forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			370 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			370 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ScopHelper.cpp - Some Helper Functions for Scop.  ------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Small functions that help with Scop and LLVM-IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "polly/Support/ScopHelper.h"
 | 
						|
#include "polly/ScopInfo.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/RegionInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace polly;
 | 
						|
 | 
						|
#define DEBUG_TYPE "polly-scop-helper"
 | 
						|
 | 
						|
Value *polly::getPointerOperand(Instruction &Inst) {
 | 
						|
  if (LoadInst *load = dyn_cast<LoadInst>(&Inst))
 | 
						|
    return load->getPointerOperand();
 | 
						|
  else if (StoreInst *store = dyn_cast<StoreInst>(&Inst))
 | 
						|
    return store->getPointerOperand();
 | 
						|
  else if (GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(&Inst))
 | 
						|
    return gep->getPointerOperand();
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool polly::hasInvokeEdge(const PHINode *PN) {
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)))
 | 
						|
      if (II->getParent() == PN->getIncomingBlock(i))
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Ensures that there is just one predecessor to the entry node from outside the
 | 
						|
// region.
 | 
						|
// The identity of the region entry node is preserved.
 | 
						|
static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
 | 
						|
                                RegionInfo *RI) {
 | 
						|
  BasicBlock *EnteringBB = R->getEnteringBlock();
 | 
						|
  BasicBlock *Entry = R->getEntry();
 | 
						|
 | 
						|
  // Before (one of):
 | 
						|
  //
 | 
						|
  //                       \    /            //
 | 
						|
  //                      EnteringBB         //
 | 
						|
  //                        |    \------>    //
 | 
						|
  //   \   /                |                //
 | 
						|
  //   Entry <--\         Entry <--\         //
 | 
						|
  //   /   \    /         /   \    /         //
 | 
						|
  //        ....               ....          //
 | 
						|
 | 
						|
  // Create single entry edge if the region has multiple entry edges.
 | 
						|
  if (!EnteringBB) {
 | 
						|
    SmallVector<BasicBlock *, 4> Preds;
 | 
						|
    for (BasicBlock *P : predecessors(Entry))
 | 
						|
      if (!R->contains(P))
 | 
						|
        Preds.push_back(P);
 | 
						|
 | 
						|
    BasicBlock *NewEntering =
 | 
						|
        SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);
 | 
						|
 | 
						|
    if (RI) {
 | 
						|
      // The exit block of predecessing regions must be changed to NewEntering
 | 
						|
      for (BasicBlock *ExitPred : predecessors(NewEntering)) {
 | 
						|
        Region *RegionOfPred = RI->getRegionFor(ExitPred);
 | 
						|
        if (RegionOfPred->getExit() != Entry)
 | 
						|
          continue;
 | 
						|
 | 
						|
        while (!RegionOfPred->isTopLevelRegion() &&
 | 
						|
               RegionOfPred->getExit() == Entry) {
 | 
						|
          RegionOfPred->replaceExit(NewEntering);
 | 
						|
          RegionOfPred = RegionOfPred->getParent();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Make all ancestors use EnteringBB as entry; there might be edges to it
 | 
						|
      Region *AncestorR = R->getParent();
 | 
						|
      RI->setRegionFor(NewEntering, AncestorR);
 | 
						|
      while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
 | 
						|
        AncestorR->replaceEntry(NewEntering);
 | 
						|
        AncestorR = AncestorR->getParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    EnteringBB = NewEntering;
 | 
						|
  }
 | 
						|
  assert(R->getEnteringBlock() == EnteringBB);
 | 
						|
 | 
						|
  // After:
 | 
						|
  //
 | 
						|
  //    \    /       //
 | 
						|
  //  EnteringBB     //
 | 
						|
  //      |          //
 | 
						|
  //      |          //
 | 
						|
  //    Entry <--\   //
 | 
						|
  //    /   \    /   //
 | 
						|
  //         ....    //
 | 
						|
}
 | 
						|
 | 
						|
// Ensure that the region has a single block that branches to the exit node.
 | 
						|
static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
 | 
						|
                               RegionInfo *RI) {
 | 
						|
  BasicBlock *ExitBB = R->getExit();
 | 
						|
  BasicBlock *ExitingBB = R->getExitingBlock();
 | 
						|
 | 
						|
  // Before:
 | 
						|
  //
 | 
						|
  //   (Region)   ______/  //
 | 
						|
  //      \  |   /         //
 | 
						|
  //       ExitBB          //
 | 
						|
  //       /    \          //
 | 
						|
 | 
						|
  if (!ExitingBB) {
 | 
						|
    SmallVector<BasicBlock *, 4> Preds;
 | 
						|
    for (BasicBlock *P : predecessors(ExitBB))
 | 
						|
      if (R->contains(P))
 | 
						|
        Preds.push_back(P);
 | 
						|
 | 
						|
    //  Preds[0] Preds[1]      otherBB //
 | 
						|
    //         \  |  ________/         //
 | 
						|
    //          \ | /                  //
 | 
						|
    //           BB                    //
 | 
						|
    ExitingBB =
 | 
						|
        SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
 | 
						|
    // Preds[0] Preds[1]      otherBB  //
 | 
						|
    //        \  /           /         //
 | 
						|
    // BB.region_exiting    /          //
 | 
						|
    //                  \  /           //
 | 
						|
    //                   BB            //
 | 
						|
 | 
						|
    if (RI)
 | 
						|
      RI->setRegionFor(ExitingBB, R);
 | 
						|
 | 
						|
    // Change the exit of nested regions, but not the region itself,
 | 
						|
    R->replaceExitRecursive(ExitingBB);
 | 
						|
    R->replaceExit(ExitBB);
 | 
						|
  }
 | 
						|
  assert(ExitingBB == R->getExitingBlock());
 | 
						|
 | 
						|
  // After:
 | 
						|
  //
 | 
						|
  //     \   /                //
 | 
						|
  //    ExitingBB     _____/  //
 | 
						|
  //          \      /        //
 | 
						|
  //           ExitBB         //
 | 
						|
  //           /    \         //
 | 
						|
}
 | 
						|
 | 
						|
void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
 | 
						|
                           RegionInfo *RI) {
 | 
						|
  assert(R && !R->isTopLevelRegion());
 | 
						|
  assert(!RI || RI == R->getRegionInfo());
 | 
						|
  assert((!RI || DT) &&
 | 
						|
         "RegionInfo requires DominatorTree to be updated as well");
 | 
						|
 | 
						|
  simplifyRegionEntry(R, DT, LI, RI);
 | 
						|
  simplifyRegionExit(R, DT, LI, RI);
 | 
						|
  assert(R->isSimple());
 | 
						|
}
 | 
						|
 | 
						|
// Split the block into two successive blocks.
 | 
						|
//
 | 
						|
// Like llvm::SplitBlock, but also preserves RegionInfo
 | 
						|
static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
 | 
						|
                              DominatorTree *DT, llvm::LoopInfo *LI,
 | 
						|
                              RegionInfo *RI) {
 | 
						|
  assert(Old && SplitPt);
 | 
						|
 | 
						|
  // Before:
 | 
						|
  //
 | 
						|
  //  \   /  //
 | 
						|
  //   Old   //
 | 
						|
  //  /   \  //
 | 
						|
 | 
						|
  BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);
 | 
						|
 | 
						|
  if (RI) {
 | 
						|
    Region *R = RI->getRegionFor(Old);
 | 
						|
    RI->setRegionFor(NewBlock, R);
 | 
						|
  }
 | 
						|
 | 
						|
  // After:
 | 
						|
  //
 | 
						|
  //   \   /    //
 | 
						|
  //    Old     //
 | 
						|
  //     |      //
 | 
						|
  //  NewBlock  //
 | 
						|
  //   /   \    //
 | 
						|
 | 
						|
  return NewBlock;
 | 
						|
}
 | 
						|
 | 
						|
void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
 | 
						|
  // Find first non-alloca instruction. Every basic block has a non-alloc
 | 
						|
  // instruction, as every well formed basic block has a terminator.
 | 
						|
  BasicBlock::iterator I = EntryBlock->begin();
 | 
						|
  while (isa<AllocaInst>(I))
 | 
						|
    ++I;
 | 
						|
 | 
						|
  auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
  auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
  auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | 
						|
  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
 | 
						|
  RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
 | 
						|
  RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;
 | 
						|
 | 
						|
  // splitBlock updates DT, LI and RI.
 | 
						|
  splitBlock(EntryBlock, I, DT, LI, RI);
 | 
						|
}
 | 
						|
 | 
						|
/// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
 | 
						|
/// instruction but just use it, if it is referenced as a SCEVUnknown. We want
 | 
						|
/// however to generate new code if the instruction is in the analyzed region
 | 
						|
/// and we generate code outside/in front of that region. Hence, we generate the
 | 
						|
/// code for the SDiv/SRem operands in front of the analyzed region and then
 | 
						|
/// create a new SDiv/SRem operation there too.
 | 
						|
struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> {
 | 
						|
  friend struct SCEVVisitor<ScopExpander, const SCEV *>;
 | 
						|
 | 
						|
  explicit ScopExpander(const Region &R, ScalarEvolution &SE,
 | 
						|
                        const DataLayout &DL, const char *Name, ValueMapT *VMap)
 | 
						|
      : Expander(SCEVExpander(SE, DL, Name)), SE(SE), Name(Name), R(R),
 | 
						|
        VMap(VMap) {}
 | 
						|
 | 
						|
  Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) {
 | 
						|
    // If we generate code in the region we will immediately fall back to the
 | 
						|
    // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if
 | 
						|
    // needed replace them by copies computed in the entering block.
 | 
						|
    if (!R.contains(I))
 | 
						|
      E = visit(E);
 | 
						|
    return Expander.expandCodeFor(E, Ty, I);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  SCEVExpander Expander;
 | 
						|
  ScalarEvolution &SE;
 | 
						|
  const char *Name;
 | 
						|
  const Region &R;
 | 
						|
  ValueMapT *VMap;
 | 
						|
 | 
						|
  const SCEV *visitUnknown(const SCEVUnknown *E) {
 | 
						|
 | 
						|
    // If a value mapping was given try if the underlying value is remapped.
 | 
						|
    if (VMap)
 | 
						|
      if (Value *NewVal = VMap->lookup(E->getValue()))
 | 
						|
        return visit(SE.getSCEV(NewVal));
 | 
						|
 | 
						|
    Instruction *Inst = dyn_cast<Instruction>(E->getValue());
 | 
						|
    if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
 | 
						|
                  Inst->getOpcode() != Instruction::SDiv))
 | 
						|
      return E;
 | 
						|
 | 
						|
    if (!R.contains(Inst))
 | 
						|
      return E;
 | 
						|
 | 
						|
    Instruction *StartIP = R.getEnteringBlock()->getTerminator();
 | 
						|
 | 
						|
    const SCEV *LHSScev = visit(SE.getSCEV(Inst->getOperand(0)));
 | 
						|
    const SCEV *RHSScev = visit(SE.getSCEV(Inst->getOperand(1)));
 | 
						|
 | 
						|
    Value *LHS = Expander.expandCodeFor(LHSScev, E->getType(), StartIP);
 | 
						|
    Value *RHS = Expander.expandCodeFor(RHSScev, E->getType(), StartIP);
 | 
						|
 | 
						|
    Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(),
 | 
						|
                                  LHS, RHS, Inst->getName() + Name, StartIP);
 | 
						|
    return SE.getSCEV(Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  /// The following functions will just traverse the SCEV and rebuild it with
 | 
						|
  /// the new operands returned by the traversal.
 | 
						|
  ///
 | 
						|
  ///{
 | 
						|
  const SCEV *visitConstant(const SCEVConstant *E) { return E; }
 | 
						|
  const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
 | 
						|
    return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
 | 
						|
  }
 | 
						|
  const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
 | 
						|
    return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
 | 
						|
  }
 | 
						|
  const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
 | 
						|
    return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
 | 
						|
  }
 | 
						|
  const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
 | 
						|
    return SE.getUDivExpr(visit(E->getLHS()), visit(E->getRHS()));
 | 
						|
  }
 | 
						|
  const SCEV *visitAddExpr(const SCEVAddExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getAddExpr(NewOps);
 | 
						|
  }
 | 
						|
  const SCEV *visitMulExpr(const SCEVMulExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getMulExpr(NewOps);
 | 
						|
  }
 | 
						|
  const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getUMaxExpr(NewOps);
 | 
						|
  }
 | 
						|
  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getSMaxExpr(NewOps);
 | 
						|
  }
 | 
						|
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags());
 | 
						|
  }
 | 
						|
  ///}
 | 
						|
};
 | 
						|
 | 
						|
Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL,
 | 
						|
                            const char *Name, const SCEV *E, Type *Ty,
 | 
						|
                            Instruction *IP, ValueMapT *VMap) {
 | 
						|
  ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap);
 | 
						|
  return Expander.expandCodeFor(E, Ty, IP);
 | 
						|
}
 | 
						|
 | 
						|
bool polly::isErrorBlock(BasicBlock &BB) {
 | 
						|
 | 
						|
  for (Instruction &Inst : BB)
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(&Inst))
 | 
						|
      if (Function *F = CI->getCalledFunction())
 | 
						|
        if (F->getName().equals("__ubsan_handle_out_of_bounds"))
 | 
						|
          return true;
 | 
						|
 | 
						|
  if (isa<UnreachableInst>(BB.getTerminator()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value *polly::getConditionFromTerminator(TerminatorInst *TI) {
 | 
						|
  if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
 | 
						|
    if (BR->isUnconditional())
 | 
						|
      return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));
 | 
						|
 | 
						|
    return BR->getCondition();
 | 
						|
  }
 | 
						|
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
 | 
						|
    return SI->getCondition();
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 |