forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			235 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			LLVM
		
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			LLVM
		
	
	
	
| ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
 | |
| ; RUN: opt -S -instcombine < %s | FileCheck %s
 | |
| 
 | |
| ; If we have a umin feeding an unsigned or equality icmp that shares an
 | |
| ; operand with the umin, the compare should always be folded.
 | |
| ; Test all 4 foldable predicates (eq,ne,uge,ult) * 4 commutation
 | |
| ; possibilities for each predicate. Note that folds to true/false
 | |
| ; (predicate is ule/ugt) or folds to an existing instruction should be
 | |
| ; handled by InstSimplify.
 | |
| 
 | |
| ; umin(X, Y) == X --> X <= Y
 | |
| 
 | |
| define i1 @eq_umin1(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @eq_umin1(
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 %x, %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %cmp1 = icmp ult i32 %x, %y
 | |
|   %sel = select i1 %cmp1, i32 %x, i32 %y
 | |
|   %cmp2 = icmp eq i32 %sel, %x
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Commute min operands.
 | |
| 
 | |
| define i1 @eq_umin2(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @eq_umin2(
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 %x, %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %cmp1 = icmp ult i32 %y, %x
 | |
|   %sel = select i1 %cmp1, i32 %y, i32 %x
 | |
|   %cmp2 = icmp eq i32 %sel, %x
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Disguise the icmp predicate by commuting the min op to the RHS.
 | |
| 
 | |
| define i1 @eq_umin3(i32 %a, i32 %y) {
 | |
| ; CHECK-LABEL: @eq_umin3(
 | |
| ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 [[X]], %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %x = add i32 %a, 3 ; thwart complexity-based canonicalization
 | |
|   %cmp1 = icmp ult i32 %x, %y
 | |
|   %sel = select i1 %cmp1, i32 %x, i32 %y
 | |
|   %cmp2 = icmp eq i32 %x, %sel
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Commute min operands.
 | |
| 
 | |
| define i1 @eq_umin4(i32 %a, i32 %y) {
 | |
| ; CHECK-LABEL: @eq_umin4(
 | |
| ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 [[X]], %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %x = add i32 %a, 3 ; thwart complexity-based canonicalization
 | |
|   %cmp1 = icmp ult i32 %y, %x
 | |
|   %sel = select i1 %cmp1, i32 %y, i32 %x
 | |
|   %cmp2 = icmp eq i32 %x, %sel
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; umin(X, Y) >= X --> X <= Y
 | |
| 
 | |
| define i1 @uge_umin1(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @uge_umin1(
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 %x, %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %cmp1 = icmp ult i32 %x, %y
 | |
|   %sel = select i1 %cmp1, i32 %x, i32 %y
 | |
|   %cmp2 = icmp uge i32 %sel, %x
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Commute min operands.
 | |
| 
 | |
| define i1 @uge_umin2(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @uge_umin2(
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 %x, %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %cmp1 = icmp ult i32 %y, %x
 | |
|   %sel = select i1 %cmp1, i32 %y, i32 %x
 | |
|   %cmp2 = icmp uge i32 %sel, %x
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Disguise the icmp predicate by commuting the min op to the RHS.
 | |
| 
 | |
| define i1 @uge_umin3(i32 %a, i32 %y) {
 | |
| ; CHECK-LABEL: @uge_umin3(
 | |
| ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 [[X]], %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %x = add i32 %a, 3 ; thwart complexity-based canonicalization
 | |
|   %cmp1 = icmp ult i32 %x, %y
 | |
|   %sel = select i1 %cmp1, i32 %x, i32 %y
 | |
|   %cmp2 = icmp ule i32 %x, %sel
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Commute min operands.
 | |
| 
 | |
| define i1 @uge_umin4(i32 %a, i32 %y) {
 | |
| ; CHECK-LABEL: @uge_umin4(
 | |
| ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 [[X]], %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %x = add i32 %a, 3 ; thwart complexity-based canonicalization
 | |
|   %cmp1 = icmp ult i32 %y, %x
 | |
|   %sel = select i1 %cmp1, i32 %y, i32 %x
 | |
|   %cmp2 = icmp ule i32 %x, %sel
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; umin(X, Y) != X --> X > Y
 | |
| 
 | |
| define i1 @ne_umin1(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @ne_umin1(
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ugt i32 %x, %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %cmp1 = icmp ult i32 %x, %y
 | |
|   %sel = select i1 %cmp1, i32 %x, i32 %y
 | |
|   %cmp2 = icmp ne i32 %sel, %x
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Commute min operands.
 | |
| 
 | |
| define i1 @ne_umin2(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @ne_umin2(
 | |
| ; CHECK-NEXT:    [[CMP1:%.*]] = icmp ult i32 %y, %x
 | |
| ; CHECK-NEXT:    ret i1 [[CMP1]]
 | |
| ;
 | |
|   %cmp1 = icmp ult i32 %y, %x
 | |
|   %sel = select i1 %cmp1, i32 %y, i32 %x
 | |
|   %cmp2 = icmp ne i32 %sel, %x
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Disguise the icmp predicate by commuting the min op to the RHS.
 | |
| 
 | |
| define i1 @ne_umin3(i32 %a, i32 %y) {
 | |
| ; CHECK-LABEL: @ne_umin3(
 | |
| ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ugt i32 [[X]], %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %x = add i32 %a, 3 ; thwart complexity-based canonicalization
 | |
|   %cmp1 = icmp ult i32 %x, %y
 | |
|   %sel = select i1 %cmp1, i32 %x, i32 %y
 | |
|   %cmp2 = icmp ne i32 %x, %sel
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Commute min operands.
 | |
| 
 | |
| define i1 @ne_umin4(i32 %a, i32 %y) {
 | |
| ; CHECK-LABEL: @ne_umin4(
 | |
| ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3
 | |
| ; CHECK-NEXT:    [[CMP1:%.*]] = icmp ugt i32 [[X]], %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP1]]
 | |
| ;
 | |
|   %x = add i32 %a, 3 ; thwart complexity-based canonicalization
 | |
|   %cmp1 = icmp ult i32 %y, %x
 | |
|   %sel = select i1 %cmp1, i32 %y, i32 %x
 | |
|   %cmp2 = icmp ne i32 %x, %sel
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; umin(X, Y) < X --> X > Y
 | |
| 
 | |
| define i1 @ult_umin1(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @ult_umin1(
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ugt i32 %x, %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %cmp1 = icmp ult i32 %x, %y
 | |
|   %sel = select i1 %cmp1, i32 %x, i32 %y
 | |
|   %cmp2 = icmp ult i32 %sel, %x
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Commute min operands.
 | |
| 
 | |
| define i1 @ult_umin2(i32 %x, i32 %y) {
 | |
| ; CHECK-LABEL: @ult_umin2(
 | |
| ; CHECK-NEXT:    [[CMP1:%.*]] = icmp ult i32 %y, %x
 | |
| ; CHECK-NEXT:    ret i1 [[CMP1]]
 | |
| ;
 | |
|   %cmp1 = icmp ult i32 %y, %x
 | |
|   %sel = select i1 %cmp1, i32 %y, i32 %x
 | |
|   %cmp2 = icmp ult i32 %sel, %x
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Disguise the icmp predicate by commuting the min op to the RHS.
 | |
| 
 | |
| define i1 @ult_umin3(i32 %a, i32 %y) {
 | |
| ; CHECK-LABEL: @ult_umin3(
 | |
| ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3
 | |
| ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ugt i32 [[X]], %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP2]]
 | |
| ;
 | |
|   %x = add i32 %a, 3 ; thwart complexity-based canonicalization
 | |
|   %cmp1 = icmp ult i32 %x, %y
 | |
|   %sel = select i1 %cmp1, i32 %x, i32 %y
 | |
|   %cmp2 = icmp ugt i32 %x, %sel
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 | |
| ; Commute min operands.
 | |
| 
 | |
| define i1 @ult_umin4(i32 %a, i32 %y) {
 | |
| ; CHECK-LABEL: @ult_umin4(
 | |
| ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3
 | |
| ; CHECK-NEXT:    [[CMP1:%.*]] = icmp ugt i32 [[X]], %y
 | |
| ; CHECK-NEXT:    ret i1 [[CMP1]]
 | |
| ;
 | |
|   %x = add i32 %a, 3 ; thwart complexity-based canonicalization
 | |
|   %cmp1 = icmp ult i32 %y, %x
 | |
|   %sel = select i1 %cmp1, i32 %y, i32 %x
 | |
|   %cmp2 = icmp ugt i32 %x, %sel
 | |
|   ret i1 %cmp2
 | |
| }
 | |
| 
 |