at this point.
 | |
| 
 | |
|       // Make sure we have an argument.
 | |
|       if (ArgIdx >= NumArgs)
 | |
|         return Sema::TDK_MiscellaneousDeductionFailure;
 | |
| 
 | |
|       if (isa<PackExpansionType>(Args[ArgIdx])) {
 | |
|         // C++0x [temp.deduct.type]p22:
 | |
|         //   If the original function parameter associated with A is a function
 | |
|         //   parameter pack and the function parameter associated with P is not
 | |
|         //   a function parameter pack, then template argument deduction fails.
 | |
|         return Sema::TDK_MiscellaneousDeductionFailure;
 | |
|       }
 | |
| 
 | |
|       if (Sema::TemplateDeductionResult Result
 | |
|             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                                  Params[ParamIdx], Args[ArgIdx],
 | |
|                                                  Info, Deduced, TDF,
 | |
|                                                  PartialOrdering,
 | |
|                                                  RefParamComparisons))
 | |
|         return Result;
 | |
| 
 | |
|       ++ArgIdx;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C++0x [temp.deduct.type]p5:
 | |
|     //   The non-deduced contexts are:
 | |
|     //     - A function parameter pack that does not occur at the end of the
 | |
|     //       parameter-declaration-clause.
 | |
|     if (ParamIdx + 1 < NumParams)
 | |
|       return Sema::TDK_Success;
 | |
| 
 | |
|     // C++0x [temp.deduct.type]p10:
 | |
|     //   If the parameter-declaration corresponding to Pi is a function
 | |
|     //   parameter pack, then the type of its declarator- id is compared with
 | |
|     //   each remaining parameter type in the parameter-type-list of A. Each
 | |
|     //   comparison deduces template arguments for subsequent positions in the
 | |
|     //   template parameter packs expanded by the function parameter pack.
 | |
| 
 | |
|     // Compute the set of template parameter indices that correspond to
 | |
|     // parameter packs expanded by the pack expansion.
 | |
|     SmallVector<unsigned, 2> PackIndices;
 | |
|     QualType Pattern = Expansion->getPattern();
 | |
|     {
 | |
|       llvm::SmallBitVector SawIndices(TemplateParams->size());
 | |
|       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
|       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
 | |
|       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
 | |
|         unsigned Depth, Index;
 | |
|         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
 | |
|         if (Depth == 0 && !SawIndices[Index]) {
 | |
|           SawIndices[Index] = true;
 | |
|           PackIndices.push_back(Index);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
 | |
| 
 | |
|     // Keep track of the deduced template arguments for each parameter pack
 | |
|     // expanded by this pack expansion (the outer index) and for each
 | |
|     // template argument (the inner SmallVectors).
 | |
|     NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
 | |
|     SmallVector<DeducedTemplateArgument, 2>
 | |
|       SavedPacks(PackIndices.size());
 | |
|     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
 | |
|                                  NewlyDeducedPacks);
 | |
| 
 | |
|     bool HasAnyArguments = false;
 | |
|     for (; ArgIdx < NumArgs; ++ArgIdx) {
 | |
|       HasAnyArguments = true;
 | |
| 
 | |
|       // Deduce template arguments from the pattern.
 | |
|       if (Sema::TemplateDeductionResult Result
 | |
|             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
 | |
|                                                  Args[ArgIdx], Info, Deduced,
 | |
|                                                  TDF, PartialOrdering,
 | |
|                                                  RefParamComparisons))
 | |
|         return Result;
 | |
| 
 | |
|       // Capture the deduced template arguments for each parameter pack expanded
 | |
|       // by this pack expansion, add them to the list of arguments we've deduced
 | |
|       // for that pack, then clear out the deduced argument.
 | |
|       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | |
|         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
 | |
|         if (!DeducedArg.isNull()) {
 | |
|           NewlyDeducedPacks[I].push_back(DeducedArg);
 | |
|           DeducedArg = DeducedTemplateArgument();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Build argument packs for each of the parameter packs expanded by this
 | |
|     // pack expansion.
 | |
|     if (Sema::TemplateDeductionResult Result
 | |
|           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
 | |
|                                         Deduced, PackIndices, SavedPacks,
 | |
|                                         NewlyDeducedPacks, Info))
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Make sure we don't have any extra arguments.
 | |
|   if (ArgIdx < NumArgs)
 | |
|     return Sema::TDK_MiscellaneousDeductionFailure;
 | |
| 
 | |
|   return Sema::TDK_Success;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the parameter has qualifiers that are either
 | |
| /// inconsistent with or a superset of the argument's qualifiers.
 | |
| static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
 | |
|                                                   QualType ArgType) {
 | |
|   Qualifiers ParamQs = ParamType.getQualifiers();
 | |
|   Qualifiers ArgQs = ArgType.getQualifiers();
 | |
| 
 | |
|   if (ParamQs == ArgQs)
 | |
|     return false;
 | |
|        
 | |
|   // Mismatched (but not missing) Objective-C GC attributes.
 | |
|   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 
 | |
|       ParamQs.hasObjCGCAttr())
 | |
|     return true;
 | |
|   
 | |
|   // Mismatched (but not missing) address spaces.
 | |
|   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
 | |
|       ParamQs.hasAddressSpace())
 | |
|     return true;
 | |
| 
 | |
|   // Mismatched (but not missing) Objective-C lifetime qualifiers.
 | |
|   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
 | |
|       ParamQs.hasObjCLifetime())
 | |
|     return true;
 | |
|   
 | |
|   // CVR qualifier superset.
 | |
|   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
 | |
|       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
 | |
|                                                 == ParamQs.getCVRQualifiers());
 | |
| }
 | |
| 
 | |
| /// \brief Compare types for equality with respect to possibly compatible
 | |
| /// function types (noreturn adjustment, implicit calling conventions). If any
 | |
| /// of parameter and argument is not a function, just perform type comparison.
 | |
| ///
 | |
| /// \param Param the template parameter type.
 | |
| ///
 | |
| /// \param Arg the argument type.
 | |
| bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
 | |
|                                           CanQualType Arg) {
 | |
|   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
 | |
|                      *ArgFunction   = Arg->getAs<FunctionType>();
 | |
| 
 | |
|   // Just compare if not functions.
 | |
|   if (!ParamFunction || !ArgFunction)
 | |
|     return Param == Arg;
 | |
| 
 | |
|   // Noreturn adjustment.
 | |
|   QualType AdjustedParam;
 | |
|   if (IsNoReturnConversion(Param, Arg, AdjustedParam))
 | |
|     return Arg == Context.getCanonicalType(AdjustedParam);
 | |
| 
 | |
|   // FIXME: Compatible calling conventions.
 | |
| 
 | |
|   return Param == Arg;
 | |
| }
 | |
| 
 | |
| /// \brief Deduce the template arguments by comparing the parameter type and
 | |
| /// the argument type (C++ [temp.deduct.type]).
 | |
| ///
 | |
| /// \param S the semantic analysis object within which we are deducing
 | |
| ///
 | |
| /// \param TemplateParams the template parameters that we are deducing
 | |
| ///
 | |
| /// \param ParamIn the parameter type
 | |
| ///
 | |
| /// \param ArgIn the argument type
 | |
| ///
 | |
| /// \param Info information about the template argument deduction itself
 | |
| ///
 | |
| /// \param Deduced the deduced template arguments
 | |
| ///
 | |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
 | |
| /// how template argument deduction is performed.
 | |
| ///
 | |
| /// \param PartialOrdering Whether we're performing template argument deduction
 | |
| /// in the context of partial ordering (C++0x [temp.deduct.partial]).
 | |
| ///
 | |
| /// \param RefParamComparisons If we're performing template argument deduction
 | |
| /// in the context of partial ordering, the set of qualifier comparisons.
 | |
| ///
 | |
| /// \returns the result of template argument deduction so far. Note that a
 | |
| /// "success" result means that template argument deduction has not yet failed,
 | |
| /// but it may still fail, later, for other reasons.
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArgumentsByTypeMatch(Sema &S,
 | |
|                                    TemplateParameterList *TemplateParams,
 | |
|                                    QualType ParamIn, QualType ArgIn,
 | |
|                                    TemplateDeductionInfo &Info,
 | |
|                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | |
|                                    unsigned TDF,
 | |
|                                    bool PartialOrdering,
 | |
|                             SmallVectorImpl<RefParamPartialOrderingComparison> *
 | |
|                                                           RefParamComparisons) {
 | |
|   // We only want to look at the canonical types, since typedefs and
 | |
|   // sugar are not part of template argument deduction.
 | |
|   QualType Param = S.Context.getCanonicalType(ParamIn);
 | |
|   QualType Arg = S.Context.getCanonicalType(ArgIn);
 | |
| 
 | |
|   // If the argument type is a pack expansion, look at its pattern.
 | |
|   // This isn't explicitly called out
 | |
|   if (const PackExpansionType *ArgExpansion
 | |
|                                             = dyn_cast<PackExpansionType>(Arg))
 | |
|     Arg = ArgExpansion->getPattern();
 | |
| 
 | |
|   if (PartialOrdering) {
 | |
|     // C++0x [temp.deduct.partial]p5:
 | |
|     //   Before the partial ordering is done, certain transformations are
 | |
|     //   performed on the types used for partial ordering:
 | |
|     //     - If P is a reference type, P is replaced by the type referred to.
 | |
|     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
 | |
|     if (ParamRef)
 | |
|       Param = ParamRef->getPointeeType();
 | |
| 
 | |
|     //     - If A is a reference type, A is replaced by the type referred to.
 | |
|     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
 | |
|     if (ArgRef)
 | |
|       Arg = ArgRef->getPointeeType();
 | |
| 
 | |
|     if (RefParamComparisons && ParamRef && ArgRef) {
 | |
|       // C++0x [temp.deduct.partial]p6:
 | |
|       //   If both P and A were reference types (before being replaced with the
 | |
|       //   type referred to above), determine which of the two types (if any) is
 | |
|       //   more cv-qualified than the other; otherwise the types are considered
 | |
|       //   to be equally cv-qualified for partial ordering purposes. The result
 | |
|       //   of this determination will be used below.
 | |
|       //
 | |
|       // We save this information for later, using it only when deduction
 | |
|       // succeeds in both directions.
 | |
|       RefParamPartialOrderingComparison Comparison;
 | |
|       Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
 | |
|       Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
 | |
|       Comparison.Qualifiers = NeitherMoreQualified;
 | |
|       
 | |
|       Qualifiers ParamQuals = Param.getQualifiers();
 | |
|       Qualifiers ArgQuals = Arg.getQualifiers();
 | |
|       if (ParamQuals.isStrictSupersetOf(ArgQuals))
 | |
|         Comparison.Qualifiers = ParamMoreQualified;
 | |
|       else if (ArgQuals.isStrictSupersetOf(ParamQuals))
 | |
|         Comparison.Qualifiers = ArgMoreQualified;
 | |
|       RefParamComparisons->push_back(Comparison);
 | |
|     }
 | |
| 
 | |
|     // C++0x [temp.deduct.partial]p7:
 | |
|     //   Remove any top-level cv-qualifiers:
 | |
|     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
 | |
|     //       version of P.
 | |
|     Param = Param.getUnqualifiedType();
 | |
|     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
 | |
|     //       version of A.
 | |
|     Arg = Arg.getUnqualifiedType();
 | |
|   } else {
 | |
|     // C++0x [temp.deduct.call]p4 bullet 1:
 | |
|     //   - If the original P is a reference type, the deduced A (i.e., the type
 | |
|     //     referred to by the reference) can be more cv-qualified than the
 | |
|     //     transformed A.
 | |
|     if (TDF & TDF_ParamWithReferenceType) {
 | |
|       Qualifiers Quals;
 | |
|       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
 | |
|       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
 | |
|                              Arg.getCVRQualifiers());
 | |
|       Param = S.Context.getQualifiedType(UnqualParam, Quals);
 | |
|     }
 | |
| 
 | |
|     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
 | |
|       // C++0x [temp.deduct.type]p10:
 | |
|       //   If P and A are function types that originated from deduction when
 | |
|       //   taking the address of a function template (14.8.2.2) or when deducing
 | |
|       //   template arguments from a function declaration (14.8.2.6) and Pi and
 | |
|       //   Ai are parameters of the top-level parameter-type-list of P and A,
 | |
|       //   respectively, Pi is adjusted if it is an rvalue reference to a
 | |
|       //   cv-unqualified template parameter and Ai is an lvalue reference, in
 | |
|       //   which case the type of Pi is changed to be the template parameter
 | |
|       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
 | |
|       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
 | |
|       //   deduced as X&. - end note ]
 | |
|       TDF &= ~TDF_TopLevelParameterTypeList;
 | |
| 
 | |
|       if (const RValueReferenceType *ParamRef
 | |
|                                         = Param->getAs<RValueReferenceType>()) {
 | |
|         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
 | |
|             !ParamRef->getPointeeType().getQualifiers())
 | |
|           if (Arg->isLValueReferenceType())
 | |
|             Param = ParamRef->getPointeeType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.deduct.type]p9:
 | |
|   //   A template type argument T, a template template argument TT or a
 | |
|   //   template non-type argument i can be deduced if P and A have one of
 | |
|   //   the following forms:
 | |
|   //
 | |
|   //     T
 | |
|   //     cv-list T
 | |
|   if (const TemplateTypeParmType *TemplateTypeParm
 | |
|         = Param->getAs<TemplateTypeParmType>()) {
 | |
|     // Just skip any attempts to deduce from a placeholder type.
 | |
|     if (Arg->isPlaceholderType())
 | |
|       return Sema::TDK_Success;
 | |
|     
 | |
|     unsigned Index = TemplateTypeParm->getIndex();
 | |
|     bool RecanonicalizeArg = false;
 | |
| 
 | |
|     // If the argument type is an array type, move the qualifiers up to the
 | |
|     // top level, so they can be matched with the qualifiers on the parameter.
 | |
|     if (isa<ArrayType>(Arg)) {
 | |
|       Qualifiers Quals;
 | |
|       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
 | |
|       if (Quals) {
 | |
|         Arg = S.Context.getQualifiedType(Arg, Quals);
 | |
|         RecanonicalizeArg = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The argument type can not be less qualified than the parameter
 | |
|     // type.
 | |
|     if (!(TDF & TDF_IgnoreQualifiers) &&
 | |
|         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
 | |
|       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
 | |
|       Info.FirstArg = TemplateArgument(Param);
 | |
|       Info.SecondArg = TemplateArgument(Arg);
 | |
|       return Sema::TDK_Underqualified;
 | |
|     }
 | |
| 
 | |
|     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
 | |
|     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
 | |
|     QualType DeducedType = Arg;
 | |
| 
 | |
|     // Remove any qualifiers on the parameter from the deduced type.
 | |
|     // We checked the qualifiers for consistency above.
 | |
|     Qualifiers DeducedQs = DeducedType.getQualifiers();
 | |
|     Qualifiers ParamQs = Param.getQualifiers();
 | |
|     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
 | |
|     if (ParamQs.hasObjCGCAttr())
 | |
|       DeducedQs.removeObjCGCAttr();
 | |
|     if (ParamQs.hasAddressSpace())
 | |
|       DeducedQs.removeAddressSpace();
 | |
|     if (ParamQs.hasObjCLifetime())
 | |
|       DeducedQs.removeObjCLifetime();
 | |
|     
 | |
|     // Objective-C ARC:
 | |
|     //   If template deduction would produce a lifetime qualifier on a type
 | |
|     //   that is not a lifetime type, template argument deduction fails.
 | |
|     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
 | |
|         !DeducedType->isDependentType()) {
 | |
|       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
 | |
|       Info.FirstArg = TemplateArgument(Param);
 | |
|       Info.SecondArg = TemplateArgument(Arg);
 | |
|       return Sema::TDK_Underqualified;      
 | |
|     }
 | |
|     
 | |
|     // Objective-C ARC:
 | |
|     //   If template deduction would produce an argument type with lifetime type
 | |
|     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
 | |
|     if (S.getLangOpts().ObjCAutoRefCount &&
 | |
|         DeducedType->isObjCLifetimeType() &&
 | |
|         !DeducedQs.hasObjCLifetime())
 | |
|       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
 | |
|     
 | |
|     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
 | |
|                                              DeducedQs);
 | |
|     
 | |
|     if (RecanonicalizeArg)
 | |
|       DeducedType = S.Context.getCanonicalType(DeducedType);
 | |
| 
 | |
|     DeducedTemplateArgument NewDeduced(DeducedType);
 | |
|     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
 | |
|                                                                  Deduced[Index],
 | |
|                                                                    NewDeduced);
 | |
|     if (Result.isNull()) {
 | |
|       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
 | |
|       Info.FirstArg = Deduced[Index];
 | |
|       Info.SecondArg = NewDeduced;
 | |
|       return Sema::TDK_Inconsistent;
 | |
|     }
 | |
| 
 | |
|     Deduced[Index] = Result;
 | |
|     return Sema::TDK_Success;
 | |
|   }
 | |
| 
 | |
|   // Set up the template argument deduction information for a failure.
 | |
|   Info.FirstArg = TemplateArgument(ParamIn);
 | |
|   Info.SecondArg = TemplateArgument(ArgIn);
 | |
| 
 | |
|   // If the parameter is an already-substituted template parameter
 | |
|   // pack, do nothing: we don't know which of its arguments to look
 | |
|   // at, so we have to wait until all of the parameter packs in this
 | |
|   // expansion have arguments.
 | |
|   if (isa<SubstTemplateTypeParmPackType>(Param))
 | |
|     return Sema::TDK_Success;
 | |
| 
 | |
|   // Check the cv-qualifiers on the parameter and argument types.
 | |
|   CanQualType CanParam = S.Context.getCanonicalType(Param);
 | |
|   CanQualType CanArg = S.Context.getCanonicalType(Arg);
 | |
|   if (!(TDF & TDF_IgnoreQualifiers)) {
 | |
|     if (TDF & TDF_ParamWithReferenceType) {
 | |
|       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
|     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
 | |
|       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
|     
 | |
|     // If the parameter type is not dependent, there is nothing to deduce.
 | |
|     if (!Param->isDependentType()) {
 | |
|       if (!(TDF & TDF_SkipNonDependent)) {
 | |
|         bool NonDeduced = (TDF & TDF_InOverloadResolution)?
 | |
|                           !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
 | |
|                           Param != Arg;
 | |
|         if (NonDeduced) {
 | |
|           return Sema::TDK_NonDeducedMismatch;
 | |
|         }
 | |
|       }
 | |
|       return Sema::TDK_Success;
 | |
|     }
 | |
|   } else if (!Param->isDependentType()) {
 | |
|     CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
 | |
|                 ArgUnqualType = CanArg.getUnqualifiedType();
 | |
|     bool Success = (TDF & TDF_InOverloadResolution)?
 | |
|                    S.isSameOrCompatibleFunctionType(ParamUnqualType,
 | |
|                                                     ArgUnqualType) :
 | |
|                    ParamUnqualType == ArgUnqualType;
 | |
|     if (Success)
 | |
|       return Sema::TDK_Success;
 | |
|   }
 | |
| 
 | |
|   switch (Param->getTypeClass()) {
 | |
|     // Non-canonical types cannot appear here.
 | |
| #define NON_CANONICAL_TYPE(Class, Base) \
 | |
|   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
 | |
| #define TYPE(Class, Base)
 | |
| #include "clang/AST/TypeNodes.def"
 | |
|       
 | |
|     case Type::TemplateTypeParm:
 | |
|     case Type::SubstTemplateTypeParmPack:
 | |
|       llvm_unreachable("Type nodes handled above");
 | |
| 
 | |
|     // These types cannot be dependent, so simply check whether the types are
 | |
|     // the same.
 | |
|     case Type::Builtin:
 | |
|     case Type::VariableArray:
 | |
|     case Type::Vector:
 | |
|     case Type::FunctionNoProto:
 | |
|     case Type::Record:
 | |
|     case Type::Enum:
 | |
|     case Type::ObjCObject:
 | |
|     case Type::ObjCInterface:
 | |
|     case Type::ObjCObjectPointer: {
 | |
|       if (TDF & TDF_SkipNonDependent)
 | |
|         return Sema::TDK_Success;
 | |
|       
 | |
|       if (TDF & TDF_IgnoreQualifiers) {
 | |
|         Param = Param.getUnqualifiedType();
 | |
|         Arg = Arg.getUnqualifiedType();
 | |
|       }
 | |
|             
 | |
|       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
|       
 | |
|     //     _Complex T   [placeholder extension]  
 | |
|     case Type::Complex:
 | |
|       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
 | |
|         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 
 | |
|                                     cast<ComplexType>(Param)->getElementType(), 
 | |
|                                     ComplexArg->getElementType(),
 | |
|                                     Info, Deduced, TDF);
 | |
| 
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|     //     _Atomic T   [extension]
 | |
|     case Type::Atomic:
 | |
|       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
 | |
|         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                        cast<AtomicType>(Param)->getValueType(),
 | |
|                                        AtomicArg->getValueType(),
 | |
|                                        Info, Deduced, TDF);
 | |
| 
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|     //     T *
 | |
|     case Type::Pointer: {
 | |
|       QualType PointeeType;
 | |
|       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
 | |
|         PointeeType = PointerArg->getPointeeType();
 | |
|       } else if (const ObjCObjectPointerType *PointerArg
 | |
|                    = Arg->getAs<ObjCObjectPointerType>()) {
 | |
|         PointeeType = PointerArg->getPointeeType();
 | |
|       } else {
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
|       }
 | |
| 
 | |
|       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
 | |
|       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                      cast<PointerType>(Param)->getPointeeType(),
 | |
|                                      PointeeType,
 | |
|                                      Info, Deduced, SubTDF);
 | |
|     }
 | |
| 
 | |
|     //     T &
 | |
|     case Type::LValueReference: {
 | |
|       const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
 | |
|       if (!ReferenceArg)
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                            cast<LValueReferenceType>(Param)->getPointeeType(),
 | |
|                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
 | |
|     }
 | |
| 
 | |
|     //     T && [C++0x]
 | |
|     case Type::RValueReference: {
 | |
|       const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
 | |
|       if (!ReferenceArg)
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                              cast<RValueReferenceType>(Param)->getPointeeType(),
 | |
|                              ReferenceArg->getPointeeType(),
 | |
|                              Info, Deduced, 0);
 | |
|     }
 | |
| 
 | |
|     //     T [] (implied, but not stated explicitly)
 | |
|     case Type::IncompleteArray: {
 | |
|       const IncompleteArrayType *IncompleteArrayArg =
 | |
|         S.Context.getAsIncompleteArrayType(Arg);
 | |
|       if (!IncompleteArrayArg)
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
 | |
|       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
 | |
|                     IncompleteArrayArg->getElementType(),
 | |
|                     Info, Deduced, SubTDF);
 | |
|     }
 | |
| 
 | |
|     //     T [integer-constant]
 | |
|     case Type::ConstantArray: {
 | |
|       const ConstantArrayType *ConstantArrayArg =
 | |
|         S.Context.getAsConstantArrayType(Arg);
 | |
|       if (!ConstantArrayArg)
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       const ConstantArrayType *ConstantArrayParm =
 | |
|         S.Context.getAsConstantArrayType(Param);
 | |
|       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
 | |
|       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                            ConstantArrayParm->getElementType(),
 | |
|                                            ConstantArrayArg->getElementType(),
 | |
|                                            Info, Deduced, SubTDF);
 | |
|     }
 | |
| 
 | |
|     //     type [i]
 | |
|     case Type::DependentSizedArray: {
 | |
|       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
 | |
|       if (!ArrayArg)
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
 | |
| 
 | |
|       // Check the element type of the arrays
 | |
|       const DependentSizedArrayType *DependentArrayParm
 | |
|         = S.Context.getAsDependentSizedArrayType(Param);
 | |
|       if (Sema::TemplateDeductionResult Result
 | |
|             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                           DependentArrayParm->getElementType(),
 | |
|                                           ArrayArg->getElementType(),
 | |
|                                           Info, Deduced, SubTDF))
 | |
|         return Result;
 | |
| 
 | |
|       // Determine the array bound is something we can deduce.
 | |
|       NonTypeTemplateParmDecl *NTTP
 | |
|         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
 | |
|       if (!NTTP)
 | |
|         return Sema::TDK_Success;
 | |
| 
 | |
|       // We can perform template argument deduction for the given non-type
 | |
|       // template parameter.
 | |
|       assert(NTTP->getDepth() == 0 &&
 | |
|              "Cannot deduce non-type template argument at depth > 0");
 | |
|       if (const ConstantArrayType *ConstantArrayArg
 | |
|             = dyn_cast<ConstantArrayType>(ArrayArg)) {
 | |
|         llvm::APSInt Size(ConstantArrayArg->getSize());
 | |
|         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
 | |
|                                              S.Context.getSizeType(),
 | |
|                                              /*ArrayBound=*/true,
 | |
|                                              Info, Deduced);
 | |
|       }
 | |
|       if (const DependentSizedArrayType *DependentArrayArg
 | |
|             = dyn_cast<DependentSizedArrayType>(ArrayArg))
 | |
|         if (DependentArrayArg->getSizeExpr())
 | |
|           return DeduceNonTypeTemplateArgument(S, NTTP,
 | |
|                                                DependentArrayArg->getSizeExpr(),
 | |
|                                                Info, Deduced);
 | |
| 
 | |
|       // Incomplete type does not match a dependently-sized array type
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
| 
 | |
|     //     type(*)(T)
 | |
|     //     T(*)()
 | |
|     //     T(*)(T)
 | |
|     case Type::FunctionProto: {
 | |
|       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
 | |
|       const FunctionProtoType *FunctionProtoArg =
 | |
|         dyn_cast<FunctionProtoType>(Arg);
 | |
|       if (!FunctionProtoArg)
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       const FunctionProtoType *FunctionProtoParam =
 | |
|         cast<FunctionProtoType>(Param);
 | |
| 
 | |
|       if (FunctionProtoParam->getTypeQuals()
 | |
|             != FunctionProtoArg->getTypeQuals() ||
 | |
|           FunctionProtoParam->getRefQualifier()
 | |
|             != FunctionProtoArg->getRefQualifier() ||
 | |
|           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       // Check return types.
 | |
|       if (Sema::TemplateDeductionResult Result
 | |
|             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                             FunctionProtoParam->getResultType(),
 | |
|                                             FunctionProtoArg->getResultType(),
 | |
|                                             Info, Deduced, 0))
 | |
|         return Result;
 | |
| 
 | |
|       return DeduceTemplateArguments(S, TemplateParams,
 | |
|                                      FunctionProtoParam->arg_type_begin(),
 | |
|                                      FunctionProtoParam->getNumArgs(),
 | |
|                                      FunctionProtoArg->arg_type_begin(),
 | |
|                                      FunctionProtoArg->getNumArgs(),
 | |
|                                      Info, Deduced, SubTDF);
 | |
|     }
 | |
| 
 | |
|     case Type::InjectedClassName: {
 | |
|       // Treat a template's injected-class-name as if the template
 | |
|       // specialization type had been used.
 | |
|       Param = cast<InjectedClassNameType>(Param)
 | |
|         ->getInjectedSpecializationType();
 | |
|       assert(isa<TemplateSpecializationType>(Param) &&
 | |
|              "injected class name is not a template specialization type");
 | |
|       // fall through
 | |
|     }
 | |
| 
 | |
|     //     template-name<T> (where template-name refers to a class template)
 | |
|     //     template-name<i>
 | |
|     //     TT<T>
 | |
|     //     TT<i>
 | |
|     //     TT<>
 | |
|     case Type::TemplateSpecialization: {
 | |
|       const TemplateSpecializationType *SpecParam
 | |
|         = cast<TemplateSpecializationType>(Param);
 | |
| 
 | |
|       // Try to deduce template arguments from the template-id.
 | |
|       Sema::TemplateDeductionResult Result
 | |
|         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
 | |
|                                   Info, Deduced);
 | |
| 
 | |
|       if (Result && (TDF & TDF_DerivedClass)) {
 | |
|         // C++ [temp.deduct.call]p3b3:
 | |
|         //   If P is a class, and P has the form template-id, then A can be a
 | |
|         //   derived class of the deduced A. Likewise, if P is a pointer to a
 | |
|         //   class of the form template-id, A can be a pointer to a derived
 | |
|         //   class pointed to by the deduced A.
 | |
|         //
 | |
|         // More importantly:
 | |
|         //   These alternatives are considered only if type deduction would
 | |
|         //   otherwise fail.
 | |
|         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
 | |
|           // We cannot inspect base classes as part of deduction when the type
 | |
|           // is incomplete, so either instantiate any templates necessary to
 | |
|           // complete the type, or skip over it if it cannot be completed.
 | |
|           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
 | |
|             return Result;
 | |
| 
 | |
|           // Use data recursion to crawl through the list of base classes.
 | |
|           // Visited contains the set of nodes we have already visited, while
 | |
|           // ToVisit is our stack of records that we still need to visit.
 | |
|           llvm::SmallPtrSet<const RecordType *, 8> Visited;
 | |
|           SmallVector<const RecordType *, 8> ToVisit;
 | |
|           ToVisit.push_back(RecordT);
 | |
|           bool Successful = false;
 | |
|           SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
 | |
|                                                               Deduced.end());
 | |
|           while (!ToVisit.empty()) {
 | |
|             // Retrieve the next class in the inheritance hierarchy.
 | |
|             const RecordType *NextT = ToVisit.back();
 | |
|             ToVisit.pop_back();
 | |
| 
 | |
|             // If we have already seen this type, skip it.
 | |
|             if (!Visited.insert(NextT))
 | |
|               continue;
 | |
| 
 | |
|             // If this is a base class, try to perform template argument
 | |
|             // deduction from it.
 | |
|             if (NextT != RecordT) {
 | |
|               TemplateDeductionInfo BaseInfo(Info.getLocation());
 | |
|               Sema::TemplateDeductionResult BaseResult
 | |
|                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
 | |
|                                           QualType(NextT, 0), BaseInfo,
 | |
|                                           Deduced);
 | |
| 
 | |
|               // If template argument deduction for this base was successful,
 | |
|               // note that we had some success. Otherwise, ignore any deductions
 | |
|               // from this base class.
 | |
|               if (BaseResult == Sema::TDK_Success) {
 | |
|                 Successful = true;
 | |
|                 DeducedOrig.clear();
 | |
|                 DeducedOrig.append(Deduced.begin(), Deduced.end());
 | |
|                 Info.Param = BaseInfo.Param;
 | |
|                 Info.FirstArg = BaseInfo.FirstArg;
 | |
|                 Info.SecondArg = BaseInfo.SecondArg;
 | |
|               }
 | |
|               else
 | |
|                 Deduced = DeducedOrig;
 | |
|             }
 | |
| 
 | |
|             // Visit base classes
 | |
|             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
 | |
|             for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
 | |
|                                                  BaseEnd = Next->bases_end();
 | |
|                  Base != BaseEnd; ++Base) {
 | |
|               assert(Base->getType()->isRecordType() &&
 | |
|                      "Base class that isn't a record?");
 | |
|               ToVisit.push_back(Base->getType()->getAs<RecordType>());
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           if (Successful)
 | |
|             return Sema::TDK_Success;
 | |
|         }
 | |
| 
 | |
|       }
 | |
| 
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     //     T type::*
 | |
|     //     T T::*
 | |
|     //     T (type::*)()
 | |
|     //     type (T::*)()
 | |
|     //     type (type::*)(T)
 | |
|     //     type (T::*)(T)
 | |
|     //     T (type::*)(T)
 | |
|     //     T (T::*)()
 | |
|     //     T (T::*)(T)
 | |
|     case Type::MemberPointer: {
 | |
|       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
 | |
|       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
 | |
|       if (!MemPtrArg)
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       if (Sema::TemplateDeductionResult Result
 | |
|             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                                  MemPtrParam->getPointeeType(),
 | |
|                                                  MemPtrArg->getPointeeType(),
 | |
|                                                  Info, Deduced,
 | |
|                                                  TDF & TDF_IgnoreQualifiers))
 | |
|         return Result;
 | |
| 
 | |
|       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                            QualType(MemPtrParam->getClass(), 0),
 | |
|                                            QualType(MemPtrArg->getClass(), 0),
 | |
|                                            Info, Deduced, 
 | |
|                                            TDF & TDF_IgnoreQualifiers);
 | |
|     }
 | |
| 
 | |
|     //     (clang extension)
 | |
|     //
 | |
|     //     type(^)(T)
 | |
|     //     T(^)()
 | |
|     //     T(^)(T)
 | |
|     case Type::BlockPointer: {
 | |
|       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
 | |
|       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
 | |
| 
 | |
|       if (!BlockPtrArg)
 | |
|         return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                                 BlockPtrParam->getPointeeType(),
 | |
|                                                 BlockPtrArg->getPointeeType(),
 | |
|                                                 Info, Deduced, 0);
 | |
|     }
 | |
| 
 | |
|     //     (clang extension)
 | |
|     //
 | |
|     //     T __attribute__(((ext_vector_type(<integral constant>))))
 | |
|     case Type::ExtVector: {
 | |
|       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
 | |
|       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
 | |
|         // Make sure that the vectors have the same number of elements.
 | |
|         if (VectorParam->getNumElements() != VectorArg->getNumElements())
 | |
|           return Sema::TDK_NonDeducedMismatch;
 | |
|         
 | |
|         // Perform deduction on the element types.
 | |
|         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                                   VectorParam->getElementType(),
 | |
|                                                   VectorArg->getElementType(),
 | |
|                                                   Info, Deduced, TDF);
 | |
|       }
 | |
|       
 | |
|       if (const DependentSizedExtVectorType *VectorArg 
 | |
|                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
 | |
|         // We can't check the number of elements, since the argument has a
 | |
|         // dependent number of elements. This can only occur during partial
 | |
|         // ordering.
 | |
| 
 | |
|         // Perform deduction on the element types.
 | |
|         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                                   VectorParam->getElementType(),
 | |
|                                                   VectorArg->getElementType(),
 | |
|                                                   Info, Deduced, TDF);
 | |
|       }
 | |
|       
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
|       
 | |
|     //     (clang extension)
 | |
|     //
 | |
|     //     T __attribute__(((ext_vector_type(N))))
 | |
|     case Type::DependentSizedExtVector: {
 | |
|       const DependentSizedExtVectorType *VectorParam
 | |
|         = cast<DependentSizedExtVectorType>(Param);
 | |
| 
 | |
|       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
 | |
|         // Perform deduction on the element types.
 | |
|         if (Sema::TemplateDeductionResult Result
 | |
|               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                                   VectorParam->getElementType(),
 | |
|                                                    VectorArg->getElementType(),
 | |
|                                                    Info, Deduced, TDF))
 | |
|           return Result;
 | |
|         
 | |
|         // Perform deduction on the vector size, if we can.
 | |
|         NonTypeTemplateParmDecl *NTTP
 | |
|           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
 | |
|         if (!NTTP)
 | |
|           return Sema::TDK_Success;
 | |
| 
 | |
|         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
 | |
|         ArgSize = VectorArg->getNumElements();
 | |
|         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
 | |
|                                              false, Info, Deduced);
 | |
|       }
 | |
|       
 | |
|       if (const DependentSizedExtVectorType *VectorArg 
 | |
|                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
 | |
|         // Perform deduction on the element types.
 | |
|         if (Sema::TemplateDeductionResult Result
 | |
|             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                                  VectorParam->getElementType(),
 | |
|                                                  VectorArg->getElementType(),
 | |
|                                                  Info, Deduced, TDF))
 | |
|           return Result;
 | |
|         
 | |
|         // Perform deduction on the vector size, if we can.
 | |
|         NonTypeTemplateParmDecl *NTTP
 | |
|           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
 | |
|         if (!NTTP)
 | |
|           return Sema::TDK_Success;
 | |
|         
 | |
|         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
 | |
|                                              Info, Deduced);
 | |
|       }
 | |
|       
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
|       
 | |
|     case Type::TypeOfExpr:
 | |
|     case Type::TypeOf:
 | |
|     case Type::DependentName:
 | |
|     case Type::UnresolvedUsing:
 | |
|     case Type::Decltype:
 | |
|     case Type::UnaryTransform:
 | |
|     case Type::Auto:
 | |
|     case Type::DependentTemplateSpecialization:
 | |
|     case Type::PackExpansion:
 | |
|       // No template argument deduction for these types
 | |
|       return Sema::TDK_Success;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid Type Class!");
 | |
| }
 | |
| 
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArguments(Sema &S,
 | |
|                         TemplateParameterList *TemplateParams,
 | |
|                         const TemplateArgument &Param,
 | |
|                         TemplateArgument Arg,
 | |
|                         TemplateDeductionInfo &Info,
 | |
|                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | |
|   // If the template argument is a pack expansion, perform template argument
 | |
|   // deduction against the pattern of that expansion. This only occurs during
 | |
|   // partial ordering.
 | |
|   if (Arg.isPackExpansion())
 | |
|     Arg = Arg.getPackExpansionPattern();
 | |
| 
 | |
|   switch (Param.getKind()) {
 | |
|   case TemplateArgument::Null:
 | |
|     llvm_unreachable("Null template argument in parameter list");
 | |
| 
 | |
|   case TemplateArgument::Type:
 | |
|     if (Arg.getKind() == TemplateArgument::Type)
 | |
|       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                                 Param.getAsType(),
 | |
|                                                 Arg.getAsType(),
 | |
|                                                 Info, Deduced, 0);
 | |
|     Info.FirstArg = Param;
 | |
|     Info.SecondArg = Arg;
 | |
|     return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|   case TemplateArgument::Template:
 | |
|     if (Arg.getKind() == TemplateArgument::Template)
 | |
|       return DeduceTemplateArguments(S, TemplateParams,
 | |
|                                      Param.getAsTemplate(),
 | |
|                                      Arg.getAsTemplate(), Info, Deduced);
 | |
|     Info.FirstArg = Param;
 | |
|     Info.SecondArg = Arg;
 | |
|     return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|   case TemplateArgument::TemplateExpansion:
 | |
|     llvm_unreachable("caller should handle pack expansions");
 | |
| 
 | |
|   case TemplateArgument::Declaration:
 | |
|     if (Arg.getKind() == TemplateArgument::Declaration &&
 | |
|         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
 | |
|         Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
 | |
|       return Sema::TDK_Success;
 | |
| 
 | |
|     Info.FirstArg = Param;
 | |
|     Info.SecondArg = Arg;
 | |
|     return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|   case TemplateArgument::NullPtr:
 | |
|     if (Arg.getKind() == TemplateArgument::NullPtr &&
 | |
|         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
 | |
|       return Sema::TDK_Success;
 | |
| 
 | |
|     Info.FirstArg = Param;
 | |
|     Info.SecondArg = Arg;
 | |
|     return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|   case TemplateArgument::Integral:
 | |
|     if (Arg.getKind() == TemplateArgument::Integral) {
 | |
|       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
 | |
|         return Sema::TDK_Success;
 | |
| 
 | |
|       Info.FirstArg = Param;
 | |
|       Info.SecondArg = Arg;
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
| 
 | |
|     if (Arg.getKind() == TemplateArgument::Expression) {
 | |
|       Info.FirstArg = Param;
 | |
|       Info.SecondArg = Arg;
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
| 
 | |
|     Info.FirstArg = Param;
 | |
|     Info.SecondArg = Arg;
 | |
|     return Sema::TDK_NonDeducedMismatch;
 | |
| 
 | |
|   case TemplateArgument::Expression: {
 | |
|     if (NonTypeTemplateParmDecl *NTTP
 | |
|           = getDeducedParameterFromExpr(Param.getAsExpr())) {
 | |
|       if (Arg.getKind() == TemplateArgument::Integral)
 | |
|         return DeduceNonTypeTemplateArgument(S, NTTP,
 | |
|                                              Arg.getAsIntegral(),
 | |
|                                              Arg.getIntegralType(),
 | |
|                                              /*ArrayBound=*/false,
 | |
|                                              Info, Deduced);
 | |
|       if (Arg.getKind() == TemplateArgument::Expression)
 | |
|         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
 | |
|                                              Info, Deduced);
 | |
|       if (Arg.getKind() == TemplateArgument::Declaration)
 | |
|         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
 | |
|                                              Info, Deduced);
 | |
| 
 | |
|       Info.FirstArg = Param;
 | |
|       Info.SecondArg = Arg;
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
| 
 | |
|     // Can't deduce anything, but that's okay.
 | |
|     return Sema::TDK_Success;
 | |
|   }
 | |
|   case TemplateArgument::Pack:
 | |
|     llvm_unreachable("Argument packs should be expanded by the caller!");
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid TemplateArgument Kind!");
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether there is a template argument to be used for
 | |
| /// deduction.
 | |
| ///
 | |
| /// This routine "expands" argument packs in-place, overriding its input
 | |
| /// parameters so that \c Args[ArgIdx] will be the available template argument.
 | |
| ///
 | |
| /// \returns true if there is another template argument (which will be at
 | |
| /// \c Args[ArgIdx]), false otherwise.
 | |
| static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
 | |
|                                             unsigned &ArgIdx,
 | |
|                                             unsigned &NumArgs) {
 | |
|   if (ArgIdx == NumArgs)
 | |
|     return false;
 | |
| 
 | |
|   const TemplateArgument &Arg = Args[ArgIdx];
 | |
|   if (Arg.getKind() != TemplateArgument::Pack)
 | |
|     return true;
 | |
| 
 | |
|   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
 | |
|   Args = Arg.pack_begin();
 | |
|   NumArgs = Arg.pack_size();
 | |
|   ArgIdx = 0;
 | |
|   return ArgIdx < NumArgs;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given set of template arguments has a pack
 | |
| /// expansion that is not the last template argument.
 | |
| static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
 | |
|                                       unsigned NumArgs) {
 | |
|   unsigned ArgIdx = 0;
 | |
|   while (ArgIdx < NumArgs) {
 | |
|     const TemplateArgument &Arg = Args[ArgIdx];
 | |
| 
 | |
|     // Unwrap argument packs.
 | |
|     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
 | |
|       Args = Arg.pack_begin();
 | |
|       NumArgs = Arg.pack_size();
 | |
|       ArgIdx = 0;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ++ArgIdx;
 | |
|     if (ArgIdx == NumArgs)
 | |
|       return false;
 | |
| 
 | |
|     if (Arg.isPackExpansion())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArguments(Sema &S,
 | |
|                         TemplateParameterList *TemplateParams,
 | |
|                         const TemplateArgument *Params, unsigned NumParams,
 | |
|                         const TemplateArgument *Args, unsigned NumArgs,
 | |
|                         TemplateDeductionInfo &Info,
 | |
|                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | |
|   // C++0x [temp.deduct.type]p9:
 | |
|   //   If the template argument list of P contains a pack expansion that is not
 | |
|   //   the last template argument, the entire template argument list is a
 | |
|   //   non-deduced context.
 | |
|   if (hasPackExpansionBeforeEnd(Params, NumParams))
 | |
|     return Sema::TDK_Success;
 | |
| 
 | |
|   // C++0x [temp.deduct.type]p9:
 | |
|   //   If P has a form that contains <T> or <i>, then each argument Pi of the
 | |
|   //   respective template argument list P is compared with the corresponding
 | |
|   //   argument Ai of the corresponding template argument list of A.
 | |
|   unsigned ArgIdx = 0, ParamIdx = 0;
 | |
|   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
 | |
|        ++ParamIdx) {
 | |
|     if (!Params[ParamIdx].isPackExpansion()) {
 | |
|       // The simple case: deduce template arguments by matching Pi and Ai.
 | |
| 
 | |
|       // Check whether we have enough arguments.
 | |
|       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
 | |
|         return Sema::TDK_Success;
 | |
| 
 | |
|       if (Args[ArgIdx].isPackExpansion()) {
 | |
|         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
 | |
|         // but applied to pack expansions that are template arguments.
 | |
|         return Sema::TDK_MiscellaneousDeductionFailure;
 | |
|       }
 | |
| 
 | |
|       // Perform deduction for this Pi/Ai pair.
 | |
|       if (Sema::TemplateDeductionResult Result
 | |
|             = DeduceTemplateArguments(S, TemplateParams,
 | |
|                                       Params[ParamIdx], Args[ArgIdx],
 | |
|                                       Info, Deduced))
 | |
|         return Result;
 | |
| 
 | |
|       // Move to the next argument.
 | |
|       ++ArgIdx;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // The parameter is a pack expansion.
 | |
| 
 | |
|     // C++0x [temp.deduct.type]p9:
 | |
|     //   If Pi is a pack expansion, then the pattern of Pi is compared with
 | |
|     //   each remaining argument in the template argument list of A. Each
 | |
|     //   comparison deduces template arguments for subsequent positions in the
 | |
|     //   template parameter packs expanded by Pi.
 | |
|     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
 | |
| 
 | |
|     // Compute the set of template parameter indices that correspond to
 | |
|     // parameter packs expanded by the pack expansion.
 | |
|     SmallVector<unsigned, 2> PackIndices;
 | |
|     {
 | |
|       llvm::SmallBitVector SawIndices(TemplateParams->size());
 | |
|       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
|       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
 | |
|       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
 | |
|         unsigned Depth, Index;
 | |
|         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
 | |
|         if (Depth == 0 && !SawIndices[Index]) {
 | |
|           SawIndices[Index] = true;
 | |
|           PackIndices.push_back(Index);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
 | |
| 
 | |
|     // FIXME: If there are no remaining arguments, we can bail out early
 | |
|     // and set any deduced parameter packs to an empty argument pack.
 | |
|     // The latter part of this is a (minor) correctness issue.
 | |
| 
 | |
|     // Save the deduced template arguments for each parameter pack expanded
 | |
|     // by this pack expansion, then clear out the deduction.
 | |
|     SmallVector<DeducedTemplateArgument, 2>
 | |
|       SavedPacks(PackIndices.size());
 | |
|     NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
 | |
|     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
 | |
|                                  NewlyDeducedPacks);
 | |
| 
 | |
|     // Keep track of the deduced template arguments for each parameter pack
 | |
|     // expanded by this pack expansion (the outer index) and for each
 | |
|     // template argument (the inner SmallVectors).
 | |
|     bool HasAnyArguments = false;
 | |
|     while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
 | |
|       HasAnyArguments = true;
 | |
| 
 | |
|       // Deduce template arguments from the pattern.
 | |
|       if (Sema::TemplateDeductionResult Result
 | |
|             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
 | |
|                                       Info, Deduced))
 | |
|         return Result;
 | |
| 
 | |
|       // Capture the deduced template arguments for each parameter pack expanded
 | |
|       // by this pack expansion, add them to the list of arguments we've deduced
 | |
|       // for that pack, then clear out the deduced argument.
 | |
|       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | |
|         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
 | |
|         if (!DeducedArg.isNull()) {
 | |
|           NewlyDeducedPacks[I].push_back(DeducedArg);
 | |
|           DeducedArg = DeducedTemplateArgument();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       ++ArgIdx;
 | |
|     }
 | |
| 
 | |
|     // Build argument packs for each of the parameter packs expanded by this
 | |
|     // pack expansion.
 | |
|     if (Sema::TemplateDeductionResult Result
 | |
|           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
 | |
|                                         Deduced, PackIndices, SavedPacks,
 | |
|                                         NewlyDeducedPacks, Info))
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return Sema::TDK_Success;
 | |
| }
 | |
| 
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArguments(Sema &S,
 | |
|                         TemplateParameterList *TemplateParams,
 | |
|                         const TemplateArgumentList &ParamList,
 | |
|                         const TemplateArgumentList &ArgList,
 | |
|                         TemplateDeductionInfo &Info,
 | |
|                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
 | |
|   return DeduceTemplateArguments(S, TemplateParams,
 | |
|                                  ParamList.data(), ParamList.size(),
 | |
|                                  ArgList.data(), ArgList.size(),
 | |
|                                  Info, Deduced);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether two template arguments are the same.
 | |
| static bool isSameTemplateArg(ASTContext &Context,
 | |
|                               const TemplateArgument &X,
 | |
|                               const TemplateArgument &Y) {
 | |
|   if (X.getKind() != Y.getKind())
 | |
|     return false;
 | |
| 
 | |
|   switch (X.getKind()) {
 | |
|     case TemplateArgument::Null:
 | |
|       llvm_unreachable("Comparing NULL template argument");
 | |
| 
 | |
|     case TemplateArgument::Type:
 | |
|       return Context.getCanonicalType(X.getAsType()) ==
 | |
|              Context.getCanonicalType(Y.getAsType());
 | |
| 
 | |
|     case TemplateArgument::Declaration:
 | |
|       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
 | |
|              X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
 | |
| 
 | |
|     case TemplateArgument::NullPtr:
 | |
|       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
 | |
| 
 | |
|     case TemplateArgument::Template:
 | |
|     case TemplateArgument::TemplateExpansion:
 | |
|       return Context.getCanonicalTemplateName(
 | |
|                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
 | |
|              Context.getCanonicalTemplateName(
 | |
|                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
 | |
| 
 | |
|     case TemplateArgument::Integral:
 | |
|       return X.getAsIntegral() == Y.getAsIntegral();
 | |
| 
 | |
|     case TemplateArgument::Expression: {
 | |
|       llvm::FoldingSetNodeID XID, YID;
 | |
|       X.getAsExpr()->Profile(XID, Context, true);
 | |
|       Y.getAsExpr()->Profile(YID, Context, true);
 | |
|       return XID == YID;
 | |
|     }
 | |
| 
 | |
|     case TemplateArgument::Pack:
 | |
|       if (X.pack_size() != Y.pack_size())
 | |
|         return false;
 | |
| 
 | |
|       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
 | |
|                                         XPEnd = X.pack_end(),
 | |
|                                            YP = Y.pack_begin();
 | |
|            XP != XPEnd; ++XP, ++YP)
 | |
|         if (!isSameTemplateArg(Context, *XP, *YP))
 | |
|           return false;
 | |
| 
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid TemplateArgument Kind!");
 | |
| }
 | |
| 
 | |
| /// \brief Allocate a TemplateArgumentLoc where all locations have
 | |
| /// been initialized to the given location.
 | |
| ///
 | |
| /// \param S The semantic analysis object.
 | |
| ///
 | |
| /// \param Arg The template argument we are producing template argument
 | |
| /// location information for.
 | |
| ///
 | |
| /// \param NTTPType For a declaration template argument, the type of
 | |
| /// the non-type template parameter that corresponds to this template
 | |
| /// argument.
 | |
| ///
 | |
| /// \param Loc The source location to use for the resulting template
 | |
| /// argument.
 | |
| static TemplateArgumentLoc
 | |
| getTrivialTemplateArgumentLoc(Sema &S,
 | |
|                               const TemplateArgument &Arg,
 | |
|                               QualType NTTPType,
 | |
|                               SourceLocation Loc) {
 | |
|   switch (Arg.getKind()) {
 | |
|   case TemplateArgument::Null:
 | |
|     llvm_unreachable("Can't get a NULL template argument here");
 | |
| 
 | |
|   case TemplateArgument::Type:
 | |
|     return TemplateArgumentLoc(Arg,
 | |
|                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
 | |
| 
 | |
|   case TemplateArgument::Declaration: {
 | |
|     Expr *E
 | |
|       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
 | |
|           .takeAs<Expr>();
 | |
|     return TemplateArgumentLoc(TemplateArgument(E), E);
 | |
|   }
 | |
| 
 | |
|   case TemplateArgument::NullPtr: {
 | |
|     Expr *E
 | |
|       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
 | |
|           .takeAs<Expr>();
 | |
|     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
 | |
|                                E);
 | |
|   }
 | |
| 
 | |
|   case TemplateArgument::Integral: {
 | |
|     Expr *E
 | |
|       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
 | |
|     return TemplateArgumentLoc(TemplateArgument(E), E);
 | |
|   }
 | |
| 
 | |
|     case TemplateArgument::Template:
 | |
|     case TemplateArgument::TemplateExpansion: {
 | |
|       NestedNameSpecifierLocBuilder Builder;
 | |
|       TemplateName Template = Arg.getAsTemplate();
 | |
|       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
 | |
|         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
 | |
|       else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
 | |
|         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
 | |
|       
 | |
|       if (Arg.getKind() == TemplateArgument::Template)
 | |
|         return TemplateArgumentLoc(Arg, 
 | |
|                                    Builder.getWithLocInContext(S.Context),
 | |
|                                    Loc);
 | |
|       
 | |
|       
 | |
|       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
 | |
|                                  Loc, Loc);
 | |
|     }
 | |
| 
 | |
|   case TemplateArgument::Expression:
 | |
|     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
 | |
| 
 | |
|   case TemplateArgument::Pack:
 | |
|     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid TemplateArgument Kind!");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Convert the given deduced template argument and add it to the set of
 | |
| /// fully-converted template arguments.
 | |
| static bool
 | |
| ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
 | |
|                                DeducedTemplateArgument Arg,
 | |
|                                NamedDecl *Template,
 | |
|                                QualType NTTPType,
 | |
|                                unsigned ArgumentPackIndex,
 | |
|                                TemplateDeductionInfo &Info,
 | |
|                                bool InFunctionTemplate,
 | |
|                                SmallVectorImpl<TemplateArgument> &Output) {
 | |
|   if (Arg.getKind() == TemplateArgument::Pack) {
 | |
|     // This is a template argument pack, so check each of its arguments against
 | |
|     // the template parameter.
 | |
|     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
 | |
|     for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
 | |
|                                       PAEnd = Arg.pack_end();
 | |
|          PA != PAEnd; ++PA) {
 | |
|       // When converting the deduced template argument, append it to the
 | |
|       // general output list. We need to do this so that the template argument
 | |
|       // checking logic has all of the prior template arguments available.
 | |
|       DeducedTemplateArgument InnerArg(*PA);
 | |
|       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
 | |
|       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
 | |
|                                          NTTPType, PackedArgsBuilder.size(),
 | |
|                                          Info, InFunctionTemplate, Output))
 | |
|         return true;
 | |
| 
 | |
|       // Move the converted template argument into our argument pack.
 | |
|       PackedArgsBuilder.push_back(Output.back());
 | |
|       Output.pop_back();
 | |
|     }
 | |
| 
 | |
|     // Create the resulting argument pack.
 | |
|     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
 | |
|                                                       PackedArgsBuilder.data(),
 | |
|                                                      PackedArgsBuilder.size()));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Convert the deduced template argument into a template
 | |
|   // argument that we can check, almost as if the user had written
 | |
|   // the template argument explicitly.
 | |
|   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
 | |
|                                                              Info.getLocation());
 | |
| 
 | |
|   // Check the template argument, converting it as necessary.
 | |
|   return S.CheckTemplateArgument(Param, ArgLoc,
 | |
|                                  Template,
 | |
|                                  Template->getLocation(),
 | |
|                                  Template->getSourceRange().getEnd(),
 | |
|                                  ArgumentPackIndex,
 | |
|                                  Output,
 | |
|                                  InFunctionTemplate
 | |
|                                   ? (Arg.wasDeducedFromArrayBound()
 | |
|                                        ? Sema::CTAK_DeducedFromArrayBound
 | |
|                                        : Sema::CTAK_Deduced)
 | |
|                                  : Sema::CTAK_Specified);
 | |
| }
 | |
| 
 | |
| /// Complete template argument deduction for a class template partial
 | |
| /// specialization.
 | |
| static Sema::TemplateDeductionResult
 | |
| FinishTemplateArgumentDeduction(Sema &S,
 | |
|                                 ClassTemplatePartialSpecializationDecl *Partial,
 | |
|                                 const TemplateArgumentList &TemplateArgs,
 | |
|                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | |
|                                 TemplateDeductionInfo &Info) {
 | |
|   // Unevaluated SFINAE context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
 | |
|   Sema::SFINAETrap Trap(S);
 | |
| 
 | |
|   Sema::ContextRAII SavedContext(S, Partial);
 | |
| 
 | |
|   // C++ [temp.deduct.type]p2:
 | |
|   //   [...] or if any template argument remains neither deduced nor
 | |
|   //   explicitly specified, template argument deduction fails.
 | |
|   SmallVector<TemplateArgument, 4> Builder;
 | |
|   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
 | |
|   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
 | |
|     NamedDecl *Param = PartialParams->getParam(I);
 | |
|     if (Deduced[I].isNull()) {
 | |
|       Info.Param = makeTemplateParameter(Param);
 | |
|       return Sema::TDK_Incomplete;
 | |
|     }
 | |
| 
 | |
|     // We have deduced this argument, so it still needs to be
 | |
|     // checked and converted.
 | |
| 
 | |
|     // First, for a non-type template parameter type that is
 | |
|     // initialized by a declaration, we need the type of the
 | |
|     // corresponding non-type template parameter.
 | |
|     QualType NTTPType;
 | |
|     if (NonTypeTemplateParmDecl *NTTP
 | |
|                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | |
|       NTTPType = NTTP->getType();
 | |
|       if (NTTPType->isDependentType()) {
 | |
|         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | |
|                                           Builder.data(), Builder.size());
 | |
|         NTTPType = S.SubstType(NTTPType,
 | |
|                                MultiLevelTemplateArgumentList(TemplateArgs),
 | |
|                                NTTP->getLocation(),
 | |
|                                NTTP->getDeclName());
 | |
|         if (NTTPType.isNull()) {
 | |
|           Info.Param = makeTemplateParameter(Param);
 | |
|           // FIXME: These template arguments are temporary. Free them!
 | |
|           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
 | |
|                                                       Builder.data(),
 | |
|                                                       Builder.size()));
 | |
|           return Sema::TDK_SubstitutionFailure;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
 | |
|                                        Partial, NTTPType, 0, Info, false,
 | |
|                                        Builder)) {
 | |
|       Info.Param = makeTemplateParameter(Param);
 | |
|       // FIXME: These template arguments are temporary. Free them!
 | |
|       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
 | |
|                                                   Builder.size()));
 | |
|       return Sema::TDK_SubstitutionFailure;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Form the template argument list from the deduced template arguments.
 | |
|   TemplateArgumentList *DeducedArgumentList
 | |
|     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
 | |
|                                        Builder.size());
 | |
| 
 | |
|   Info.reset(DeducedArgumentList);
 | |
| 
 | |
|   // Substitute the deduced template arguments into the template
 | |
|   // arguments of the class template partial specialization, and
 | |
|   // verify that the instantiated template arguments are both valid
 | |
|   // and are equivalent to the template arguments originally provided
 | |
|   // to the class template.
 | |
|   LocalInstantiationScope InstScope(S);
 | |
|   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
 | |
|   const TemplateArgumentLoc *PartialTemplateArgs
 | |
|     = Partial->getTemplateArgsAsWritten();
 | |
| 
 | |
|   // Note that we don't provide the langle and rangle locations.
 | |
|   TemplateArgumentListInfo InstArgs;
 | |
| 
 | |
|   if (S.Subst(PartialTemplateArgs,
 | |
|               Partial->getNumTemplateArgsAsWritten(),
 | |
|               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
 | |
|     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
 | |
|     if (ParamIdx >= Partial->getTemplateParameters()->size())
 | |
|       ParamIdx = Partial->getTemplateParameters()->size() - 1;
 | |
| 
 | |
|     Decl *Param
 | |
|       = const_cast<NamedDecl *>(
 | |
|                           Partial->getTemplateParameters()->getParam(ParamIdx));
 | |
|     Info.Param = makeTemplateParameter(Param);
 | |
|     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
 | |
|     return Sema::TDK_SubstitutionFailure;
 | |
|   }
 | |
| 
 | |
|   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
 | |
|   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
 | |
|                                   InstArgs, false, ConvertedInstArgs))
 | |
|     return Sema::TDK_SubstitutionFailure;
 | |
| 
 | |
|   TemplateParameterList *TemplateParams
 | |
|     = ClassTemplate->getTemplateParameters();
 | |
|   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
 | |
|     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
 | |
|     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
 | |
|       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
 | |
|       Info.FirstArg = TemplateArgs[I];
 | |
|       Info.SecondArg = InstArg;
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Trap.hasErrorOccurred())
 | |
|     return Sema::TDK_SubstitutionFailure;
 | |
| 
 | |
|   return Sema::TDK_Success;
 | |
| }
 | |
| 
 | |
| /// \brief Perform template argument deduction to determine whether
 | |
| /// the given template arguments match the given class template
 | |
| /// partial specialization per C++ [temp.class.spec.match].
 | |
| Sema::TemplateDeductionResult
 | |
| Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
 | |
|                               const TemplateArgumentList &TemplateArgs,
 | |
|                               TemplateDeductionInfo &Info) {
 | |
|   if (Partial->isInvalidDecl())
 | |
|     return TDK_Invalid;
 | |
| 
 | |
|   // C++ [temp.class.spec.match]p2:
 | |
|   //   A partial specialization matches a given actual template
 | |
|   //   argument list if the template arguments of the partial
 | |
|   //   specialization can be deduced from the actual template argument
 | |
|   //   list (14.8.2).
 | |
| 
 | |
|   // Unevaluated SFINAE context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
|   SFINAETrap Trap(*this);
 | |
| 
 | |
|   SmallVector<DeducedTemplateArgument, 4> Deduced;
 | |
|   Deduced.resize(Partial->getTemplateParameters()->size());
 | |
|   if (TemplateDeductionResult Result
 | |
|         = ::DeduceTemplateArguments(*this,
 | |
|                                     Partial->getTemplateParameters(),
 | |
|                                     Partial->getTemplateArgs(),
 | |
|                                     TemplateArgs, Info, Deduced))
 | |
|     return Result;
 | |
| 
 | |
|   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
 | |
|   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
 | |
|                              DeducedArgs, Info);
 | |
|   if (Inst)
 | |
|     return TDK_InstantiationDepth;
 | |
| 
 | |
|   if (Trap.hasErrorOccurred())
 | |
|     return Sema::TDK_SubstitutionFailure;
 | |
| 
 | |
|   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
 | |
|                                            Deduced, Info);
 | |
| }
 | |
| 
 | |
| /// Complete template argument deduction for a variable template partial
 | |
| /// specialization.
 | |
| /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
 | |
| static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
 | |
|     Sema &S, VarTemplatePartialSpecializationDecl *Partial,
 | |
|     const TemplateArgumentList &TemplateArgs,
 | |
|     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | |
|     TemplateDeductionInfo &Info) {
 | |
|   // Unevaluated SFINAE context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
 | |
|   Sema::SFINAETrap Trap(S);
 | |
| 
 | |
|   // C++ [temp.deduct.type]p2:
 | |
|   //   [...] or if any template argument remains neither deduced nor
 | |
|   //   explicitly specified, template argument deduction fails.
 | |
|   SmallVector<TemplateArgument, 4> Builder;
 | |
|   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
 | |
|   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
 | |
|     NamedDecl *Param = PartialParams->getParam(I);
 | |
|     if (Deduced[I].isNull()) {
 | |
|       Info.Param = makeTemplateParameter(Param);
 | |
|       return Sema::TDK_Incomplete;
 | |
|     }
 | |
| 
 | |
|     // We have deduced this argument, so it still needs to be
 | |
|     // checked and converted.
 | |
| 
 | |
|     // First, for a non-type template parameter type that is
 | |
|     // initialized by a declaration, we need the type of the
 | |
|     // corresponding non-type template parameter.
 | |
|     QualType NTTPType;
 | |
|     if (NonTypeTemplateParmDecl *NTTP =
 | |
|             dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | |
|       NTTPType = NTTP->getType();
 | |
|       if (NTTPType->isDependentType()) {
 | |
|         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | |
|                                           Builder.data(), Builder.size());
 | |
|         NTTPType =
 | |
|             S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
 | |
|                         NTTP->getLocation(), NTTP->getDeclName());
 | |
|         if (NTTPType.isNull()) {
 | |
|           Info.Param = makeTemplateParameter(Param);
 | |
|           // FIXME: These template arguments are temporary. Free them!
 | |
|           Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
 | |
|                                                       Builder.size()));
 | |
|           return Sema::TDK_SubstitutionFailure;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
 | |
|                                        0, Info, false, Builder)) {
 | |
|       Info.Param = makeTemplateParameter(Param);
 | |
|       // FIXME: These template arguments are temporary. Free them!
 | |
|       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
 | |
|                                                   Builder.size()));
 | |
|       return Sema::TDK_SubstitutionFailure;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Form the template argument list from the deduced template arguments.
 | |
|   TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
 | |
|       S.Context, Builder.data(), Builder.size());
 | |
| 
 | |
|   Info.reset(DeducedArgumentList);
 | |
| 
 | |
|   // Substitute the deduced template arguments into the template
 | |
|   // arguments of the class template partial specialization, and
 | |
|   // verify that the instantiated template arguments are both valid
 | |
|   // and are equivalent to the template arguments originally provided
 | |
|   // to the class template.
 | |
|   LocalInstantiationScope InstScope(S);
 | |
|   VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
 | |
|   const TemplateArgumentLoc *PartialTemplateArgs =
 | |
|       Partial->getTemplateArgsAsWritten();
 | |
| 
 | |
|   // Note that we don't provide the langle and rangle locations.
 | |
|   TemplateArgumentListInfo InstArgs;
 | |
| 
 | |
|   if (S.Subst(PartialTemplateArgs, Partial->getNumTemplateArgsAsWritten(),
 | |
|               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
 | |
|     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
 | |
|     if (ParamIdx >= Partial->getTemplateParameters()->size())
 | |
|       ParamIdx = Partial->getTemplateParameters()->size() - 1;
 | |
| 
 | |
|     Decl *Param = const_cast<NamedDecl *>(
 | |
|         Partial->getTemplateParameters()->getParam(ParamIdx));
 | |
|     Info.Param = makeTemplateParameter(Param);
 | |
|     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
 | |
|     return Sema::TDK_SubstitutionFailure;
 | |
|   }
 | |
|   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
 | |
|   if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
 | |
|                                   false, ConvertedInstArgs))
 | |
|     return Sema::TDK_SubstitutionFailure;
 | |
| 
 | |
|   TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
 | |
|   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
 | |
|     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
 | |
|     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
 | |
|       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
 | |
|       Info.FirstArg = TemplateArgs[I];
 | |
|       Info.SecondArg = InstArg;
 | |
|       return Sema::TDK_NonDeducedMismatch;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Trap.hasErrorOccurred())
 | |
|     return Sema::TDK_SubstitutionFailure;
 | |
| 
 | |
|   return Sema::TDK_Success;
 | |
| }
 | |
| 
 | |
| /// \brief Perform template argument deduction to determine whether
 | |
| /// the given template arguments match the given variable template
 | |
| /// partial specialization per C++ [temp.class.spec.match].
 | |
| /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
 | |
| Sema::TemplateDeductionResult
 | |
| Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
 | |
|                               const TemplateArgumentList &TemplateArgs,
 | |
|                               TemplateDeductionInfo &Info) {
 | |
|   if (Partial->isInvalidDecl())
 | |
|     return TDK_Invalid;
 | |
| 
 | |
|   // C++ [temp.class.spec.match]p2:
 | |
|   //   A partial specialization matches a given actual template
 | |
|   //   argument list if the template arguments of the partial
 | |
|   //   specialization can be deduced from the actual template argument
 | |
|   //   list (14.8.2).
 | |
| 
 | |
|   // Unevaluated SFINAE context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
|   SFINAETrap Trap(*this);
 | |
| 
 | |
|   SmallVector<DeducedTemplateArgument, 4> Deduced;
 | |
|   Deduced.resize(Partial->getTemplateParameters()->size());
 | |
|   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
 | |
|           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
 | |
|           TemplateArgs, Info, Deduced))
 | |
|     return Result;
 | |
| 
 | |
|   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
 | |
|   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
 | |
|                              DeducedArgs, Info);
 | |
|   if (Inst)
 | |
|     return TDK_InstantiationDepth;
 | |
| 
 | |
|   if (Trap.hasErrorOccurred())
 | |
|     return Sema::TDK_SubstitutionFailure;
 | |
| 
 | |
|   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
 | |
|                                            Deduced, Info);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given type T is a simple-template-id type.
 | |
| static bool isSimpleTemplateIdType(QualType T) {
 | |
|   if (const TemplateSpecializationType *Spec
 | |
|         = T->getAs<TemplateSpecializationType>())
 | |
|     return Spec->getTemplateName().getAsTemplateDecl() != 0;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Substitute the explicitly-provided template arguments into the
 | |
| /// given function template according to C++ [temp.arg.explicit].
 | |
| ///
 | |
| /// \param FunctionTemplate the function template into which the explicit
 | |
| /// template arguments will be substituted.
 | |
| ///
 | |
| /// \param ExplicitTemplateArgs the explicitly-specified template
 | |
| /// arguments.
 | |
| ///
 | |
| /// \param Deduced the deduced template arguments, which will be populated
 | |
| /// with the converted and checked explicit template arguments.
 | |
| ///
 | |
| /// \param ParamTypes will be populated with the instantiated function
 | |
| /// parameters.
 | |
| ///
 | |
| /// \param FunctionType if non-NULL, the result type of the function template
 | |
| /// will also be instantiated and the pointed-to value will be updated with
 | |
| /// the instantiated function type.
 | |
| ///
 | |
| /// \param Info if substitution fails for any reason, this object will be
 | |
| /// populated with more information about the failure.
 | |
| ///
 | |
| /// \returns TDK_Success if substitution was successful, or some failure
 | |
| /// condition.
 | |
| Sema::TemplateDeductionResult
 | |
| Sema::SubstituteExplicitTemplateArguments(
 | |
|                                       FunctionTemplateDecl *FunctionTemplate,
 | |
|                                TemplateArgumentListInfo &ExplicitTemplateArgs,
 | |
|                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | |
|                                  SmallVectorImpl<QualType> &ParamTypes,
 | |
|                                           QualType *FunctionType,
 | |
|                                           TemplateDeductionInfo &Info) {
 | |
|   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
 | |
|   TemplateParameterList *TemplateParams
 | |
|     = FunctionTemplate->getTemplateParameters();
 | |
| 
 | |
|   if (ExplicitTemplateArgs.size() == 0) {
 | |
|     // No arguments to substitute; just copy over the parameter types and
 | |
|     // fill in the function type.
 | |
|     for (FunctionDecl::param_iterator P = Function->param_begin(),
 | |
|                                    PEnd = Function->param_end();
 | |
|          P != PEnd;
 | |
|          ++P)
 | |
|       ParamTypes.push_back((*P)->getType());
 | |
| 
 | |
|     if (FunctionType)
 | |
|       *FunctionType = Function->getType();
 | |
|     return TDK_Success;
 | |
|   }
 | |
| 
 | |
|   // Unevaluated SFINAE context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
|   SFINAETrap Trap(*this);
 | |
| 
 | |
|   // C++ [temp.arg.explicit]p3:
 | |
|   //   Template arguments that are present shall be specified in the
 | |
|   //   declaration order of their corresponding template-parameters. The
 | |
|   //   template argument list shall not specify more template-arguments than
 | |
|   //   there are corresponding template-parameters.
 | |
|   SmallVector<TemplateArgument, 4> Builder;
 | |
| 
 | |
|   // Enter a new template instantiation context where we check the
 | |
|   // explicitly-specified template arguments against this function template,
 | |
|   // and then substitute them into the function parameter types.
 | |
|   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
 | |
|   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
 | |
|                              FunctionTemplate, DeducedArgs,
 | |
|            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
 | |
|                              Info);
 | |
|   if (Inst)
 | |
|     return TDK_InstantiationDepth;
 | |
| 
 | |
|   if (CheckTemplateArgumentList(FunctionTemplate,
 | |
|                                 SourceLocation(),
 | |
|                                 ExplicitTemplateArgs,
 | |
|                                 true,
 | |
|                                 Builder) || Trap.hasErrorOccurred()) {
 | |
|     unsigned Index = Builder.size();
 | |
|     if (Index >= TemplateParams->size())
 | |
|       Index = TemplateParams->size() - 1;
 | |
|     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
 | |
|     return TDK_InvalidExplicitArguments;
 | |
|   }
 | |
| 
 | |
|   // Form the template argument list from the explicitly-specified
 | |
|   // template arguments.
 | |
|   TemplateArgumentList *ExplicitArgumentList
 | |
|     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
 | |
|   Info.reset(ExplicitArgumentList);
 | |
| 
 | |
|   // Template argument deduction and the final substitution should be
 | |
|   // done in the context of the templated declaration.  Explicit
 | |
|   // argument substitution, on the other hand, needs to happen in the
 | |
|   // calling context.
 | |
|   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
 | |
| 
 | |
|   // If we deduced template arguments for a template parameter pack,
 | |
|   // note that the template argument pack is partially substituted and record
 | |
|   // the explicit template arguments. They'll be used as part of deduction
 | |
|   // for this template parameter pack.
 | |
|   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
 | |
|     const TemplateArgument &Arg = Builder[I];
 | |
|     if (Arg.getKind() == TemplateArgument::Pack) {
 | |
|       CurrentInstantiationScope->SetPartiallySubstitutedPack(
 | |
|                                                  TemplateParams->getParam(I),
 | |
|                                                              Arg.pack_begin(),
 | |
|                                                              Arg.pack_size());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const FunctionProtoType *Proto
 | |
|     = Function->getType()->getAs<FunctionProtoType>();
 | |
|   assert(Proto && "Function template does not have a prototype?");
 | |
| 
 | |
|   // Instantiate the types of each of the function parameters given the
 | |
|   // explicitly-specified template arguments. If the function has a trailing
 | |
|   // return type, substitute it after the arguments to ensure we substitute
 | |
|   // in lexical order.
 | |
|   if (Proto->hasTrailingReturn()) {
 | |
|     if (SubstParmTypes(Function->getLocation(),
 | |
|                        Function->param_begin(), Function->getNumParams(),
 | |
|                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
 | |
|                        ParamTypes))
 | |
|       return TDK_SubstitutionFailure;
 | |
|   }
 | |
|   
 | |
|   // Instantiate the return type.
 | |
|   // FIXME: exception-specifications?
 | |
|   QualType ResultType;
 | |
|   {
 | |
|     // C++11 [expr.prim.general]p3:
 | |
|     //   If a declaration declares a member function or member function 
 | |
|     //   template of a class X, the expression this is a prvalue of type 
 | |
|     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
 | |
|     //   and the end of the function-definition, member-declarator, or 
 | |
|     //   declarator.
 | |
|     unsigned ThisTypeQuals = 0;
 | |
|     CXXRecordDecl *ThisContext = 0;
 | |
|     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
 | |
|       ThisContext = Method->getParent();
 | |
|       ThisTypeQuals = Method->getTypeQualifiers();
 | |
|     }
 | |
|       
 | |
|     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
 | |
|                                getLangOpts().CPlusPlus11);
 | |
|     
 | |
|     ResultType = SubstType(Proto->getResultType(),
 | |
|                    MultiLevelTemplateArgumentList(*ExplicitArgumentList),
 | |
|                    Function->getTypeSpecStartLoc(),
 | |
|                    Function->getDeclName());
 | |
|     if (ResultType.isNull() || Trap.hasErrorOccurred())
 | |
|       return TDK_SubstitutionFailure;
 | |
|   }
 | |
|   
 | |
|   // Instantiate the types of each of the function parameters given the
 | |
|   // explicitly-specified template arguments if we didn't do so earlier.
 | |
|   if (!Proto->hasTrailingReturn() &&
 | |
|       SubstParmTypes(Function->getLocation(),
 | |
|                      Function->param_begin(), Function->getNumParams(),
 | |
|                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
 | |
|                      ParamTypes))
 | |
|     return TDK_SubstitutionFailure;
 | |
| 
 | |
|   if (FunctionType) {
 | |
|     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
 | |
|                                       Function->getLocation(),
 | |
|                                       Function->getDeclName(),
 | |
|                                       Proto->getExtProtoInfo());
 | |
|     if (FunctionType->isNull() || Trap.hasErrorOccurred())
 | |
|       return TDK_SubstitutionFailure;
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.arg.explicit]p2:
 | |
|   //   Trailing template arguments that can be deduced (14.8.2) may be
 | |
|   //   omitted from the list of explicit template-arguments. If all of the
 | |
|   //   template arguments can be deduced, they may all be omitted; in this
 | |
|   //   case, the empty template argument list <> itself may also be omitted.
 | |
|   //
 | |
|   // Take all of the explicitly-specified arguments and put them into
 | |
|   // the set of deduced template arguments. Explicitly-specified
 | |
|   // parameter packs, however, will be set to NULL since the deduction
 | |
|   // mechanisms handle explicitly-specified argument packs directly.
 | |
|   Deduced.reserve(TemplateParams->size());
 | |
|   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
 | |
|     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
 | |
|     if (Arg.getKind() == TemplateArgument::Pack)
 | |
|       Deduced.push_back(DeducedTemplateArgument());
 | |
|     else
 | |
|       Deduced.push_back(Arg);
 | |
|   }
 | |
| 
 | |
|   return TDK_Success;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether the deduced argument type for a call to a function
 | |
| /// template matches the actual argument type per C++ [temp.deduct.call]p4.
 | |
| static bool 
 | |
| CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg, 
 | |
|                               QualType DeducedA) {
 | |
|   ASTContext &Context = S.Context;
 | |
|   
 | |
|   QualType A = OriginalArg.OriginalArgType;
 | |
|   QualType OriginalParamType = OriginalArg.OriginalParamType;
 | |
|   
 | |
|   // Check for type equality (top-level cv-qualifiers are ignored).
 | |
|   if (Context.hasSameUnqualifiedType(A, DeducedA))
 | |
|     return false;
 | |
|   
 | |
|   // Strip off references on the argument types; they aren't needed for
 | |
|   // the following checks.
 | |
|   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
 | |
|     DeducedA = DeducedARef->getPointeeType();
 | |
|   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
 | |
|     A = ARef->getPointeeType();
 | |
|   
 | |
|   // C++ [temp.deduct.call]p4:
 | |
|   //   [...] However, there are three cases that allow a difference:
 | |
|   //     - If the original P is a reference type, the deduced A (i.e., the 
 | |
|   //       type referred to by the reference) can be more cv-qualified than 
 | |
|   //       the transformed A.
 | |
|   if (const ReferenceType *OriginalParamRef
 | |
|       = OriginalParamType->getAs<ReferenceType>()) {
 | |
|     // We don't want to keep the reference around any more.
 | |
|     OriginalParamType = OriginalParamRef->getPointeeType();
 | |
|     
 | |
|     Qualifiers AQuals = A.getQualifiers();
 | |
|     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
 | |
| 
 | |
|     // Under Objective-C++ ARC, the deduced type may have implicitly been
 | |
|     // given strong lifetime. If so, update the original qualifiers to
 | |
|     // include this strong lifetime.
 | |
|     if (S.getLangOpts().ObjCAutoRefCount &&
 | |
|         DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
 | |
|         AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
 | |
|       AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
 | |
|     }
 | |
| 
 | |
|     if (AQuals == DeducedAQuals) {
 | |
|       // Qualifiers match; there's nothing to do.
 | |
|     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
 | |
|       return true;
 | |
|     } else {        
 | |
|       // Qualifiers are compatible, so have the argument type adopt the
 | |
|       // deduced argument type's qualifiers as if we had performed the
 | |
|       // qualification conversion.
 | |
|       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   //    - The transformed A can be another pointer or pointer to member 
 | |
|   //      type that can be converted to the deduced A via a qualification 
 | |
|   //      conversion.
 | |
|   //
 | |
|   // Also allow conversions which merely strip [[noreturn]] from function types
 | |
|   // (recursively) as an extension.
 | |
|   // FIXME: Currently, this doesn't place nicely with qualfication conversions.
 | |
|   bool ObjCLifetimeConversion = false;
 | |
|   QualType ResultTy;
 | |
|   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
 | |
|       (S.IsQualificationConversion(A, DeducedA, false,
 | |
|                                    ObjCLifetimeConversion) ||
 | |
|        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
 | |
|     return false;
 | |
|   
 | |
|   
 | |
|   //    - If P is a class and P has the form simple-template-id, then the 
 | |
|   //      transformed A can be a derived class of the deduced A. [...]
 | |
|   //     [...] Likewise, if P is a pointer to a class of the form 
 | |
|   //      simple-template-id, the transformed A can be a pointer to a 
 | |
|   //      derived class pointed to by the deduced A.
 | |
|   if (const PointerType *OriginalParamPtr
 | |
|       = OriginalParamType->getAs<PointerType>()) {
 | |
|     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
 | |
|       if (const PointerType *APtr = A->getAs<PointerType>()) {
 | |
|         if (A->getPointeeType()->isRecordType()) {
 | |
|           OriginalParamType = OriginalParamPtr->getPointeeType();
 | |
|           DeducedA = DeducedAPtr->getPointeeType();
 | |
|           A = APtr->getPointeeType();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Context.hasSameUnqualifiedType(A, DeducedA))
 | |
|     return false;
 | |
|   
 | |
|   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
 | |
|       S.IsDerivedFrom(A, DeducedA))
 | |
|     return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Finish template argument deduction for a function template,
 | |
| /// checking the deduced template arguments for completeness and forming
 | |
| /// the function template specialization.
 | |
| ///
 | |
| /// \param OriginalCallArgs If non-NULL, the original call arguments against
 | |
| /// which the deduced argument types should be compared.
 | |
| Sema::TemplateDeductionResult
 | |
| Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
 | |
|                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | |
|                                       unsigned NumExplicitlySpecified,
 | |
|                                       FunctionDecl *&Specialization,
 | |
|                                       TemplateDeductionInfo &Info,
 | |
|         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
 | |
|   TemplateParameterList *TemplateParams
 | |
|     = FunctionTemplate->getTemplateParameters();
 | |
| 
 | |
|   // Unevaluated SFINAE context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
|   SFINAETrap Trap(*this);
 | |
| 
 | |
|   // Enter a new template instantiation context while we instantiate the
 | |
|   // actual function declaration.
 | |
|   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
 | |
|   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
 | |
|                              FunctionTemplate, DeducedArgs,
 | |
|               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
 | |
|                              Info);
 | |
|   if (Inst)
 | |
|     return TDK_InstantiationDepth;
 | |
| 
 | |
|   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
 | |
| 
 | |
|   // C++ [temp.deduct.type]p2:
 | |
|   //   [...] or if any template argument remains neither deduced nor
 | |
|   //   explicitly specified, template argument deduction fails.
 | |
|   SmallVector<TemplateArgument, 4> Builder;
 | |
|   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | |
|     NamedDecl *Param = TemplateParams->getParam(I);
 | |
| 
 | |
|     if (!Deduced[I].isNull()) {
 | |
|       if (I < NumExplicitlySpecified) {
 | |
|         // We have already fully type-checked and converted this
 | |
|         // argument, because it was explicitly-specified. Just record the
 | |
|         // presence of this argument.
 | |
|         Builder.push_back(Deduced[I]);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We have deduced this argument, so it still needs to be
 | |
|       // checked and converted.
 | |
| 
 | |
|       // First, for a non-type template parameter type that is
 | |
|       // initialized by a declaration, we need the type of the
 | |
|       // corresponding non-type template parameter.
 | |
|       QualType NTTPType;
 | |
|       if (NonTypeTemplateParmDecl *NTTP
 | |
|                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | |
|         NTTPType = NTTP->getType();
 | |
|         if (NTTPType->isDependentType()) {
 | |
|           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | |
|                                             Builder.data(), Builder.size());
 | |
|           NTTPType = SubstType(NTTPType,
 | |
|                                MultiLevelTemplateArgumentList(TemplateArgs),
 | |
|                                NTTP->getLocation(),
 | |
|                                NTTP->getDeclName());
 | |
|           if (NTTPType.isNull()) {
 | |
|             Info.Param = makeTemplateParameter(Param);
 | |
|             // FIXME: These template arguments are temporary. Free them!
 | |
|             Info.reset(TemplateArgumentList::CreateCopy(Context,
 | |
|                                                         Builder.data(),
 | |
|                                                         Builder.size()));
 | |
|             return TDK_SubstitutionFailure;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
 | |
|                                          FunctionTemplate, NTTPType, 0, Info,
 | |
|                                          true, Builder)) {
 | |
|         Info.Param = makeTemplateParameter(Param);
 | |
|         // FIXME: These template arguments are temporary. Free them!
 | |
|         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
 | |
|                                                     Builder.size()));
 | |
|         return TDK_SubstitutionFailure;
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C++0x [temp.arg.explicit]p3:
 | |
|     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
 | |
|     //    be deduced to an empty sequence of template arguments.
 | |
|     // FIXME: Where did the word "trailing" come from?
 | |
|     if (Param->isTemplateParameterPack()) {
 | |
|       // We may have had explicitly-specified template arguments for this
 | |
|       // template parameter pack. If so, our empty deduction extends the
 | |
|       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
 | |
|       const TemplateArgument *ExplicitArgs;
 | |
|       unsigned NumExplicitArgs;
 | |
|       if (CurrentInstantiationScope &&
 | |
|           CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
 | |
|                                                              &NumExplicitArgs)
 | |
|             == Param) {
 | |
|         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
 | |
| 
 | |
|         // Forget the partially-substituted pack; it's substitution is now
 | |
|         // complete.
 | |
|         CurrentInstantiationScope->ResetPartiallySubstitutedPack();
 | |
|       } else {
 | |
|         Builder.push_back(TemplateArgument::getEmptyPack());
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Substitute into the default template argument, if available.
 | |
|     bool HasDefaultArg = false;
 | |
|     TemplateArgumentLoc DefArg
 | |
|       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
 | |
|                                               FunctionTemplate->getLocation(),
 | |
|                                   FunctionTemplate->getSourceRange().getEnd(),
 | |
|                                                 Param,
 | |
|                                                 Builder, HasDefaultArg);
 | |
| 
 | |
|     // If there was no default argument, deduction is incomplete.
 | |
|     if (DefArg.getArgument().isNull()) {
 | |
|       Info.Param = makeTemplateParameter(
 | |
|                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
 | |
|       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
 | |
|                                                   Builder.size()));
 | |
|       return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
 | |
|     }
 | |
| 
 | |
|     // Check whether we can actually use the default argument.
 | |
|     if (CheckTemplateArgument(Param, DefArg,
 | |
|                               FunctionTemplate,
 | |
|                               FunctionTemplate->getLocation(),
 | |
|                               FunctionTemplate->getSourceRange().getEnd(),
 | |
|                               0, Builder,
 | |
|                               CTAK_Specified)) {
 | |
|       Info.Param = makeTemplateParameter(
 | |
|                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
 | |
|       // FIXME: These template arguments are temporary. Free them!
 | |
|       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
 | |
|                                                   Builder.size()));
 | |
|       return TDK_SubstitutionFailure;
 | |
|     }
 | |
| 
 | |
|     // If we get here, we successfully used the default template argument.
 | |
|   }
 | |
| 
 | |
|   // Form the template argument list from the deduced template arguments.
 | |
|   TemplateArgumentList *DeducedArgumentList
 | |
|     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
 | |
|   Info.reset(DeducedArgumentList);
 | |
| 
 | |
|   // Substitute the deduced template arguments into the function template
 | |
|   // declaration to produce the function template specialization.
 | |
|   DeclContext *Owner = FunctionTemplate->getDeclContext();
 | |
|   if (FunctionTemplate->getFriendObjectKind())
 | |
|     Owner = FunctionTemplate->getLexicalDeclContext();
 | |
|   Specialization = cast_or_null<FunctionDecl>(
 | |
|                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
 | |
|                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
 | |
|   if (!Specialization || Specialization->isInvalidDecl())
 | |
|     return TDK_SubstitutionFailure;
 | |
| 
 | |
|   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
 | |
|          FunctionTemplate->getCanonicalDecl());
 | |
| 
 | |
|   // If the template argument list is owned by the function template
 | |
|   // specialization, release it.
 | |
|   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
 | |
|       !Trap.hasErrorOccurred())
 | |
|     Info.take();
 | |
| 
 | |
|   // There may have been an error that did not prevent us from constructing a
 | |
|   // declaration. Mark the declaration invalid and return with a substitution
 | |
|   // failure.
 | |
|   if (Trap.hasErrorOccurred()) {
 | |
|     Specialization->setInvalidDecl(true);
 | |
|     return TDK_SubstitutionFailure;
 | |
|   }
 | |
| 
 | |
|   if (OriginalCallArgs) {
 | |
|     // C++ [temp.deduct.call]p4:
 | |
|     //   In general, the deduction process attempts to find template argument
 | |
|     //   values that will make the deduced A identical to A (after the type A 
 | |
|     //   is transformed as described above). [...]
 | |
|     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
 | |
|       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
 | |
|       unsigned ParamIdx = OriginalArg.ArgIdx;
 | |
|       
 | |
|       if (ParamIdx >= Specialization->getNumParams())
 | |
|         continue;
 | |
|       
 | |
|       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
 | |
|       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
 | |
|         return Sema::TDK_SubstitutionFailure;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we suppressed any diagnostics while performing template argument
 | |
|   // deduction, and if we haven't already instantiated this declaration,
 | |
|   // keep track of these diagnostics. They'll be emitted if this specialization
 | |
|   // is actually used.
 | |
|   if (Info.diag_begin() != Info.diag_end()) {
 | |
|     SuppressedDiagnosticsMap::iterator
 | |
|       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
 | |
|     if (Pos == SuppressedDiagnostics.end())
 | |
|         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
 | |
|           .append(Info.diag_begin(), Info.diag_end());
 | |
|   }
 | |
| 
 | |
|   return TDK_Success;
 | |
| }
 | |
| 
 | |
| /// Gets the type of a function for template-argument-deducton
 | |
| /// purposes when it's considered as part of an overload set.
 | |
| static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
 | |
|                                   FunctionDecl *Fn) {
 | |
|   // We may need to deduce the return type of the function now.
 | |
|   if (S.getLangOpts().CPlusPlus1y && Fn->getResultType()->isUndeducedType() &&
 | |
|       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/false))
 | |
|     return QualType();
 | |
| 
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
 | |
|     if (Method->isInstance()) {
 | |
|       // An instance method that's referenced in a form that doesn't
 | |
|       // look like a member pointer is just invalid.
 | |
|       if (!R.HasFormOfMemberPointer) return QualType();
 | |
| 
 | |
|       return S.Context.getMemberPointerType(Fn->getType(),
 | |
|                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
 | |
|     }
 | |
| 
 | |
|   if (!R.IsAddressOfOperand) return Fn->getType();
 | |
|   return S.Context.getPointerType(Fn->getType());
 | |
| }
 | |
| 
 | |
| /// Apply the deduction rules for overload sets.
 | |
| ///
 | |
| /// \return the null type if this argument should be treated as an
 | |
| /// undeduced context
 | |
| static QualType
 | |
| ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
 | |
|                             Expr *Arg, QualType ParamType,
 | |
|                             bool ParamWasReference) {
 | |
| 
 | |
|   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
 | |
| 
 | |
|   OverloadExpr *Ovl = R.Expression;
 | |
| 
 | |
|   // C++0x [temp.deduct.call]p4
 | |
|   unsigned TDF = 0;
 | |
|   if (ParamWasReference)
 | |
|     TDF |= TDF_ParamWithReferenceType;
 | |
|   if (R.IsAddressOfOperand)
 | |
|     TDF |= TDF_IgnoreQualifiers;
 | |
| 
 | |
|   // C++0x [temp.deduct.call]p6:
 | |
|   //   When P is a function type, pointer to function type, or pointer
 | |
|   //   to member function type:
 | |
| 
 | |
|   if (!ParamType->isFunctionType() &&
 | |
|       !ParamType->isFunctionPointerType() &&
 | |
|       !ParamType->isMemberFunctionPointerType()) {
 | |
|     if (Ovl->hasExplicitTemplateArgs()) {
 | |
|       // But we can still look for an explicit specialization.
 | |
|       if (FunctionDecl *ExplicitSpec
 | |
|             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
 | |
|         return GetTypeOfFunction(S, R, ExplicitSpec);
 | |
|     }
 | |
| 
 | |
|     return QualType();
 | |
|   }
 | |
|   
 | |
|   // Gather the explicit template arguments, if any.
 | |
|   TemplateArgumentListInfo ExplicitTemplateArgs;
 | |
|   if (Ovl->hasExplicitTemplateArgs())
 | |
|     Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
 | |
|   QualType Match;
 | |
|   for (UnresolvedSetIterator I = Ovl->decls_begin(),
 | |
|          E = Ovl->decls_end(); I != E; ++I) {
 | |
|     NamedDecl *D = (*I)->getUnderlyingDecl();
 | |
| 
 | |
|     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
 | |
|       //   - If the argument is an overload set containing one or more
 | |
|       //     function templates, the parameter is treated as a
 | |
|       //     non-deduced context.
 | |
|       if (!Ovl->hasExplicitTemplateArgs())
 | |
|         return QualType();
 | |
|       
 | |
|       // Otherwise, see if we can resolve a function type 
 | |
|       FunctionDecl *Specialization = 0;
 | |
|       TemplateDeductionInfo Info(Ovl->getNameLoc());
 | |
|       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
 | |
|                                     Specialization, Info))
 | |
|         continue;
 | |
|       
 | |
|       D = Specialization;
 | |
|     }
 | |
| 
 | |
|     FunctionDecl *Fn = cast<FunctionDecl>(D);
 | |
|     QualType ArgType = GetTypeOfFunction(S, R, Fn);
 | |
|     if (ArgType.isNull()) continue;
 | |
| 
 | |
|     // Function-to-pointer conversion.
 | |
|     if (!ParamWasReference && ParamType->isPointerType() &&
 | |
|         ArgType->isFunctionType())
 | |
|       ArgType = S.Context.getPointerType(ArgType);
 | |
| 
 | |
|     //   - If the argument is an overload set (not containing function
 | |
|     //     templates), trial argument deduction is attempted using each
 | |
|     //     of the members of the set. If deduction succeeds for only one
 | |
|     //     of the overload set members, that member is used as the
 | |
|     //     argument value for the deduction. If deduction succeeds for
 | |
|     //     more than one member of the overload set the parameter is
 | |
|     //     treated as a non-deduced context.
 | |
| 
 | |
|     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
 | |
|     //   Type deduction is done independently for each P/A pair, and
 | |
|     //   the deduced template argument values are then combined.
 | |
|     // So we do not reject deductions which were made elsewhere.
 | |
|     SmallVector<DeducedTemplateArgument, 8>
 | |
|       Deduced(TemplateParams->size());
 | |
|     TemplateDeductionInfo Info(Ovl->getNameLoc());
 | |
|     Sema::TemplateDeductionResult Result
 | |
|       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
 | |
|                                            ArgType, Info, Deduced, TDF);
 | |
|     if (Result) continue;
 | |
|     if (!Match.isNull()) return QualType();
 | |
|     Match = ArgType;
 | |
|   }
 | |
| 
 | |
|   return Match;
 | |
| }
 | |
| 
 | |
| /// \brief Perform the adjustments to the parameter and argument types
 | |
| /// described in C++ [temp.deduct.call].
 | |
| ///
 | |
| /// \returns true if the caller should not attempt to perform any template
 | |
| /// argument deduction based on this P/A pair because the argument is an
 | |
| /// overloaded function set that could not be resolved.
 | |
| static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
 | |
|                                           TemplateParameterList *TemplateParams,
 | |
|                                                       QualType &ParamType,
 | |
|                                                       QualType &ArgType,
 | |
|                                                       Expr *Arg,
 | |
|                                                       unsigned &TDF) {
 | |
|   // C++0x [temp.deduct.call]p3:
 | |
|   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
 | |
|   //   are ignored for type deduction.
 | |
|   if (ParamType.hasQualifiers())
 | |
|     ParamType = ParamType.getUnqualifiedType();
 | |
|   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
 | |
|   if (ParamRefType) {
 | |
|     QualType PointeeType = ParamRefType->getPointeeType();
 | |
| 
 | |
|     // If the argument has incomplete array type, try to complete its type.
 | |
|     if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
 | |
|       ArgType = Arg->getType();
 | |
| 
 | |
|     //   [C++0x] If P is an rvalue reference to a cv-unqualified
 | |
|     //   template parameter and the argument is an lvalue, the type
 | |
|     //   "lvalue reference to A" is used in place of A for type
 | |
|     //   deduction.
 | |
|     if (isa<RValueReferenceType>(ParamType)) {
 | |
|       if (!PointeeType.getQualifiers() &&
 | |
|           isa<TemplateTypeParmType>(PointeeType) &&
 | |
|           Arg->Classify(S.Context).isLValue() &&
 | |
|           Arg->getType() != S.Context.OverloadTy &&
 | |
|           Arg->getType() != S.Context.BoundMemberTy)
 | |
|         ArgType = S.Context.getLValueReferenceType(ArgType);
 | |
|     }
 | |
| 
 | |
|     //   [...] If P is a reference type, the type referred to by P is used
 | |
|     //   for type deduction.
 | |
|     ParamType = PointeeType;
 | |
|   }
 | |
| 
 | |
|   // Overload sets usually make this parameter an undeduced
 | |
|   // context, but there are sometimes special circumstances.
 | |
|   if (ArgType == S.Context.OverloadTy) {
 | |
|     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
 | |
|                                           Arg, ParamType,
 | |
|                                           ParamRefType != 0);
 | |
|     if (ArgType.isNull())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (ParamRefType) {
 | |
|     // C++0x [temp.deduct.call]p3:
 | |
|     //   [...] If P is of the form T&&, where T is a template parameter, and
 | |
|     //   the argument is an lvalue, the type A& is used in place of A for
 | |
|     //   type deduction.
 | |
|     if (ParamRefType->isRValueReferenceType() &&
 | |
|         ParamRefType->getAs<TemplateTypeParmType>() &&
 | |
|         Arg->isLValue())
 | |
|       ArgType = S.Context.getLValueReferenceType(ArgType);
 | |
|   } else {
 | |
|     // C++ [temp.deduct.call]p2:
 | |
|     //   If P is not a reference type:
 | |
|     //   - If A is an array type, the pointer type produced by the
 | |
|     //     array-to-pointer standard conversion (4.2) is used in place of
 | |
|     //     A for type deduction; otherwise,
 | |
|     if (ArgType->isArrayType())
 | |
|       ArgType = S.Context.getArrayDecayedType(ArgType);
 | |
|     //   - If A is a function type, the pointer type produced by the
 | |
|     //     function-to-pointer standard conversion (4.3) is used in place
 | |
|     //     of A for type deduction; otherwise,
 | |
|     else if (ArgType->isFunctionType())
 | |
|       ArgType = S.Context.getPointerType(ArgType);
 | |
|     else {
 | |
|       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
 | |
|       //   type are ignored for type deduction.
 | |
|       ArgType = ArgType.getUnqualifiedType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.deduct.call]p4:
 | |
|   //   In general, the deduction process attempts to find template argument
 | |
|   //   values that will make the deduced A identical to A (after the type A
 | |
|   //   is transformed as described above). [...]
 | |
|   TDF = TDF_SkipNonDependent;
 | |
| 
 | |
|   //     - If the original P is a reference type, the deduced A (i.e., the
 | |
|   //       type referred to by the reference) can be more cv-qualified than
 | |
|   //       the transformed A.
 | |
|   if (ParamRefType)
 | |
|     TDF |= TDF_ParamWithReferenceType;
 | |
|   //     - The transformed A can be another pointer or pointer to member
 | |
|   //       type that can be converted to the deduced A via a qualification
 | |
|   //       conversion (4.4).
 | |
|   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
 | |
|       ArgType->isObjCObjectPointerType())
 | |
|     TDF |= TDF_IgnoreQualifiers;
 | |
|   //     - If P is a class and P has the form simple-template-id, then the
 | |
|   //       transformed A can be a derived class of the deduced A. Likewise,
 | |
|   //       if P is a pointer to a class of the form simple-template-id, the
 | |
|   //       transformed A can be a pointer to a derived class pointed to by
 | |
|   //       the deduced A.
 | |
|   if (isSimpleTemplateIdType(ParamType) ||
 | |
|       (isa<PointerType>(ParamType) &&
 | |
|        isSimpleTemplateIdType(
 | |
|                               ParamType->getAs<PointerType>()->getPointeeType())))
 | |
|     TDF |= TDF_DerivedClass;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool hasDeducibleTemplateParameters(Sema &S,
 | |
|                                            FunctionTemplateDecl *FunctionTemplate,
 | |
|                                            QualType T);
 | |
| 
 | |
| /// \brief Perform template argument deduction by matching a parameter type
 | |
| ///        against a single expression, where the expression is an element of
 | |
| ///        an initializer list that was originally matched against a parameter
 | |
| ///        of type \c initializer_list\<ParamType\>.
 | |
| static Sema::TemplateDeductionResult
 | |
| DeduceTemplateArgumentByListElement(Sema &S,
 | |
|                                     TemplateParameterList *TemplateParams,
 | |
|                                     QualType ParamType, Expr *Arg,
 | |
|                                     TemplateDeductionInfo &Info,
 | |
|                               SmallVectorImpl<DeducedTemplateArgument> &Deduced,
 | |
|                                     unsigned TDF) {
 | |
|   // Handle the case where an init list contains another init list as the
 | |
|   // element.
 | |
|   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
 | |
|     QualType X;
 | |
|     if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
 | |
|       return Sema::TDK_Success; // Just ignore this expression.
 | |
| 
 | |
|     // Recurse down into the init list.
 | |
|     for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
 | |
|       if (Sema::TemplateDeductionResult Result =
 | |
|             DeduceTemplateArgumentByListElement(S, TemplateParams, X,
 | |
|                                                  ILE->getInit(i),
 | |
|                                                  Info, Deduced, TDF))
 | |
|         return Result;
 | |
|     }
 | |
|     return Sema::TDK_Success;
 | |
|   }
 | |
| 
 | |
|   // For all other cases, just match by type.
 | |
|   QualType ArgType = Arg->getType();
 | |
|   if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType, 
 | |
|                                                 ArgType, Arg, TDF)) {
 | |
|     Info.Expression = Arg;
 | |
|     return Sema::TDK_FailedOverloadResolution;
 | |
|   }
 | |
|   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
 | |
|                                             ArgType, Info, Deduced, TDF);
 | |
| }
 | |
| 
 | |
| /// \brief Perform template argument deduction from a function call
 | |
| /// (C++ [temp.deduct.call]).
 | |
| ///
 | |
| /// \param FunctionTemplate the function template for which we are performing
 | |
| /// template argument deduction.
 | |
| ///
 | |
| /// \param ExplicitTemplateArgs the explicit template arguments provided
 | |
| /// for this call.
 | |
| ///
 | |
| /// \param Args the function call arguments
 | |
| ///
 | |
| /// \param Specialization if template argument deduction was successful,
 | |
| /// this will be set to the function template specialization produced by
 | |
| /// template argument deduction.
 | |
| ///
 | |
| /// \param Info the argument will be updated to provide additional information
 | |
| /// about template argument deduction.
 | |
| ///
 | |
| /// \returns the result of template argument deduction.
 | |
| Sema::TemplateDeductionResult
 | |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
 | |
|                               TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|                               llvm::ArrayRef<Expr *> Args,
 | |
|                               FunctionDecl *&Specialization,
 | |
|                               TemplateDeductionInfo &Info) {
 | |
|   if (FunctionTemplate->isInvalidDecl())
 | |
|     return TDK_Invalid;
 | |
| 
 | |
|   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
 | |
| 
 | |
|   // C++ [temp.deduct.call]p1:
 | |
|   //   Template argument deduction is done by comparing each function template
 | |
|   //   parameter type (call it P) with the type of the corresponding argument
 | |
|   //   of the call (call it A) as described below.
 | |
|   unsigned CheckArgs = Args.size();
 | |
|   if (Args.size() < Function->getMinRequiredArguments())
 | |
|     return TDK_TooFewArguments;
 | |
|   else if (Args.size() > Function->getNumParams()) {
 | |
|     const FunctionProtoType *Proto
 | |
|       = Function->getType()->getAs<FunctionProtoType>();
 | |
|     if (Proto->isTemplateVariadic())
 | |
|       /* Do nothing */;
 | |
|     else if (Proto->isVariadic())
 | |
|       CheckArgs = Function->getNumParams();
 | |
|     else
 | |
|       return TDK_TooManyArguments;
 | |
|   }
 | |
| 
 | |
|   // The types of the parameters from which we will perform template argument
 | |
|   // deduction.
 | |
|   LocalInstantiationScope InstScope(*this);
 | |
|   TemplateParameterList *TemplateParams
 | |
|     = FunctionTemplate->getTemplateParameters();
 | |
|   SmallVector<DeducedTemplateArgument, 4> Deduced;
 | |
|   SmallVector<QualType, 4> ParamTypes;
 | |
|   unsigned NumExplicitlySpecified = 0;
 | |
|   if (ExplicitTemplateArgs) {
 | |
|     TemplateDeductionResult Result =
 | |
|       SubstituteExplicitTemplateArguments(FunctionTemplate,
 | |
|                                           *ExplicitTemplateArgs,
 | |
|                                           Deduced,
 | |
|                                           ParamTypes,
 | |
|                                           0,
 | |
|                                           Info);
 | |
|     if (Result)
 | |
|       return Result;
 | |
| 
 | |
|     NumExplicitlySpecified = Deduced.size();
 | |
|   } else {
 | |
|     // Just fill in the parameter types from the function declaration.
 | |
|     for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
 | |
|       ParamTypes.push_back(Function->getParamDecl(I)->getType());
 | |
|   }
 | |
| 
 | |
|   // Deduce template arguments from the function parameters.
 | |
|   Deduced.resize(TemplateParams->size());
 | |
|   unsigned ArgIdx = 0;
 | |
|   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
 | |
|   for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
 | |
|        ParamIdx != NumParams; ++ParamIdx) {
 | |
|     QualType OrigParamType = ParamTypes[ParamIdx];
 | |
|     QualType ParamType = OrigParamType;
 | |
|     
 | |
|     const PackExpansionType *ParamExpansion
 | |
|       = dyn_cast<PackExpansionType>(ParamType);
 | |
|     if (!ParamExpansion) {
 | |
|       // Simple case: matching a function parameter to a function argument.
 | |
|       if (ArgIdx >= CheckArgs)
 | |
|         break;
 | |
| 
 | |
|       Expr *Arg = Args[ArgIdx++];
 | |
|       QualType ArgType = Arg->getType();
 | |
|       
 | |
|       unsigned TDF = 0;
 | |
|       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
 | |
|                                                     ParamType, ArgType, Arg,
 | |
|                                                     TDF))
 | |
|         continue;
 | |
| 
 | |
|       // If we have nothing to deduce, we're done.
 | |
|       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
 | |
|         continue;
 | |
| 
 | |
|       // If the argument is an initializer list ...
 | |
|       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
 | |
|         // ... then the parameter is an undeduced context, unless the parameter
 | |
|         // type is (reference to cv) std::initializer_list<P'>, in which case
 | |
|         // deduction is done for each element of the initializer list, and the
 | |
|         // result is the deduced type if it's the same for all elements.
 | |
|         QualType X;
 | |
|         // Removing references was already done.
 | |
|         if (!isStdInitializerList(ParamType, &X))
 | |
|           continue;
 | |
| 
 | |
|         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
 | |
|           if (TemplateDeductionResult Result =
 | |
|                 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
 | |
|                                                      ILE->getInit(i),
 | |
|                                                      Info, Deduced, TDF))
 | |
|             return Result;
 | |
|         }
 | |
|         // Don't track the argument type, since an initializer list has none.
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Keep track of the argument type and corresponding parameter index,
 | |
|       // so we can check for compatibility between the deduced A and A.
 | |
|       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1, 
 | |
|                                                  ArgType));
 | |
| 
 | |
|       if (TemplateDeductionResult Result
 | |
|             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
 | |
|                                                  ParamType, ArgType,
 | |
|                                                  Info, Deduced, TDF))
 | |
|         return Result;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C++0x [temp.deduct.call]p1:
 | |
|     //   For a function parameter pack that occurs at the end of the
 | |
|     //   parameter-declaration-list, the type A of each remaining argument of
 | |
|     //   the call is compared with the type P of the declarator-id of the
 | |
|     //   function parameter pack. Each comparison deduces template arguments
 | |
|     //   for subsequent positions in the template parameter packs expanded by
 | |
|     //   the function parameter pack. For a function parameter pack that does
 | |
|     //   not occur at the end of the parameter-declaration-list, the type of
 | |
|     //   the parameter pack is a non-deduced context.
 | |
|     if (ParamIdx + 1 < NumParams)
 | |
|       break;
 | |
| 
 | |
|     QualType ParamPattern = ParamExpansion->getPattern();
 | |
|     SmallVector<unsigned, 2> PackIndices;
 | |
|     {
 | |
|       llvm::SmallBitVector SawIndices(TemplateParams->size());
 | |
|       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
 | |
|       collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
 | |
|       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
 | |
|         unsigned Depth, Index;
 | |
|         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
 | |
|         if (Depth == 0 && !SawIndices[Index]) {
 | |
|           SawIndices[Index] = true;
 | |
|           PackIndices.push_back(Index);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
 | |
| 
 | |
|     // Keep track of the deduced template arguments for each parameter pack
 | |
|     // expanded by this pack expansion (the outer index) and for each
 | |
|     // template argument (the inner SmallVectors).
 | |
|     NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
 | |
|     SmallVector<DeducedTemplateArgument, 2>
 | |
|       SavedPacks(PackIndices.size());
 | |
|     PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
 | |
|                                  NewlyDeducedPacks);
 | |
|     bool HasAnyArguments = false;
 | |
|     for (; ArgIdx < Args.size(); ++ArgIdx) {
 | |
|       HasAnyArguments = true;
 | |
| 
 | |
|       QualType OrigParamType = ParamPattern;
 | |
|       ParamType = OrigParamType;
 | |
|       Expr *Arg = Args[ArgIdx];
 | |
|       QualType ArgType = Arg->getType();
 | |
|       
 | |
|       unsigned TDF = 0;
 | |
|       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
 | |
|                                                     ParamType, ArgType, Arg,
 | |
|                                                     TDF)) {
 | |
|         // We can't actually perform any deduction for this argument, so stop
 | |
|         // deduction at this point.
 | |
|         ++ArgIdx;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // As above, initializer lists need special handling.
 | |
|       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
 | |
|         QualType X;
 | |
|         if (!isStdInitializerList(ParamType, &X)) {
 | |
|           ++ArgIdx;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
 | |
|           if (TemplateDeductionResult Result =
 | |
|                 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
 | |
|                                                    ILE->getInit(i)->getType(),
 | |
|                                                    Info, Deduced, TDF))
 | |
|             return Result;
 | |
|         }
 | |
|       } else {
 | |
| 
 | |
|         // Keep track of the argument type and corresponding argument index,
 | |
|         // so we can check for compatibility between the deduced A and A.
 | |
|         if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
 | |
|           OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx, 
 | |
|                                                      ArgType));
 | |
| 
 | |
|         if (TemplateDeductionResult Result
 | |
|             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
 | |
|                                                  ParamType, ArgType, Info,
 | |
|                                                  Deduced, TDF))
 | |
|           return Result;
 | |
|       }
 | |
| 
 | |
|       // Capture the deduced template arguments for each parameter pack expanded
 | |
|       // by this pack expansion, add them to the list of arguments we've deduced
 | |
|       // for that pack, then clear out the deduced argument.
 | |
|       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
 | |
|         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
 | |
|         if (!DeducedArg.isNull()) {
 | |
|           NewlyDeducedPacks[I].push_back(DeducedArg);
 | |
|           DeducedArg = DeducedTemplateArgument();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Build argument packs for each of the parameter packs expanded by this
 | |
|     // pack expansion.
 | |
|     if (Sema::TemplateDeductionResult Result
 | |
|           = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
 | |
|                                         Deduced, PackIndices, SavedPacks,
 | |
|                                         NewlyDeducedPacks, Info))
 | |
|       return Result;
 | |
| 
 | |
|     // After we've matching against a parameter pack, we're done.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
 | |
|                                          NumExplicitlySpecified,
 | |
|                                          Specialization, Info, &OriginalCallArgs);
 | |
| }
 | |
| 
 | |
| /// \brief Deduce template arguments when taking the address of a function
 | |
| /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
 | |
| /// a template.
 | |
| ///
 | |
| /// \param FunctionTemplate the function template for which we are performing
 | |
| /// template argument deduction.
 | |
| ///
 | |
| /// \param ExplicitTemplateArgs the explicitly-specified template
 | |
| /// arguments.
 | |
| ///
 | |
| /// \param ArgFunctionType the function type that will be used as the
 | |
| /// "argument" type (A) when performing template argument deduction from the
 | |
| /// function template's function type. This type may be NULL, if there is no
 | |
| /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
 | |
| ///
 | |
| /// \param Specialization if template argument deduction was successful,
 | |
| /// this will be set to the function template specialization produced by
 | |
| /// template argument deduction.
 | |
| ///
 | |
| /// \param Info the argument will be updated to provide additional information
 | |
| /// about template argument deduction.
 | |
| ///
 | |
| /// \returns the result of template argument deduction.
 | |
| Sema::TemplateDeductionResult
 | |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
 | |
|                               TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|                               QualType ArgFunctionType,
 | |
|                               FunctionDecl *&Specialization,
 | |
|                               TemplateDeductionInfo &Info,
 | |
|                               bool InOverloadResolution) {
 | |
|   if (FunctionTemplate->isInvalidDecl())
 | |
|     return TDK_Invalid;
 | |
| 
 | |
|   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
 | |
|   TemplateParameterList *TemplateParams
 | |
|     = FunctionTemplate->getTemplateParameters();
 | |
|   QualType FunctionType = Function->getType();
 | |
| 
 | |
|   // Substitute any explicit template arguments.
 | |
|   LocalInstantiationScope InstScope(*this);
 | |
|   SmallVector<DeducedTemplateArgument, 4> Deduced;
 | |
|   unsigned NumExplicitlySpecified = 0;
 | |
|   SmallVector<QualType, 4> ParamTypes;
 | |
|   if (ExplicitTemplateArgs) {
 | |
|     if (TemplateDeductionResult Result
 | |
|           = SubstituteExplicitTemplateArguments(FunctionTemplate,
 | |
|                                                 *ExplicitTemplateArgs,
 | |
|                                                 Deduced, ParamTypes,
 | |
|                                                 &FunctionType, Info))
 | |
|       return Result;
 | |
| 
 | |
|     NumExplicitlySpecified = Deduced.size();
 | |
|   }
 | |
| 
 | |
|   // Unevaluated SFINAE context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
|   SFINAETrap Trap(*this);
 | |
| 
 | |
|   Deduced.resize(TemplateParams->size());
 | |
| 
 | |
|   // If the function has a deduced return type, substitute it for a dependent
 | |
|   // type so that we treat it as a non-deduced context in what follows.
 | |
|   bool HasUndeducedReturnType = false;
 | |
|   if (getLangOpts().CPlusPlus1y && InOverloadResolution &&
 | |
|       Function->getResultType()->isUndeducedType()) {
 | |
|     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
 | |
|     HasUndeducedReturnType = true;
 | |
|   }
 | |
| 
 | |
|   if (!ArgFunctionType.isNull()) {
 | |
|     unsigned TDF = TDF_TopLevelParameterTypeList;
 | |
|     if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
 | |
|     // Deduce template arguments from the function type.
 | |
|     if (TemplateDeductionResult Result
 | |
|           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
 | |
|                                                FunctionType, ArgFunctionType,
 | |
|                                                Info, Deduced, TDF))
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   if (TemplateDeductionResult Result
 | |
|         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
 | |
|                                           NumExplicitlySpecified,
 | |
|                                           Specialization, Info))
 | |
|     return Result;
 | |
| 
 | |
|   // If the function has a deduced return type, deduce it now, so we can check
 | |
|   // that the deduced function type matches the requested type.
 | |
|   if (HasUndeducedReturnType &&
 | |
|       Specialization->getResultType()->isUndeducedType() &&
 | |
|       DeduceReturnType(Specialization, Info.getLocation(), false))
 | |
|     return TDK_MiscellaneousDeductionFailure;
 | |
| 
 | |
|   // If the requested function type does not match the actual type of the
 | |
|   // specialization with respect to arguments of compatible pointer to function
 | |
|   // types, template argument deduction fails.
 | |
|   if (!ArgFunctionType.isNull()) {
 | |
|     if (InOverloadResolution && !isSameOrCompatibleFunctionType(
 | |
|                            Context.getCanonicalType(Specialization->getType()),
 | |
|                            Context.getCanonicalType(ArgFunctionType)))
 | |
|       return TDK_MiscellaneousDeductionFailure;
 | |
|     else if(!InOverloadResolution &&
 | |
|             !Context.hasSameType(Specialization->getType(), ArgFunctionType))
 | |
|       return TDK_MiscellaneousDeductionFailure;
 | |
|   }
 | |
| 
 | |
|   return TDK_Success;
 | |
| }
 | |
| 
 | |
| /// \brief Deduce template arguments for a templated conversion
 | |
| /// function (C++ [temp.deduct.conv]) and, if successful, produce a
 | |
| /// conversion function template specialization.
 | |
| Sema::TemplateDeductionResult
 | |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
 | |
|                               QualType ToType,
 | |
|                               CXXConversionDecl *&Specialization,
 | |
|                               TemplateDeductionInfo &Info) {
 | |
|   if (FunctionTemplate->isInvalidDecl())
 | |
|     return TDK_Invalid;
 | |
| 
 | |
|   CXXConversionDecl *Conv
 | |
|     = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
 | |
|   QualType FromType = Conv->getConversionType();
 | |
| 
 | |
|   // Canonicalize the types for deduction.
 | |
|   QualType P = Context.getCanonicalType(FromType);
 | |
|   QualType A = Context.getCanonicalType(ToType);
 | |
| 
 | |
|   // C++0x [temp.deduct.conv]p2:
 | |
|   //   If P is a reference type, the type referred to by P is used for
 | |
|   //   type deduction.
 | |
|   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
 | |
|     P = PRef->getPointeeType();
 | |
| 
 | |
|   // C++0x [temp.deduct.conv]p4:
 | |
|   //   [...] If A is a reference type, the type referred to by A is used
 | |
|   //   for type deduction.
 | |
|   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
 | |
|     A = ARef->getPointeeType().getUnqualifiedType();
 | |
|   // C++ [temp.deduct.conv]p3:
 | |
|   //
 | |
|   //   If A is not a reference type:
 | |
|   else {
 | |
|     assert(!A->isReferenceType() && "Reference types were handled above");
 | |
| 
 | |
|     //   - If P is an array type, the pointer type produced by the
 | |
|     //     array-to-pointer standard conversion (4.2) is used in place
 | |
|     //     of P for type deduction; otherwise,
 | |
|     if (P->isArrayType())
 | |
|       P = Context.getArrayDecayedType(P);
 | |
|     //   - If P is a function type, the pointer type produced by the
 | |
|     //     function-to-pointer standard conversion (4.3) is used in
 | |
|     //     place of P for type deduction; otherwise,
 | |
|     else if (P->isFunctionType())
 | |
|       P = Context.getPointerType(P);
 | |
|     //   - If P is a cv-qualified type, the top level cv-qualifiers of
 | |
|     //     P's type are ignored for type deduction.
 | |
|     else
 | |
|       P = P.getUnqualifiedType();
 | |
| 
 | |
|     // C++0x [temp.deduct.conv]p4:
 | |
|     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
 | |
|     //   type are ignored for type deduction. If A is a reference type, the type 
 | |
|     //   referred to by A is used for type deduction.
 | |
|     A = A.getUnqualifiedType();
 | |
|   }
 | |
| 
 | |
|   // Unevaluated SFINAE context.
 | |
|   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | |
|   SFINAETrap Trap(*this);
 | |
| 
 | |
|   // C++ [temp.deduct.conv]p1:
 | |
|   //   Template argument deduction is done by comparing the return
 | |
|   //   type of the template conversion function (call it P) with the
 | |
|   //   type that is required as the result of the conversion (call it
 | |
|   //   A) as described in 14.8.2.4.
 | |
|   TemplateParameterList *TemplateParams
 | |
|     = FunctionTemplate->getTemplateParameters();
 | |
|   SmallVector<DeducedTemplateArgument, 4> Deduced;
 | |
|   Deduced.resize(TemplateParams->size());
 | |
| 
 | |
|   // C++0x [temp.deduct.conv]p4:
 | |
|   //   In general, the deduction process attempts to find template
 | |
|   //   argument values that will make the deduced A identical to
 | |
|   //   A. However, there are two cases that allow a difference:
 | |
|   unsigned TDF = 0;
 | |
|   //     - If the original A is a reference type, A can be more
 | |
|   //       cv-qualified than the deduced A (i.e., the type referred to
 | |
|   //       by the reference)
 | |
|   if (ToType->isReferenceType())
 | |
|     TDF |= TDF_ParamWithReferenceType;
 | |
|   //     - The deduced A can be another pointer or pointer to member
 | |
|   //       type that can be converted to A via a qualification
 | |
|   //       conversion.
 | |
|   //
 | |
|   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
 | |
|   // both P and A are pointers or member pointers. In this case, we
 | |
|   // just ignore cv-qualifiers completely).
 | |
|   if ((P->isPointerType() && A->isPointerType()) ||
 | |
|       (P->isMemberPointerType() && A->isMemberPointerType()))
 | |
|     TDF |= TDF_IgnoreQualifiers;
 | |
|   if (TemplateDeductionResult Result
 | |
|         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
 | |
|                                              P, A, Info, Deduced, TDF))
 | |
|     return Result;
 | |
| 
 | |
|   // Finish template argument deduction.
 | |
|   LocalInstantiationScope InstScope(*this);
 | |
|   FunctionDecl *Spec = 0;
 | |
|   TemplateDeductionResult Result
 | |
|     = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
 | |
|                                       Info);
 | |
|   Specialization = cast_or_null<CXXConversionDecl>(Spec);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// \brief Deduce template arguments for a function template when there is
 | |
| /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
 | |
| ///
 | |
| /// \param FunctionTemplate the function template for which we are performing
 | |
| /// template argument deduction.
 | |
| ///
 | |
| /// \param ExplicitTemplateArgs the explicitly-specified template
 | |
| /// arguments.
 | |
| ///
 | |
| /// \param Specialization if template argument deduction was successful,
 | |
| /// this will be set to the function template specialization produced by
 | |
| /// template argument deduction.
 | |
| ///
 | |
| /// \param Info the argument will be updated to provide additional information
 | |
| /// about template argument deduction.
 | |
| ///
 | |
| /// \returns the result of template argument deduction.
 | |
| Sema::TemplateDeductionResult
 | |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
 | |
|                               TemplateArgumentListInfo *ExplicitTemplateArgs,
 | |
|                               FunctionDecl *&Specialization,
 | |
|                               TemplateDeductionInfo &Info,
 | |
|                               bool InOverloadResolution) {
 | |
|   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
 | |
|                                  QualType(), Specialization, Info,
 | |
|                                  InOverloadResolution);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// Substitute the 'auto' type specifier within a type for a given replacement
 | |
|   /// type.
 | |
|   class SubstituteAutoTransform :
 | |
|     public TreeTransform<SubstituteAutoTransform> {
 | |
|     QualType Replacement;
 | |
|   public:
 | |
|     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
 | |
|       TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
 | |
|     }
 | |
|     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
 | |
|       // If we're building the type pattern to deduce against, don't wrap the
 | |
|       // substituted type in an AutoType. Certain template deduction rules
 | |
|       // apply only when a template type parameter appears directly (and not if
 | |
|       // the parameter is found through desugaring). For instance:
 | |
|       //   auto &&lref = lvalue;
 | |
|       // must transform into "rvalue reference to T" not "rvalue reference to
 | |
|       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
 | |
|       if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
 | |
|         QualType Result = Replacement;
 | |
|         TemplateTypeParmTypeLoc NewTL =
 | |
|           TLB.push<TemplateTypeParmTypeLoc>(Result);
 | |
|         NewTL.setNameLoc(TL.getNameLoc());
 | |
|         return Result;
 | |
|       } else {
 | |
|         bool Dependent =
 | |
|           !Replacement.isNull() && Replacement->isDependentType();
 | |
|         QualType Result =
 | |
|           SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
 | |
|                                       TL.getTypePtr()->isDecltypeAuto(),
 | |
|                                       Dependent);
 | |
|         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
 | |
|         NewTL.setNameLoc(TL.getNameLoc());
 | |
|         return Result;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ExprResult TransformLambdaExpr(LambdaExpr *E) {
 | |
|       // Lambdas never need to be transformed.
 | |
|       return E;
 | |
|     }
 | |
| 
 | |
|     QualType Apply(TypeLoc TL) {
 | |
|       // Create some scratch storage for the transformed type locations.
 | |
|       // FIXME: We're just going to throw this information away. Don't build it.
 | |
|       TypeLocBuilder TLB;
 | |
|       TLB.reserve(TL.getFullDataSize());
 | |
|       return TransformType(TLB, TL);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| Sema::DeduceAutoResult
 | |
| Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
 | |
|   return DeduceAutoType(Type->getTypeLoc(), Init, Result);
 | |
| }
 | |
| 
 | |
| /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
 | |
| ///
 | |
| /// \param Type the type pattern using the auto type-specifier.
 | |
| /// \param Init the initializer for the variable whose type is to be deduced.
 | |
| /// \param Result if type deduction was successful, this will be set to the
 | |
| ///        deduced type.
 | |
| Sema::DeduceAutoResult
 | |
| Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
 | |
|   if (Init->getType()->isNonOverloadPlaceholderType()) {
 | |
|     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
 | |
|     if (NonPlaceholder.isInvalid())
 | |
|       return DAR_FailedAlreadyDiagnosed;
 | |
|     Init = NonPlaceholder.take();
 | |
|   }
 | |
| 
 | |
|   if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
 | |
|     Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
 | |
|     assert(!Result.isNull() && "substituting DependentTy can't fail");
 | |
|     return DAR_Succeeded;
 | |
|   }
 | |
| 
 | |
|   // If this is a 'decltype(auto)' specifier, do the decltype dance.
 | |
|   // Since 'decltype(auto)' can only occur at the top of the type, we
 | |
|   // don't need to go digging for it.
 | |
|   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
 | |
|     if (AT->isDecltypeAuto()) {
 | |
|       if (isa<InitListExpr>(Init)) {
 | |
|         Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
 | |
|         return DAR_FailedAlreadyDiagnosed;
 | |
|       }
 | |
| 
 | |
|       QualType Deduced = BuildDecltypeType(Init, Init->getLocStart());
 | |
|       // FIXME: Support a non-canonical deduced type for 'auto'.
 | |
|       Deduced = Context.getCanonicalType(Deduced);
 | |
|       Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
 | |
|       if (Result.isNull())
 | |
|         return DAR_FailedAlreadyDiagnosed;
 | |
|       return DAR_Succeeded;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SourceLocation Loc = Init->getExprLoc();
 | |
| 
 | |
|   LocalInstantiationScope InstScope(*this);
 | |
| 
 | |
|   // Build template<class TemplParam> void Func(FuncParam);
 | |
|   TemplateTypeParmDecl *TemplParam =
 | |
|     TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
 | |
|                                  false, false);
 | |
|   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
 | |
|   NamedDecl *TemplParamPtr = TemplParam;
 | |
|   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
 | |
|                                                    Loc);
 | |
| 
 | |
|   QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
 | |
|   assert(!FuncParam.isNull() &&
 | |
|          "substituting template parameter for 'auto' failed");
 | |
| 
 | |
|   // Deduce type of TemplParam in Func(Init)
 | |
|   SmallVector<DeducedTemplateArgument, 1> Deduced;
 | |
|   Deduced.resize(1);
 | |
|   QualType InitType = Init->getType();
 | |
|   unsigned TDF = 0;
 | |
| 
 | |
|   TemplateDeductionInfo Info(Loc);
 | |
| 
 | |
|   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
 | |
|   if (InitList) {
 | |
|     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
 | |
|       if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
 | |
|                                               TemplArg,
 | |
|                                               InitList->getInit(i),
 | |
|                                               Info, Deduced, TDF))
 | |
|         return DAR_Failed;
 | |
|     }
 | |
|   } else {
 | |
|     if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
 | |
|                                                   FuncParam, InitType, Init,
 | |
|                                                   TDF))
 | |
|       return DAR_Failed;
 | |
| 
 | |
|     if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
 | |
|                                            InitType, Info, Deduced, TDF))
 | |
|       return DAR_Failed;
 | |
|   }
 | |
| 
 | |
|   if (Deduced[0].getKind() != TemplateArgument::Type)
 | |
|     return DAR_Failed;
 | |
| 
 | |
|   QualType DeducedType = Deduced[0].getAsType();
 | |
| 
 | |
|   if (InitList) {
 | |
|     DeducedType = BuildStdInitializerList(DeducedType, Loc);
 | |
|     if (DeducedType.isNull())
 | |
|       return DAR_FailedAlreadyDiagnosed;
 | |
|   }
 | |
| 
 | |
|   Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
 | |
|   if (Result.isNull())
 | |
|    return DAR_FailedAlreadyDiagnosed;
 | |
| 
 | |
|   // Check that the deduced argument type is compatible with the original
 | |
|   // argument type per C++ [temp.deduct.call]p4.
 | |
|   if (!InitList && !Result.isNull() &&
 | |
|       CheckOriginalCallArgDeduction(*this,
 | |
|                                     Sema::OriginalCallArg(FuncParam,0,InitType),
 | |
|                                     Result)) {
 | |
|     Result = QualType();
 | |
|     return DAR_Failed;
 | |
|   }
 | |
| 
 | |
|   return DAR_Succeeded;
 | |
| }
 | |
| 
 | |
| QualType Sema::SubstAutoType(QualType Type, QualType Deduced) {
 | |
|   return SubstituteAutoTransform(*this, Deduced).TransformType(Type);
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
 | |
|   if (isa<InitListExpr>(Init))
 | |
|     Diag(VDecl->getLocation(),
 | |
|          diag::err_auto_var_deduction_failure_from_init_list)
 | |
|       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
 | |
|   else
 | |
|     Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
 | |
|       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
 | |
|       << Init->getSourceRange();
 | |
| }
 | |
| 
 | |
| bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
 | |
|                             bool Diagnose) {
 | |
|   assert(FD->getResultType()->isUndeducedType());
 | |
| 
 | |
|   if (FD->getTemplateInstantiationPattern())
 | |
|     InstantiateFunctionDefinition(Loc, FD);
 | |
| 
 | |
|   bool StillUndeduced = FD->getResultType()->isUndeducedType();
 | |
|   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
 | |
|     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
 | |
|     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
 | |
|   }
 | |
| 
 | |
|   return StillUndeduced;
 | |
| }
 | |
| 
 | |
| static void
 | |
| MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
 | |
|                            bool OnlyDeduced,
 | |
|                            unsigned Level,
 | |
|                            llvm::SmallBitVector &Deduced);
 | |
| 
 | |
| /// \brief If this is a non-static member function,
 | |
| static void
 | |
| AddImplicitObjectParameterType(ASTContext &Context,
 | |
|                                CXXMethodDecl *Method,
 | |
|                                SmallVectorImpl<QualType> &ArgTypes) {
 | |
|   // C++11 [temp.func.order]p3:
 | |
|   //   [...] The new parameter is of type "reference to cv A," where cv are
 | |
|   //   the cv-qualifiers of the function template (if any) and A is
 | |
|   //   the class of which the function template is a member.
 | |
|   //
 | |
|   // The standard doesn't say explicitly, but we pick the appropriate kind of
 | |
|   // reference type based on [over.match.funcs]p4.
 | |
|   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
 | |
|   ArgTy = Context.getQualifiedType(ArgTy,
 | |
|                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
 | |
|   if (Method->getRefQualifier() == RQ_RValue)
 | |
|     ArgTy = Context.getRValueReferenceType(ArgTy);
 | |
|   else
 | |
|     ArgTy = Context.getLValueReferenceType(ArgTy);
 | |
|   ArgTypes.push_back(ArgTy);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the function template \p FT1 is at least as
 | |
| /// specialized as \p FT2.
 | |
| static bool isAtLeastAsSpecializedAs(Sema &S,
 | |
|                                      SourceLocation Loc,
 | |
|                                      FunctionTemplateDecl *FT1,
 | |
|                                      FunctionTemplateDecl *FT2,
 | |
|                                      TemplatePartialOrderingContext TPOC,
 | |
|                                      unsigned NumCallArguments,
 | |
|     SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
 | |
|   FunctionDecl *FD1 = FT1->getTemplatedDecl();
 | |
|   FunctionDecl *FD2 = FT2->getTemplatedDecl();
 | |
|   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
 | |
|   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|   assert(Proto1 && Proto2 && "Function templates must have prototypes");
 | |
|   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
 | |
|   SmallVector<DeducedTemplateArgument, 4> Deduced;
 | |
|   Deduced.resize(TemplateParams->size());
 | |
| 
 | |
|   // C++0x [temp.deduct.partial]p3:
 | |
|   //   The types used to determine the ordering depend on the context in which
 | |
|   //   the partial ordering is done:
 | |
|   TemplateDeductionInfo Info(Loc);
 | |
|   CXXMethodDecl *Method1 = 0;
 | |
|   CXXMethodDecl *Method2 = 0;
 | |
|   bool IsNonStatic2 = false;
 | |
|   bool IsNonStatic1 = false;
 | |
|   unsigned Skip2 = 0;
 | |
|   switch (TPOC) {
 | |
|   case TPOC_Call: {
 | |
|     //   - In the context of a function call, the function parameter types are
 | |
|     //     used.
 | |
|     Method1 = dyn_cast<CXXMethodDecl>(FD1);
 | |
|     Method2 = dyn_cast<CXXMethodDecl>(FD2);
 | |
|     IsNonStatic1 = Method1 && !Method1->isStatic();
 | |
|     IsNonStatic2 = Method2 && !Method2->isStatic();
 | |
| 
 | |
|     // C++11 [temp.func.order]p3:
 | |
|     //   [...] If only one of the function templates is a non-static
 | |
|     //   member, that function template is considered to have a new
 | |
|     //   first parameter inserted in its function parameter list. The
 | |
|     //   new parameter is of type "reference to cv A," where cv are
 | |
|     //   the cv-qualifiers of the function template (if any) and A is
 | |
|     //   the class of which the function template is a member.
 | |
|     //
 | |
|     // Note that we interpret this to mean "if one of the function
 | |
|     // templates is a non-static member and the other is a non-member";
 | |
|     // otherwise, the ordering rules for static functions against non-static
 | |
|     // functions don't make any sense.
 | |
|     //
 | |
|     // C++98/03 doesn't have this provision, so instead we drop the
 | |
|     // first argument of the free function, which seems to match
 | |
|     // existing practice.
 | |
|     SmallVector<QualType, 4> Args1;
 | |
|     unsigned Skip1 = !S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1;
 | |
|     if (S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2)
 | |
|       AddImplicitObjectParameterType(S.Context, Method1, Args1);
 | |
|     Args1.insert(Args1.end(),
 | |
|                  Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
 | |
| 
 | |
|     SmallVector<QualType, 4> Args2;
 | |
|     Skip2 = !S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2;
 | |
|     if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1)
 | |
|       AddImplicitObjectParameterType(S.Context, Method2, Args2);
 | |
|     Args2.insert(Args2.end(),
 | |
|                  Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
 | |
| 
 | |
|     // C++ [temp.func.order]p5:
 | |
|     //   The presence of unused ellipsis and default arguments has no effect on
 | |
|     //   the partial ordering of function templates.
 | |
|     if (Args1.size() > NumCallArguments)
 | |
|       Args1.resize(NumCallArguments);
 | |
|     if (Args2.size() > NumCallArguments)
 | |
|       Args2.resize(NumCallArguments);
 | |
|     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
 | |
|                                 Args1.data(), Args1.size(), Info, Deduced,
 | |
|                                 TDF_None, /*PartialOrdering=*/true,
 | |
|                                 RefParamComparisons))
 | |
|         return false;
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case TPOC_Conversion:
 | |
|     //   - In the context of a call to a conversion operator, the return types
 | |
|     //     of the conversion function templates are used.
 | |
|     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                            Proto2->getResultType(),
 | |
|                                            Proto1->getResultType(),
 | |
|                                            Info, Deduced, TDF_None,
 | |
|                                            /*PartialOrdering=*/true,
 | |
|                                            RefParamComparisons))
 | |
|       return false;
 | |
|     break;
 | |
| 
 | |
|   case TPOC_Other:
 | |
|     //   - In other contexts (14.6.6.2) the function template's function type
 | |
|     //     is used.
 | |
|     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
 | |
|                                            FD2->getType(), FD1->getType(),
 | |
|                                            Info, Deduced, TDF_None,
 | |
|                                            /*PartialOrdering=*/true,
 | |
|                                            RefParamComparisons))
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // C++0x [temp.deduct.partial]p11:
 | |
|   //   In most cases, all template parameters must have values in order for
 | |
|   //   deduction to succeed, but for partial ordering purposes a template
 | |
|   //   parameter may remain without a value provided it is not used in the
 | |
|   //   types being used for partial ordering. [ Note: a template parameter used
 | |
|   //   in a non-deduced context is considered used. -end note]
 | |
|   unsigned ArgIdx = 0, NumArgs = Deduced.size();
 | |
|   for (; ArgIdx != NumArgs; ++ArgIdx)
 | |
|     if (Deduced[ArgIdx].isNull())
 | |
|       break;
 | |
| 
 | |
|   if (ArgIdx == NumArgs) {
 | |
|     // All template arguments were deduced. FT1 is at least as specialized
 | |
|     // as FT2.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Figure out which template parameters were used.
 | |
|   llvm::SmallBitVector UsedParameters(TemplateParams->size());
 | |
|   switch (TPOC) {
 | |
|   case TPOC_Call: {
 | |
|     unsigned NumParams = std::min(NumCallArguments,
 | |
|                                   std::min(Proto1->getNumArgs(),
 | |
|                                            Proto2->getNumArgs()));
 | |
|     if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !IsNonStatic1)
 | |
|       ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
 | |
|                                    false,
 | |
|                                    TemplateParams->getDepth(), UsedParameters);
 | |
|     for (unsigned I = Skip2; I < NumParams; ++I)
 | |
|       ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
 | |
|                                    TemplateParams->getDepth(),
 | |
|                                    UsedParameters);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case TPOC_Conversion:
 | |
|     ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
 | |
|                                  TemplateParams->getDepth(),
 | |
|                                  UsedParameters);
 | |
|     break;
 | |
| 
 | |
|   case TPOC_Other:
 | |
|     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
 | |
|                                  TemplateParams->getDepth(),
 | |
|                                  UsedParameters);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   for (; ArgIdx != NumArgs; ++ArgIdx)
 | |
|     // If this argument had no value deduced but was used in one of the types
 | |
|     // used for partial ordering, then deduction fails.
 | |
|     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether this a function template whose parameter-type-list
 | |
| /// ends with a function parameter pack.
 | |
| static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
 | |
|   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
 | |
|   unsigned NumParams = Function->getNumParams();
 | |
|   if (NumParams == 0)
 | |
|     return false;
 | |
| 
 | |
|   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
 | |
|   if (!Last->isParameterPack())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that no previous parameter is a parameter pack.
 | |
|   while (--NumParams > 0) {
 | |
|     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Returns the more specialized function template according
 | |
| /// to the rules of function template partial ordering (C++ [temp.func.order]).
 | |
| ///
 | |
| /// \param FT1 the first function template
 | |
| ///
 | |
| /// \param FT2 the second function template
 | |
| ///
 | |
| /// \param TPOC the context in which we are performing partial ordering of
 | |
| /// function templates.
 | |
| ///
 | |
| /// \param NumCallArguments The number of arguments in a call, used only
 | |
| /// when \c TPOC is \c TPOC_Call.
 | |
| ///
 | |
| /// \returns the more specialized function template. If neither
 | |
| /// template is more specialized, returns NULL.
 | |
| FunctionTemplateDecl *
 | |
| Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
 | |
|                                  FunctionTemplateDecl *FT2,
 | |
|                                  SourceLocation Loc,
 | |
|                                  TemplatePartialOrderingContext TPOC,
 | |
|                                  unsigned NumCallArguments) {
 | |
|   SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
 | |
|   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
 | |
|                                           NumCallArguments, 0);
 | |
|   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
 | |
|                                           NumCallArguments,
 | |
|                                           &RefParamComparisons);
 | |
| 
 | |
|   if (Better1 != Better2) // We have a clear winner
 | |
|     return Better1? FT1 : FT2;
 | |
| 
 | |
|   if (!Better1 && !Better2) // Neither is better than the other
 | |
|     return 0;
 | |
| 
 | |
|   // C++0x [temp.deduct.partial]p10:
 | |
|   //   If for each type being considered a given template is at least as
 | |
|   //   specialized for all types and more specialized for some set of types and
 | |
|   //   the other template is not more specialized for any types or is not at
 | |
|   //   least as specialized for any types, then the given template is more
 | |
|   //   specialized than the other template. Otherwise, neither template is more
 | |
|   //   specialized than the other.
 | |
|   Better1 = false;
 | |
|   Better2 = false;
 | |
|   for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
 | |
|     // C++0x [temp.deduct.partial]p9:
 | |
|     //   If, for a given type, deduction succeeds in both directions (i.e., the
 | |
|     //   types are identical after the transformations above) and both P and A
 | |
|     //   were reference types (before being replaced with the type referred to
 | |
|     //   above):
 | |
| 
 | |
|     //     -- if the type from the argument template was an lvalue reference
 | |
|     //        and the type from the parameter template was not, the argument
 | |
|     //        type is considered to be more specialized than the other;
 | |
|     //        otherwise,
 | |
|     if (!RefParamComparisons[I].ArgIsRvalueRef &&
 | |
|         RefParamComparisons[I].ParamIsRvalueRef) {
 | |
|       Better2 = true;
 | |
|       if (Better1)
 | |
|         return 0;
 | |
|       continue;
 | |
|     } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
 | |
|                RefParamComparisons[I].ArgIsRvalueRef) {
 | |
|       Better1 = true;
 | |
|       if (Better2)
 | |
|         return 0;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     //     -- if the type from the argument template is more cv-qualified than
 | |
|     //        the type from the parameter template (as described above), the
 | |
|     //        argument type is considered to be more specialized than the
 | |
|     //        other; otherwise,
 | |
|     switch (RefParamComparisons[I].Qualifiers) {
 | |
|     case NeitherMoreQualified:
 | |
|       break;
 | |
| 
 | |
|     case ParamMoreQualified:
 | |
|       Better1 = true;
 | |
|       if (Better2)
 | |
|         return 0;
 | |
|       continue;
 | |
| 
 | |
|     case ArgMoreQualified:
 | |
|       Better2 = true;
 | |
|       if (Better1)
 | |
|         return 0;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     //     -- neither type is more specialized than the other.
 | |
|   }
 | |
| 
 | |
|   assert(!(Better1 && Better2) && "Should have broken out in the loop above");
 | |
|   if (Better1)
 | |
|     return FT1;
 | |
|   else if (Better2)
 | |
|     return FT2;
 | |
| 
 | |
|   // FIXME: This mimics what GCC implements, but doesn't match up with the
 | |
|   // proposed resolution for core issue 692. This area needs to be sorted out,
 | |
|   // but for now we attempt to maintain compatibility.
 | |
|   bool Variadic1 = isVariadicFunctionTemplate(FT1);
 | |
|   bool Variadic2 = isVariadicFunctionTemplate(FT2);
 | |
|   if (Variadic1 != Variadic2)
 | |
|     return Variadic1? FT2 : FT1;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// \brief Determine if the two templates are equivalent.
 | |
| static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
 | |
|   if (T1 == T2)
 | |
|     return true;
 | |
| 
 | |
|   if (!T1 || !T2)
 | |
|     return false;
 | |
| 
 | |
|   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the most specialized of the given function template
 | |
| /// specializations.
 | |
| ///
 | |
| /// \param SpecBegin the start iterator of the function template
 | |
| /// specializations that we will be comparing.
 | |
| ///
 | |
| /// \param SpecEnd the end iterator of the function template
 | |
| /// specializations, paired with \p SpecBegin.
 | |
| ///
 | |
| /// \param TPOC the partial ordering context to use to compare the function
 | |
| /// template specializations.
 | |
| ///
 | |
| /// \param NumCallArguments The number of arguments in a call, used only
 | |
| /// when \c TPOC is \c TPOC_Call.
 | |
| ///
 | |
| /// \param Loc the location where the ambiguity or no-specializations
 | |
| /// diagnostic should occur.
 | |
| ///
 | |
| /// \param NoneDiag partial diagnostic used to diagnose cases where there are
 | |
| /// no matching candidates.
 | |
| ///
 | |
| /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
 | |
| /// occurs.
 | |
| ///
 | |
| /// \param CandidateDiag partial diagnostic used for each function template
 | |
| /// specialization that is a candidate in the ambiguous ordering. One parameter
 | |
| /// in this diagnostic should be unbound, which will correspond to the string
 | |
| /// describing the template arguments for the function template specialization.
 | |
| ///
 | |
| /// \returns the most specialized function template specialization, if
 | |
| /// found. Otherwise, returns SpecEnd.
 | |
| UnresolvedSetIterator Sema::getMostSpecialized(
 | |
|     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
 | |
|     TemplateSpecCandidateSet &FailedCandidates,
 | |
|     TemplatePartialOrderingContext TPOC, unsigned NumCallArguments,
 | |
|     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
 | |
|     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
 | |
|     bool Complain, QualType TargetType) {
 | |
|   if (SpecBegin == SpecEnd) {
 | |
|     if (Complain) {
 | |
|       Diag(Loc, NoneDiag);
 | |
|       FailedCandidates.NoteCandidates(*this, Loc);
 | |
|     }
 | |
|     return SpecEnd;
 | |
|   }
 | |
| 
 | |
|   if (SpecBegin + 1 == SpecEnd)
 | |
|     return SpecBegin;
 | |
| 
 | |
|   // Find the function template that is better than all of the templates it
 | |
|   // has been compared to.
 | |
|   UnresolvedSetIterator Best = SpecBegin;
 | |
|   FunctionTemplateDecl *BestTemplate
 | |
|     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
 | |
|   assert(BestTemplate && "Not a function template specialization?");
 | |
|   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
 | |
|     FunctionTemplateDecl *Challenger
 | |
|       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
 | |
|     assert(Challenger && "Not a function template specialization?");
 | |
|     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
 | |
|                                                   Loc, TPOC, NumCallArguments),
 | |
|                        Challenger)) {
 | |
|       Best = I;
 | |
|       BestTemplate = Challenger;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that the "best" function template is more specialized than all
 | |
|   // of the others.
 | |
|   bool Ambiguous = false;
 | |
|   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
 | |
|     FunctionTemplateDecl *Challenger
 | |
|       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
 | |
|     if (I != Best &&
 | |
|         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
 | |
|                                                    Loc, TPOC, NumCallArguments),
 | |
|                         BestTemplate)) {
 | |
|       Ambiguous = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Ambiguous) {
 | |
|     // We found an answer. Return it.
 | |
|     return Best;
 | |
|   }
 | |
| 
 | |
|   // Diagnose the ambiguity.
 | |
|   if (Complain) {
 | |
|     Diag(Loc, AmbigDiag);
 | |
| 
 | |
|     // FIXME: Can we order the candidates in some sane way?
 | |
|     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
 | |
|       PartialDiagnostic PD = CandidateDiag;
 | |
|       PD << getTemplateArgumentBindingsText(
 | |
|           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
 | |
|                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
 | |
|       if (!TargetType.isNull())
 | |
|         HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
 | |
|                                    TargetType);
 | |
|       Diag((*I)->getLocation(), PD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SpecEnd;
 | |
| }
 | |
| 
 | |
| /// \brief Returns the more specialized class template partial specialization
 | |
| /// according to the rules of partial ordering of class template partial
 | |
| /// specializations (C++ [temp.class.order]).
 | |
| ///
 | |
| /// \param PS1 the first class template partial specialization
 | |
| ///
 | |
| /// \param PS2 the second class template partial specialization
 | |
| ///
 | |
| /// \returns the more specialized class template partial specialization. If
 | |
| /// neither partial specialization is more specialized, returns NULL.
 | |
| ClassTemplatePartialSpecializationDecl *
 | |
| Sema::getMoreSpecializedPartialSpecialization(
 | |
|                                   ClassTemplatePartialSpecializationDecl *PS1,
 | |
|                                   ClassTemplatePartialSpecializationDecl *PS2,
 | |
|                                               SourceLocation Loc) {
 | |
|   // C++ [temp.class.order]p1:
 | |
|   //   For two class template partial specializations, the first is at least as
 | |
|   //   specialized as the second if, given the following rewrite to two
 | |
|   //   function templates, the first function template is at least as
 | |
|   //   specialized as the second according to the ordering rules for function
 | |
|   //   templates (14.6.6.2):
 | |
|   //     - the first function template has the same template parameters as the
 | |
|   //       first partial specialization and has a single function parameter
 | |
|   //       whose type is a class template specialization with the template
 | |
|   //       arguments of the first partial specialization, and
 | |
|   //     - the second function template has the same template parameters as the
 | |
|   //       second partial specialization and has a single function parameter
 | |
|   //       whose type is a class template specialization with the template
 | |
|   //       arguments of the second partial specialization.
 | |
|   //
 | |
|   // Rather than synthesize function templates, we merely perform the
 | |
|   // equivalent partial ordering by performing deduction directly on
 | |
|   // the template arguments of the class template partial
 | |
|   // specializations. This computation is slightly simpler than the
 | |
|   // general problem of function template partial ordering, because
 | |
|   // class template partial specializations are more constrained. We
 | |
|   // know that every template parameter is deducible from the class
 | |
|   // template partial specialization's template arguments, for
 | |
|   // example.
 | |
|   SmallVector<DeducedTemplateArgument, 4> Deduced;
 | |
|   TemplateDeductionInfo Info(Loc);
 | |
| 
 | |
|   QualType PT1 = PS1->getInjectedSpecializationType();
 | |
|   QualType PT2 = PS2->getInjectedSpecializationType();
 | |
| 
 | |
|   // Determine whether PS1 is at least as specialized as PS2
 | |
|   Deduced.resize(PS2->getTemplateParameters()->size());
 | |
|   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
 | |
|                                             PS2->getTemplateParameters(),
 | |
|                                             PT2, PT1, Info, Deduced, TDF_None,
 | |
|                                             /*PartialOrdering=*/true,
 | |
|                                             /*RefParamComparisons=*/0);
 | |
|   if (Better1) {
 | |
|     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
 | |
|     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2, DeducedArgs,
 | |
|                                Info);
 | |
|     Better1 = !::FinishTemplateArgumentDeduction(
 | |
|         *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
 | |
|   }
 | |
| 
 | |
|   // Determine whether PS2 is at least as specialized as PS1
 | |
|   Deduced.clear();
 | |
|   Deduced.resize(PS1->getTemplateParameters()->size());
 | |
|   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
 | |
|       *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
 | |
|       /*PartialOrdering=*/true,
 | |
|       /*RefParamComparisons=*/0);
 | |
|   if (Better2) {
 | |
|     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
 | |
|                                                  Deduced.end());
 | |
|     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1, DeducedArgs,
 | |
|                                Info);
 | |
|     Better2 = !::FinishTemplateArgumentDeduction(
 | |
|         *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
 | |
|   }
 | |
| 
 | |
|   if (Better1 == Better2)
 | |
|     return 0;
 | |
| 
 | |
|   return Better1 ? PS1 : PS2;
 | |
| }
 | |
| 
 | |
| /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
 | |
| VarTemplatePartialSpecializationDecl *
 | |
| Sema::getMoreSpecializedPartialSpecialization(
 | |
|     VarTemplatePartialSpecializationDecl *PS1,
 | |
|     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
 | |
|   SmallVector<DeducedTemplateArgument, 4> Deduced;
 | |
|   TemplateDeductionInfo Info(Loc);
 | |
| 
 | |
|   assert(PS1->getSpecializedTemplate() == PS1->getSpecializedTemplate() &&
 | |
|          "the partial specializations being compared should specialize"
 | |
|          " the same template.");
 | |
|   TemplateName Name(PS1->getSpecializedTemplate());
 | |
|   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
 | |
|   QualType PT1 = Context.getTemplateSpecializationType(
 | |
|       CanonTemplate, PS1->getTemplateArgs().data(),
 | |
|       PS1->getTemplateArgs().size());
 | |
|   QualType PT2 = Context.getTemplateSpecializationType(
 | |
|       CanonTemplate, PS2->getTemplateArgs().data(),
 | |
|       PS2->getTemplateArgs().size());
 | |
| 
 | |
|   // Determine whether PS1 is at least as specialized as PS2
 | |
|   Deduced.resize(PS2->getTemplateParameters()->size());
 | |
|   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
 | |
|       *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
 | |
|       /*PartialOrdering=*/true,
 | |
|       /*RefParamComparisons=*/0);
 | |
|   if (Better1) {
 | |
|     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
 | |
|                                                  Deduced.end());
 | |
|     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
 | |
|                                DeducedArgs, Info);
 | |
|     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
 | |
|                                                  PS1->getTemplateArgs(),
 | |
|                                                  Deduced, Info);
 | |
|   }
 | |
| 
 | |
|   // Determine whether PS2 is at least as specialized as PS1
 | |
|   Deduced.clear();
 | |
|   Deduced.resize(PS1->getTemplateParameters()->size());
 | |
|   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
 | |
|                                             PS1->getTemplateParameters(),
 | |
|                                             PT1, PT2, Info, Deduced, TDF_None,
 | |
|                                             /*PartialOrdering=*/true,
 | |
|                                             /*RefParamComparisons=*/0);
 | |
|   if (Better2) {
 | |
|     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
 | |
|     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
 | |
|                                DeducedArgs, Info);
 | |
|     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
 | |
|                                                  PS2->getTemplateArgs(),
 | |
|                                                  Deduced, Info);
 | |
|   }
 | |
| 
 | |
|   if (Better1 == Better2)
 | |
|     return 0;
 | |
| 
 | |
|   return Better1? PS1 : PS2;
 | |
| }
 | |
| 
 | |
| static void
 | |
| MarkUsedTemplateParameters(ASTContext &Ctx,
 | |
|                            const TemplateArgument &TemplateArg,
 | |
|                            bool OnlyDeduced,
 | |
|                            unsigned Depth,
 | |
|                            llvm::SmallBitVector &Used);
 | |
| 
 | |
| /// \brief Mark the template parameters that are used by the given
 | |
| /// expression.
 | |
| static void
 | |
| MarkUsedTemplateParameters(ASTContext &Ctx,
 | |
|                            const Expr *E,
 | |
|                            bool OnlyDeduced,
 | |
|                            unsigned Depth,
 | |
|                            llvm::SmallBitVector &Used) {
 | |
|   // We can deduce from a pack expansion.
 | |
|   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
 | |
|     E = Expansion->getPattern();
 | |
| 
 | |
|   // Skip through any implicit casts we added while type-checking, and any
 | |
|   // substitutions performed by template alias expansion.
 | |
|   while (1) {
 | |
|     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
 | |
|       E = ICE->getSubExpr();
 | |
|     else if (const SubstNonTypeTemplateParmExpr *Subst =
 | |
|                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
 | |
|       E = Subst->getReplacement();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
 | |
|   // find other occurrences of template parameters.
 | |
|   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
 | |
|   if (!DRE)
 | |
|     return;
 | |
| 
 | |
|   const NonTypeTemplateParmDecl *NTTP
 | |
|     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
 | |
|   if (!NTTP)
 | |
|     return;
 | |
| 
 | |
|   if (NTTP->getDepth() == Depth)
 | |
|     Used[NTTP->getIndex()] = true;
 | |
| }
 | |
| 
 | |
| /// \brief Mark the template parameters that are used by the given
 | |
| /// nested name specifier.
 | |
| static void
 | |
| MarkUsedTemplateParameters(ASTContext &Ctx,
 | |
|                            NestedNameSpecifier *NNS,
 | |
|                            bool OnlyDeduced,
 | |
|                            unsigned Depth,
 | |
|                            llvm::SmallBitVector &Used) {
 | |
|   if (!NNS)
 | |
|     return;
 | |
| 
 | |
|   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
 | |
|                              Used);
 | |
|   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
 | |
|                              OnlyDeduced, Depth, Used);
 | |
| }
 | |
| 
 | |
| /// \brief Mark the template parameters that are used by the given
 | |
| /// template name.
 | |
| static void
 | |
| MarkUsedTemplateParameters(ASTContext &Ctx,
 | |
|                            TemplateName Name,
 | |
|                            bool OnlyDeduced,
 | |
|                            unsigned Depth,
 | |
|                            llvm::SmallBitVector &Used) {
 | |
|   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
 | |
|     if (TemplateTemplateParmDecl *TTP
 | |
|           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
 | |
|       if (TTP->getDepth() == Depth)
 | |
|         Used[TTP->getIndex()] = true;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
 | |
|     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
|   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
 | |
|     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
| }
 | |
| 
 | |
| /// \brief Mark the template parameters that are used by the given
 | |
| /// type.
 | |
| static void
 | |
| MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
 | |
|                            bool OnlyDeduced,
 | |
|                            unsigned Depth,
 | |
|                            llvm::SmallBitVector &Used) {
 | |
|   if (T.isNull())
 | |
|     return;
 | |
| 
 | |
|   // Non-dependent types have nothing deducible
 | |
|   if (!T->isDependentType())
 | |
|     return;
 | |
| 
 | |
|   T = Ctx.getCanonicalType(T);
 | |
|   switch (T->getTypeClass()) {
 | |
|   case Type::Pointer:
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                cast<PointerType>(T)->getPointeeType(),
 | |
|                                OnlyDeduced,
 | |
|                                Depth,
 | |
|                                Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::BlockPointer:
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                cast<BlockPointerType>(T)->getPointeeType(),
 | |
|                                OnlyDeduced,
 | |
|                                Depth,
 | |
|                                Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference:
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                cast<ReferenceType>(T)->getPointeeType(),
 | |
|                                OnlyDeduced,
 | |
|                                Depth,
 | |
|                                Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::MemberPointer: {
 | |
|     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
 | |
|     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
|     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
 | |
|                                OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::DependentSizedArray:
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
 | |
|                                OnlyDeduced, Depth, Used);
 | |
|     // Fall through to check the element type
 | |
| 
 | |
|   case Type::ConstantArray:
 | |
|   case Type::IncompleteArray:
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                cast<ArrayType>(T)->getElementType(),
 | |
|                                OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::Vector:
 | |
|   case Type::ExtVector:
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                cast<VectorType>(T)->getElementType(),
 | |
|                                OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::DependentSizedExtVector: {
 | |
|     const DependentSizedExtVectorType *VecType
 | |
|       = cast<DependentSizedExtVectorType>(T);
 | |
|     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
|     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::FunctionProto: {
 | |
|     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
 | |
|     MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
|     for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
 | |
|       MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
 | |
|                                  Depth, Used);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::TemplateTypeParm: {
 | |
|     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
 | |
|     if (TTP->getDepth() == Depth)
 | |
|       Used[TTP->getIndex()] = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::SubstTemplateTypeParmPack: {
 | |
|     const SubstTemplateTypeParmPackType *Subst
 | |
|       = cast<SubstTemplateTypeParmPackType>(T);
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                QualType(Subst->getReplacedParameter(), 0),
 | |
|                                OnlyDeduced, Depth, Used);
 | |
|     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
 | |
|                                OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::InjectedClassName:
 | |
|     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
 | |
|     // fall through
 | |
| 
 | |
|   case Type::TemplateSpecialization: {
 | |
|     const TemplateSpecializationType *Spec
 | |
|       = cast<TemplateSpecializationType>(T);
 | |
|     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
| 
 | |
|     // C++0x [temp.deduct.type]p9:
 | |
|     //   If the template argument list of P contains a pack expansion that is not
 | |
|     //   the last template argument, the entire template argument list is a
 | |
|     //   non-deduced context.
 | |
|     if (OnlyDeduced &&
 | |
|         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
 | |
|       break;
 | |
| 
 | |
|     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
 | |
|       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
 | |
|                                  Used);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::Complex:
 | |
|     if (!OnlyDeduced)
 | |
|       MarkUsedTemplateParameters(Ctx,
 | |
|                                  cast<ComplexType>(T)->getElementType(),
 | |
|                                  OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::Atomic:
 | |
|     if (!OnlyDeduced)
 | |
|       MarkUsedTemplateParameters(Ctx,
 | |
|                                  cast<AtomicType>(T)->getValueType(),
 | |
|                                  OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::DependentName:
 | |
|     if (!OnlyDeduced)
 | |
|       MarkUsedTemplateParameters(Ctx,
 | |
|                                  cast<DependentNameType>(T)->getQualifier(),
 | |
|                                  OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::DependentTemplateSpecialization: {
 | |
|     const DependentTemplateSpecializationType *Spec
 | |
|       = cast<DependentTemplateSpecializationType>(T);
 | |
|     if (!OnlyDeduced)
 | |
|       MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
 | |
|                                  OnlyDeduced, Depth, Used);
 | |
| 
 | |
|     // C++0x [temp.deduct.type]p9:
 | |
|     //   If the template argument list of P contains a pack expansion that is not
 | |
|     //   the last template argument, the entire template argument list is a
 | |
|     //   non-deduced context.
 | |
|     if (OnlyDeduced &&
 | |
|         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
 | |
|       break;
 | |
| 
 | |
|     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
 | |
|       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
 | |
|                                  Used);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::TypeOf:
 | |
|     if (!OnlyDeduced)
 | |
|       MarkUsedTemplateParameters(Ctx,
 | |
|                                  cast<TypeOfType>(T)->getUnderlyingType(),
 | |
|                                  OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::TypeOfExpr:
 | |
|     if (!OnlyDeduced)
 | |
|       MarkUsedTemplateParameters(Ctx,
 | |
|                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
 | |
|                                  OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::Decltype:
 | |
|     if (!OnlyDeduced)
 | |
|       MarkUsedTemplateParameters(Ctx,
 | |
|                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
 | |
|                                  OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::UnaryTransform:
 | |
|     if (!OnlyDeduced)
 | |
|       MarkUsedTemplateParameters(Ctx,
 | |
|                                cast<UnaryTransformType>(T)->getUnderlyingType(),
 | |
|                                  OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::PackExpansion:
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                cast<PackExpansionType>(T)->getPattern(),
 | |
|                                OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case Type::Auto:
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                cast<AutoType>(T)->getDeducedType(),
 | |
|                                OnlyDeduced, Depth, Used);
 | |
| 
 | |
|   // None of these types have any template parameters in them.
 | |
|   case Type::Builtin:
 | |
|   case Type::VariableArray:
 | |
|   case Type::FunctionNoProto:
 | |
|   case Type::Record:
 | |
|   case Type::Enum:
 | |
|   case Type::ObjCInterface:
 | |
|   case Type::ObjCObject:
 | |
|   case Type::ObjCObjectPointer:
 | |
|   case Type::UnresolvedUsing:
 | |
| #define TYPE(Class, Base)
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #define DEPENDENT_TYPE(Class, Base)
 | |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | |
| #include "clang/AST/TypeNodes.def"
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Mark the template parameters that are used by this
 | |
| /// template argument.
 | |
| static void
 | |
| MarkUsedTemplateParameters(ASTContext &Ctx,
 | |
|                            const TemplateArgument &TemplateArg,
 | |
|                            bool OnlyDeduced,
 | |
|                            unsigned Depth,
 | |
|                            llvm::SmallBitVector &Used) {
 | |
|   switch (TemplateArg.getKind()) {
 | |
|   case TemplateArgument::Null:
 | |
|   case TemplateArgument::Integral:
 | |
|   case TemplateArgument::Declaration:
 | |
|     break;
 | |
| 
 | |
|   case TemplateArgument::NullPtr:
 | |
|     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case TemplateArgument::Type:
 | |
|     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case TemplateArgument::Template:
 | |
|   case TemplateArgument::TemplateExpansion:
 | |
|     MarkUsedTemplateParameters(Ctx,
 | |
|                                TemplateArg.getAsTemplateOrTemplatePattern(),
 | |
|                                OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case TemplateArgument::Expression:
 | |
|     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
 | |
|                                Depth, Used);
 | |
|     break;
 | |
| 
 | |
|   case TemplateArgument::Pack:
 | |
|     for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
 | |
|                                       PEnd = TemplateArg.pack_end();
 | |
|          P != PEnd; ++P)
 | |
|       MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Mark which template parameters can be deduced from a given
 | |
| /// template argument list.
 | |
| ///
 | |
| /// \param TemplateArgs the template argument list from which template
 | |
| /// parameters will be deduced.
 | |
| ///
 | |
| /// \param Used a bit vector whose elements will be set to \c true
 | |
| /// to indicate when the corresponding template parameter will be
 | |
| /// deduced.
 | |
| void
 | |
| Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
 | |
|                                  bool OnlyDeduced, unsigned Depth,
 | |
|                                  llvm::SmallBitVector &Used) {
 | |
|   // C++0x [temp.deduct.type]p9:
 | |
|   //   If the template argument list of P contains a pack expansion that is not
 | |
|   //   the last template argument, the entire template argument list is a
 | |
|   //   non-deduced context.
 | |
|   if (OnlyDeduced &&
 | |
|       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
 | |
|     return;
 | |
| 
 | |
|   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | |
|     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
 | |
|                                  Depth, Used);
 | |
| }
 | |
| 
 | |
| /// \brief Marks all of the template parameters that will be deduced by a
 | |
| /// call to the given function template.
 | |
| void
 | |
| Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
 | |
|                                     const FunctionTemplateDecl *FunctionTemplate,
 | |
|                                     llvm::SmallBitVector &Deduced) {
 | |
|   TemplateParameterList *TemplateParams
 | |
|     = FunctionTemplate->getTemplateParameters();
 | |
|   Deduced.clear();
 | |
|   Deduced.resize(TemplateParams->size());
 | |
| 
 | |
|   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
 | |
|   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
 | |
|     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
 | |
|                                  true, TemplateParams->getDepth(), Deduced);
 | |
| }
 | |
| 
 | |
| bool hasDeducibleTemplateParameters(Sema &S,
 | |
|                                     FunctionTemplateDecl *FunctionTemplate,
 | |
|                                     QualType T) {
 | |
|   if (!T->isDependentType())
 | |
|     return false;
 | |
| 
 | |
|   TemplateParameterList *TemplateParams
 | |
|     = FunctionTemplate->getTemplateParameters();
 | |
|   llvm::SmallBitVector Deduced(TemplateParams->size());
 | |
|   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 
 | |
|                                Deduced);
 | |
| 
 | |
|   return Deduced.any();
 | |
| }
 |