forked from OSchip/llvm-project
486 lines
18 KiB
C++
486 lines
18 KiB
C++
//=== lib/CodeGen/GlobalISel/AArch64PostLegalizerCombiner.cpp -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This performs post-legalization combines on generic MachineInstrs.
|
|
//
|
|
// Any combine that this pass performs must preserve instruction legality.
|
|
// Combines unconcerned with legality should be handled by the
|
|
// PreLegalizerCombiner instead.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64TargetMachine.h"
|
|
#include "llvm/CodeGen/GlobalISel/Combiner.h"
|
|
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
|
|
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
|
|
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "aarch64-postlegalizer-combiner"
|
|
|
|
using namespace llvm;
|
|
using namespace MIPatternMatch;
|
|
|
|
/// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
|
|
///
|
|
/// Used for matching target-supported shuffles before codegen.
|
|
struct ShuffleVectorPseudo {
|
|
unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1)
|
|
Register Dst; ///< Destination register.
|
|
SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
|
|
ShuffleVectorPseudo(unsigned Opc, Register Dst,
|
|
std::initializer_list<SrcOp> SrcOps)
|
|
: Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
|
|
ShuffleVectorPseudo() {}
|
|
};
|
|
|
|
/// Check if a vector shuffle corresponds to a REV instruction with the
|
|
/// specified blocksize.
|
|
static bool isREVMask(ArrayRef<int> M, unsigned EltSize, unsigned NumElts,
|
|
unsigned BlockSize) {
|
|
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
|
|
"Only possible block sizes for REV are: 16, 32, 64");
|
|
assert(EltSize != 64 && "EltSize cannot be 64 for REV mask.");
|
|
|
|
unsigned BlockElts = M[0] + 1;
|
|
|
|
// If the first shuffle index is UNDEF, be optimistic.
|
|
if (M[0] < 0)
|
|
BlockElts = BlockSize / EltSize;
|
|
|
|
if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
// Ignore undef indices.
|
|
if (M[i] < 0)
|
|
continue;
|
|
if (static_cast<unsigned>(M[i]) !=
|
|
(i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts.
|
|
/// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult.
|
|
static bool isTRNMask(ArrayRef<int> M, unsigned NumElts,
|
|
unsigned &WhichResult) {
|
|
if (NumElts % 2 != 0)
|
|
return false;
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != i + WhichResult) ||
|
|
(M[i + 1] >= 0 &&
|
|
static_cast<unsigned>(M[i + 1]) != i + NumElts + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
|
|
/// sources of the shuffle are different.
|
|
static Optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
|
|
unsigned NumElts) {
|
|
// Look for the first non-undef element.
|
|
auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
|
|
if (FirstRealElt == M.end())
|
|
return None;
|
|
|
|
// Use APInt to handle overflow when calculating expected element.
|
|
unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
|
|
APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
|
|
|
|
// The following shuffle indices must be the successive elements after the
|
|
// first real element.
|
|
if (any_of(
|
|
make_range(std::next(FirstRealElt), M.end()),
|
|
[&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
|
|
return None;
|
|
|
|
// The index of an EXT is the first element if it is not UNDEF.
|
|
// Watch out for the beginning UNDEFs. The EXT index should be the expected
|
|
// value of the first element. E.g.
|
|
// <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
|
|
// <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
|
|
// ExpectedElt is the last mask index plus 1.
|
|
uint64_t Imm = ExpectedElt.getZExtValue();
|
|
bool ReverseExt = false;
|
|
|
|
// There are two difference cases requiring to reverse input vectors.
|
|
// For example, for vector <4 x i32> we have the following cases,
|
|
// Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
|
|
// Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
|
|
// For both cases, we finally use mask <5, 6, 7, 0>, which requires
|
|
// to reverse two input vectors.
|
|
if (Imm < NumElts)
|
|
ReverseExt = true;
|
|
else
|
|
Imm -= NumElts;
|
|
return std::make_pair(ReverseExt, Imm);
|
|
}
|
|
|
|
/// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts.
|
|
/// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult.
|
|
static bool isUZPMask(ArrayRef<int> M, unsigned NumElts,
|
|
unsigned &WhichResult) {
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
// Skip undef indices.
|
|
if (M[i] < 0)
|
|
continue;
|
|
if (static_cast<unsigned>(M[i]) != 2 * i + WhichResult)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \return true if \p M is a zip mask for a shuffle vector of \p NumElts.
|
|
/// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult.
|
|
static bool isZipMask(ArrayRef<int> M, unsigned NumElts,
|
|
unsigned &WhichResult) {
|
|
if (NumElts % 2 != 0)
|
|
return false;
|
|
|
|
// 0 means use ZIP1, 1 means use ZIP2.
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != Idx) ||
|
|
(M[i + 1] >= 0 && static_cast<unsigned>(M[i + 1]) != Idx + NumElts))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
|
|
/// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
|
|
static bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register Src = MI.getOperand(1).getReg();
|
|
LLT Ty = MRI.getType(Dst);
|
|
unsigned EltSize = Ty.getScalarSizeInBits();
|
|
|
|
// Element size for a rev cannot be 64.
|
|
if (EltSize == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = Ty.getNumElements();
|
|
|
|
// Try to produce G_REV64
|
|
if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) {
|
|
MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src});
|
|
return true;
|
|
}
|
|
|
|
// TODO: Produce G_REV32 and G_REV16 once we have proper legalization support.
|
|
// This should be identical to above, but with a constant 32 and constant
|
|
// 16.
|
|
return false;
|
|
}
|
|
|
|
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
|
|
/// a G_TRN1 or G_TRN2 instruction.
|
|
static bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
unsigned WhichResult;
|
|
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
unsigned NumElts = MRI.getType(Dst).getNumElements();
|
|
if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
|
|
return false;
|
|
unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
|
|
Register V1 = MI.getOperand(1).getReg();
|
|
Register V2 = MI.getOperand(2).getReg();
|
|
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
|
|
return true;
|
|
}
|
|
|
|
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
|
|
/// a G_UZP1 or G_UZP2 instruction.
|
|
///
|
|
/// \param [in] MI - The shuffle vector instruction.
|
|
/// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
|
|
static bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
unsigned WhichResult;
|
|
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
unsigned NumElts = MRI.getType(Dst).getNumElements();
|
|
if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
|
|
return false;
|
|
unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
|
|
Register V1 = MI.getOperand(1).getReg();
|
|
Register V2 = MI.getOperand(2).getReg();
|
|
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
|
|
return true;
|
|
}
|
|
|
|
static bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
unsigned WhichResult;
|
|
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
unsigned NumElts = MRI.getType(Dst).getNumElements();
|
|
if (!isZipMask(ShuffleMask, NumElts, WhichResult))
|
|
return false;
|
|
unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
|
|
Register V1 = MI.getOperand(1).getReg();
|
|
Register V2 = MI.getOperand(2).getReg();
|
|
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
|
|
return true;
|
|
}
|
|
|
|
/// Helper function for matchDup.
|
|
static bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
if (Lane != 0)
|
|
return false;
|
|
|
|
// Try to match a vector splat operation into a dup instruction.
|
|
// We're looking for this pattern:
|
|
//
|
|
// %scalar:gpr(s64) = COPY $x0
|
|
// %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
|
|
// %cst0:gpr(s32) = G_CONSTANT i32 0
|
|
// %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
|
|
// %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
|
|
// %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, %zerovec(<2 x s32>)
|
|
//
|
|
// ...into:
|
|
// %splat = G_DUP %scalar
|
|
|
|
// Begin matching the insert.
|
|
auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
|
|
MI.getOperand(1).getReg(), MRI);
|
|
if (!InsMI)
|
|
return false;
|
|
// Match the undef vector operand.
|
|
if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
|
|
MRI))
|
|
return false;
|
|
|
|
// Match the index constant 0.
|
|
int64_t Index = 0;
|
|
if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ICst(Index)) || Index)
|
|
return false;
|
|
|
|
MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
|
|
{InsMI->getOperand(2).getReg()});
|
|
return true;
|
|
}
|
|
|
|
/// Helper function for matchDup.
|
|
static bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(Lane >= 0 && "Expected positive lane?");
|
|
// Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
|
|
// lane's definition directly.
|
|
auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
|
|
MI.getOperand(1).getReg(), MRI);
|
|
if (!BuildVecMI)
|
|
return false;
|
|
Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
|
|
MatchInfo =
|
|
ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
|
|
return true;
|
|
}
|
|
|
|
static bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
auto MaybeLane = getSplatIndex(MI);
|
|
if (!MaybeLane)
|
|
return false;
|
|
int Lane = *MaybeLane;
|
|
// If this is undef splat, generate it via "just" vdup, if possible.
|
|
if (Lane < 0)
|
|
Lane = 0;
|
|
if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
|
|
return true;
|
|
if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
auto ExtInfo = getExtMask(MI.getOperand(3).getShuffleMask(),
|
|
MRI.getType(Dst).getNumElements());
|
|
if (!ExtInfo)
|
|
return false;
|
|
bool ReverseExt;
|
|
uint64_t Imm;
|
|
std::tie(ReverseExt, Imm) = *ExtInfo;
|
|
Register V1 = MI.getOperand(1).getReg();
|
|
Register V2 = MI.getOperand(2).getReg();
|
|
if (ReverseExt)
|
|
std::swap(V1, V2);
|
|
uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
|
|
Imm *= ExtFactor;
|
|
MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
|
|
return true;
|
|
}
|
|
|
|
/// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
|
|
/// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
|
|
static bool applyShuffleVectorPseudo(MachineInstr &MI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
MachineIRBuilder MIRBuilder(MI);
|
|
MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
|
|
/// Special-cased because the constant operand must be emitted as a G_CONSTANT
|
|
/// for the imported tablegen patterns to work.
|
|
static bool applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
|
|
MachineIRBuilder MIRBuilder(MI);
|
|
// Tablegen patterns expect an i32 G_CONSTANT as the final op.
|
|
auto Cst =
|
|
MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
|
|
MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
|
|
{MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
|
|
#include "AArch64GenPostLegalizeGICombiner.inc"
|
|
#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
|
|
|
|
namespace {
|
|
#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
|
|
#include "AArch64GenPostLegalizeGICombiner.inc"
|
|
#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
|
|
|
|
class AArch64PostLegalizerCombinerInfo : public CombinerInfo {
|
|
GISelKnownBits *KB;
|
|
MachineDominatorTree *MDT;
|
|
|
|
public:
|
|
AArch64GenPostLegalizerCombinerHelperRuleConfig GeneratedRuleCfg;
|
|
|
|
AArch64PostLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
|
|
GISelKnownBits *KB,
|
|
MachineDominatorTree *MDT)
|
|
: CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
|
|
/*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize),
|
|
KB(KB), MDT(MDT) {
|
|
if (!GeneratedRuleCfg.parseCommandLineOption())
|
|
report_fatal_error("Invalid rule identifier");
|
|
}
|
|
|
|
virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
|
|
MachineIRBuilder &B) const override;
|
|
};
|
|
|
|
bool AArch64PostLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
|
|
MachineInstr &MI,
|
|
MachineIRBuilder &B) const {
|
|
const auto *LI =
|
|
MI.getParent()->getParent()->getSubtarget().getLegalizerInfo();
|
|
CombinerHelper Helper(Observer, B, KB, MDT, LI);
|
|
AArch64GenPostLegalizerCombinerHelper Generated(GeneratedRuleCfg);
|
|
return Generated.tryCombineAll(Observer, MI, B, Helper);
|
|
}
|
|
|
|
#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
|
|
#include "AArch64GenPostLegalizeGICombiner.inc"
|
|
#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
|
|
|
|
class AArch64PostLegalizerCombiner : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
AArch64PostLegalizerCombiner(bool IsOptNone = false);
|
|
|
|
StringRef getPassName() const override {
|
|
return "AArch64PostLegalizerCombiner";
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
private:
|
|
bool IsOptNone;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void AArch64PostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.setPreservesCFG();
|
|
getSelectionDAGFallbackAnalysisUsage(AU);
|
|
AU.addRequired<GISelKnownBitsAnalysis>();
|
|
AU.addPreserved<GISelKnownBitsAnalysis>();
|
|
if (!IsOptNone) {
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
}
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
AArch64PostLegalizerCombiner::AArch64PostLegalizerCombiner(bool IsOptNone)
|
|
: MachineFunctionPass(ID), IsOptNone(IsOptNone) {
|
|
initializeAArch64PostLegalizerCombinerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool AArch64PostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
|
|
if (MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::FailedISel))
|
|
return false;
|
|
assert(MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::Legalized) &&
|
|
"Expected a legalized function?");
|
|
auto *TPC = &getAnalysis<TargetPassConfig>();
|
|
const Function &F = MF.getFunction();
|
|
bool EnableOpt =
|
|
MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
|
|
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
|
|
MachineDominatorTree *MDT =
|
|
IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>();
|
|
AArch64PostLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
|
|
F.hasMinSize(), KB, MDT);
|
|
Combiner C(PCInfo, TPC);
|
|
return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
|
|
}
|
|
|
|
char AArch64PostLegalizerCombiner::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(AArch64PostLegalizerCombiner, DEBUG_TYPE,
|
|
"Combine AArch64 MachineInstrs after legalization", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
|
|
INITIALIZE_PASS_END(AArch64PostLegalizerCombiner, DEBUG_TYPE,
|
|
"Combine AArch64 MachineInstrs after legalization", false,
|
|
false)
|
|
|
|
namespace llvm {
|
|
FunctionPass *createAArch64PostLegalizeCombiner(bool IsOptNone) {
|
|
return new AArch64PostLegalizerCombiner(IsOptNone);
|
|
}
|
|
} // end namespace llvm
|