forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2004 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2004 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This transformation analyzes and transforms the induction variables (and
 | 
						|
// computations derived from them) into simpler forms suitable for subsequent
 | 
						|
// analysis and transformation.
 | 
						|
//
 | 
						|
// If the trip count of a loop is computable, this pass also makes the following
 | 
						|
// changes:
 | 
						|
//   1. The exit condition for the loop is canonicalized to compare the
 | 
						|
//      induction value against the exit value.  This turns loops like:
 | 
						|
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
 | 
						|
//   2. Any use outside of the loop of an expression derived from the indvar
 | 
						|
//      is changed to compute the derived value outside of the loop, eliminating
 | 
						|
//      the dependence on the exit value of the induction variable.  If the only
 | 
						|
//      purpose of the loop is to compute the exit value of some derived
 | 
						|
//      expression, this transformation will make the loop dead.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "indvars"
 | 
						|
 | 
						|
#include "polly/LinkAllPasses.h"
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/IVUsers.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumRemoved     , "Number of aux indvars removed");
 | 
						|
STATISTIC(NumWidened     , "Number of indvars widened");
 | 
						|
STATISTIC(NumInserted    , "Number of canonical indvars added");
 | 
						|
STATISTIC(NumReplaced    , "Number of exit values replaced");
 | 
						|
STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
 | 
						|
STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
 | 
						|
STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
 | 
						|
 | 
						|
static const bool EnableIVRewrite = true;
 | 
						|
static const bool VerifyIndvars = false;
 | 
						|
 | 
						|
namespace {
 | 
						|
  class PollyIndVarSimplify : public LoopPass {
 | 
						|
    IVUsers         *IU;
 | 
						|
    LoopInfo        *LI;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    DominatorTree   *DT;
 | 
						|
    TargetData      *TD;
 | 
						|
 | 
						|
    SmallVector<WeakVH, 16> DeadInsts;
 | 
						|
    bool Changed;
 | 
						|
  public:
 | 
						|
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    PollyIndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
 | 
						|
                       Changed(false) {
 | 
						|
      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addRequired<ScalarEvolution>();
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addRequiredID(LCSSAID);
 | 
						|
      if (EnableIVRewrite)
 | 
						|
        AU.addRequired<IVUsers>();
 | 
						|
      AU.addPreserved<ScalarEvolution>();
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.addPreservedID(LCSSAID);
 | 
						|
      if (EnableIVRewrite)
 | 
						|
        AU.addPreserved<IVUsers>();
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    virtual void releaseMemory() {
 | 
						|
      DeadInsts.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    bool isValidRewrite(Value *FromVal, Value *ToVal);
 | 
						|
 | 
						|
    void HandleFloatingPointIV(Loop *L, PHINode *PH);
 | 
						|
    void RewriteNonIntegerIVs(Loop *L);
 | 
						|
 | 
						|
    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
 | 
						|
 | 
						|
    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
 | 
						|
 | 
						|
    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
 | 
						|
 | 
						|
    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
 | 
						|
                                     PHINode *IndVar, SCEVExpander &Rewriter);
 | 
						|
 | 
						|
    void SinkUnusedInvariants(Loop *L);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char PollyIndVarSimplify::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(PollyIndVarSimplify, "polly-indvars",
 | 
						|
                "Induction Variable Simplification (Polly version)", false,
 | 
						|
                false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(IVUsers)
 | 
						|
INITIALIZE_PASS_END(PollyIndVarSimplify, "polly-indvars",
 | 
						|
                "Induction Variable Simplification (Polly version)", false,
 | 
						|
                false)
 | 
						|
 | 
						|
Pass *polly::createIndVarSimplifyPass() {
 | 
						|
  return new PollyIndVarSimplify();
 | 
						|
}
 | 
						|
 | 
						|
/// isValidRewrite - Return true if the SCEV expansion generated by the
 | 
						|
/// rewriter can replace the original value. SCEV guarantees that it
 | 
						|
/// produces the same value, but the way it is produced may be illegal IR.
 | 
						|
/// Ideally, this function will only be called for verification.
 | 
						|
bool PollyIndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
 | 
						|
  // If an SCEV expression subsumed multiple pointers, its expansion could
 | 
						|
  // reassociate the GEP changing the base pointer. This is illegal because the
 | 
						|
  // final address produced by a GEP chain must be inbounds relative to its
 | 
						|
  // underlying object. Otherwise basic alias analysis, among other things,
 | 
						|
  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
 | 
						|
  // producing an expression involving multiple pointers. Until then, we must
 | 
						|
  // bail out here.
 | 
						|
  //
 | 
						|
  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
 | 
						|
  // because it understands lcssa phis while SCEV does not.
 | 
						|
  Value *FromPtr = FromVal;
 | 
						|
  Value *ToPtr = ToVal;
 | 
						|
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
 | 
						|
    FromPtr = GEP->getPointerOperand();
 | 
						|
  }
 | 
						|
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
 | 
						|
    ToPtr = GEP->getPointerOperand();
 | 
						|
  }
 | 
						|
  if (FromPtr != FromVal || ToPtr != ToVal) {
 | 
						|
    // Quickly check the common case
 | 
						|
    if (FromPtr == ToPtr)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // SCEV may have rewritten an expression that produces the GEP's pointer
 | 
						|
    // operand. That's ok as long as the pointer operand has the same base
 | 
						|
    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
 | 
						|
    // base of a recurrence. This handles the case in which SCEV expansion
 | 
						|
    // converts a pointer type recurrence into a nonrecurrent pointer base
 | 
						|
    // indexed by an integer recurrence.
 | 
						|
 | 
						|
    // If the GEP base pointer is a vector of pointers, abort.
 | 
						|
    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
 | 
						|
      return false;
 | 
						|
 | 
						|
    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
 | 
						|
    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
 | 
						|
    if (FromBase == ToBase)
 | 
						|
      return true;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
 | 
						|
          << *FromBase << " != " << *ToBase << "\n");
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine the insertion point for this user. By default, insert immediately
 | 
						|
/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
 | 
						|
/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
 | 
						|
/// common dominator for the incoming blocks.
 | 
						|
static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
 | 
						|
                                          DominatorTree *DT) {
 | 
						|
  PHINode *PHI = dyn_cast<PHINode>(User);
 | 
						|
  if (!PHI)
 | 
						|
    return User;
 | 
						|
 | 
						|
  Instruction *InsertPt = 0;
 | 
						|
  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    if (PHI->getIncomingValue(i) != Def)
 | 
						|
      continue;
 | 
						|
 | 
						|
    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
 | 
						|
    if (!InsertPt) {
 | 
						|
      InsertPt = InsertBB->getTerminator();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
 | 
						|
    InsertPt = InsertBB->getTerminator();
 | 
						|
  }
 | 
						|
  assert(InsertPt && "Missing phi operand");
 | 
						|
  assert((!isa<Instruction>(Def) ||
 | 
						|
          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
 | 
						|
         "def does not dominate all uses");
 | 
						|
  return InsertPt;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ConvertToSInt - Convert APF to an integer, if possible.
 | 
						|
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
 | 
						|
  bool isExact = false;
 | 
						|
  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
 | 
						|
    return false;
 | 
						|
  // See if we can convert this to an int64_t
 | 
						|
  uint64_t UIntVal;
 | 
						|
  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
 | 
						|
                           &isExact) != APFloat::opOK || !isExact)
 | 
						|
    return false;
 | 
						|
  IntVal = UIntVal;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleFloatingPointIV - If the loop has floating induction variable
 | 
						|
/// then insert corresponding integer induction variable if possible.
 | 
						|
/// For example,
 | 
						|
/// for(double i = 0; i < 10000; ++i)
 | 
						|
///   bar(i)
 | 
						|
/// is converted into
 | 
						|
/// for(int i = 0; i < 10000; ++i)
 | 
						|
///   bar((double)i);
 | 
						|
///
 | 
						|
void PollyIndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
 | 
						|
  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
 | 
						|
  unsigned BackEdge     = IncomingEdge^1;
 | 
						|
 | 
						|
  // Check incoming value.
 | 
						|
  ConstantFP *InitValueVal =
 | 
						|
    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
 | 
						|
 | 
						|
  int64_t InitValue;
 | 
						|
  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check IV increment. Reject this PN if increment operation is not
 | 
						|
  // an add or increment value can not be represented by an integer.
 | 
						|
  BinaryOperator *Incr =
 | 
						|
    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
 | 
						|
  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
 | 
						|
 | 
						|
  // If this is not an add of the PHI with a constantfp, or if the constant fp
 | 
						|
  // is not an integer, bail out.
 | 
						|
  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
 | 
						|
  int64_t IncValue;
 | 
						|
  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
 | 
						|
      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check Incr uses. One user is PN and the other user is an exit condition
 | 
						|
  // used by the conditional terminator.
 | 
						|
  Value::use_iterator IncrUse = Incr->use_begin();
 | 
						|
  Instruction *U1 = cast<Instruction>(*IncrUse++);
 | 
						|
  if (IncrUse == Incr->use_end()) return;
 | 
						|
  Instruction *U2 = cast<Instruction>(*IncrUse++);
 | 
						|
  if (IncrUse != Incr->use_end()) return;
 | 
						|
 | 
						|
  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
 | 
						|
  // only used by a branch, we can't transform it.
 | 
						|
  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
 | 
						|
  if (!Compare)
 | 
						|
    Compare = dyn_cast<FCmpInst>(U2);
 | 
						|
  if (Compare == 0 || !Compare->hasOneUse() ||
 | 
						|
      !isa<BranchInst>(Compare->use_back()))
 | 
						|
    return;
 | 
						|
 | 
						|
  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
 | 
						|
 | 
						|
  // We need to verify that the branch actually controls the iteration count
 | 
						|
  // of the loop.  If not, the new IV can overflow and no one will notice.
 | 
						|
  // The branch block must be in the loop and one of the successors must be out
 | 
						|
  // of the loop.
 | 
						|
  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
 | 
						|
  if (!L->contains(TheBr->getParent()) ||
 | 
						|
      (L->contains(TheBr->getSuccessor(0)) &&
 | 
						|
       L->contains(TheBr->getSuccessor(1))))
 | 
						|
    return;
 | 
						|
 | 
						|
 | 
						|
  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
 | 
						|
  // transform it.
 | 
						|
  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
 | 
						|
  int64_t ExitValue;
 | 
						|
  if (ExitValueVal == 0 ||
 | 
						|
      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Find new predicate for integer comparison.
 | 
						|
  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
 | 
						|
  switch (Compare->getPredicate()) {
 | 
						|
  default: return;  // Unknown comparison.
 | 
						|
  case CmpInst::FCMP_OEQ:
 | 
						|
  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
 | 
						|
  case CmpInst::FCMP_ONE:
 | 
						|
  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
 | 
						|
  case CmpInst::FCMP_OGT:
 | 
						|
  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
 | 
						|
  case CmpInst::FCMP_OGE:
 | 
						|
  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
 | 
						|
  case CmpInst::FCMP_OLT:
 | 
						|
  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
 | 
						|
  case CmpInst::FCMP_OLE:
 | 
						|
  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // We convert the floating point induction variable to a signed i32 value if
 | 
						|
  // we can.  This is only safe if the comparison will not overflow in a way
 | 
						|
  // that won't be trapped by the integer equivalent operations.  Check for this
 | 
						|
  // now.
 | 
						|
  // TODO: We could use i64 if it is native and the range requires it.
 | 
						|
 | 
						|
  // The start/stride/exit values must all fit in signed i32.
 | 
						|
  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If not actually striding (add x, 0.0), avoid touching the code.
 | 
						|
  if (IncValue == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Positive and negative strides have different safety conditions.
 | 
						|
  if (IncValue > 0) {
 | 
						|
    // If we have a positive stride, we require the init to be less than the
 | 
						|
    // exit value.
 | 
						|
    if (InitValue >= ExitValue)
 | 
						|
      return;
 | 
						|
 | 
						|
    uint32_t Range = uint32_t(ExitValue-InitValue);
 | 
						|
    // Check for infinite loop, either:
 | 
						|
    // while (i <= Exit) or until (i > Exit)
 | 
						|
    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
 | 
						|
      if (++Range == 0) return;  // Range overflows.
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Leftover = Range % uint32_t(IncValue);
 | 
						|
 | 
						|
    // If this is an equality comparison, we require that the strided value
 | 
						|
    // exactly land on the exit value, otherwise the IV condition will wrap
 | 
						|
    // around and do things the fp IV wouldn't.
 | 
						|
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
 | 
						|
        Leftover != 0)
 | 
						|
      return;
 | 
						|
 | 
						|
    // If the stride would wrap around the i32 before exiting, we can't
 | 
						|
    // transform the IV.
 | 
						|
    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
 | 
						|
      return;
 | 
						|
 | 
						|
  } else {
 | 
						|
    // If we have a negative stride, we require the init to be greater than the
 | 
						|
    // exit value.
 | 
						|
    if (InitValue <= ExitValue)
 | 
						|
      return;
 | 
						|
 | 
						|
    uint32_t Range = uint32_t(InitValue-ExitValue);
 | 
						|
    // Check for infinite loop, either:
 | 
						|
    // while (i >= Exit) or until (i < Exit)
 | 
						|
    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
 | 
						|
      if (++Range == 0) return;  // Range overflows.
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Leftover = Range % uint32_t(-IncValue);
 | 
						|
 | 
						|
    // If this is an equality comparison, we require that the strided value
 | 
						|
    // exactly land on the exit value, otherwise the IV condition will wrap
 | 
						|
    // around and do things the fp IV wouldn't.
 | 
						|
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
 | 
						|
        Leftover != 0)
 | 
						|
      return;
 | 
						|
 | 
						|
    // If the stride would wrap around the i32 before exiting, we can't
 | 
						|
    // transform the IV.
 | 
						|
    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
 | 
						|
 | 
						|
  // Insert new integer induction variable.
 | 
						|
  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
 | 
						|
  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
 | 
						|
                      PN->getIncomingBlock(IncomingEdge));
 | 
						|
 | 
						|
  Value *NewAdd =
 | 
						|
    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
 | 
						|
                              Incr->getName()+".int", Incr);
 | 
						|
  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
 | 
						|
 | 
						|
  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
 | 
						|
                                      ConstantInt::get(Int32Ty, ExitValue),
 | 
						|
                                      Compare->getName());
 | 
						|
 | 
						|
  // In the following deletions, PN may become dead and may be deleted.
 | 
						|
  // Use a WeakVH to observe whether this happens.
 | 
						|
  WeakVH WeakPH = PN;
 | 
						|
 | 
						|
  // Delete the old floating point exit comparison.  The branch starts using the
 | 
						|
  // new comparison.
 | 
						|
  NewCompare->takeName(Compare);
 | 
						|
  Compare->replaceAllUsesWith(NewCompare);
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(Compare);
 | 
						|
 | 
						|
  // Delete the old floating point increment.
 | 
						|
  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(Incr);
 | 
						|
 | 
						|
  // If the FP induction variable still has uses, this is because something else
 | 
						|
  // in the loop uses its value.  In order to canonicalize the induction
 | 
						|
  // variable, we chose to eliminate the IV and rewrite it in terms of an
 | 
						|
  // int->fp cast.
 | 
						|
  //
 | 
						|
  // We give preference to sitofp over uitofp because it is faster on most
 | 
						|
  // platforms.
 | 
						|
  if (WeakPH) {
 | 
						|
    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
 | 
						|
                                 PN->getParent()->getFirstInsertionPt());
 | 
						|
    PN->replaceAllUsesWith(Conv);
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(PN);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add a new IVUsers entry for the newly-created integer PHI.
 | 
						|
  if (IU)
 | 
						|
    IU->AddUsersIfInteresting(NewPHI);
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
}
 | 
						|
 | 
						|
void PollyIndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
 | 
						|
  // First step.  Check to see if there are any floating-point recurrences.
 | 
						|
  // If there are, change them into integer recurrences, permitting analysis by
 | 
						|
  // the SCEV routines.
 | 
						|
  //
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
 | 
						|
  SmallVector<WeakVH, 8> PHIs;
 | 
						|
  for (BasicBlock::iterator I = Header->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    PHIs.push_back(PN);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | 
						|
    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
 | 
						|
      HandleFloatingPointIV(L, PN);
 | 
						|
 | 
						|
  // If the loop previously had floating-point IV, ScalarEvolution
 | 
						|
  // may not have been able to compute a trip count. Now that we've done some
 | 
						|
  // re-writing, the trip count may be computable.
 | 
						|
  if (Changed)
 | 
						|
    SE->forgetLoop(L);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RewriteLoopExitValues - Optimize IV users outside the loop.
 | 
						|
// As a side effect, reduces the amount of IV processing within the loop.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// RewriteLoopExitValues - Check to see if this loop has a computable
 | 
						|
/// loop-invariant execution count.  If so, this means that we can compute the
 | 
						|
/// final value of any expressions that are recurrent in the loop, and
 | 
						|
/// substitute the exit values from the loop into any instructions outside of
 | 
						|
/// the loop that use the final values of the current expressions.
 | 
						|
///
 | 
						|
/// This is mostly redundant with the regular IndVarSimplify activities that
 | 
						|
/// happen later, except that it's more powerful in some cases, because it's
 | 
						|
/// able to brute-force evaluate arbitrary instructions as long as they have
 | 
						|
/// constant operands at the beginning of the loop.
 | 
						|
void PollyIndVarSimplify::RewriteLoopExitValues(Loop *L,
 | 
						|
                                                SCEVExpander &Rewriter) {
 | 
						|
  // Verify the input to the pass in already in LCSSA form.
 | 
						|
  assert(L->isLCSSAForm(*DT));
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getUniqueExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  // Find all values that are computed inside the loop, but used outside of it.
 | 
						|
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
 | 
						|
  // the exit blocks of the loop to find them.
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *ExitBB = ExitBlocks[i];
 | 
						|
 | 
						|
    // If there are no PHI nodes in this exit block, then no values defined
 | 
						|
    // inside the loop are used on this path, skip it.
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
 | 
						|
    if (!PN) continue;
 | 
						|
 | 
						|
    unsigned NumPreds = PN->getNumIncomingValues();
 | 
						|
 | 
						|
    // Iterate over all of the PHI nodes.
 | 
						|
    BasicBlock::iterator BBI = ExitBB->begin();
 | 
						|
    while ((PN = dyn_cast<PHINode>(BBI++))) {
 | 
						|
      if (PN->use_empty())
 | 
						|
        continue; // dead use, don't replace it
 | 
						|
 | 
						|
      // SCEV only supports integer expressions for now.
 | 
						|
      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // It's necessary to tell ScalarEvolution about this explicitly so that
 | 
						|
      // it can walk the def-use list and forget all SCEVs, as it may not be
 | 
						|
      // watching the PHI itself. Once the new exit value is in place, there
 | 
						|
      // may not be a def-use connection between the loop and every instruction
 | 
						|
      // which got a SCEVAddRecExpr for that loop.
 | 
						|
      SE->forgetValue(PN);
 | 
						|
 | 
						|
      // Iterate over all of the values in all the PHI nodes.
 | 
						|
      for (unsigned i = 0; i != NumPreds; ++i) {
 | 
						|
        // If the value being merged in is not integer or is not defined
 | 
						|
        // in the loop, skip it.
 | 
						|
        Value *InVal = PN->getIncomingValue(i);
 | 
						|
        if (!isa<Instruction>(InVal))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If this pred is for a subloop, not L itself, skip it.
 | 
						|
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
 | 
						|
          continue; // The Block is in a subloop, skip it.
 | 
						|
 | 
						|
        // Check that InVal is defined in the loop.
 | 
						|
        Instruction *Inst = cast<Instruction>(InVal);
 | 
						|
        if (!L->contains(Inst))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Okay, this instruction has a user outside of the current loop
 | 
						|
        // and varies predictably *inside* the loop.  Evaluate the value it
 | 
						|
        // contains when the loop exits, if possible.
 | 
						|
        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
 | 
						|
        if (!SE->isLoopInvariant(ExitValue, L))
 | 
						|
          continue;
 | 
						|
 | 
						|
        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
 | 
						|
 | 
						|
        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
 | 
						|
                     << "  LoopVal = " << *Inst << "\n");
 | 
						|
 | 
						|
        if (!isValidRewrite(Inst, ExitVal)) {
 | 
						|
          DeadInsts.push_back(ExitVal);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        Changed = true;
 | 
						|
        ++NumReplaced;
 | 
						|
 | 
						|
        PN->setIncomingValue(i, ExitVal);
 | 
						|
 | 
						|
        // If this instruction is dead now, delete it.
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | 
						|
 | 
						|
        if (NumPreds == 1) {
 | 
						|
          // Completely replace a single-pred PHI. This is safe, because the
 | 
						|
          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
 | 
						|
          // node anymore.
 | 
						|
          PN->replaceAllUsesWith(ExitVal);
 | 
						|
          RecursivelyDeleteTriviallyDeadInstructions(PN);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (NumPreds != 1) {
 | 
						|
        // Clone the PHI and delete the original one. This lets IVUsers and
 | 
						|
        // any other maps purge the original user from their records.
 | 
						|
        PHINode *NewPN = cast<PHINode>(PN->clone());
 | 
						|
        NewPN->takeName(PN);
 | 
						|
        NewPN->insertBefore(PN);
 | 
						|
        PN->replaceAllUsesWith(NewPN);
 | 
						|
        PN->eraseFromParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The insertion point instruction may have been deleted; clear it out
 | 
						|
  // so that the rewriter doesn't trip over it later.
 | 
						|
  Rewriter.clearInsertPoint();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Rewrite IV users based on a canonical IV.
 | 
						|
//  Only for use with -enable-iv-rewrite.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// FIXME: It is an extremely bad idea to indvar substitute anything more
 | 
						|
/// complex than affine induction variables.  Doing so will put expensive
 | 
						|
/// polynomial evaluations inside of the loop, and the str reduction pass
 | 
						|
/// currently can only reduce affine polynomials.  For now just disable
 | 
						|
/// indvar subst on anything more complex than an affine addrec, unless
 | 
						|
/// it can be expanded to a trivial value.
 | 
						|
static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
 | 
						|
  // Loop-invariant values are safe.
 | 
						|
  if (SE->isLoopInvariant(S, L)) return true;
 | 
						|
 | 
						|
  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
 | 
						|
  // to transform them into efficient code.
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
 | 
						|
    return AR->isAffine();
 | 
						|
 | 
						|
  // An add is safe it all its operands are safe.
 | 
						|
  if (const SCEVCommutativeExpr *Commutative
 | 
						|
      = dyn_cast<SCEVCommutativeExpr>(S)) {
 | 
						|
    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
 | 
						|
         E = Commutative->op_end(); I != E; ++I)
 | 
						|
      if (!isSafe(*I, L, SE)) return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // A cast is safe if its operand is.
 | 
						|
  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
 | 
						|
    return isSafe(C->getOperand(), L, SE);
 | 
						|
 | 
						|
  // A udiv is safe if its operands are.
 | 
						|
  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
 | 
						|
    return isSafe(UD->getLHS(), L, SE) &&
 | 
						|
           isSafe(UD->getRHS(), L, SE);
 | 
						|
 | 
						|
  // SCEVUnknown is always safe.
 | 
						|
  if (isa<SCEVUnknown>(S))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Nothing else is safe.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void PollyIndVarSimplify::RewriteIVExpressions(Loop *L,
 | 
						|
                                               SCEVExpander &Rewriter) {
 | 
						|
  // Rewrite all induction variable expressions in terms of the canonical
 | 
						|
  // induction variable.
 | 
						|
  //
 | 
						|
  // If there were induction variables of other sizes or offsets, manually
 | 
						|
  // add the offsets to the primary induction variable and cast, avoiding
 | 
						|
  // the need for the code evaluation methods to insert induction variables
 | 
						|
  // of different sizes.
 | 
						|
  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
 | 
						|
    Value *Op = UI->getOperandValToReplace();
 | 
						|
    Type *UseTy = Op->getType();
 | 
						|
    Instruction *User = UI->getUser();
 | 
						|
 | 
						|
    // Compute the final addrec to expand into code.
 | 
						|
    const SCEV *AR = IU->getReplacementExpr(*UI);
 | 
						|
 | 
						|
    // Evaluate the expression out of the loop, if possible.
 | 
						|
    if (!L->contains(UI->getUser())) {
 | 
						|
      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
 | 
						|
      if (SE->isLoopInvariant(ExitVal, L))
 | 
						|
        AR = ExitVal;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: It is an extremely bad idea to indvar substitute anything more
 | 
						|
    // complex than affine induction variables.  Doing so will put expensive
 | 
						|
    // polynomial evaluations inside of the loop, and the str reduction pass
 | 
						|
    // currently can only reduce affine polynomials.  For now just disable
 | 
						|
    // indvar subst on anything more complex than an affine addrec, unless
 | 
						|
    // it can be expanded to a trivial value.
 | 
						|
    if (!isSafe(AR, L, SE))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Determine the insertion point for this user. By default, insert
 | 
						|
    // immediately before the user. The SCEVExpander class will automatically
 | 
						|
    // hoist loop invariants out of the loop. For PHI nodes, there may be
 | 
						|
    // multiple uses, so compute the nearest common dominator for the
 | 
						|
    // incoming blocks.
 | 
						|
    Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
 | 
						|
 | 
						|
    // Now expand it into actual Instructions and patch it into place.
 | 
						|
    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
 | 
						|
                 << "   into = " << *NewVal << "\n");
 | 
						|
 | 
						|
    if (!isValidRewrite(Op, NewVal)) {
 | 
						|
      DeadInsts.push_back(NewVal);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Inform ScalarEvolution that this value is changing. The change doesn't
 | 
						|
    // affect its value, but it does potentially affect which use lists the
 | 
						|
    // value will be on after the replacement, which affects ScalarEvolution's
 | 
						|
    // ability to walk use lists and drop dangling pointers when a value is
 | 
						|
    // deleted.
 | 
						|
    SE->forgetValue(User);
 | 
						|
 | 
						|
    // Patch the new value into place.
 | 
						|
    if (Op->hasName())
 | 
						|
      NewVal->takeName(Op);
 | 
						|
    if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
 | 
						|
      NewValI->setDebugLoc(User->getDebugLoc());
 | 
						|
    User->replaceUsesOfWith(Op, NewVal);
 | 
						|
    UI->setOperandValToReplace(NewVal);
 | 
						|
 | 
						|
    ++NumRemoved;
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
    // The old value may be dead now.
 | 
						|
    DeadInsts.push_back(Op);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  IV Widening - Extend the width of an IV to cover its widest uses.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Collect information about induction variables that are used by sign/zero
 | 
						|
  // extend operations. This information is recorded by CollectExtend and
 | 
						|
  // provides the input to WidenIV.
 | 
						|
  struct WideIVInfo {
 | 
						|
    PHINode *NarrowIV;
 | 
						|
    Type *WidestNativeType; // Widest integer type created [sz]ext
 | 
						|
    bool IsSigned;          // Was an sext user seen before a zext?
 | 
						|
 | 
						|
    WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
 | 
						|
  };
 | 
						|
 | 
						|
  class WideIVVisitor : public IVVisitor {
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    const TargetData *TD;
 | 
						|
 | 
						|
  public:
 | 
						|
    WideIVInfo WI;
 | 
						|
 | 
						|
    WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
 | 
						|
                  const TargetData *TData) :
 | 
						|
      SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
 | 
						|
 | 
						|
    // Implement the interface used by simplifyUsersOfIV.
 | 
						|
    virtual void visitCast(CastInst *Cast);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// visitCast - Update information about the induction variable that is
 | 
						|
/// extended by this sign or zero extend operation. This is used to determine
 | 
						|
/// the final width of the IV before actually widening it.
 | 
						|
void WideIVVisitor::visitCast(CastInst *Cast) {
 | 
						|
  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
 | 
						|
  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
 | 
						|
    return;
 | 
						|
 | 
						|
  Type *Ty = Cast->getType();
 | 
						|
  uint64_t Width = SE->getTypeSizeInBits(Ty);
 | 
						|
  if (TD && !TD->isLegalInteger(Width))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!WI.WidestNativeType) {
 | 
						|
    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
 | 
						|
    WI.IsSigned = IsSigned;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We extend the IV to satisfy the sign of its first user, arbitrarily.
 | 
						|
  if (WI.IsSigned != IsSigned)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
 | 
						|
    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
 | 
						|
/// WideIV that computes the same value as the Narrow IV def.  This avoids
 | 
						|
/// caching Use* pointers.
 | 
						|
struct NarrowIVDefUse {
 | 
						|
  Instruction *NarrowDef;
 | 
						|
  Instruction *NarrowUse;
 | 
						|
  Instruction *WideDef;
 | 
						|
 | 
						|
  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
 | 
						|
 | 
						|
  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
 | 
						|
    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
 | 
						|
};
 | 
						|
 | 
						|
/// WidenIV - The goal of this transform is to remove sign and zero extends
 | 
						|
/// without creating any new induction variables. To do this, it creates a new
 | 
						|
/// phi of the wider type and redirects all users, either removing extends or
 | 
						|
/// inserting truncs whenever we stop propagating the type.
 | 
						|
///
 | 
						|
class WidenIV {
 | 
						|
  // Parameters
 | 
						|
  PHINode *OrigPhi;
 | 
						|
  Type *WideType;
 | 
						|
  bool IsSigned;
 | 
						|
 | 
						|
  // Context
 | 
						|
  LoopInfo        *LI;
 | 
						|
  Loop            *L;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  DominatorTree   *DT;
 | 
						|
 | 
						|
  // Result
 | 
						|
  PHINode *WidePhi;
 | 
						|
  Instruction *WideInc;
 | 
						|
  const SCEV *WideIncExpr;
 | 
						|
  SmallVectorImpl<WeakVH> &DeadInsts;
 | 
						|
 | 
						|
  SmallPtrSet<Instruction*,16> Widened;
 | 
						|
  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
 | 
						|
 | 
						|
public:
 | 
						|
  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
 | 
						|
          ScalarEvolution *SEv, DominatorTree *DTree,
 | 
						|
          SmallVectorImpl<WeakVH> &DI) :
 | 
						|
    OrigPhi(WI.NarrowIV),
 | 
						|
    WideType(WI.WidestNativeType),
 | 
						|
    IsSigned(WI.IsSigned),
 | 
						|
    LI(LInfo),
 | 
						|
    L(LI->getLoopFor(OrigPhi->getParent())),
 | 
						|
    SE(SEv),
 | 
						|
    DT(DTree),
 | 
						|
    WidePhi(0),
 | 
						|
    WideInc(0),
 | 
						|
    WideIncExpr(0),
 | 
						|
    DeadInsts(DI) {
 | 
						|
    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
 | 
						|
  }
 | 
						|
 | 
						|
  PHINode *CreateWideIV(SCEVExpander &Rewriter);
 | 
						|
 | 
						|
protected:
 | 
						|
  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
 | 
						|
                   Instruction *Use);
 | 
						|
 | 
						|
  Instruction *CloneIVUser(NarrowIVDefUse DU);
 | 
						|
 | 
						|
  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
 | 
						|
 | 
						|
  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
 | 
						|
 | 
						|
  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
 | 
						|
 | 
						|
  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
/// isLoopInvariant - Perform a quick domtree based check for loop invariance
 | 
						|
/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
 | 
						|
/// gratuitous for this purpose.
 | 
						|
static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
 | 
						|
  Instruction *Inst = dyn_cast<Instruction>(V);
 | 
						|
  if (!Inst)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return DT->properlyDominates(Inst->getParent(), L->getHeader());
 | 
						|
}
 | 
						|
 | 
						|
Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
 | 
						|
                          Instruction *Use) {
 | 
						|
  // Set the debug location and conservative insertion point.
 | 
						|
  IRBuilder<> Builder(Use);
 | 
						|
  // Hoist the insertion point into loop preheaders as far as possible.
 | 
						|
  for (const Loop *L = LI->getLoopFor(Use->getParent());
 | 
						|
       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
 | 
						|
       L = L->getParentLoop())
 | 
						|
    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
 | 
						|
 | 
						|
  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
 | 
						|
                    Builder.CreateZExt(NarrowOper, WideType);
 | 
						|
}
 | 
						|
 | 
						|
/// CloneIVUser - Instantiate a wide operation to replace a narrow
 | 
						|
/// operation. This only needs to handle operations that can evaluation to
 | 
						|
/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
 | 
						|
Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
 | 
						|
  unsigned Opcode = DU.NarrowUse->getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    return 0;
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
 | 
						|
 | 
						|
    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
 | 
						|
    // anything about the narrow operand yet so must insert a [sz]ext. It is
 | 
						|
    // probably loop invariant and will be folded or hoisted. If it actually
 | 
						|
    // comes from a widened IV, it should be removed during a future call to
 | 
						|
    // WidenIVUse.
 | 
						|
    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
 | 
						|
      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
 | 
						|
    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
 | 
						|
      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
 | 
						|
 | 
						|
    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
 | 
						|
    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
 | 
						|
                                                    LHS, RHS,
 | 
						|
                                                    NarrowBO->getName());
 | 
						|
    IRBuilder<> Builder(DU.NarrowUse);
 | 
						|
    Builder.Insert(WideBO);
 | 
						|
    if (const OverflowingBinaryOperator *OBO =
 | 
						|
        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
 | 
						|
      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
 | 
						|
      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
 | 
						|
    }
 | 
						|
    return WideBO;
 | 
						|
  }
 | 
						|
  llvm_unreachable(0);
 | 
						|
}
 | 
						|
 | 
						|
/// No-wrap operations can transfer sign extension of their result to their
 | 
						|
/// operands. Generate the SCEV value for the widened operation without
 | 
						|
/// actually modifying the IR yet. If the expression after extending the
 | 
						|
/// operands is an AddRec for this loop, return it.
 | 
						|
const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
 | 
						|
  // Handle the common case of add<nsw/nuw>
 | 
						|
  if (DU.NarrowUse->getOpcode() != Instruction::Add)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // One operand (NarrowDef) has already been extended to WideDef. Now determine
 | 
						|
  // if extending the other will lead to a recurrence.
 | 
						|
  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
 | 
						|
  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
 | 
						|
 | 
						|
  const SCEV *ExtendOperExpr = 0;
 | 
						|
  const OverflowingBinaryOperator *OBO =
 | 
						|
    cast<OverflowingBinaryOperator>(DU.NarrowUse);
 | 
						|
  if (IsSigned && OBO->hasNoSignedWrap())
 | 
						|
    ExtendOperExpr = SE->getSignExtendExpr(
 | 
						|
      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
 | 
						|
  else if(!IsSigned && OBO->hasNoUnsignedWrap())
 | 
						|
    ExtendOperExpr = SE->getZeroExtendExpr(
 | 
						|
      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
 | 
						|
  else
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // When creating this AddExpr, don't apply the current operations NSW or NUW
 | 
						|
  // flags. This instruction may be guarded by control flow that the no-wrap
 | 
						|
  // behavior depends on. Non-control-equivalent instructions can be mapped to
 | 
						|
  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
 | 
						|
  // semantics to those operations.
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
 | 
						|
    SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
 | 
						|
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return 0;
 | 
						|
  return AddRec;
 | 
						|
}
 | 
						|
 | 
						|
/// GetWideRecurrence - Is this instruction potentially interesting from
 | 
						|
/// IVUsers' perspective after widening it's type? In other words, can the
 | 
						|
/// extend be safely hoisted out of the loop with SCEV reducing the value to a
 | 
						|
/// recurrence on the same loop. If so, return the sign or zero extended
 | 
						|
/// recurrence. Otherwise return NULL.
 | 
						|
const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
 | 
						|
  if (!SE->isSCEVable(NarrowUse->getType()))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
 | 
						|
  if (SE->getTypeSizeInBits(NarrowExpr->getType())
 | 
						|
      >= SE->getTypeSizeInBits(WideType)) {
 | 
						|
    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
 | 
						|
    // index. So don't follow this use.
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *WideExpr = IsSigned ?
 | 
						|
    SE->getSignExtendExpr(NarrowExpr, WideType) :
 | 
						|
    SE->getZeroExtendExpr(NarrowExpr, WideType);
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return 0;
 | 
						|
  return AddRec;
 | 
						|
}
 | 
						|
 | 
						|
/// WidenIVUse - Determine whether an individual user of the narrow IV can be
 | 
						|
/// widened. If so, return the wide clone of the user.
 | 
						|
Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
 | 
						|
 | 
						|
  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
 | 
						|
  if (isa<PHINode>(DU.NarrowUse) &&
 | 
						|
      LI->getLoopFor(DU.NarrowUse->getParent()) != L)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Our raison d'etre! Eliminate sign and zero extension.
 | 
						|
  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
 | 
						|
    Value *NewDef = DU.WideDef;
 | 
						|
    if (DU.NarrowUse->getType() != WideType) {
 | 
						|
      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
 | 
						|
      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
 | 
						|
      if (CastWidth < IVWidth) {
 | 
						|
        // The cast isn't as wide as the IV, so insert a Trunc.
 | 
						|
        IRBuilder<> Builder(DU.NarrowUse);
 | 
						|
        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        // A wider extend was hidden behind a narrower one. This may induce
 | 
						|
        // another round of IV widening in which the intermediate IV becomes
 | 
						|
        // dead. It should be very rare.
 | 
						|
        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
 | 
						|
              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
 | 
						|
        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
 | 
						|
        NewDef = DU.NarrowUse;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (NewDef != DU.NarrowUse) {
 | 
						|
      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
 | 
						|
            << " replaced by " << *DU.WideDef << "\n");
 | 
						|
      ++NumElimExt;
 | 
						|
      DU.NarrowUse->replaceAllUsesWith(NewDef);
 | 
						|
      DeadInsts.push_back(DU.NarrowUse);
 | 
						|
    }
 | 
						|
    // Now that the extend is gone, we want to expose it's uses for potential
 | 
						|
    // further simplification. We don't need to directly inform SimplifyIVUsers
 | 
						|
    // of the new users, because their parent IV will be processed later as a
 | 
						|
    // new loop phi. If we preserved IVUsers analysis, we would also want to
 | 
						|
    // push the uses of WideDef here.
 | 
						|
 | 
						|
    // No further widening is needed. The deceased [sz]ext had done it for us.
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Does this user itself evaluate to a recurrence after widening?
 | 
						|
  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
 | 
						|
  if (!WideAddRec) {
 | 
						|
      WideAddRec = GetExtendedOperandRecurrence(DU);
 | 
						|
  }
 | 
						|
  if (!WideAddRec) {
 | 
						|
    // This user does not evaluate to a recurence after widening, so don't
 | 
						|
    // follow it. Instead insert a Trunc to kill off the original use,
 | 
						|
    // eventually isolating the original narrow IV so it can be removed.
 | 
						|
    IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
 | 
						|
    Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
 | 
						|
    DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  // Assume block terminators cannot evaluate to a recurrence. We can't to
 | 
						|
  // insert a Trunc after a terminator if there happens to be a critical edge.
 | 
						|
  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
 | 
						|
         "SCEV is not expected to evaluate a block terminator");
 | 
						|
 | 
						|
  // Reuse the IV increment that SCEVExpander created as long as it dominates
 | 
						|
  // NarrowUse.
 | 
						|
  Instruction *WideUse = 0;
 | 
						|
  if (WideAddRec == WideIncExpr
 | 
						|
      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
 | 
						|
    WideUse = WideInc;
 | 
						|
  else {
 | 
						|
    WideUse = CloneIVUser(DU);
 | 
						|
    if (!WideUse)
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  // Evaluation of WideAddRec ensured that the narrow expression could be
 | 
						|
  // extended outside the loop without overflow. This suggests that the wide use
 | 
						|
  // evaluates to the same expression as the extended narrow use, but doesn't
 | 
						|
  // absolutely guarantee it. Hence the following failsafe check. In rare cases
 | 
						|
  // where it fails, we simply throw away the newly created wide use.
 | 
						|
  if (WideAddRec != SE->getSCEV(WideUse)) {
 | 
						|
    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
 | 
						|
          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
 | 
						|
    DeadInsts.push_back(WideUse);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Returning WideUse pushes it on the worklist.
 | 
						|
  return WideUse;
 | 
						|
}
 | 
						|
 | 
						|
/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
 | 
						|
///
 | 
						|
void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
 | 
						|
  for (Value::use_iterator UI = NarrowDef->use_begin(),
 | 
						|
         UE = NarrowDef->use_end(); UI != UE; ++UI) {
 | 
						|
    Instruction *NarrowUse = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Handle data flow merges and bizarre phi cycles.
 | 
						|
    if (!Widened.insert(NarrowUse))
 | 
						|
      continue;
 | 
						|
 | 
						|
    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CreateWideIV - Process a single induction variable. First use the
 | 
						|
/// SCEVExpander to create a wide induction variable that evaluates to the same
 | 
						|
/// recurrence as the original narrow IV. Then use a worklist to forward
 | 
						|
/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
 | 
						|
/// interesting IV users, the narrow IV will be isolated for removal by
 | 
						|
/// DeleteDeadPHIs.
 | 
						|
///
 | 
						|
/// It would be simpler to delete uses as they are processed, but we must avoid
 | 
						|
/// invalidating SCEV expressions.
 | 
						|
///
 | 
						|
PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
 | 
						|
  // Is this phi an induction variable?
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
 | 
						|
  if (!AddRec)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  // Widen the induction variable expression.
 | 
						|
  const SCEV *WideIVExpr = IsSigned ?
 | 
						|
    SE->getSignExtendExpr(AddRec, WideType) :
 | 
						|
    SE->getZeroExtendExpr(AddRec, WideType);
 | 
						|
 | 
						|
  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
 | 
						|
         "Expect the new IV expression to preserve its type");
 | 
						|
 | 
						|
  // Can the IV be extended outside the loop without overflow?
 | 
						|
  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
 | 
						|
  if (!AddRec || AddRec->getLoop() != L)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  // An AddRec must have loop-invariant operands. Since this AddRec is
 | 
						|
  // materialized by a loop header phi, the expression cannot have any post-loop
 | 
						|
  // operands, so they must dominate the loop header.
 | 
						|
  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
 | 
						|
         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
 | 
						|
         && "Loop header phi recurrence inputs do not dominate the loop");
 | 
						|
 | 
						|
  // The rewriter provides a value for the desired IV expression. This may
 | 
						|
  // either find an existing phi or materialize a new one. Either way, we
 | 
						|
  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
 | 
						|
  // of the phi-SCC dominates the loop entry.
 | 
						|
  Instruction *InsertPt = L->getHeader()->begin();
 | 
						|
  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
 | 
						|
 | 
						|
  // Remembering the WideIV increment generated by SCEVExpander allows
 | 
						|
  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
 | 
						|
  // employ a general reuse mechanism because the call above is the only call to
 | 
						|
  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
 | 
						|
  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
 | 
						|
    WideInc =
 | 
						|
      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
 | 
						|
    WideIncExpr = SE->getSCEV(WideInc);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
 | 
						|
  ++NumWidened;
 | 
						|
 | 
						|
  // Traverse the def-use chain using a worklist starting at the original IV.
 | 
						|
  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
 | 
						|
 | 
						|
  Widened.insert(OrigPhi);
 | 
						|
  pushNarrowIVUsers(OrigPhi, WidePhi);
 | 
						|
 | 
						|
  while (!NarrowIVUsers.empty()) {
 | 
						|
    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
 | 
						|
 | 
						|
    // Process a def-use edge. This may replace the use, so don't hold a
 | 
						|
    // use_iterator across it.
 | 
						|
    Instruction *WideUse = WidenIVUse(DU, Rewriter);
 | 
						|
 | 
						|
    // Follow all def-use edges from the previous narrow use.
 | 
						|
    if (WideUse)
 | 
						|
      pushNarrowIVUsers(DU.NarrowUse, WideUse);
 | 
						|
 | 
						|
    // WidenIVUse may have removed the def-use edge.
 | 
						|
    if (DU.NarrowDef->use_empty())
 | 
						|
      DeadInsts.push_back(DU.NarrowDef);
 | 
						|
  }
 | 
						|
  return WidePhi;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Simplification of IV users based on SCEV evaluation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
 | 
						|
/// users. Each successive simplification may push more users which may
 | 
						|
/// themselves be candidates for simplification.
 | 
						|
///
 | 
						|
/// Sign/Zero extend elimination is interleaved with IV simplification.
 | 
						|
///
 | 
						|
void PollyIndVarSimplify::SimplifyAndExtend(Loop *L,
 | 
						|
                                            SCEVExpander &Rewriter,
 | 
						|
                                            LPPassManager &LPM) {
 | 
						|
  SmallVector<WideIVInfo, 8> WideIVs;
 | 
						|
 | 
						|
  SmallVector<PHINode*, 8> LoopPhis;
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    LoopPhis.push_back(cast<PHINode>(I));
 | 
						|
  }
 | 
						|
  // Each round of simplification iterates through the SimplifyIVUsers worklist
 | 
						|
  // for all current phis, then determines whether any IVs can be
 | 
						|
  // widened. Widening adds new phis to LoopPhis, inducing another round of
 | 
						|
  // simplification on the wide IVs.
 | 
						|
  while (!LoopPhis.empty()) {
 | 
						|
    // Evaluate as many IV expressions as possible before widening any IVs. This
 | 
						|
    // forces SCEV to set no-wrap flags before evaluating sign/zero
 | 
						|
    // extension. The first time SCEV attempts to normalize sign/zero extension,
 | 
						|
    // the result becomes final. So for the most predictable results, we delay
 | 
						|
    // evaluation of sign/zero extend evaluation until needed, and avoid running
 | 
						|
    // other SCEV based analysis prior to SimplifyAndExtend.
 | 
						|
    do {
 | 
						|
      PHINode *CurrIV = LoopPhis.pop_back_val();
 | 
						|
 | 
						|
      // Information about sign/zero extensions of CurrIV.
 | 
						|
      WideIVVisitor WIV(CurrIV, SE, TD);
 | 
						|
 | 
						|
      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
 | 
						|
 | 
						|
      if (WIV.WI.WidestNativeType) {
 | 
						|
        WideIVs.push_back(WIV.WI);
 | 
						|
      }
 | 
						|
    } while(!LoopPhis.empty());
 | 
						|
 | 
						|
    for (; !WideIVs.empty(); WideIVs.pop_back()) {
 | 
						|
      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
 | 
						|
      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
 | 
						|
        Changed = true;
 | 
						|
        LoopPhis.push_back(WidePhi);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Check for expressions that ScalarEvolution generates to compute
 | 
						|
/// BackedgeTakenInfo. If these expressions have not been reduced, then
 | 
						|
/// expanding them may incur additional cost (albeit in the loop preheader).
 | 
						|
static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
 | 
						|
                                SmallPtrSet<const SCEV*, 8> &Processed,
 | 
						|
                                ScalarEvolution *SE) {
 | 
						|
  if (!Processed.insert(S))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
 | 
						|
  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
 | 
						|
  // precise expression, rather than a UDiv from the user's code. If we can't
 | 
						|
  // find a UDiv in the code with some simple searching, assume the former and
 | 
						|
  // forego rewriting the loop.
 | 
						|
  if (isa<SCEVUDivExpr>(S)) {
 | 
						|
    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
 | 
						|
    if (!OrigCond) return true;
 | 
						|
    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
 | 
						|
    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
 | 
						|
    if (R != S) {
 | 
						|
      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
 | 
						|
      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
 | 
						|
      if (L != S)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (EnableIVRewrite)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Recurse past add expressions, which commonly occur in the
 | 
						|
  // BackedgeTakenCount. They may already exist in program code, and if not,
 | 
						|
  // they are not too expensive rematerialize.
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (isHighCostExpansion(*I, BI, Processed, SE))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
 | 
						|
  // the exit condition.
 | 
						|
  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we haven't recognized an expensive SCEV pattern, assume it's an
 | 
						|
  // expression produced by program code.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
 | 
						|
/// count expression can be safely and cheaply expanded into an instruction
 | 
						|
/// sequence that can be used by LinearFunctionTestReplace.
 | 
						|
///
 | 
						|
/// TODO: This fails for pointer-type loop counters with greater than one byte
 | 
						|
/// strides, consequently preventing LFTR from running. For the purpose of LFTR
 | 
						|
/// we could skip this check in the case that the LFTR loop counter (chosen by
 | 
						|
/// FindLoopCounter) is also pointer type. Instead, we could directly convert
 | 
						|
/// the loop test to an inequality test by checking the target data's alignment
 | 
						|
/// of element types (given that the initial pointer value originates from or is
 | 
						|
/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
 | 
						|
/// However, we don't yet have a strong motivation for converting loop tests
 | 
						|
/// into inequality tests.
 | 
						|
static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
 | 
						|
  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
 | 
						|
      BackedgeTakenCount->isZero())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!L->getExitingBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Can't rewrite non-branch yet.
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | 
						|
  if (!BI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallPtrSet<const SCEV*, 8> Processed;
 | 
						|
  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getBackedgeIVType - Get the widest type used by the loop test after peeking
 | 
						|
/// through Truncs.
 | 
						|
///
 | 
						|
/// TODO: Unnecessary when ForceLFTR is removed.
 | 
						|
static Type *getBackedgeIVType(Loop *L) {
 | 
						|
  if (!L->getExitingBlock())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Can't rewrite non-branch yet.
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | 
						|
  if (!BI)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
 | 
						|
  if (!Cond)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  Type *Ty = 0;
 | 
						|
  for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
 | 
						|
      OI != OE; ++OI) {
 | 
						|
    assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
 | 
						|
    TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
 | 
						|
    if (!Trunc)
 | 
						|
      continue;
 | 
						|
 | 
						|
    return Trunc->getSrcTy();
 | 
						|
  }
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
 | 
						|
/// invariant value to the phi.
 | 
						|
static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
 | 
						|
  Instruction *IncI = dyn_cast<Instruction>(IncV);
 | 
						|
  if (!IncI)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  switch (IncI->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
    break;
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    // An IV counter must preserve its type.
 | 
						|
    if (IncI->getNumOperands() == 2)
 | 
						|
      break;
 | 
						|
  default:
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
 | 
						|
  if (Phi && Phi->getParent() == L->getHeader()) {
 | 
						|
    if (isLoopInvariant(IncI->getOperand(1), L, DT))
 | 
						|
      return Phi;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  if (IncI->getOpcode() == Instruction::GetElementPtr)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Allow add/sub to be commuted.
 | 
						|
  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
 | 
						|
  if (Phi && Phi->getParent() == L->getHeader()) {
 | 
						|
    if (isLoopInvariant(IncI->getOperand(0), L, DT))
 | 
						|
      return Phi;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
 | 
						|
/// that the current exit test is already sufficiently canonical.
 | 
						|
static bool needsLFTR(Loop *L, DominatorTree *DT) {
 | 
						|
  assert(L->getExitingBlock() && "expected loop exit");
 | 
						|
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  // Don't bother with LFTR if the loop is not properly simplified.
 | 
						|
  if (!LatchBlock)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | 
						|
  assert(BI && "expected exit branch");
 | 
						|
 | 
						|
  // Do LFTR to simplify the exit condition to an ICMP.
 | 
						|
  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
 | 
						|
  if (!Cond)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Do LFTR to simplify the exit ICMP to EQ/NE
 | 
						|
  ICmpInst::Predicate Pred = Cond->getPredicate();
 | 
						|
  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Look for a loop invariant RHS
 | 
						|
  Value *LHS = Cond->getOperand(0);
 | 
						|
  Value *RHS = Cond->getOperand(1);
 | 
						|
  if (!isLoopInvariant(RHS, L, DT)) {
 | 
						|
    if (!isLoopInvariant(LHS, L, DT))
 | 
						|
      return true;
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  }
 | 
						|
  // Look for a simple IV counter LHS
 | 
						|
  PHINode *Phi = dyn_cast<PHINode>(LHS);
 | 
						|
  if (!Phi)
 | 
						|
    Phi = getLoopPhiForCounter(LHS, L, DT);
 | 
						|
 | 
						|
  if (!Phi)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Do LFTR if the exit condition's IV is *not* a simple counter.
 | 
						|
  Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
 | 
						|
  return Phi != getLoopPhiForCounter(IncV, L, DT);
 | 
						|
}
 | 
						|
 | 
						|
/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
 | 
						|
/// be rewritten) loop exit test.
 | 
						|
static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
 | 
						|
  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
 | 
						|
  Value *IncV = Phi->getIncomingValue(LatchIdx);
 | 
						|
 | 
						|
  for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    if (*UI != Cond && *UI != IncV) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    if (*UI != Cond && *UI != Phi) return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindLoopCounter - Find an affine IV in canonical form.
 | 
						|
///
 | 
						|
/// BECount may be an i8* pointer type. The pointer difference is already
 | 
						|
/// valid count without scaling the address stride, so it remains a pointer
 | 
						|
/// expression as far as SCEV is concerned.
 | 
						|
///
 | 
						|
/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
 | 
						|
///
 | 
						|
/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
 | 
						|
/// This is difficult in general for SCEV because of potential overflow. But we
 | 
						|
/// could at least handle constant BECounts.
 | 
						|
static PHINode *
 | 
						|
FindLoopCounter(Loop *L, const SCEV *BECount,
 | 
						|
                ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
 | 
						|
  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
 | 
						|
 | 
						|
  Value *Cond =
 | 
						|
    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes, looking for a simple counter.
 | 
						|
  PHINode *BestPhi = 0;
 | 
						|
  const SCEV *BestInit = 0;
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
 | 
						|
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *Phi = cast<PHINode>(I);
 | 
						|
    if (!SE->isSCEVable(Phi->getType()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Avoid comparing an integer IV against a pointer Limit.
 | 
						|
    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
 | 
						|
    if (!AR || AR->getLoop() != L || !AR->isAffine())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // AR may be a pointer type, while BECount is an integer type.
 | 
						|
    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
 | 
						|
    // AR may not be a narrower type, or we may never exit.
 | 
						|
    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
 | 
						|
    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
 | 
						|
    if (!Step || !Step->isOne())
 | 
						|
      continue;
 | 
						|
 | 
						|
    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
 | 
						|
    Value *IncV = Phi->getIncomingValue(LatchIdx);
 | 
						|
    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
 | 
						|
      continue;
 | 
						|
 | 
						|
    const SCEV *Init = AR->getStart();
 | 
						|
 | 
						|
    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
 | 
						|
      // Don't force a live loop counter if another IV can be used.
 | 
						|
      if (AlmostDeadIV(Phi, LatchBlock, Cond))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Prefer to count-from-zero. This is a more "canonical" counter form. It
 | 
						|
      // also prefers integer to pointer IVs.
 | 
						|
      if (BestInit->isZero() != Init->isZero()) {
 | 
						|
        if (BestInit->isZero())
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
      // If two IVs both count from zero or both count from nonzero then the
 | 
						|
      // narrower is likely a dead phi that has been widened. Use the wider phi
 | 
						|
      // to allow the other to be eliminated.
 | 
						|
      if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
    BestPhi = Phi;
 | 
						|
    BestInit = Init;
 | 
						|
  }
 | 
						|
  return BestPhi;
 | 
						|
}
 | 
						|
 | 
						|
/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
 | 
						|
/// holds the RHS of the new loop test.
 | 
						|
static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
 | 
						|
                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
 | 
						|
  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
 | 
						|
  const SCEV *IVInit = AR->getStart();
 | 
						|
 | 
						|
  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
 | 
						|
  // finds a valid pointer IV. Sign extend BECount in order to materialize a
 | 
						|
  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
 | 
						|
  // the existing GEPs whenever possible.
 | 
						|
  if (IndVar->getType()->isPointerTy()
 | 
						|
      && !IVCount->getType()->isPointerTy()) {
 | 
						|
 | 
						|
    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
 | 
						|
    const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
 | 
						|
 | 
						|
    // Expand the code for the iteration count.
 | 
						|
    assert(SE->isLoopInvariant(IVOffset, L) &&
 | 
						|
           "Computed iteration count is not loop invariant!");
 | 
						|
    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | 
						|
    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
 | 
						|
 | 
						|
    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
 | 
						|
    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
 | 
						|
    // We could handle pointer IVs other than i8*, but we need to compensate for
 | 
						|
    // gep index scaling. See canExpandBackedgeTakenCount comments.
 | 
						|
    assert(SE->getSizeOfExpr(
 | 
						|
             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
 | 
						|
           && "unit stride pointer IV must be i8*");
 | 
						|
 | 
						|
    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
 | 
						|
    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // In any other case, convert both IVInit and IVCount to integers before
 | 
						|
    // comparing. This may result in SCEV expension of pointers, but in practice
 | 
						|
    // SCEV will fold the pointer arithmetic away as such:
 | 
						|
    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
 | 
						|
    //
 | 
						|
    // Valid Cases: (1) both integers is most common; (2) both may be pointers
 | 
						|
    // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
 | 
						|
    // pointer may occur when enable-iv-rewrite generates a canonical IV on top
 | 
						|
    // of case #2.
 | 
						|
 | 
						|
    const SCEV *IVLimit = 0;
 | 
						|
    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
 | 
						|
    // For non-zero Start, compute IVCount here.
 | 
						|
    if (AR->getStart()->isZero())
 | 
						|
      IVLimit = IVCount;
 | 
						|
    else {
 | 
						|
      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
 | 
						|
      const SCEV *IVInit = AR->getStart();
 | 
						|
 | 
						|
      // For integer IVs, truncate the IV before computing IVInit + BECount.
 | 
						|
      if (SE->getTypeSizeInBits(IVInit->getType())
 | 
						|
          > SE->getTypeSizeInBits(IVCount->getType()))
 | 
						|
        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
 | 
						|
 | 
						|
      IVLimit = SE->getAddExpr(IVInit, IVCount);
 | 
						|
    }
 | 
						|
    // Expand the code for the iteration count.
 | 
						|
    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | 
						|
    IRBuilder<> Builder(BI);
 | 
						|
    assert(SE->isLoopInvariant(IVLimit, L) &&
 | 
						|
           "Computed iteration count is not loop invariant!");
 | 
						|
    // Ensure that we generate the same type as IndVar, or a smaller integer
 | 
						|
    // type. In the presence of null pointer values, we have an integer type
 | 
						|
    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
 | 
						|
    Type *LimitTy = IVCount->getType()->isPointerTy() ?
 | 
						|
      IndVar->getType() : IVCount->getType();
 | 
						|
    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
 | 
						|
/// loop to be a canonical != comparison against the incremented loop induction
 | 
						|
/// variable.  This pass is able to rewrite the exit tests of any loop where the
 | 
						|
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
 | 
						|
/// is actually a much broader range than just linear tests.
 | 
						|
Value *PollyIndVarSimplify::
 | 
						|
LinearFunctionTestReplace(Loop *L,
 | 
						|
                          const SCEV *BackedgeTakenCount,
 | 
						|
                          PHINode *IndVar,
 | 
						|
                          SCEVExpander &Rewriter) {
 | 
						|
  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
 | 
						|
 | 
						|
  // LFTR can ignore IV overflow and truncate to the width of
 | 
						|
  // BECount. This avoids materializing the add(zext(add)) expression.
 | 
						|
  Type *CntTy = !EnableIVRewrite ?
 | 
						|
    BackedgeTakenCount->getType() : IndVar->getType();
 | 
						|
 | 
						|
  const SCEV *IVCount = BackedgeTakenCount;
 | 
						|
 | 
						|
  // If the exiting block is the same as the backedge block, we prefer to
 | 
						|
  // compare against the post-incremented value, otherwise we must compare
 | 
						|
  // against the preincremented value.
 | 
						|
  Value *CmpIndVar;
 | 
						|
  if (L->getExitingBlock() == L->getLoopLatch()) {
 | 
						|
    // Add one to the "backedge-taken" count to get the trip count.
 | 
						|
    // If this addition may overflow, we have to be more pessimistic and
 | 
						|
    // cast the induction variable before doing the add.
 | 
						|
    const SCEV *N =
 | 
						|
      SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
 | 
						|
    if (CntTy == IVCount->getType())
 | 
						|
      IVCount = N;
 | 
						|
    else {
 | 
						|
      const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
 | 
						|
      if ((isa<SCEVConstant>(N) && !N->isZero()) ||
 | 
						|
          SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
 | 
						|
        // No overflow. Cast the sum.
 | 
						|
        IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
 | 
						|
      } else {
 | 
						|
        // Potential overflow. Cast before doing the add.
 | 
						|
        IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
 | 
						|
        IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // The BackedgeTaken expression contains the number of times that the
 | 
						|
    // backedge branches to the loop header.  This is one less than the
 | 
						|
    // number of times the loop executes, so use the incremented indvar.
 | 
						|
    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
 | 
						|
  } else {
 | 
						|
    // We must use the preincremented value...
 | 
						|
    IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
 | 
						|
    CmpIndVar = IndVar;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
 | 
						|
  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
 | 
						|
         && "genLoopLimit missed a cast");
 | 
						|
 | 
						|
  // Insert a new icmp_ne or icmp_eq instruction before the branch.
 | 
						|
  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | 
						|
  ICmpInst::Predicate P;
 | 
						|
  if (L->contains(BI->getSuccessor(0)))
 | 
						|
    P = ICmpInst::ICMP_NE;
 | 
						|
  else
 | 
						|
    P = ICmpInst::ICMP_EQ;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
 | 
						|
               << "      LHS:" << *CmpIndVar << '\n'
 | 
						|
               << "       op:\t"
 | 
						|
               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
 | 
						|
               << "      RHS:\t" << *ExitCnt << "\n"
 | 
						|
               << "  IVCount:\t" << *IVCount << "\n");
 | 
						|
 | 
						|
  IRBuilder<> Builder(BI);
 | 
						|
  if (SE->getTypeSizeInBits(CmpIndVar->getType())
 | 
						|
      > SE->getTypeSizeInBits(ExitCnt->getType())) {
 | 
						|
    CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
 | 
						|
                                    "lftr.wideiv");
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
 | 
						|
  Value *OrigCond = BI->getCondition();
 | 
						|
  // It's tempting to use replaceAllUsesWith here to fully replace the old
 | 
						|
  // comparison, but that's not immediately safe, since users of the old
 | 
						|
  // comparison may not be dominated by the new comparison. Instead, just
 | 
						|
  // update the branch to use the new comparison; in the common case this
 | 
						|
  // will make old comparison dead.
 | 
						|
  BI->setCondition(Cond);
 | 
						|
  DeadInsts.push_back(OrigCond);
 | 
						|
 | 
						|
  ++NumLFTR;
 | 
						|
  Changed = true;
 | 
						|
  return Cond;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// If there's a single exit block, sink any loop-invariant values that
 | 
						|
/// were defined in the preheader but not used inside the loop into the
 | 
						|
/// exit block to reduce register pressure in the loop.
 | 
						|
void PollyIndVarSimplify::SinkUnusedInvariants(Loop *L) {
 | 
						|
  BasicBlock *ExitBlock = L->getExitBlock();
 | 
						|
  if (!ExitBlock) return;
 | 
						|
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  if (!Preheader) return;
 | 
						|
 | 
						|
  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
 | 
						|
  BasicBlock::iterator I = Preheader->getTerminator();
 | 
						|
  while (I != Preheader->begin()) {
 | 
						|
    --I;
 | 
						|
    // New instructions were inserted at the end of the preheader.
 | 
						|
    if (isa<PHINode>(I))
 | 
						|
      break;
 | 
						|
 | 
						|
    // Don't move instructions which might have side effects, since the side
 | 
						|
    // effects need to complete before instructions inside the loop.  Also don't
 | 
						|
    // move instructions which might read memory, since the loop may modify
 | 
						|
    // memory. Note that it's okay if the instruction might have undefined
 | 
						|
    // behavior: LoopSimplify guarantees that the preheader dominates the exit
 | 
						|
    // block.
 | 
						|
    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip debug info intrinsics.
 | 
						|
    if (isa<DbgInfoIntrinsic>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip landingpad instructions.
 | 
						|
    if (isa<LandingPadInst>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't sink alloca: we never want to sink static alloca's out of the
 | 
						|
    // entry block, and correctly sinking dynamic alloca's requires
 | 
						|
    // checks for stacksave/stackrestore intrinsics.
 | 
						|
    // FIXME: Refactor this check somehow?
 | 
						|
    if (isa<AllocaInst>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Determine if there is a use in or before the loop (direct or
 | 
						|
    // otherwise).
 | 
						|
    bool UsedInLoop = false;
 | 
						|
    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      User *U = *UI;
 | 
						|
      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
 | 
						|
      if (PHINode *P = dyn_cast<PHINode>(U)) {
 | 
						|
        unsigned i =
 | 
						|
          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
 | 
						|
        UseBB = P->getIncomingBlock(i);
 | 
						|
      }
 | 
						|
      if (UseBB == Preheader || L->contains(UseBB)) {
 | 
						|
        UsedInLoop = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If there is, the def must remain in the preheader.
 | 
						|
    if (UsedInLoop)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, sink it to the exit block.
 | 
						|
    Instruction *ToMove = I;
 | 
						|
    bool Done = false;
 | 
						|
 | 
						|
    if (I != Preheader->begin()) {
 | 
						|
      // Skip debug info intrinsics.
 | 
						|
      do {
 | 
						|
        --I;
 | 
						|
      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
 | 
						|
 | 
						|
      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
 | 
						|
        Done = true;
 | 
						|
    } else {
 | 
						|
      Done = true;
 | 
						|
    }
 | 
						|
 | 
						|
    ToMove->moveBefore(InsertPt);
 | 
						|
    if (Done) break;
 | 
						|
    InsertPt = ToMove;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  IndVarSimplify driver. Manage several subpasses of IV simplification.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool PollyIndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  // If LoopSimplify form is not available, stay out of trouble. Some notes:
 | 
						|
  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
 | 
						|
  //    canonicalization can be a pessimization without LSR to "clean up"
 | 
						|
  //    afterwards.
 | 
						|
  //  - We depend on having a preheader; in particular,
 | 
						|
  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
 | 
						|
  //    and we're in trouble if we can't find the induction variable even when
 | 
						|
  //    we've manually inserted one.
 | 
						|
  if (!L->isLoopSimplifyForm())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (EnableIVRewrite)
 | 
						|
    IU = &getAnalysis<IVUsers>();
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
 | 
						|
  DeadInsts.clear();
 | 
						|
  Changed = false;
 | 
						|
 | 
						|
  // If there are any floating-point recurrences, attempt to
 | 
						|
  // transform them to use integer recurrences.
 | 
						|
  RewriteNonIntegerIVs(L);
 | 
						|
 | 
						|
  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | 
						|
 | 
						|
  // Create a rewriter object which we'll use to transform the code with.
 | 
						|
  SCEVExpander Rewriter(*SE, "indvars");
 | 
						|
#ifndef NDEBUG
 | 
						|
  Rewriter.setDebugType(DEBUG_TYPE);
 | 
						|
#endif
 | 
						|
 | 
						|
  // Eliminate redundant IV users.
 | 
						|
  //
 | 
						|
  // Simplification works best when run before other consumers of SCEV. We
 | 
						|
  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
 | 
						|
  // other expressions involving loop IVs have been evaluated. This helps SCEV
 | 
						|
  // set no-wrap flags before normalizing sign/zero extension.
 | 
						|
  if (!EnableIVRewrite) {
 | 
						|
    Rewriter.disableCanonicalMode();
 | 
						|
    SimplifyAndExtend(L, Rewriter, LPM);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this loop has a computable loop-invariant execution count.
 | 
						|
  // If so, this means that we can compute the final value of any expressions
 | 
						|
  // that are recurrent in the loop, and substitute the exit values from the
 | 
						|
  // loop into any instructions outside of the loop that use the final values of
 | 
						|
  // the current expressions.
 | 
						|
  //
 | 
						|
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | 
						|
    RewriteLoopExitValues(L, Rewriter);
 | 
						|
 | 
						|
  // Eliminate redundant IV users.
 | 
						|
  // FIXME: Disabled as the function was removed from LLVM trunk. We may get
 | 
						|
  //        along with this, as Polly does not need a lot of simplifications,
 | 
						|
  //        but just a canonical induction variable. In the near future, we
 | 
						|
  //        should remove the need of canonical induction variables all
 | 
						|
  //        together.
 | 
						|
  //if (EnableIVRewrite)
 | 
						|
  //  Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
 | 
						|
 | 
						|
  // Eliminate redundant IV cycles.
 | 
						|
  if (!EnableIVRewrite)
 | 
						|
    NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
 | 
						|
 | 
						|
  // Compute the type of the largest recurrence expression, and decide whether
 | 
						|
  // a canonical induction variable should be inserted.
 | 
						|
  Type *LargestType = 0;
 | 
						|
  bool NeedCannIV = false;
 | 
						|
  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
 | 
						|
  if (EnableIVRewrite && ExpandBECount) {
 | 
						|
    // If we have a known trip count and a single exit block, we'll be
 | 
						|
    // rewriting the loop exit test condition below, which requires a
 | 
						|
    // canonical induction variable.
 | 
						|
    NeedCannIV = true;
 | 
						|
    Type *Ty = BackedgeTakenCount->getType();
 | 
						|
    if (!EnableIVRewrite) {
 | 
						|
      // In this mode, SimplifyIVUsers may have already widened the IV used by
 | 
						|
      // the backedge test and inserted a Trunc on the compare's operand. Get
 | 
						|
      // the wider type to avoid creating a redundant narrow IV only used by the
 | 
						|
      // loop test.
 | 
						|
      LargestType = getBackedgeIVType(L);
 | 
						|
    }
 | 
						|
    if (!LargestType ||
 | 
						|
        SE->getTypeSizeInBits(Ty) >
 | 
						|
        SE->getTypeSizeInBits(LargestType))
 | 
						|
      LargestType = SE->getEffectiveSCEVType(Ty);
 | 
						|
  }
 | 
						|
  if (EnableIVRewrite) {
 | 
						|
    for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
 | 
						|
      NeedCannIV = true;
 | 
						|
      Type *Ty =
 | 
						|
        SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
 | 
						|
      if (!LargestType ||
 | 
						|
          SE->getTypeSizeInBits(Ty) >
 | 
						|
          SE->getTypeSizeInBits(LargestType))
 | 
						|
        LargestType = Ty;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know the largest of the induction variable expressions
 | 
						|
  // in this loop, insert a canonical induction variable of the largest size.
 | 
						|
  PHINode *IndVar = 0;
 | 
						|
  if (NeedCannIV) {
 | 
						|
    // Check to see if the loop already has any canonical-looking induction
 | 
						|
    // variables. If any are present and wider than the planned canonical
 | 
						|
    // induction variable, temporarily remove them, so that the Rewriter
 | 
						|
    // doesn't attempt to reuse them.
 | 
						|
    SmallVector<PHINode *, 2> OldCannIVs;
 | 
						|
    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
 | 
						|
      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
 | 
						|
          SE->getTypeSizeInBits(LargestType))
 | 
						|
        OldCannIV->removeFromParent();
 | 
						|
      else
 | 
						|
        break;
 | 
						|
      OldCannIVs.push_back(OldCannIV);
 | 
						|
    }
 | 
						|
 | 
						|
    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
 | 
						|
 | 
						|
    ++NumInserted;
 | 
						|
    Changed = true;
 | 
						|
    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
 | 
						|
 | 
						|
    // Now that the official induction variable is established, reinsert
 | 
						|
    // any old canonical-looking variables after it so that the IR remains
 | 
						|
    // consistent. They will be deleted as part of the dead-PHI deletion at
 | 
						|
    // the end of the pass.
 | 
						|
    while (!OldCannIVs.empty()) {
 | 
						|
      PHINode *OldCannIV = OldCannIVs.pop_back_val();
 | 
						|
      OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
 | 
						|
    IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
 | 
						|
  }
 | 
						|
  // If we have a trip count expression, rewrite the loop's exit condition
 | 
						|
  // using it.  We can currently only handle loops with a single exit.
 | 
						|
  Value *NewICmp = 0;
 | 
						|
  if (ExpandBECount && IndVar) {
 | 
						|
    // Check preconditions for proper SCEVExpander operation. SCEV does not
 | 
						|
    // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
 | 
						|
    // pass that uses the SCEVExpander must do it. This does not work well for
 | 
						|
    // loop passes because SCEVExpander makes assumptions about all loops, while
 | 
						|
    // LoopPassManager only forces the current loop to be simplified.
 | 
						|
    //
 | 
						|
    // FIXME: SCEV expansion has no way to bail out, so the caller must
 | 
						|
    // explicitly check any assumptions made by SCEV. Brittle.
 | 
						|
    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
 | 
						|
    if (!AR || AR->getLoop()->getLoopPreheader())
 | 
						|
      NewICmp =
 | 
						|
        LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
 | 
						|
  }
 | 
						|
  // Rewrite IV-derived expressions.
 | 
						|
  if (EnableIVRewrite)
 | 
						|
    RewriteIVExpressions(L, Rewriter);
 | 
						|
 | 
						|
  // Clear the rewriter cache, because values that are in the rewriter's cache
 | 
						|
  // can be deleted in the loop below, causing the AssertingVH in the cache to
 | 
						|
  // trigger.
 | 
						|
  Rewriter.clear();
 | 
						|
 | 
						|
  // Now that we're done iterating through lists, clean up any instructions
 | 
						|
  // which are now dead.
 | 
						|
  while (!DeadInsts.empty())
 | 
						|
    if (Instruction *Inst =
 | 
						|
          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
 | 
						|
      RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | 
						|
 | 
						|
  // The Rewriter may not be used from this point on.
 | 
						|
 | 
						|
  // Loop-invariant instructions in the preheader that aren't used in the
 | 
						|
  // loop may be sunk below the loop to reduce register pressure.
 | 
						|
  SinkUnusedInvariants(L);
 | 
						|
 | 
						|
  // For completeness, inform IVUsers of the IV use in the newly-created
 | 
						|
  // loop exit test instruction.
 | 
						|
  if (IU && NewICmp) {
 | 
						|
    ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
 | 
						|
    if (NewICmpInst)
 | 
						|
      IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
 | 
						|
  }
 | 
						|
  // Clean up dead instructions.
 | 
						|
  Changed |= DeleteDeadPHIs(L->getHeader());
 | 
						|
  // Check a post-condition.
 | 
						|
  assert(L->isLCSSAForm(*DT) &&
 | 
						|
         "Indvars did not leave the loop in lcssa form!");
 | 
						|
 | 
						|
  // Verify that LFTR, and any other change have not interfered with SCEV's
 | 
						|
  // ability to compute trip count.
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (!EnableIVRewrite && VerifyIndvars &&
 | 
						|
      !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
 | 
						|
    SE->forgetLoop(L);
 | 
						|
    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
 | 
						|
    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
 | 
						|
        SE->getTypeSizeInBits(NewBECount->getType()))
 | 
						|
      NewBECount = SE->getTruncateOrNoop(NewBECount,
 | 
						|
                                         BackedgeTakenCount->getType());
 | 
						|
    else
 | 
						|
      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
 | 
						|
                                                 NewBECount->getType());
 | 
						|
    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |