forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1145 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1145 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines an instruction selector for the SystemZ target.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SystemZTargetMachine.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "systemz-isel"
 | |
| 
 | |
| namespace {
 | |
| // Used to build addressing modes.
 | |
| struct SystemZAddressingMode {
 | |
|   // The shape of the address.
 | |
|   enum AddrForm {
 | |
|     // base+displacement
 | |
|     FormBD,
 | |
| 
 | |
|     // base+displacement+index for load and store operands
 | |
|     FormBDXNormal,
 | |
| 
 | |
|     // base+displacement+index for load address operands
 | |
|     FormBDXLA,
 | |
| 
 | |
|     // base+displacement+index+ADJDYNALLOC
 | |
|     FormBDXDynAlloc
 | |
|   };
 | |
|   AddrForm Form;
 | |
| 
 | |
|   // The type of displacement.  The enum names here correspond directly
 | |
|   // to the definitions in SystemZOperand.td.  We could split them into
 | |
|   // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
 | |
|   enum DispRange {
 | |
|     Disp12Only,
 | |
|     Disp12Pair,
 | |
|     Disp20Only,
 | |
|     Disp20Only128,
 | |
|     Disp20Pair
 | |
|   };
 | |
|   DispRange DR;
 | |
| 
 | |
|   // The parts of the address.  The address is equivalent to:
 | |
|   //
 | |
|   //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
 | |
|   SDValue Base;
 | |
|   int64_t Disp;
 | |
|   SDValue Index;
 | |
|   bool IncludesDynAlloc;
 | |
| 
 | |
|   SystemZAddressingMode(AddrForm form, DispRange dr)
 | |
|     : Form(form), DR(dr), Base(), Disp(0), Index(),
 | |
|       IncludesDynAlloc(false) {}
 | |
| 
 | |
|   // True if the address can have an index register.
 | |
|   bool hasIndexField() { return Form != FormBD; }
 | |
| 
 | |
|   // True if the address can (and must) include ADJDYNALLOC.
 | |
|   bool isDynAlloc() { return Form == FormBDXDynAlloc; }
 | |
| 
 | |
|   void dump() {
 | |
|     errs() << "SystemZAddressingMode " << this << '\n';
 | |
| 
 | |
|     errs() << " Base ";
 | |
|     if (Base.getNode())
 | |
|       Base.getNode()->dump();
 | |
|     else
 | |
|       errs() << "null\n";
 | |
| 
 | |
|     if (hasIndexField()) {
 | |
|       errs() << " Index ";
 | |
|       if (Index.getNode())
 | |
|         Index.getNode()->dump();
 | |
|       else
 | |
|         errs() << "null\n";
 | |
|     }
 | |
| 
 | |
|     errs() << " Disp " << Disp;
 | |
|     if (IncludesDynAlloc)
 | |
|       errs() << " + ADJDYNALLOC";
 | |
|     errs() << '\n';
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Return a mask with Count low bits set.
 | |
| static uint64_t allOnes(unsigned int Count) {
 | |
|   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
 | |
| }
 | |
| 
 | |
| // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
 | |
| // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
 | |
| // Rotate (I5).  The combined operand value is effectively:
 | |
| //
 | |
| //   (or (rotl Input, Rotate), ~Mask)
 | |
| //
 | |
| // for RNSBG and:
 | |
| //
 | |
| //   (and (rotl Input, Rotate), Mask)
 | |
| //
 | |
| // otherwise.  The output value has BitSize bits, although Input may be
 | |
| // narrower (in which case the upper bits are don't care).
 | |
| struct RxSBGOperands {
 | |
|   RxSBGOperands(unsigned Op, SDValue N)
 | |
|     : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
 | |
|       Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
 | |
|       Rotate(0) {}
 | |
| 
 | |
|   unsigned Opcode;
 | |
|   unsigned BitSize;
 | |
|   uint64_t Mask;
 | |
|   SDValue Input;
 | |
|   unsigned Start;
 | |
|   unsigned End;
 | |
|   unsigned Rotate;
 | |
| };
 | |
| 
 | |
| class SystemZDAGToDAGISel : public SelectionDAGISel {
 | |
|   const SystemZTargetLowering &Lowering;
 | |
|   const SystemZSubtarget &Subtarget;
 | |
| 
 | |
|   // Used by SystemZOperands.td to create integer constants.
 | |
|   inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
 | |
|     return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
 | |
|   }
 | |
| 
 | |
|   const SystemZTargetMachine &getTargetMachine() const {
 | |
|     return static_cast<const SystemZTargetMachine &>(TM);
 | |
|   }
 | |
| 
 | |
|   const SystemZInstrInfo *getInstrInfo() const {
 | |
|     return getTargetMachine().getSubtargetImpl()->getInstrInfo();
 | |
|   }
 | |
| 
 | |
|   // Try to fold more of the base or index of AM into AM, where IsBase
 | |
|   // selects between the base and index.
 | |
|   bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
 | |
| 
 | |
|   // Try to describe N in AM, returning true on success.
 | |
|   bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
 | |
| 
 | |
|   // Extract individual target operands from matched address AM.
 | |
|   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
 | |
|                           SDValue &Base, SDValue &Disp) const;
 | |
|   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
 | |
|                           SDValue &Base, SDValue &Disp, SDValue &Index) const;
 | |
| 
 | |
|   // Try to match Addr as a FormBD address with displacement type DR.
 | |
|   // Return true on success, storing the base and displacement in
 | |
|   // Base and Disp respectively.
 | |
|   bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
 | |
|                     SDValue &Base, SDValue &Disp) const;
 | |
| 
 | |
|   // Try to match Addr as a FormBDX address with displacement type DR.
 | |
|   // Return true on success and if the result had no index.  Store the
 | |
|   // base and displacement in Base and Disp respectively.
 | |
|   bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
 | |
|                      SDValue &Base, SDValue &Disp) const;
 | |
| 
 | |
|   // Try to match Addr as a FormBDX* address of form Form with
 | |
|   // displacement type DR.  Return true on success, storing the base,
 | |
|   // displacement and index in Base, Disp and Index respectively.
 | |
|   bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
 | |
|                      SystemZAddressingMode::DispRange DR, SDValue Addr,
 | |
|                      SDValue &Base, SDValue &Disp, SDValue &Index) const;
 | |
| 
 | |
|   // PC-relative address matching routines used by SystemZOperands.td.
 | |
|   bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
 | |
|     if (SystemZISD::isPCREL(Addr.getOpcode())) {
 | |
|       Target = Addr.getOperand(0);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // BD matching routines used by SystemZOperands.td.
 | |
|   bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
 | |
|     return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
 | |
|   }
 | |
|   bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
 | |
|     return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
 | |
|   }
 | |
|   bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
 | |
|     return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
 | |
|   }
 | |
|   bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
 | |
|     return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
 | |
|   }
 | |
| 
 | |
|   // MVI matching routines used by SystemZOperands.td.
 | |
|   bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
 | |
|     return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
 | |
|   }
 | |
|   bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
 | |
|     return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
 | |
|   }
 | |
| 
 | |
|   // BDX matching routines used by SystemZOperands.td.
 | |
|   bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
 | |
|                            SDValue &Index) const {
 | |
|     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
 | |
|                          SystemZAddressingMode::Disp12Only,
 | |
|                          Addr, Base, Disp, Index);
 | |
|   }
 | |
|   bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
 | |
|                            SDValue &Index) const {
 | |
|     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
 | |
|                          SystemZAddressingMode::Disp12Pair,
 | |
|                          Addr, Base, Disp, Index);
 | |
|   }
 | |
|   bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
 | |
|                             SDValue &Index) const {
 | |
|     return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
 | |
|                          SystemZAddressingMode::Disp12Only,
 | |
|                          Addr, Base, Disp, Index);
 | |
|   }
 | |
|   bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
 | |
|                            SDValue &Index) const {
 | |
|     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
 | |
|                          SystemZAddressingMode::Disp20Only,
 | |
|                          Addr, Base, Disp, Index);
 | |
|   }
 | |
|   bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
 | |
|                               SDValue &Index) const {
 | |
|     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
 | |
|                          SystemZAddressingMode::Disp20Only128,
 | |
|                          Addr, Base, Disp, Index);
 | |
|   }
 | |
|   bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
 | |
|                            SDValue &Index) const {
 | |
|     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
 | |
|                          SystemZAddressingMode::Disp20Pair,
 | |
|                          Addr, Base, Disp, Index);
 | |
|   }
 | |
|   bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
 | |
|                           SDValue &Index) const {
 | |
|     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
 | |
|                          SystemZAddressingMode::Disp12Pair,
 | |
|                          Addr, Base, Disp, Index);
 | |
|   }
 | |
|   bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
 | |
|                           SDValue &Index) const {
 | |
|     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
 | |
|                          SystemZAddressingMode::Disp20Pair,
 | |
|                          Addr, Base, Disp, Index);
 | |
|   }
 | |
| 
 | |
|   // Check whether (or Op (and X InsertMask)) is effectively an insertion
 | |
|   // of X into bits InsertMask of some Y != Op.  Return true if so and
 | |
|   // set Op to that Y.
 | |
|   bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
 | |
| 
 | |
|   // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
 | |
|   // Return true on success.
 | |
|   bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
 | |
| 
 | |
|   // Try to fold some of RxSBG.Input into other fields of RxSBG.
 | |
|   // Return true on success.
 | |
|   bool expandRxSBG(RxSBGOperands &RxSBG) const;
 | |
| 
 | |
|   // Return an undefined value of type VT.
 | |
|   SDValue getUNDEF(SDLoc DL, EVT VT) const;
 | |
| 
 | |
|   // Convert N to VT, if it isn't already.
 | |
|   SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const;
 | |
| 
 | |
|   // Try to implement AND or shift node N using RISBG with the zero flag set.
 | |
|   // Return the selected node on success, otherwise return null.
 | |
|   SDNode *tryRISBGZero(SDNode *N);
 | |
| 
 | |
|   // Try to use RISBG or Opcode to implement OR or XOR node N.
 | |
|   // Return the selected node on success, otherwise return null.
 | |
|   SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
 | |
| 
 | |
|   // If Op0 is null, then Node is a constant that can be loaded using:
 | |
|   //
 | |
|   //   (Opcode UpperVal LowerVal)
 | |
|   //
 | |
|   // If Op0 is nonnull, then Node can be implemented using:
 | |
|   //
 | |
|   //   (Opcode (Opcode Op0 UpperVal) LowerVal)
 | |
|   SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
 | |
|                               uint64_t UpperVal, uint64_t LowerVal);
 | |
| 
 | |
|   // Return true if Load and Store are loads and stores of the same size
 | |
|   // and are guaranteed not to overlap.  Such operations can be implemented
 | |
|   // using block (SS-format) instructions.
 | |
|   //
 | |
|   // Partial overlap would lead to incorrect code, since the block operations
 | |
|   // are logically bytewise, even though they have a fast path for the
 | |
|   // non-overlapping case.  We also need to avoid full overlap (i.e. two
 | |
|   // addresses that might be equal at run time) because although that case
 | |
|   // would be handled correctly, it might be implemented by millicode.
 | |
|   bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
 | |
| 
 | |
|   // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
 | |
|   // from Y to X.
 | |
|   bool storeLoadCanUseMVC(SDNode *N) const;
 | |
| 
 | |
|   // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
 | |
|   // if A[1 - I] == X and if N can use a block operation like NC from A[I]
 | |
|   // to X.
 | |
|   bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
 | |
| 
 | |
| public:
 | |
|   SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
 | |
|       : SelectionDAGISel(TM, OptLevel),
 | |
|         Lowering(*TM.getSubtargetImpl()->getTargetLowering()),
 | |
|         Subtarget(*TM.getSubtargetImpl()) {}
 | |
| 
 | |
|   // Override MachineFunctionPass.
 | |
|   const char *getPassName() const override {
 | |
|     return "SystemZ DAG->DAG Pattern Instruction Selection";
 | |
|   }
 | |
| 
 | |
|   // Override SelectionDAGISel.
 | |
|   SDNode *Select(SDNode *Node) override;
 | |
|   bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
 | |
|                                     std::vector<SDValue> &OutOps) override;
 | |
| 
 | |
|   // Include the pieces autogenerated from the target description.
 | |
|   #include "SystemZGenDAGISel.inc"
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
 | |
|                                          CodeGenOpt::Level OptLevel) {
 | |
|   return new SystemZDAGToDAGISel(TM, OptLevel);
 | |
| }
 | |
| 
 | |
| // Return true if Val should be selected as a displacement for an address
 | |
| // with range DR.  Here we're interested in the range of both the instruction
 | |
| // described by DR and of any pairing instruction.
 | |
| static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
 | |
|   switch (DR) {
 | |
|   case SystemZAddressingMode::Disp12Only:
 | |
|     return isUInt<12>(Val);
 | |
| 
 | |
|   case SystemZAddressingMode::Disp12Pair:
 | |
|   case SystemZAddressingMode::Disp20Only:
 | |
|   case SystemZAddressingMode::Disp20Pair:
 | |
|     return isInt<20>(Val);
 | |
| 
 | |
|   case SystemZAddressingMode::Disp20Only128:
 | |
|     return isInt<20>(Val) && isInt<20>(Val + 8);
 | |
|   }
 | |
|   llvm_unreachable("Unhandled displacement range");
 | |
| }
 | |
| 
 | |
| // Change the base or index in AM to Value, where IsBase selects
 | |
| // between the base and index.
 | |
| static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
 | |
|                             SDValue Value) {
 | |
|   if (IsBase)
 | |
|     AM.Base = Value;
 | |
|   else
 | |
|     AM.Index = Value;
 | |
| }
 | |
| 
 | |
| // The base or index of AM is equivalent to Value + ADJDYNALLOC,
 | |
| // where IsBase selects between the base and index.  Try to fold the
 | |
| // ADJDYNALLOC into AM.
 | |
| static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
 | |
|                               SDValue Value) {
 | |
|   if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
 | |
|     changeComponent(AM, IsBase, Value);
 | |
|     AM.IncludesDynAlloc = true;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // The base of AM is equivalent to Base + Index.  Try to use Index as
 | |
| // the index register.
 | |
| static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
 | |
|                         SDValue Index) {
 | |
|   if (AM.hasIndexField() && !AM.Index.getNode()) {
 | |
|     AM.Base = Base;
 | |
|     AM.Index = Index;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
 | |
| // between the base and index.  Try to fold Op1 into AM's displacement.
 | |
| static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
 | |
|                        SDValue Op0, uint64_t Op1) {
 | |
|   // First try adjusting the displacement.
 | |
|   int64_t TestDisp = AM.Disp + Op1;
 | |
|   if (selectDisp(AM.DR, TestDisp)) {
 | |
|     changeComponent(AM, IsBase, Op0);
 | |
|     AM.Disp = TestDisp;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We could consider forcing the displacement into a register and
 | |
|   // using it as an index, but it would need to be carefully tuned.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
 | |
|                                         bool IsBase) const {
 | |
|   SDValue N = IsBase ? AM.Base : AM.Index;
 | |
|   unsigned Opcode = N.getOpcode();
 | |
|   if (Opcode == ISD::TRUNCATE) {
 | |
|     N = N.getOperand(0);
 | |
|     Opcode = N.getOpcode();
 | |
|   }
 | |
|   if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     SDValue Op0 = N.getOperand(0);
 | |
|     SDValue Op1 = N.getOperand(1);
 | |
| 
 | |
|     unsigned Op0Code = Op0->getOpcode();
 | |
|     unsigned Op1Code = Op1->getOpcode();
 | |
| 
 | |
|     if (Op0Code == SystemZISD::ADJDYNALLOC)
 | |
|       return expandAdjDynAlloc(AM, IsBase, Op1);
 | |
|     if (Op1Code == SystemZISD::ADJDYNALLOC)
 | |
|       return expandAdjDynAlloc(AM, IsBase, Op0);
 | |
| 
 | |
|     if (Op0Code == ISD::Constant)
 | |
|       return expandDisp(AM, IsBase, Op1,
 | |
|                         cast<ConstantSDNode>(Op0)->getSExtValue());
 | |
|     if (Op1Code == ISD::Constant)
 | |
|       return expandDisp(AM, IsBase, Op0,
 | |
|                         cast<ConstantSDNode>(Op1)->getSExtValue());
 | |
| 
 | |
|     if (IsBase && expandIndex(AM, Op0, Op1))
 | |
|       return true;
 | |
|   }
 | |
|   if (Opcode == SystemZISD::PCREL_OFFSET) {
 | |
|     SDValue Full = N.getOperand(0);
 | |
|     SDValue Base = N.getOperand(1);
 | |
|     SDValue Anchor = Base.getOperand(0);
 | |
|     uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
 | |
|                        cast<GlobalAddressSDNode>(Anchor)->getOffset());
 | |
|     return expandDisp(AM, IsBase, Base, Offset);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true if an instruction with displacement range DR should be
 | |
| // used for displacement value Val.  selectDisp(DR, Val) must already hold.
 | |
| static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
 | |
|   assert(selectDisp(DR, Val) && "Invalid displacement");
 | |
|   switch (DR) {
 | |
|   case SystemZAddressingMode::Disp12Only:
 | |
|   case SystemZAddressingMode::Disp20Only:
 | |
|   case SystemZAddressingMode::Disp20Only128:
 | |
|     return true;
 | |
| 
 | |
|   case SystemZAddressingMode::Disp12Pair:
 | |
|     // Use the other instruction if the displacement is too large.
 | |
|     return isUInt<12>(Val);
 | |
| 
 | |
|   case SystemZAddressingMode::Disp20Pair:
 | |
|     // Use the other instruction if the displacement is small enough.
 | |
|     return !isUInt<12>(Val);
 | |
|   }
 | |
|   llvm_unreachable("Unhandled displacement range");
 | |
| }
 | |
| 
 | |
| // Return true if Base + Disp + Index should be performed by LA(Y).
 | |
| static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
 | |
|   // Don't use LA(Y) for constants.
 | |
|   if (!Base)
 | |
|     return false;
 | |
| 
 | |
|   // Always use LA(Y) for frame addresses, since we know that the destination
 | |
|   // register is almost always (perhaps always) going to be different from
 | |
|   // the frame register.
 | |
|   if (Base->getOpcode() == ISD::FrameIndex)
 | |
|     return true;
 | |
| 
 | |
|   if (Disp) {
 | |
|     // Always use LA(Y) if there is a base, displacement and index.
 | |
|     if (Index)
 | |
|       return true;
 | |
| 
 | |
|     // Always use LA if the displacement is small enough.  It should always
 | |
|     // be no worse than AGHI (and better if it avoids a move).
 | |
|     if (isUInt<12>(Disp))
 | |
|       return true;
 | |
| 
 | |
|     // For similar reasons, always use LAY if the constant is too big for AGHI.
 | |
|     // LAY should be no worse than AGFI.
 | |
|     if (!isInt<16>(Disp))
 | |
|       return true;
 | |
|   } else {
 | |
|     // Don't use LA for plain registers.
 | |
|     if (!Index)
 | |
|       return false;
 | |
| 
 | |
|     // Don't use LA for plain addition if the index operand is only used
 | |
|     // once.  It should be a natural two-operand addition in that case.
 | |
|     if (Index->hasOneUse())
 | |
|       return false;
 | |
| 
 | |
|     // Prefer addition if the second operation is sign-extended, in the
 | |
|     // hope of using AGF.
 | |
|     unsigned IndexOpcode = Index->getOpcode();
 | |
|     if (IndexOpcode == ISD::SIGN_EXTEND ||
 | |
|         IndexOpcode == ISD::SIGN_EXTEND_INREG)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Don't use LA for two-operand addition if either operand is only
 | |
|   // used once.  The addition instructions are better in that case.
 | |
|   if (Base->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return true if Addr is suitable for AM, updating AM if so.
 | |
| bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
 | |
|                                         SystemZAddressingMode &AM) const {
 | |
|   // Start out assuming that the address will need to be loaded separately,
 | |
|   // then try to extend it as much as we can.
 | |
|   AM.Base = Addr;
 | |
| 
 | |
|   // First try treating the address as a constant.
 | |
|   if (Addr.getOpcode() == ISD::Constant &&
 | |
|       expandDisp(AM, true, SDValue(),
 | |
|                  cast<ConstantSDNode>(Addr)->getSExtValue()))
 | |
|     ;
 | |
|   else
 | |
|     // Otherwise try expanding each component.
 | |
|     while (expandAddress(AM, true) ||
 | |
|            (AM.Index.getNode() && expandAddress(AM, false)))
 | |
|       continue;
 | |
| 
 | |
|   // Reject cases where it isn't profitable to use LA(Y).
 | |
|   if (AM.Form == SystemZAddressingMode::FormBDXLA &&
 | |
|       !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
 | |
|     return false;
 | |
| 
 | |
|   // Reject cases where the other instruction in a pair should be used.
 | |
|   if (!isValidDisp(AM.DR, AM.Disp))
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that ADJDYNALLOC is included where necessary.
 | |
|   if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(AM.dump());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Insert a node into the DAG at least before Pos.  This will reposition
 | |
| // the node as needed, and will assign it a node ID that is <= Pos's ID.
 | |
| // Note that this does *not* preserve the uniqueness of node IDs!
 | |
| // The selection DAG must no longer depend on their uniqueness when this
 | |
| // function is used.
 | |
| static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
 | |
|   if (N.getNode()->getNodeId() == -1 ||
 | |
|       N.getNode()->getNodeId() > Pos->getNodeId()) {
 | |
|     DAG->RepositionNode(Pos, N.getNode());
 | |
|     N.getNode()->setNodeId(Pos->getNodeId());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
 | |
|                                              EVT VT, SDValue &Base,
 | |
|                                              SDValue &Disp) const {
 | |
|   Base = AM.Base;
 | |
|   if (!Base.getNode())
 | |
|     // Register 0 means "no base".  This is mostly useful for shifts.
 | |
|     Base = CurDAG->getRegister(0, VT);
 | |
|   else if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|     // Lower a FrameIndex to a TargetFrameIndex.
 | |
|     int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|     Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
 | |
|   } else if (Base.getValueType() != VT) {
 | |
|     // Truncate values from i64 to i32, for shifts.
 | |
|     assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
 | |
|            "Unexpected truncation");
 | |
|     SDLoc DL(Base);
 | |
|     SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
 | |
|     insertDAGNode(CurDAG, Base.getNode(), Trunc);
 | |
|     Base = Trunc;
 | |
|   }
 | |
| 
 | |
|   // Lower the displacement to a TargetConstant.
 | |
|   Disp = CurDAG->getTargetConstant(AM.Disp, VT);
 | |
| }
 | |
| 
 | |
| void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
 | |
|                                              EVT VT, SDValue &Base,
 | |
|                                              SDValue &Disp,
 | |
|                                              SDValue &Index) const {
 | |
|   getAddressOperands(AM, VT, Base, Disp);
 | |
| 
 | |
|   Index = AM.Index;
 | |
|   if (!Index.getNode())
 | |
|     // Register 0 means "no index".
 | |
|     Index = CurDAG->getRegister(0, VT);
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
 | |
|                                        SDValue Addr, SDValue &Base,
 | |
|                                        SDValue &Disp) const {
 | |
|   SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
 | |
|   if (!selectAddress(Addr, AM))
 | |
|     return false;
 | |
| 
 | |
|   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
 | |
|                                         SDValue Addr, SDValue &Base,
 | |
|                                         SDValue &Disp) const {
 | |
|   SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
 | |
|   if (!selectAddress(Addr, AM) || AM.Index.getNode())
 | |
|     return false;
 | |
| 
 | |
|   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
 | |
|                                         SystemZAddressingMode::DispRange DR,
 | |
|                                         SDValue Addr, SDValue &Base,
 | |
|                                         SDValue &Disp, SDValue &Index) const {
 | |
|   SystemZAddressingMode AM(Form, DR);
 | |
|   if (!selectAddress(Addr, AM))
 | |
|     return false;
 | |
| 
 | |
|   getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
 | |
|                                                uint64_t InsertMask) const {
 | |
|   // We're only interested in cases where the insertion is into some operand
 | |
|   // of Op, rather than into Op itself.  The only useful case is an AND.
 | |
|   if (Op.getOpcode() != ISD::AND)
 | |
|     return false;
 | |
| 
 | |
|   // We need a constant mask.
 | |
|   auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
 | |
|   if (!MaskNode)
 | |
|     return false;
 | |
| 
 | |
|   // It's not an insertion of Op.getOperand(0) if the two masks overlap.
 | |
|   uint64_t AndMask = MaskNode->getZExtValue();
 | |
|   if (InsertMask & AndMask)
 | |
|     return false;
 | |
| 
 | |
|   // It's only an insertion if all bits are covered or are known to be zero.
 | |
|   // The inner check covers all cases but is more expensive.
 | |
|   uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
 | |
|   if (Used != (AndMask | InsertMask)) {
 | |
|     APInt KnownZero, KnownOne;
 | |
|     CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
 | |
|     if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   Op = Op.getOperand(0);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
 | |
|                                           uint64_t Mask) const {
 | |
|   const SystemZInstrInfo *TII = getInstrInfo();
 | |
|   if (RxSBG.Rotate != 0)
 | |
|     Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
 | |
|   Mask &= RxSBG.Mask;
 | |
|   if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
 | |
|     RxSBG.Mask = Mask;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true if any bits of (RxSBG.Input & Mask) are significant.
 | |
| static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
 | |
|   // Rotate the mask in the same way as RxSBG.Input is rotated.
 | |
|   if (RxSBG.Rotate != 0)
 | |
|     Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
 | |
|   return (Mask & RxSBG.Mask) != 0;
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
 | |
|   SDValue N = RxSBG.Input;
 | |
|   unsigned Opcode = N.getOpcode();
 | |
|   switch (Opcode) {
 | |
|   case ISD::AND: {
 | |
|     if (RxSBG.Opcode == SystemZ::RNSBG)
 | |
|       return false;
 | |
| 
 | |
|     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
 | |
|     if (!MaskNode)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Input = N.getOperand(0);
 | |
|     uint64_t Mask = MaskNode->getZExtValue();
 | |
|     if (!refineRxSBGMask(RxSBG, Mask)) {
 | |
|       // If some bits of Input are already known zeros, those bits will have
 | |
|       // been removed from the mask.  See if adding them back in makes the
 | |
|       // mask suitable.
 | |
|       APInt KnownZero, KnownOne;
 | |
|       CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
 | |
|       Mask |= KnownZero.getZExtValue();
 | |
|       if (!refineRxSBGMask(RxSBG, Mask))
 | |
|         return false;
 | |
|     }
 | |
|     RxSBG.Input = Input;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ISD::OR: {
 | |
|     if (RxSBG.Opcode != SystemZ::RNSBG)
 | |
|       return false;
 | |
| 
 | |
|     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
 | |
|     if (!MaskNode)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Input = N.getOperand(0);
 | |
|     uint64_t Mask = ~MaskNode->getZExtValue();
 | |
|     if (!refineRxSBGMask(RxSBG, Mask)) {
 | |
|       // If some bits of Input are already known ones, those bits will have
 | |
|       // been removed from the mask.  See if adding them back in makes the
 | |
|       // mask suitable.
 | |
|       APInt KnownZero, KnownOne;
 | |
|       CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
 | |
|       Mask &= ~KnownOne.getZExtValue();
 | |
|       if (!refineRxSBGMask(RxSBG, Mask))
 | |
|         return false;
 | |
|     }
 | |
|     RxSBG.Input = Input;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ISD::ROTL: {
 | |
|     // Any 64-bit rotate left can be merged into the RxSBG.
 | |
|     if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
 | |
|       return false;
 | |
|     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
 | |
|     if (!CountNode)
 | |
|       return false;
 | |
| 
 | |
|     RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
 | |
|     RxSBG.Input = N.getOperand(0);
 | |
|     return true;
 | |
|   }
 | |
|       
 | |
|   case ISD::ANY_EXTEND:
 | |
|     // Bits above the extended operand are don't-care.
 | |
|     RxSBG.Input = N.getOperand(0);
 | |
|     return true;
 | |
| 
 | |
|   case ISD::ZERO_EXTEND:
 | |
|     if (RxSBG.Opcode != SystemZ::RNSBG) {
 | |
|       // Restrict the mask to the extended operand.
 | |
|       unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
 | |
|       if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
 | |
|         return false;
 | |
| 
 | |
|       RxSBG.Input = N.getOperand(0);
 | |
|       return true;
 | |
|     }
 | |
|     // Fall through.
 | |
|     
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     // Check that the extension bits are don't-care (i.e. are masked out
 | |
|     // by the final mask).
 | |
|     unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
 | |
|     if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
 | |
|       return false;
 | |
| 
 | |
|     RxSBG.Input = N.getOperand(0);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ISD::SHL: {
 | |
|     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
 | |
|     if (!CountNode)
 | |
|       return false;
 | |
| 
 | |
|     uint64_t Count = CountNode->getZExtValue();
 | |
|     unsigned BitSize = N.getValueType().getSizeInBits();
 | |
|     if (Count < 1 || Count >= BitSize)
 | |
|       return false;
 | |
| 
 | |
|     if (RxSBG.Opcode == SystemZ::RNSBG) {
 | |
|       // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
 | |
|       // count bits from RxSBG.Input are ignored.
 | |
|       if (maskMatters(RxSBG, allOnes(Count)))
 | |
|         return false;
 | |
|     } else {
 | |
|       // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
 | |
|       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
 | |
|     RxSBG.Input = N.getOperand(0);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ISD::SRL:
 | |
|   case ISD::SRA: {
 | |
|     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
 | |
|     if (!CountNode)
 | |
|       return false;
 | |
| 
 | |
|     uint64_t Count = CountNode->getZExtValue();
 | |
|     unsigned BitSize = N.getValueType().getSizeInBits();
 | |
|     if (Count < 1 || Count >= BitSize)
 | |
|       return false;
 | |
| 
 | |
|     if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
 | |
|       // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
 | |
|       // count bits from RxSBG.Input are ignored.
 | |
|       if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
 | |
|         return false;
 | |
|     } else {
 | |
|       // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
 | |
|       // which is similar to SLL above.
 | |
|       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
 | |
|     RxSBG.Input = N.getOperand(0);
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const {
 | |
|   SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const {
 | |
|   if (N.getValueType() == MVT::i32 && VT == MVT::i64)
 | |
|     return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
 | |
|                                          DL, VT, getUNDEF(DL, MVT::i64), N);
 | |
|   if (N.getValueType() == MVT::i64 && VT == MVT::i32)
 | |
|     return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
 | |
|   assert(N.getValueType() == VT && "Unexpected value types");
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
 | |
|   unsigned Count = 0;
 | |
|   while (expandRxSBG(RISBG))
 | |
|     if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND)
 | |
|       Count += 1;
 | |
|   if (Count == 0)
 | |
|     return nullptr;
 | |
|   if (Count == 1) {
 | |
|     // Prefer to use normal shift instructions over RISBG, since they can handle
 | |
|     // all cases and are sometimes shorter.
 | |
|     if (N->getOpcode() != ISD::AND)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Prefer register extensions like LLC over RISBG.  Also prefer to start
 | |
|     // out with normal ANDs if one instruction would be enough.  We can convert
 | |
|     // these ANDs into an RISBG later if a three-address instruction is useful.
 | |
|     if (VT == MVT::i32 ||
 | |
|         RISBG.Mask == 0xff ||
 | |
|         RISBG.Mask == 0xffff ||
 | |
|         SystemZ::isImmLF(~RISBG.Mask) ||
 | |
|         SystemZ::isImmHF(~RISBG.Mask)) {
 | |
|       // Force the new mask into the DAG, since it may include known-one bits.
 | |
|       auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
 | |
|       if (MaskN->getZExtValue() != RISBG.Mask) {
 | |
|         SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
 | |
|         N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
 | |
|         return SelectCode(N);
 | |
|       }
 | |
|       return nullptr;
 | |
|     }
 | |
|   }  
 | |
| 
 | |
|   unsigned Opcode = SystemZ::RISBG;
 | |
|   EVT OpcodeVT = MVT::i64;
 | |
|   if (VT == MVT::i32 && Subtarget.hasHighWord()) {
 | |
|     Opcode = SystemZ::RISBMux;
 | |
|     OpcodeVT = MVT::i32;
 | |
|     RISBG.Start &= 31;
 | |
|     RISBG.End &= 31;
 | |
|   }
 | |
|   SDValue Ops[5] = {
 | |
|     getUNDEF(SDLoc(N), OpcodeVT),
 | |
|     convertTo(SDLoc(N), OpcodeVT, RISBG.Input),
 | |
|     CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
 | |
|     CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
 | |
|     CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
 | |
|   };
 | |
|   N = CurDAG->getMachineNode(Opcode, SDLoc(N), OpcodeVT, Ops);
 | |
|   return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
 | |
| }
 | |
| 
 | |
| SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
 | |
|   // Try treating each operand of N as the second operand of the RxSBG
 | |
|   // and see which goes deepest.
 | |
|   RxSBGOperands RxSBG[] = {
 | |
|     RxSBGOperands(Opcode, N->getOperand(0)),
 | |
|     RxSBGOperands(Opcode, N->getOperand(1))
 | |
|   };
 | |
|   unsigned Count[] = { 0, 0 };
 | |
|   for (unsigned I = 0; I < 2; ++I)
 | |
|     while (expandRxSBG(RxSBG[I]))
 | |
|       if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND)
 | |
|         Count[I] += 1;
 | |
| 
 | |
|   // Do nothing if neither operand is suitable.
 | |
|   if (Count[0] == 0 && Count[1] == 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Pick the deepest second operand.
 | |
|   unsigned I = Count[0] > Count[1] ? 0 : 1;
 | |
|   SDValue Op0 = N->getOperand(I ^ 1);
 | |
| 
 | |
|   // Prefer IC for character insertions from memory.
 | |
|   if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
 | |
|     if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
 | |
|       if (Load->getMemoryVT() == MVT::i8)
 | |
|         return nullptr;
 | |
| 
 | |
|   // See whether we can avoid an AND in the first operand by converting
 | |
|   // ROSBG to RISBG.
 | |
|   if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
 | |
|     Opcode = SystemZ::RISBG;
 | |
|            
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDValue Ops[5] = {
 | |
|     convertTo(SDLoc(N), MVT::i64, Op0),
 | |
|     convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
 | |
|     CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
 | |
|     CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
 | |
|     CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
 | |
|   };
 | |
|   N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
 | |
|   return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
 | |
| }
 | |
| 
 | |
| SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
 | |
|                                                  SDValue Op0, uint64_t UpperVal,
 | |
|                                                  uint64_t LowerVal) {
 | |
|   EVT VT = Node->getValueType(0);
 | |
|   SDLoc DL(Node);
 | |
|   SDValue Upper = CurDAG->getConstant(UpperVal, VT);
 | |
|   if (Op0.getNode())
 | |
|     Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
 | |
|   Upper = SDValue(Select(Upper.getNode()), 0);
 | |
| 
 | |
|   SDValue Lower = CurDAG->getConstant(LowerVal, VT);
 | |
|   SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
 | |
|   return Or.getNode();
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
 | |
|                                                LoadSDNode *Load) const {
 | |
|   // Check that the two memory operands have the same size.
 | |
|   if (Load->getMemoryVT() != Store->getMemoryVT())
 | |
|     return false;
 | |
| 
 | |
|   // Volatility stops an access from being decomposed.
 | |
|   if (Load->isVolatile() || Store->isVolatile())
 | |
|     return false;
 | |
| 
 | |
|   // There's no chance of overlap if the load is invariant.
 | |
|   if (Load->isInvariant())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise we need to check whether there's an alias.
 | |
|   const Value *V1 = Load->getMemOperand()->getValue();
 | |
|   const Value *V2 = Store->getMemOperand()->getValue();
 | |
|   if (!V1 || !V2)
 | |
|     return false;
 | |
| 
 | |
|   // Reject equality.
 | |
|   uint64_t Size = Load->getMemoryVT().getStoreSize();
 | |
|   int64_t End1 = Load->getSrcValueOffset() + Size;
 | |
|   int64_t End2 = Store->getSrcValueOffset() + Size;
 | |
|   if (V1 == V2 && End1 == End2)
 | |
|     return false;
 | |
| 
 | |
|   return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getAAInfo()),
 | |
|                     AliasAnalysis::Location(V2, End2, Store->getAAInfo()));
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
 | |
|   auto *Store = cast<StoreSDNode>(N);
 | |
|   auto *Load = cast<LoadSDNode>(Store->getValue());
 | |
| 
 | |
|   // Prefer not to use MVC if either address can use ... RELATIVE LONG
 | |
|   // instructions.
 | |
|   uint64_t Size = Load->getMemoryVT().getStoreSize();
 | |
|   if (Size > 1 && Size <= 8) {
 | |
|     // Prefer LHRL, LRL and LGRL.
 | |
|     if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
 | |
|       return false;
 | |
|     // Prefer STHRL, STRL and STGRL.
 | |
|     if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return canUseBlockOperation(Store, Load);
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
 | |
|                                                      unsigned I) const {
 | |
|   auto *StoreA = cast<StoreSDNode>(N);
 | |
|   auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
 | |
|   auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
 | |
|   return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
 | |
| }
 | |
| 
 | |
| SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
 | |
|   // Dump information about the Node being selected
 | |
|   DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
 | |
| 
 | |
|   // If we have a custom node, we already have selected!
 | |
|   if (Node->isMachineOpcode()) {
 | |
|     DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
 | |
|     Node->setNodeId(-1);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   unsigned Opcode = Node->getOpcode();
 | |
|   SDNode *ResNode = nullptr;
 | |
|   switch (Opcode) {
 | |
|   case ISD::OR:
 | |
|     if (Node->getOperand(1).getOpcode() != ISD::Constant)
 | |
|       ResNode = tryRxSBG(Node, SystemZ::ROSBG);
 | |
|     goto or_xor;
 | |
| 
 | |
|   case ISD::XOR:
 | |
|     if (Node->getOperand(1).getOpcode() != ISD::Constant)
 | |
|       ResNode = tryRxSBG(Node, SystemZ::RXSBG);
 | |
|     // Fall through.
 | |
|   or_xor:
 | |
|     // If this is a 64-bit operation in which both 32-bit halves are nonzero,
 | |
|     // split the operation into two.
 | |
|     if (!ResNode && Node->getValueType(0) == MVT::i64)
 | |
|       if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
 | |
|         uint64_t Val = Op1->getZExtValue();
 | |
|         if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
 | |
|           Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
 | |
|                                      Val - uint32_t(Val), uint32_t(Val));
 | |
|       }
 | |
|     break;
 | |
| 
 | |
|   case ISD::AND:
 | |
|     if (Node->getOperand(1).getOpcode() != ISD::Constant)
 | |
|       ResNode = tryRxSBG(Node, SystemZ::RNSBG);
 | |
|     // Fall through.
 | |
|   case ISD::ROTL:
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRL:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|     if (!ResNode)
 | |
|       ResNode = tryRISBGZero(Node);
 | |
|     break;
 | |
| 
 | |
|   case ISD::Constant:
 | |
|     // If this is a 64-bit constant that is out of the range of LLILF,
 | |
|     // LLIHF and LGFI, split it into two 32-bit pieces.
 | |
|     if (Node->getValueType(0) == MVT::i64) {
 | |
|       uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
 | |
|       if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
 | |
|         Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
 | |
|                                    Val - uint32_t(Val), uint32_t(Val));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case SystemZISD::SELECT_CCMASK: {
 | |
|     SDValue Op0 = Node->getOperand(0);
 | |
|     SDValue Op1 = Node->getOperand(1);
 | |
|     // Prefer to put any load first, so that it can be matched as a
 | |
|     // conditional load.
 | |
|     if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
 | |
|       SDValue CCValid = Node->getOperand(2);
 | |
|       SDValue CCMask = Node->getOperand(3);
 | |
|       uint64_t ConstCCValid =
 | |
|         cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
 | |
|       uint64_t ConstCCMask =
 | |
|         cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
 | |
|       // Invert the condition.
 | |
|       CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
 | |
|                                    CCMask.getValueType());
 | |
|       SDValue Op4 = Node->getOperand(4);
 | |
|       Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Select the default instruction
 | |
|   if (!ResNode)
 | |
|     ResNode = SelectCode(Node);
 | |
| 
 | |
|   DEBUG(errs() << "=> ";
 | |
|         if (ResNode == nullptr || ResNode == Node)
 | |
|           Node->dump(CurDAG);
 | |
|         else
 | |
|           ResNode->dump(CurDAG);
 | |
|         errs() << "\n";
 | |
|         );
 | |
|   return ResNode;
 | |
| }
 | |
| 
 | |
| bool SystemZDAGToDAGISel::
 | |
| SelectInlineAsmMemoryOperand(const SDValue &Op,
 | |
|                              char ConstraintCode,
 | |
|                              std::vector<SDValue> &OutOps) {
 | |
|   assert(ConstraintCode == 'm' && "Unexpected constraint code");
 | |
|   // Accept addresses with short displacements, which are compatible
 | |
|   // with Q, R, S and T.  But keep the index operand for future expansion.
 | |
|   SDValue Base, Disp, Index;
 | |
|   if (!selectBDXAddr(SystemZAddressingMode::FormBD,
 | |
|                      SystemZAddressingMode::Disp12Only,
 | |
|                      Op, Base, Disp, Index))
 | |
|     return true;
 | |
|   OutOps.push_back(Base);
 | |
|   OutOps.push_back(Disp);
 | |
|   OutOps.push_back(Index);
 | |
|   return false;
 | |
| }
 |