forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1534 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1534 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
 | 
						|
// of MachineInstrs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/RegisterPressure.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDFS.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/MC/MCInstrItineraries.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include <queue>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "misched"
 | 
						|
 | 
						|
static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
 | 
						|
    cl::ZeroOrMore, cl::init(false),
 | 
						|
    cl::desc("Enable use of AA during MI GAD construction"));
 | 
						|
 | 
						|
static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
 | 
						|
    cl::init(true), cl::desc("Enable use of TBAA during MI GAD construction"));
 | 
						|
 | 
						|
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
 | 
						|
                                     const MachineLoopInfo &mli,
 | 
						|
                                     const MachineDominatorTree &mdt,
 | 
						|
                                     bool IsPostRAFlag,
 | 
						|
                                     bool RemoveKillFlags,
 | 
						|
                                     LiveIntervals *lis)
 | 
						|
  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
 | 
						|
    IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
 | 
						|
    CanHandleTerminators(false), FirstDbgValue(nullptr) {
 | 
						|
  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
 | 
						|
  DbgValues.clear();
 | 
						|
  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
 | 
						|
         "Virtual registers must be removed prior to PostRA scheduling");
 | 
						|
 | 
						|
  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | 
						|
  SchedModel.init(*ST.getSchedModel(), &ST, TII);
 | 
						|
}
 | 
						|
 | 
						|
/// getUnderlyingObjectFromInt - This is the function that does the work of
 | 
						|
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
 | 
						|
static const Value *getUnderlyingObjectFromInt(const Value *V) {
 | 
						|
  do {
 | 
						|
    if (const Operator *U = dyn_cast<Operator>(V)) {
 | 
						|
      // If we find a ptrtoint, we can transfer control back to the
 | 
						|
      // regular getUnderlyingObjectFromInt.
 | 
						|
      if (U->getOpcode() == Instruction::PtrToInt)
 | 
						|
        return U->getOperand(0);
 | 
						|
      // If we find an add of a constant, a multiplied value, or a phi, it's
 | 
						|
      // likely that the other operand will lead us to the base
 | 
						|
      // object. We don't have to worry about the case where the
 | 
						|
      // object address is somehow being computed by the multiply,
 | 
						|
      // because our callers only care when the result is an
 | 
						|
      // identifiable object.
 | 
						|
      if (U->getOpcode() != Instruction::Add ||
 | 
						|
          (!isa<ConstantInt>(U->getOperand(1)) &&
 | 
						|
           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
 | 
						|
           !isa<PHINode>(U->getOperand(1))))
 | 
						|
        return V;
 | 
						|
      V = U->getOperand(0);
 | 
						|
    } else {
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
 | 
						|
  } while (1);
 | 
						|
}
 | 
						|
 | 
						|
/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
 | 
						|
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
 | 
						|
static void getUnderlyingObjects(const Value *V,
 | 
						|
                                 SmallVectorImpl<Value *> &Objects) {
 | 
						|
  SmallPtrSet<const Value *, 16> Visited;
 | 
						|
  SmallVector<const Value *, 4> Working(1, V);
 | 
						|
  do {
 | 
						|
    V = Working.pop_back_val();
 | 
						|
 | 
						|
    SmallVector<Value *, 4> Objs;
 | 
						|
    GetUnderlyingObjects(const_cast<Value *>(V), Objs);
 | 
						|
 | 
						|
    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
 | 
						|
         I != IE; ++I) {
 | 
						|
      V = *I;
 | 
						|
      if (!Visited.insert(V))
 | 
						|
        continue;
 | 
						|
      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
 | 
						|
        const Value *O =
 | 
						|
          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
 | 
						|
        if (O->getType()->isPointerTy()) {
 | 
						|
          Working.push_back(O);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Objects.push_back(const_cast<Value *>(V));
 | 
						|
    }
 | 
						|
  } while (!Working.empty());
 | 
						|
}
 | 
						|
 | 
						|
typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
 | 
						|
typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
 | 
						|
UnderlyingObjectsVector;
 | 
						|
 | 
						|
/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
 | 
						|
/// information and it can be tracked to a normal reference to a known
 | 
						|
/// object, return the Value for that object.
 | 
						|
static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
 | 
						|
                                         const MachineFrameInfo *MFI,
 | 
						|
                                         UnderlyingObjectsVector &Objects) {
 | 
						|
  if (!MI->hasOneMemOperand() ||
 | 
						|
      (!(*MI->memoperands_begin())->getValue() &&
 | 
						|
       !(*MI->memoperands_begin())->getPseudoValue()) ||
 | 
						|
      (*MI->memoperands_begin())->isVolatile())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const PseudoSourceValue *PSV =
 | 
						|
      (*MI->memoperands_begin())->getPseudoValue()) {
 | 
						|
    // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | 
						|
    // because the code that uses this function has no way to cope with
 | 
						|
    // such aliases.
 | 
						|
    if (!PSV->isAliased(MFI)) {
 | 
						|
      bool MayAlias = PSV->mayAlias(MFI);
 | 
						|
      Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const Value *V = (*MI->memoperands_begin())->getValue();
 | 
						|
  if (!V)
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<Value *, 4> Objs;
 | 
						|
  getUnderlyingObjects(V, Objs);
 | 
						|
 | 
						|
  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
 | 
						|
         I != IE; ++I) {
 | 
						|
    V = *I;
 | 
						|
 | 
						|
    if (!isIdentifiedObject(V)) {
 | 
						|
      Objects.clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
 | 
						|
  BB = bb;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::finishBlock() {
 | 
						|
  // Subclasses should no longer refer to the old block.
 | 
						|
  BB = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize the DAG and common scheduler state for the current scheduling
 | 
						|
/// region. This does not actually create the DAG, only clears it. The
 | 
						|
/// scheduling driver may call BuildSchedGraph multiple times per scheduling
 | 
						|
/// region.
 | 
						|
void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
 | 
						|
                                    MachineBasicBlock::iterator begin,
 | 
						|
                                    MachineBasicBlock::iterator end,
 | 
						|
                                    unsigned regioninstrs) {
 | 
						|
  assert(bb == BB && "startBlock should set BB");
 | 
						|
  RegionBegin = begin;
 | 
						|
  RegionEnd = end;
 | 
						|
  NumRegionInstrs = regioninstrs;
 | 
						|
}
 | 
						|
 | 
						|
/// Close the current scheduling region. Don't clear any state in case the
 | 
						|
/// driver wants to refer to the previous scheduling region.
 | 
						|
void ScheduleDAGInstrs::exitRegion() {
 | 
						|
  // Nothing to do.
 | 
						|
}
 | 
						|
 | 
						|
/// addSchedBarrierDeps - Add dependencies from instructions in the current
 | 
						|
/// list of instructions being scheduled to scheduling barrier by adding
 | 
						|
/// the exit SU to the register defs and use list. This is because we want to
 | 
						|
/// make sure instructions which define registers that are either used by
 | 
						|
/// the terminator or are live-out are properly scheduled. This is
 | 
						|
/// especially important when the definition latency of the return value(s)
 | 
						|
/// are too high to be hidden by the branch or when the liveout registers
 | 
						|
/// used by instructions in the fallthrough block.
 | 
						|
void ScheduleDAGInstrs::addSchedBarrierDeps() {
 | 
						|
  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
 | 
						|
  ExitSU.setInstr(ExitMI);
 | 
						|
  bool AllDepKnown = ExitMI &&
 | 
						|
    (ExitMI->isCall() || ExitMI->isBarrier());
 | 
						|
  if (ExitMI && AllDepKnown) {
 | 
						|
    // If it's a call or a barrier, add dependencies on the defs and uses of
 | 
						|
    // instruction.
 | 
						|
    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = ExitMI->getOperand(i);
 | 
						|
      if (!MO.isReg() || MO.isDef()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
 | 
						|
      if (TRI->isPhysicalRegister(Reg))
 | 
						|
        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
 | 
						|
      else {
 | 
						|
        assert(!IsPostRA && "Virtual register encountered after regalloc.");
 | 
						|
        if (MO.readsReg()) // ignore undef operands
 | 
						|
          addVRegUseDeps(&ExitSU, i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // For others, e.g. fallthrough, conditional branch, assume the exit
 | 
						|
    // uses all the registers that are livein to the successor blocks.
 | 
						|
    assert(Uses.empty() && "Uses in set before adding deps?");
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | 
						|
           SE = BB->succ_end(); SI != SE; ++SI)
 | 
						|
      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | 
						|
             E = (*SI)->livein_end(); I != E; ++I) {
 | 
						|
        unsigned Reg = *I;
 | 
						|
        if (!Uses.contains(Reg))
 | 
						|
          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// MO is an operand of SU's instruction that defines a physical register. Add
 | 
						|
/// data dependencies from SU to any uses of the physical register.
 | 
						|
void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
 | 
						|
  assert(MO.isDef() && "expect physreg def");
 | 
						|
 | 
						|
  // Ask the target if address-backscheduling is desirable, and if so how much.
 | 
						|
  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | 
						|
 | 
						|
  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
 | 
						|
       Alias.isValid(); ++Alias) {
 | 
						|
    if (!Uses.contains(*Alias))
 | 
						|
      continue;
 | 
						|
    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
 | 
						|
      SUnit *UseSU = I->SU;
 | 
						|
      if (UseSU == SU)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Adjust the dependence latency using operand def/use information,
 | 
						|
      // then allow the target to perform its own adjustments.
 | 
						|
      int UseOp = I->OpIdx;
 | 
						|
      MachineInstr *RegUse = nullptr;
 | 
						|
      SDep Dep;
 | 
						|
      if (UseOp < 0)
 | 
						|
        Dep = SDep(SU, SDep::Artificial);
 | 
						|
      else {
 | 
						|
        // Set the hasPhysRegDefs only for physreg defs that have a use within
 | 
						|
        // the scheduling region.
 | 
						|
        SU->hasPhysRegDefs = true;
 | 
						|
        Dep = SDep(SU, SDep::Data, *Alias);
 | 
						|
        RegUse = UseSU->getInstr();
 | 
						|
      }
 | 
						|
      Dep.setLatency(
 | 
						|
        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
 | 
						|
                                         UseOp));
 | 
						|
 | 
						|
      ST.adjustSchedDependency(SU, UseSU, Dep);
 | 
						|
      UseSU->addPred(Dep);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
 | 
						|
/// this SUnit to following instructions in the same scheduling region that
 | 
						|
/// depend the physical register referenced at OperIdx.
 | 
						|
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  MachineInstr *MI = SU->getInstr();
 | 
						|
  MachineOperand &MO = MI->getOperand(OperIdx);
 | 
						|
 | 
						|
  // Optionally add output and anti dependencies. For anti
 | 
						|
  // dependencies we use a latency of 0 because for a multi-issue
 | 
						|
  // target we want to allow the defining instruction to issue
 | 
						|
  // in the same cycle as the using instruction.
 | 
						|
  // TODO: Using a latency of 1 here for output dependencies assumes
 | 
						|
  //       there's no cost for reusing registers.
 | 
						|
  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
 | 
						|
  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
 | 
						|
       Alias.isValid(); ++Alias) {
 | 
						|
    if (!Defs.contains(*Alias))
 | 
						|
      continue;
 | 
						|
    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
 | 
						|
      SUnit *DefSU = I->SU;
 | 
						|
      if (DefSU == &ExitSU)
 | 
						|
        continue;
 | 
						|
      if (DefSU != SU &&
 | 
						|
          (Kind != SDep::Output || !MO.isDead() ||
 | 
						|
           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
 | 
						|
        if (Kind == SDep::Anti)
 | 
						|
          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
 | 
						|
        else {
 | 
						|
          SDep Dep(SU, Kind, /*Reg=*/*Alias);
 | 
						|
          Dep.setLatency(
 | 
						|
            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
 | 
						|
          DefSU->addPred(Dep);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MO.isDef()) {
 | 
						|
    SU->hasPhysRegUses = true;
 | 
						|
    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
 | 
						|
    // retrieve the existing SUnits list for this register's uses.
 | 
						|
    // Push this SUnit on the use list.
 | 
						|
    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
 | 
						|
    if (RemoveKillFlags)
 | 
						|
      MO.setIsKill(false);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    addPhysRegDataDeps(SU, OperIdx);
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
 | 
						|
    // clear this register's use list
 | 
						|
    if (Uses.contains(Reg))
 | 
						|
      Uses.eraseAll(Reg);
 | 
						|
 | 
						|
    if (!MO.isDead()) {
 | 
						|
      Defs.eraseAll(Reg);
 | 
						|
    } else if (SU->isCall) {
 | 
						|
      // Calls will not be reordered because of chain dependencies (see
 | 
						|
      // below). Since call operands are dead, calls may continue to be added
 | 
						|
      // to the DefList making dependence checking quadratic in the size of
 | 
						|
      // the block. Instead, we leave only one call at the back of the
 | 
						|
      // DefList.
 | 
						|
      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
 | 
						|
      Reg2SUnitsMap::iterator B = P.first;
 | 
						|
      Reg2SUnitsMap::iterator I = P.second;
 | 
						|
      for (bool isBegin = I == B; !isBegin; /* empty */) {
 | 
						|
        isBegin = (--I) == B;
 | 
						|
        if (!I->SU->isCall)
 | 
						|
          break;
 | 
						|
        I = Defs.erase(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Defs are pushed in the order they are visited and never reordered.
 | 
						|
    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addVRegDefDeps - Add register output and data dependencies from this SUnit
 | 
						|
/// to instructions that occur later in the same scheduling region if they read
 | 
						|
/// from or write to the virtual register defined at OperIdx.
 | 
						|
///
 | 
						|
/// TODO: Hoist loop induction variable increments. This has to be
 | 
						|
/// reevaluated. Generally, IV scheduling should be done before coalescing.
 | 
						|
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  const MachineInstr *MI = SU->getInstr();
 | 
						|
  unsigned Reg = MI->getOperand(OperIdx).getReg();
 | 
						|
 | 
						|
  // Singly defined vregs do not have output/anti dependencies.
 | 
						|
  // The current operand is a def, so we have at least one.
 | 
						|
  // Check here if there are any others...
 | 
						|
  if (MRI.hasOneDef(Reg))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Add output dependence to the next nearest def of this vreg.
 | 
						|
  //
 | 
						|
  // Unless this definition is dead, the output dependence should be
 | 
						|
  // transitively redundant with antidependencies from this definition's
 | 
						|
  // uses. We're conservative for now until we have a way to guarantee the uses
 | 
						|
  // are not eliminated sometime during scheduling. The output dependence edge
 | 
						|
  // is also useful if output latency exceeds def-use latency.
 | 
						|
  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
 | 
						|
  if (DefI == VRegDefs.end())
 | 
						|
    VRegDefs.insert(VReg2SUnit(Reg, SU));
 | 
						|
  else {
 | 
						|
    SUnit *DefSU = DefI->SU;
 | 
						|
    if (DefSU != SU && DefSU != &ExitSU) {
 | 
						|
      SDep Dep(SU, SDep::Output, Reg);
 | 
						|
      Dep.setLatency(
 | 
						|
        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
 | 
						|
      DefSU->addPred(Dep);
 | 
						|
    }
 | 
						|
    DefI->SU = SU;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addVRegUseDeps - Add a register data dependency if the instruction that
 | 
						|
/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
 | 
						|
/// register antidependency from this SUnit to instructions that occur later in
 | 
						|
/// the same scheduling region if they write the virtual register.
 | 
						|
///
 | 
						|
/// TODO: Handle ExitSU "uses" properly.
 | 
						|
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  MachineInstr *MI = SU->getInstr();
 | 
						|
  unsigned Reg = MI->getOperand(OperIdx).getReg();
 | 
						|
 | 
						|
  // Record this local VReg use.
 | 
						|
  VReg2UseMap::iterator UI = VRegUses.find(Reg);
 | 
						|
  for (; UI != VRegUses.end(); ++UI) {
 | 
						|
    if (UI->SU == SU)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  if (UI == VRegUses.end())
 | 
						|
    VRegUses.insert(VReg2SUnit(Reg, SU));
 | 
						|
 | 
						|
  // Lookup this operand's reaching definition.
 | 
						|
  assert(LIS && "vreg dependencies requires LiveIntervals");
 | 
						|
  LiveQueryResult LRQ
 | 
						|
    = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
 | 
						|
  VNInfo *VNI = LRQ.valueIn();
 | 
						|
 | 
						|
  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
 | 
						|
  assert(VNI && "No value to read by operand");
 | 
						|
  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
 | 
						|
  // Phis and other noninstructions (after coalescing) have a NULL Def.
 | 
						|
  if (Def) {
 | 
						|
    SUnit *DefSU = getSUnit(Def);
 | 
						|
    if (DefSU) {
 | 
						|
      // The reaching Def lives within this scheduling region.
 | 
						|
      // Create a data dependence.
 | 
						|
      SDep dep(DefSU, SDep::Data, Reg);
 | 
						|
      // Adjust the dependence latency using operand def/use information, then
 | 
						|
      // allow the target to perform its own adjustments.
 | 
						|
      int DefOp = Def->findRegisterDefOperandIdx(Reg);
 | 
						|
      dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
 | 
						|
 | 
						|
      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | 
						|
      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
 | 
						|
      SU->addPred(dep);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add antidependence to the following def of the vreg it uses.
 | 
						|
  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
 | 
						|
  if (DefI != VRegDefs.end() && DefI->SU != SU)
 | 
						|
    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if MI is an instruction we are unable to reason about
 | 
						|
/// (like a call or something with unmodeled side effects).
 | 
						|
static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
 | 
						|
  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
 | 
						|
      (MI->hasOrderedMemoryRef() &&
 | 
						|
       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// This MI might have either incomplete info, or known to be unsafe
 | 
						|
// to deal with (i.e. volatile object).
 | 
						|
static inline bool isUnsafeMemoryObject(MachineInstr *MI,
 | 
						|
                                        const MachineFrameInfo *MFI) {
 | 
						|
  if (!MI || MI->memoperands_empty())
 | 
						|
    return true;
 | 
						|
  // We purposefully do no check for hasOneMemOperand() here
 | 
						|
  // in hope to trigger an assert downstream in order to
 | 
						|
  // finish implementation.
 | 
						|
  if ((*MI->memoperands_begin())->isVolatile() ||
 | 
						|
       MI->hasUnmodeledSideEffects())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if ((*MI->memoperands_begin())->getPseudoValue()) {
 | 
						|
    // Similarly to getUnderlyingObjectForInstr:
 | 
						|
    // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | 
						|
    // because the code that uses this function has no way to cope with
 | 
						|
    // such aliases.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const Value *V = (*MI->memoperands_begin())->getValue();
 | 
						|
  if (!V)
 | 
						|
    return true;
 | 
						|
 | 
						|
  SmallVector<Value *, 4> Objs;
 | 
						|
  getUnderlyingObjects(V, Objs);
 | 
						|
  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
 | 
						|
         IE = Objs.end(); I != IE; ++I) {
 | 
						|
    // Does this pointer refer to a distinct and identifiable object?
 | 
						|
    if (!isIdentifiedObject(*I))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// This returns true if the two MIs need a chain edge betwee them.
 | 
						|
/// If these are not even memory operations, we still may need
 | 
						|
/// chain deps between them. The question really is - could
 | 
						|
/// these two MIs be reordered during scheduling from memory dependency
 | 
						|
/// point of view.
 | 
						|
static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | 
						|
                             MachineInstr *MIa,
 | 
						|
                             MachineInstr *MIb) {
 | 
						|
  // Cover a trivial case - no edge is need to itself.
 | 
						|
  if (MIa == MIb)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Need to handle multiple memory operands to support all targets.
 | 
						|
  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we are dealing with two "normal" loads, we do not need an edge
 | 
						|
  // between them - they could be reordered.
 | 
						|
  if (!MIa->mayStore() && !MIb->mayStore())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // To this point analysis is generic. From here on we do need AA.
 | 
						|
  if (!AA)
 | 
						|
    return true;
 | 
						|
 | 
						|
  MachineMemOperand *MMOa = *MIa->memoperands_begin();
 | 
						|
  MachineMemOperand *MMOb = *MIb->memoperands_begin();
 | 
						|
 | 
						|
  if (!MMOa->getValue() || !MMOb->getValue())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The following interface to AA is fashioned after DAGCombiner::isAlias
 | 
						|
  // and operates with MachineMemOperand offset with some important
 | 
						|
  // assumptions:
 | 
						|
  //   - LLVM fundamentally assumes flat address spaces.
 | 
						|
  //   - MachineOperand offset can *only* result from legalization and
 | 
						|
  //     cannot affect queries other than the trivial case of overlap
 | 
						|
  //     checking.
 | 
						|
  //   - These offsets never wrap and never step outside
 | 
						|
  //     of allocated objects.
 | 
						|
  //   - There should never be any negative offsets here.
 | 
						|
  //
 | 
						|
  // FIXME: Modify API to hide this math from "user"
 | 
						|
  // FIXME: Even before we go to AA we can reason locally about some
 | 
						|
  // memory objects. It can save compile time, and possibly catch some
 | 
						|
  // corner cases not currently covered.
 | 
						|
 | 
						|
  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
 | 
						|
  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
 | 
						|
 | 
						|
  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
 | 
						|
  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
 | 
						|
  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
 | 
						|
 | 
						|
  AliasAnalysis::AliasResult AAResult = AA->alias(
 | 
						|
      AliasAnalysis::Location(MMOa->getValue(), Overlapa,
 | 
						|
                              UseTBAA ? MMOa->getTBAAInfo() : nullptr),
 | 
						|
      AliasAnalysis::Location(MMOb->getValue(), Overlapb,
 | 
						|
                              UseTBAA ? MMOb->getTBAAInfo() : nullptr));
 | 
						|
 | 
						|
  return (AAResult != AliasAnalysis::NoAlias);
 | 
						|
}
 | 
						|
 | 
						|
/// This recursive function iterates over chain deps of SUb looking for
 | 
						|
/// "latest" node that needs a chain edge to SUa.
 | 
						|
static unsigned
 | 
						|
iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | 
						|
                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
 | 
						|
                 SmallPtrSet<const SUnit*, 16> &Visited) {
 | 
						|
  if (!SUa || !SUb || SUb == ExitSU)
 | 
						|
    return *Depth;
 | 
						|
 | 
						|
  // Remember visited nodes.
 | 
						|
  if (!Visited.insert(SUb))
 | 
						|
      return *Depth;
 | 
						|
  // If there is _some_ dependency already in place, do not
 | 
						|
  // descend any further.
 | 
						|
  // TODO: Need to make sure that if that dependency got eliminated or ignored
 | 
						|
  // for any reason in the future, we would not violate DAG topology.
 | 
						|
  // Currently it does not happen, but makes an implicit assumption about
 | 
						|
  // future implementation.
 | 
						|
  //
 | 
						|
  // Independently, if we encounter node that is some sort of global
 | 
						|
  // object (like a call) we already have full set of dependencies to it
 | 
						|
  // and we can stop descending.
 | 
						|
  if (SUa->isSucc(SUb) ||
 | 
						|
      isGlobalMemoryObject(AA, SUb->getInstr()))
 | 
						|
    return *Depth;
 | 
						|
 | 
						|
  // If we do need an edge, or we have exceeded depth budget,
 | 
						|
  // add that edge to the predecessors chain of SUb,
 | 
						|
  // and stop descending.
 | 
						|
  if (*Depth > 200 ||
 | 
						|
      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
 | 
						|
    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
 | 
						|
    return *Depth;
 | 
						|
  }
 | 
						|
  // Track current depth.
 | 
						|
  (*Depth)++;
 | 
						|
  // Iterate over chain dependencies only.
 | 
						|
  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (I->isCtrl())
 | 
						|
      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
 | 
						|
  return *Depth;
 | 
						|
}
 | 
						|
 | 
						|
/// This function assumes that "downward" from SU there exist
 | 
						|
/// tail/leaf of already constructed DAG. It iterates downward and
 | 
						|
/// checks whether SU can be aliasing any node dominated
 | 
						|
/// by it.
 | 
						|
static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | 
						|
                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
 | 
						|
                            unsigned LatencyToLoad) {
 | 
						|
  if (!SU)
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallPtrSet<const SUnit*, 16> Visited;
 | 
						|
  unsigned Depth = 0;
 | 
						|
 | 
						|
  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
 | 
						|
       I != IE; ++I) {
 | 
						|
    if (SU == *I)
 | 
						|
      continue;
 | 
						|
    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
 | 
						|
      SDep Dep(SU, SDep::MayAliasMem);
 | 
						|
      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
 | 
						|
      (*I)->addPred(Dep);
 | 
						|
    }
 | 
						|
    // Now go through all the chain successors and iterate from them.
 | 
						|
    // Keep track of visited nodes.
 | 
						|
    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
 | 
						|
         JE = (*I)->Succs.end(); J != JE; ++J)
 | 
						|
      if (J->isCtrl())
 | 
						|
        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
 | 
						|
                          ExitSU, &Depth, Visited);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether two objects need a chain edge, if so, add it
 | 
						|
/// otherwise remember the rejected SU.
 | 
						|
static inline
 | 
						|
void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
 | 
						|
                         SUnit *SUa, SUnit *SUb,
 | 
						|
                         std::set<SUnit *> &RejectList,
 | 
						|
                         unsigned TrueMemOrderLatency = 0,
 | 
						|
                         bool isNormalMemory = false) {
 | 
						|
  // If this is a false dependency,
 | 
						|
  // do not add the edge, but rememeber the rejected node.
 | 
						|
  if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
 | 
						|
    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
 | 
						|
    Dep.setLatency(TrueMemOrderLatency);
 | 
						|
    SUb->addPred(Dep);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // Duplicate entries should be ignored.
 | 
						|
    RejectList.insert(SUb);
 | 
						|
    DEBUG(dbgs() << "\tReject chain dep between SU("
 | 
						|
          << SUa->NodeNum << ") and SU("
 | 
						|
          << SUb->NodeNum << ")\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create an SUnit for each real instruction, numbered in top-down toplological
 | 
						|
/// order. The instruction order A < B, implies that no edge exists from B to A.
 | 
						|
///
 | 
						|
/// Map each real instruction to its SUnit.
 | 
						|
///
 | 
						|
/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
 | 
						|
/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
 | 
						|
/// instead of pointers.
 | 
						|
///
 | 
						|
/// MachineScheduler relies on initSUnits numbering the nodes by their order in
 | 
						|
/// the original instruction list.
 | 
						|
void ScheduleDAGInstrs::initSUnits() {
 | 
						|
  // We'll be allocating one SUnit for each real instruction in the region,
 | 
						|
  // which is contained within a basic block.
 | 
						|
  SUnits.reserve(NumRegionInstrs);
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
 | 
						|
    MachineInstr *MI = I;
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SUnit *SU = newSUnit(MI);
 | 
						|
    MISUnitMap[MI] = SU;
 | 
						|
 | 
						|
    SU->isCall = MI->isCall();
 | 
						|
    SU->isCommutable = MI->isCommutable();
 | 
						|
 | 
						|
    // Assign the Latency field of SU using target-provided information.
 | 
						|
    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
 | 
						|
 | 
						|
    // If this SUnit uses a reserved or unbuffered resource, mark it as such.
 | 
						|
    //
 | 
						|
    // Reserved resources block an instruction from issuing and stall the
 | 
						|
    // entire pipeline. These are identified by BufferSize=0.
 | 
						|
    //
 | 
						|
    // Unbuffered resources prevent execution of subsequent instructions that
 | 
						|
    // require the same resources. This is used for in-order execution pipelines
 | 
						|
    // within an out-of-order core. These are identified by BufferSize=1.
 | 
						|
    if (SchedModel.hasInstrSchedModel()) {
 | 
						|
      const MCSchedClassDesc *SC = getSchedClass(SU);
 | 
						|
      for (TargetSchedModel::ProcResIter
 | 
						|
             PI = SchedModel.getWriteProcResBegin(SC),
 | 
						|
             PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
 | 
						|
        switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
 | 
						|
        case 0:
 | 
						|
          SU->hasReservedResource = true;
 | 
						|
          break;
 | 
						|
        case 1:
 | 
						|
          SU->isUnbuffered = true;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If RegPressure is non-null, compute register pressure as a side effect. The
 | 
						|
/// DAG builder is an efficient place to do it because it already visits
 | 
						|
/// operands.
 | 
						|
void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
 | 
						|
                                        RegPressureTracker *RPTracker,
 | 
						|
                                        PressureDiffs *PDiffs) {
 | 
						|
  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | 
						|
  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
 | 
						|
                                                       : ST.useAA();
 | 
						|
  AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
 | 
						|
 | 
						|
  MISUnitMap.clear();
 | 
						|
  ScheduleDAG::clearDAG();
 | 
						|
 | 
						|
  // Create an SUnit for each real instruction.
 | 
						|
  initSUnits();
 | 
						|
 | 
						|
  if (PDiffs)
 | 
						|
    PDiffs->init(SUnits.size());
 | 
						|
 | 
						|
  // We build scheduling units by walking a block's instruction list from bottom
 | 
						|
  // to top.
 | 
						|
 | 
						|
  // Remember where a generic side-effecting instruction is as we procede.
 | 
						|
  SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
 | 
						|
 | 
						|
  // Memory references to specific known memory locations are tracked
 | 
						|
  // so that they can be given more precise dependencies. We track
 | 
						|
  // separately the known memory locations that may alias and those
 | 
						|
  // that are known not to alias
 | 
						|
  MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
 | 
						|
  MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
 | 
						|
  std::set<SUnit*> RejectMemNodes;
 | 
						|
 | 
						|
  // Remove any stale debug info; sometimes BuildSchedGraph is called again
 | 
						|
  // without emitting the info from the previous call.
 | 
						|
  DbgValues.clear();
 | 
						|
  FirstDbgValue = nullptr;
 | 
						|
 | 
						|
  assert(Defs.empty() && Uses.empty() &&
 | 
						|
         "Only BuildGraph should update Defs/Uses");
 | 
						|
  Defs.setUniverse(TRI->getNumRegs());
 | 
						|
  Uses.setUniverse(TRI->getNumRegs());
 | 
						|
 | 
						|
  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
 | 
						|
  VRegUses.clear();
 | 
						|
  VRegDefs.setUniverse(MRI.getNumVirtRegs());
 | 
						|
  VRegUses.setUniverse(MRI.getNumVirtRegs());
 | 
						|
 | 
						|
  // Model data dependencies between instructions being scheduled and the
 | 
						|
  // ExitSU.
 | 
						|
  addSchedBarrierDeps();
 | 
						|
 | 
						|
  // Walk the list of instructions, from bottom moving up.
 | 
						|
  MachineInstr *DbgMI = nullptr;
 | 
						|
  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
 | 
						|
       MII != MIE; --MII) {
 | 
						|
    MachineInstr *MI = std::prev(MII);
 | 
						|
    if (MI && DbgMI) {
 | 
						|
      DbgValues.push_back(std::make_pair(DbgMI, MI));
 | 
						|
      DbgMI = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (MI->isDebugValue()) {
 | 
						|
      DbgMI = MI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    SUnit *SU = MISUnitMap[MI];
 | 
						|
    assert(SU && "No SUnit mapped to this MI");
 | 
						|
 | 
						|
    if (RPTracker) {
 | 
						|
      PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr;
 | 
						|
      RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
 | 
						|
      assert(RPTracker->getPos() == std::prev(MII) &&
 | 
						|
             "RPTracker can't find MI");
 | 
						|
    }
 | 
						|
 | 
						|
    assert(
 | 
						|
        (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
 | 
						|
        "Cannot schedule terminators or labels!");
 | 
						|
 | 
						|
    // Add register-based dependencies (data, anti, and output).
 | 
						|
    bool HasVRegDef = false;
 | 
						|
    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(j);
 | 
						|
      if (!MO.isReg()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
 | 
						|
      if (TRI->isPhysicalRegister(Reg))
 | 
						|
        addPhysRegDeps(SU, j);
 | 
						|
      else {
 | 
						|
        assert(!IsPostRA && "Virtual register encountered!");
 | 
						|
        if (MO.isDef()) {
 | 
						|
          HasVRegDef = true;
 | 
						|
          addVRegDefDeps(SU, j);
 | 
						|
        }
 | 
						|
        else if (MO.readsReg()) // ignore undef operands
 | 
						|
          addVRegUseDeps(SU, j);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If we haven't seen any uses in this scheduling region, create a
 | 
						|
    // dependence edge to ExitSU to model the live-out latency. This is required
 | 
						|
    // for vreg defs with no in-region use, and prefetches with no vreg def.
 | 
						|
    //
 | 
						|
    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
 | 
						|
    // check currently relies on being called before adding chain deps.
 | 
						|
    if (SU->NumSuccs == 0 && SU->Latency > 1
 | 
						|
        && (HasVRegDef || MI->mayLoad())) {
 | 
						|
      SDep Dep(SU, SDep::Artificial);
 | 
						|
      Dep.setLatency(SU->Latency - 1);
 | 
						|
      ExitSU.addPred(Dep);
 | 
						|
    }
 | 
						|
 | 
						|
    // Add chain dependencies.
 | 
						|
    // Chain dependencies used to enforce memory order should have
 | 
						|
    // latency of 0 (except for true dependency of Store followed by
 | 
						|
    // aliased Load... we estimate that with a single cycle of latency
 | 
						|
    // assuming the hardware will bypass)
 | 
						|
    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
 | 
						|
    // after stack slots are lowered to actual addresses.
 | 
						|
    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
 | 
						|
    // produce more precise dependence information.
 | 
						|
    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
 | 
						|
    if (isGlobalMemoryObject(AA, MI)) {
 | 
						|
      // Be conservative with these and add dependencies on all memory
 | 
						|
      // references, even those that are known to not alias.
 | 
						|
      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
 | 
						|
             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
 | 
						|
        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
 | 
						|
          I->second[i]->addPred(SDep(SU, SDep::Barrier));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
 | 
						|
             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
 | 
						|
        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
 | 
						|
          SDep Dep(SU, SDep::Barrier);
 | 
						|
          Dep.setLatency(TrueMemOrderLatency);
 | 
						|
          I->second[i]->addPred(Dep);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Add SU to the barrier chain.
 | 
						|
      if (BarrierChain)
 | 
						|
        BarrierChain->addPred(SDep(SU, SDep::Barrier));
 | 
						|
      BarrierChain = SU;
 | 
						|
      // This is a barrier event that acts as a pivotal node in the DAG,
 | 
						|
      // so it is safe to clear list of exposed nodes.
 | 
						|
      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
 | 
						|
                      TrueMemOrderLatency);
 | 
						|
      RejectMemNodes.clear();
 | 
						|
      NonAliasMemDefs.clear();
 | 
						|
      NonAliasMemUses.clear();
 | 
						|
 | 
						|
      // fall-through
 | 
						|
    new_alias_chain:
 | 
						|
      // Chain all possibly aliasing memory references though SU.
 | 
						|
      if (AliasChain) {
 | 
						|
        unsigned ChainLatency = 0;
 | 
						|
        if (AliasChain->getInstr()->mayLoad())
 | 
						|
          ChainLatency = TrueMemOrderLatency;
 | 
						|
        addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
 | 
						|
                           ChainLatency);
 | 
						|
      }
 | 
						|
      AliasChain = SU;
 | 
						|
      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | 
						|
        addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
 | 
						|
                           TrueMemOrderLatency);
 | 
						|
      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
 | 
						|
           AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
 | 
						|
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | 
						|
          addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes);
 | 
						|
      }
 | 
						|
      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
 | 
						|
           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
 | 
						|
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | 
						|
          addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
 | 
						|
                             TrueMemOrderLatency);
 | 
						|
      }
 | 
						|
      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
 | 
						|
                      TrueMemOrderLatency);
 | 
						|
      PendingLoads.clear();
 | 
						|
      AliasMemDefs.clear();
 | 
						|
      AliasMemUses.clear();
 | 
						|
    } else if (MI->mayStore()) {
 | 
						|
      UnderlyingObjectsVector Objs;
 | 
						|
      getUnderlyingObjectsForInstr(MI, MFI, Objs);
 | 
						|
 | 
						|
      if (Objs.empty()) {
 | 
						|
        // Treat all other stores conservatively.
 | 
						|
        goto new_alias_chain;
 | 
						|
      }
 | 
						|
 | 
						|
      bool MayAlias = false;
 | 
						|
      for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
 | 
						|
           K != KE; ++K) {
 | 
						|
        ValueType V = K->getPointer();
 | 
						|
        bool ThisMayAlias = K->getInt();
 | 
						|
        if (ThisMayAlias)
 | 
						|
          MayAlias = true;
 | 
						|
 | 
						|
        // A store to a specific PseudoSourceValue. Add precise dependencies.
 | 
						|
        // Record the def in MemDefs, first adding a dep if there is
 | 
						|
        // an existing def.
 | 
						|
        MapVector<ValueType, std::vector<SUnit *> >::iterator I =
 | 
						|
          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | 
						|
        MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
 | 
						|
          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | 
						|
        if (I != IE) {
 | 
						|
          for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | 
						|
            addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
 | 
						|
                               0, true);
 | 
						|
 | 
						|
          // If we're not using AA, then we only need one store per object.
 | 
						|
          if (!AAForDep)
 | 
						|
            I->second.clear();
 | 
						|
          I->second.push_back(SU);
 | 
						|
        } else {
 | 
						|
          if (ThisMayAlias) {
 | 
						|
            if (!AAForDep)
 | 
						|
              AliasMemDefs[V].clear();
 | 
						|
            AliasMemDefs[V].push_back(SU);
 | 
						|
          } else {
 | 
						|
            if (!AAForDep)
 | 
						|
              NonAliasMemDefs[V].clear();
 | 
						|
            NonAliasMemDefs[V].push_back(SU);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // Handle the uses in MemUses, if there are any.
 | 
						|
        MapVector<ValueType, std::vector<SUnit *> >::iterator J =
 | 
						|
          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
 | 
						|
        MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
 | 
						|
          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
 | 
						|
        if (J != JE) {
 | 
						|
          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
 | 
						|
            addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
 | 
						|
                               TrueMemOrderLatency, true);
 | 
						|
          J->second.clear();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (MayAlias) {
 | 
						|
        // Add dependencies from all the PendingLoads, i.e. loads
 | 
						|
        // with no underlying object.
 | 
						|
        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | 
						|
          addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
 | 
						|
                             TrueMemOrderLatency);
 | 
						|
        // Add dependence on alias chain, if needed.
 | 
						|
        if (AliasChain)
 | 
						|
          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
 | 
						|
        // But we also should check dependent instructions for the
 | 
						|
        // SU in question.
 | 
						|
        adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
 | 
						|
                        TrueMemOrderLatency);
 | 
						|
      }
 | 
						|
      // Add dependence on barrier chain, if needed.
 | 
						|
      // There is no point to check aliasing on barrier event. Even if
 | 
						|
      // SU and barrier _could_ be reordered, they should not. In addition,
 | 
						|
      // we have lost all RejectMemNodes below barrier.
 | 
						|
      if (BarrierChain)
 | 
						|
        BarrierChain->addPred(SDep(SU, SDep::Barrier));
 | 
						|
    } else if (MI->mayLoad()) {
 | 
						|
      bool MayAlias = true;
 | 
						|
      if (MI->isInvariantLoad(AA)) {
 | 
						|
        // Invariant load, no chain dependencies needed!
 | 
						|
      } else {
 | 
						|
        UnderlyingObjectsVector Objs;
 | 
						|
        getUnderlyingObjectsForInstr(MI, MFI, Objs);
 | 
						|
 | 
						|
        if (Objs.empty()) {
 | 
						|
          // A load with no underlying object. Depend on all
 | 
						|
          // potentially aliasing stores.
 | 
						|
          for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
 | 
						|
                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
 | 
						|
            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | 
						|
              addChainDependency(AAForDep, MFI, SU, I->second[i],
 | 
						|
                                 RejectMemNodes);
 | 
						|
 | 
						|
          PendingLoads.push_back(SU);
 | 
						|
          MayAlias = true;
 | 
						|
        } else {
 | 
						|
          MayAlias = false;
 | 
						|
        }
 | 
						|
 | 
						|
        for (UnderlyingObjectsVector::iterator
 | 
						|
             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
 | 
						|
          ValueType V = J->getPointer();
 | 
						|
          bool ThisMayAlias = J->getInt();
 | 
						|
 | 
						|
          if (ThisMayAlias)
 | 
						|
            MayAlias = true;
 | 
						|
 | 
						|
          // A load from a specific PseudoSourceValue. Add precise dependencies.
 | 
						|
          MapVector<ValueType, std::vector<SUnit *> >::iterator I =
 | 
						|
            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | 
						|
          MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
 | 
						|
            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | 
						|
          if (I != IE)
 | 
						|
            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | 
						|
              addChainDependency(AAForDep, MFI, SU, I->second[i],
 | 
						|
                                 RejectMemNodes, 0, true);
 | 
						|
          if (ThisMayAlias)
 | 
						|
            AliasMemUses[V].push_back(SU);
 | 
						|
          else
 | 
						|
            NonAliasMemUses[V].push_back(SU);
 | 
						|
        }
 | 
						|
        if (MayAlias)
 | 
						|
          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
 | 
						|
        // Add dependencies on alias and barrier chains, if needed.
 | 
						|
        if (MayAlias && AliasChain)
 | 
						|
          addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
 | 
						|
        if (BarrierChain)
 | 
						|
          BarrierChain->addPred(SDep(SU, SDep::Barrier));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (DbgMI)
 | 
						|
    FirstDbgValue = DbgMI;
 | 
						|
 | 
						|
  Defs.clear();
 | 
						|
  Uses.clear();
 | 
						|
  VRegDefs.clear();
 | 
						|
  PendingLoads.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Initialize register live-range state for updating kills.
 | 
						|
void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
 | 
						|
  // Start with no live registers.
 | 
						|
  LiveRegs.reset();
 | 
						|
 | 
						|
  // Examine the live-in regs of all successors.
 | 
						|
  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | 
						|
       SE = BB->succ_end(); SI != SE; ++SI) {
 | 
						|
    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | 
						|
         E = (*SI)->livein_end(); I != E; ++I) {
 | 
						|
      unsigned Reg = *I;
 | 
						|
      // Repeat, for reg and all subregs.
 | 
						|
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | 
						|
           SubRegs.isValid(); ++SubRegs)
 | 
						|
        LiveRegs.set(*SubRegs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
 | 
						|
  // Setting kill flag...
 | 
						|
  if (!MO.isKill()) {
 | 
						|
    MO.setIsKill(true);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If MO itself is live, clear the kill flag...
 | 
						|
  if (LiveRegs.test(MO.getReg())) {
 | 
						|
    MO.setIsKill(false);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If any subreg of MO is live, then create an imp-def for that
 | 
						|
  // subreg and keep MO marked as killed.
 | 
						|
  MO.setIsKill(false);
 | 
						|
  bool AllDead = true;
 | 
						|
  const unsigned SuperReg = MO.getReg();
 | 
						|
  MachineInstrBuilder MIB(MF, MI);
 | 
						|
  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
 | 
						|
    if (LiveRegs.test(*SubRegs)) {
 | 
						|
      MIB.addReg(*SubRegs, RegState::ImplicitDefine);
 | 
						|
      AllDead = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if(AllDead)
 | 
						|
    MO.setIsKill(true);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Reuse the LivePhysRegs utility for this.
 | 
						|
void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
 | 
						|
  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
 | 
						|
 | 
						|
  LiveRegs.resize(TRI->getNumRegs());
 | 
						|
  BitVector killedRegs(TRI->getNumRegs());
 | 
						|
 | 
						|
  startBlockForKills(MBB);
 | 
						|
 | 
						|
  // Examine block from end to start...
 | 
						|
  unsigned Count = MBB->size();
 | 
						|
  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
 | 
						|
       I != E; --Count) {
 | 
						|
    MachineInstr *MI = --I;
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Update liveness.  Registers that are defed but not used in this
 | 
						|
    // instruction are now dead. Mark register and all subregs as they
 | 
						|
    // are completely defined.
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (MO.isRegMask())
 | 
						|
        LiveRegs.clearBitsNotInMask(MO.getRegMask());
 | 
						|
      if (!MO.isReg()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
      if (!MO.isDef()) continue;
 | 
						|
      // Ignore two-addr defs.
 | 
						|
      if (MI->isRegTiedToUseOperand(i)) continue;
 | 
						|
 | 
						|
      // Repeat for reg and all subregs.
 | 
						|
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | 
						|
           SubRegs.isValid(); ++SubRegs)
 | 
						|
        LiveRegs.reset(*SubRegs);
 | 
						|
    }
 | 
						|
 | 
						|
    // Examine all used registers and set/clear kill flag. When a
 | 
						|
    // register is used multiple times we only set the kill flag on
 | 
						|
    // the first use. Don't set kill flags on undef operands.
 | 
						|
    killedRegs.reset();
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
 | 
						|
 | 
						|
      bool kill = false;
 | 
						|
      if (!killedRegs.test(Reg)) {
 | 
						|
        kill = true;
 | 
						|
        // A register is not killed if any subregs are live...
 | 
						|
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
 | 
						|
          if (LiveRegs.test(*SubRegs)) {
 | 
						|
            kill = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If subreg is not live, then register is killed if it became
 | 
						|
        // live in this instruction
 | 
						|
        if (kill)
 | 
						|
          kill = !LiveRegs.test(Reg);
 | 
						|
      }
 | 
						|
 | 
						|
      if (MO.isKill() != kill) {
 | 
						|
        DEBUG(dbgs() << "Fixing " << MO << " in ");
 | 
						|
        // Warning: toggleKillFlag may invalidate MO.
 | 
						|
        toggleKillFlag(MI, MO);
 | 
						|
        DEBUG(MI->dump());
 | 
						|
      }
 | 
						|
 | 
						|
      killedRegs.set(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    // Mark any used register (that is not using undef) and subregs as
 | 
						|
    // now live...
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
 | 
						|
 | 
						|
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | 
						|
           SubRegs.isValid(); ++SubRegs)
 | 
						|
        LiveRegs.set(*SubRegs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
  SU->getInstr()->dump();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
 | 
						|
  std::string s;
 | 
						|
  raw_string_ostream oss(s);
 | 
						|
  if (SU == &EntrySU)
 | 
						|
    oss << "<entry>";
 | 
						|
  else if (SU == &ExitSU)
 | 
						|
    oss << "<exit>";
 | 
						|
  else
 | 
						|
    SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
 | 
						|
  return oss.str();
 | 
						|
}
 | 
						|
 | 
						|
/// Return the basic block label. It is not necessarilly unique because a block
 | 
						|
/// contains multiple scheduling regions. But it is fine for visualization.
 | 
						|
std::string ScheduleDAGInstrs::getDAGName() const {
 | 
						|
  return "dag." + BB->getFullName();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SchedDFSResult Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
/// \brief Internal state used to compute SchedDFSResult.
 | 
						|
class SchedDFSImpl {
 | 
						|
  SchedDFSResult &R;
 | 
						|
 | 
						|
  /// Join DAG nodes into equivalence classes by their subtree.
 | 
						|
  IntEqClasses SubtreeClasses;
 | 
						|
  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
 | 
						|
  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
 | 
						|
 | 
						|
  struct RootData {
 | 
						|
    unsigned NodeID;
 | 
						|
    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
 | 
						|
    unsigned SubInstrCount; // Instr count in this tree only, not children.
 | 
						|
 | 
						|
    RootData(unsigned id): NodeID(id),
 | 
						|
                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
 | 
						|
                           SubInstrCount(0) {}
 | 
						|
 | 
						|
    unsigned getSparseSetIndex() const { return NodeID; }
 | 
						|
  };
 | 
						|
 | 
						|
  SparseSet<RootData> RootSet;
 | 
						|
 | 
						|
public:
 | 
						|
  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
 | 
						|
    RootSet.setUniverse(R.DFSNodeData.size());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return true if this node been visited by the DFS traversal.
 | 
						|
  ///
 | 
						|
  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
 | 
						|
  /// ID. Later, SubtreeID is updated but remains valid.
 | 
						|
  bool isVisited(const SUnit *SU) const {
 | 
						|
    return R.DFSNodeData[SU->NodeNum].SubtreeID
 | 
						|
      != SchedDFSResult::InvalidSubtreeID;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Initialize this node's instruction count. We don't need to flag the node
 | 
						|
  /// visited until visitPostorder because the DAG cannot have cycles.
 | 
						|
  void visitPreorder(const SUnit *SU) {
 | 
						|
    R.DFSNodeData[SU->NodeNum].InstrCount =
 | 
						|
      SU->getInstr()->isTransient() ? 0 : 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Called once for each node after all predecessors are visited. Revisit this
 | 
						|
  /// node's predecessors and potentially join them now that we know the ILP of
 | 
						|
  /// the other predecessors.
 | 
						|
  void visitPostorderNode(const SUnit *SU) {
 | 
						|
    // Mark this node as the root of a subtree. It may be joined with its
 | 
						|
    // successors later.
 | 
						|
    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
 | 
						|
    RootData RData(SU->NodeNum);
 | 
						|
    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
 | 
						|
 | 
						|
    // If any predecessors are still in their own subtree, they either cannot be
 | 
						|
    // joined or are large enough to remain separate. If this parent node's
 | 
						|
    // total instruction count is not greater than a child subtree by at least
 | 
						|
    // the subtree limit, then try to join it now since splitting subtrees is
 | 
						|
    // only useful if multiple high-pressure paths are possible.
 | 
						|
    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
 | 
						|
    for (SUnit::const_pred_iterator
 | 
						|
           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
 | 
						|
      if (PI->getKind() != SDep::Data)
 | 
						|
        continue;
 | 
						|
      unsigned PredNum = PI->getSUnit()->NodeNum;
 | 
						|
      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
 | 
						|
        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
 | 
						|
 | 
						|
      // Either link or merge the TreeData entry from the child to the parent.
 | 
						|
      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
 | 
						|
        // If the predecessor's parent is invalid, this is a tree edge and the
 | 
						|
        // current node is the parent.
 | 
						|
        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
 | 
						|
          RootSet[PredNum].ParentNodeID = SU->NodeNum;
 | 
						|
      }
 | 
						|
      else if (RootSet.count(PredNum)) {
 | 
						|
        // The predecessor is not a root, but is still in the root set. This
 | 
						|
        // must be the new parent that it was just joined to. Note that
 | 
						|
        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
 | 
						|
        // set to the original parent.
 | 
						|
        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
 | 
						|
        RootSet.erase(PredNum);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    RootSet[SU->NodeNum] = RData;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Called once for each tree edge after calling visitPostOrderNode on the
 | 
						|
  /// predecessor. Increment the parent node's instruction count and
 | 
						|
  /// preemptively join this subtree to its parent's if it is small enough.
 | 
						|
  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
 | 
						|
    R.DFSNodeData[Succ->NodeNum].InstrCount
 | 
						|
      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
 | 
						|
    joinPredSubtree(PredDep, Succ);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Add a connection for cross edges.
 | 
						|
  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
 | 
						|
    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
 | 
						|
  }
 | 
						|
 | 
						|
  /// Set each node's subtree ID to the representative ID and record connections
 | 
						|
  /// between trees.
 | 
						|
  void finalize() {
 | 
						|
    SubtreeClasses.compress();
 | 
						|
    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
 | 
						|
    assert(SubtreeClasses.getNumClasses() == RootSet.size()
 | 
						|
           && "number of roots should match trees");
 | 
						|
    for (SparseSet<RootData>::const_iterator
 | 
						|
           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
 | 
						|
      unsigned TreeID = SubtreeClasses[RI->NodeID];
 | 
						|
      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
 | 
						|
        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
 | 
						|
      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
 | 
						|
      // Note that SubInstrCount may be greater than InstrCount if we joined
 | 
						|
      // subtrees across a cross edge. InstrCount will be attributed to the
 | 
						|
      // original parent, while SubInstrCount will be attributed to the joined
 | 
						|
      // parent.
 | 
						|
    }
 | 
						|
    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
 | 
						|
    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
 | 
						|
    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
 | 
						|
    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
 | 
						|
      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
 | 
						|
      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
 | 
						|
            << R.DFSNodeData[Idx].SubtreeID << '\n');
 | 
						|
    }
 | 
						|
    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
 | 
						|
           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
 | 
						|
      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
 | 
						|
      if (PredTree == SuccTree)
 | 
						|
        continue;
 | 
						|
      unsigned Depth = I->first->getDepth();
 | 
						|
      addConnection(PredTree, SuccTree, Depth);
 | 
						|
      addConnection(SuccTree, PredTree, Depth);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
  /// Join the predecessor subtree with the successor that is its DFS
 | 
						|
  /// parent. Apply some heuristics before joining.
 | 
						|
  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
 | 
						|
                       bool CheckLimit = true) {
 | 
						|
    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
 | 
						|
 | 
						|
    // Check if the predecessor is already joined.
 | 
						|
    const SUnit *PredSU = PredDep.getSUnit();
 | 
						|
    unsigned PredNum = PredSU->NodeNum;
 | 
						|
    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Four is the magic number of successors before a node is considered a
 | 
						|
    // pinch point.
 | 
						|
    unsigned NumDataSucs = 0;
 | 
						|
    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
 | 
						|
           SE = PredSU->Succs.end(); SI != SE; ++SI) {
 | 
						|
      if (SI->getKind() == SDep::Data) {
 | 
						|
        if (++NumDataSucs >= 4)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
 | 
						|
      return false;
 | 
						|
    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
 | 
						|
    SubtreeClasses.join(Succ->NodeNum, PredNum);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Called by finalize() to record a connection between trees.
 | 
						|
  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
 | 
						|
    if (!Depth)
 | 
						|
      return;
 | 
						|
 | 
						|
    do {
 | 
						|
      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
 | 
						|
        R.SubtreeConnections[FromTree];
 | 
						|
      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
 | 
						|
             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
 | 
						|
        if (I->TreeID == ToTree) {
 | 
						|
          I->Level = std::max(I->Level, Depth);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
 | 
						|
      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
 | 
						|
    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Manage the stack used by a reverse depth-first search over the DAG.
 | 
						|
class SchedDAGReverseDFS {
 | 
						|
  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
 | 
						|
public:
 | 
						|
  bool isComplete() const { return DFSStack.empty(); }
 | 
						|
 | 
						|
  void follow(const SUnit *SU) {
 | 
						|
    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
 | 
						|
  }
 | 
						|
  void advance() { ++DFSStack.back().second; }
 | 
						|
 | 
						|
  const SDep *backtrack() {
 | 
						|
    DFSStack.pop_back();
 | 
						|
    return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
 | 
						|
  }
 | 
						|
 | 
						|
  const SUnit *getCurr() const { return DFSStack.back().first; }
 | 
						|
 | 
						|
  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
 | 
						|
 | 
						|
  SUnit::const_pred_iterator getPredEnd() const {
 | 
						|
    return getCurr()->Preds.end();
 | 
						|
  }
 | 
						|
};
 | 
						|
} // anonymous
 | 
						|
 | 
						|
static bool hasDataSucc(const SUnit *SU) {
 | 
						|
  for (SUnit::const_succ_iterator
 | 
						|
         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
 | 
						|
    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
 | 
						|
/// search from this root.
 | 
						|
void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
 | 
						|
  if (!IsBottomUp)
 | 
						|
    llvm_unreachable("Top-down ILP metric is unimplemnted");
 | 
						|
 | 
						|
  SchedDFSImpl Impl(*this);
 | 
						|
  for (ArrayRef<SUnit>::const_iterator
 | 
						|
         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
 | 
						|
    const SUnit *SU = &*SI;
 | 
						|
    if (Impl.isVisited(SU) || hasDataSucc(SU))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SchedDAGReverseDFS DFS;
 | 
						|
    Impl.visitPreorder(SU);
 | 
						|
    DFS.follow(SU);
 | 
						|
    for (;;) {
 | 
						|
      // Traverse the leftmost path as far as possible.
 | 
						|
      while (DFS.getPred() != DFS.getPredEnd()) {
 | 
						|
        const SDep &PredDep = *DFS.getPred();
 | 
						|
        DFS.advance();
 | 
						|
        // Ignore non-data edges.
 | 
						|
        if (PredDep.getKind() != SDep::Data
 | 
						|
            || PredDep.getSUnit()->isBoundaryNode()) {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // An already visited edge is a cross edge, assuming an acyclic DAG.
 | 
						|
        if (Impl.isVisited(PredDep.getSUnit())) {
 | 
						|
          Impl.visitCrossEdge(PredDep, DFS.getCurr());
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        Impl.visitPreorder(PredDep.getSUnit());
 | 
						|
        DFS.follow(PredDep.getSUnit());
 | 
						|
      }
 | 
						|
      // Visit the top of the stack in postorder and backtrack.
 | 
						|
      const SUnit *Child = DFS.getCurr();
 | 
						|
      const SDep *PredDep = DFS.backtrack();
 | 
						|
      Impl.visitPostorderNode(Child);
 | 
						|
      if (PredDep)
 | 
						|
        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
 | 
						|
      if (DFS.isComplete())
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Impl.finalize();
 | 
						|
}
 | 
						|
 | 
						|
/// The root of the given SubtreeID was just scheduled. For all subtrees
 | 
						|
/// connected to this tree, record the depth of the connection so that the
 | 
						|
/// nearest connected subtrees can be prioritized.
 | 
						|
void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
 | 
						|
  for (SmallVectorImpl<Connection>::const_iterator
 | 
						|
         I = SubtreeConnections[SubtreeID].begin(),
 | 
						|
         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
 | 
						|
    SubtreeConnectLevels[I->TreeID] =
 | 
						|
      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
 | 
						|
    DEBUG(dbgs() << "  Tree: " << I->TreeID
 | 
						|
          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void ILPValue::print(raw_ostream &OS) const {
 | 
						|
  OS << InstrCount << " / " << Length << " = ";
 | 
						|
  if (!Length)
 | 
						|
    OS << "BADILP";
 | 
						|
  else
 | 
						|
    OS << format("%g", ((double)InstrCount / Length));
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void ILPValue::dump() const {
 | 
						|
  dbgs() << *this << '\n';
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
 | 
						|
  Val.print(OS);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace llvm
 |