forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			399 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			399 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ObjCARC.h - ObjC ARC Optimization --------------*- C++ -*-----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file defines common definitions/declarations used by the ObjC ARC
 | |
| /// Optimizer. ARC stands for Automatic Reference Counting and is a system for
 | |
| /// managing reference counts for objects in Objective C.
 | |
| ///
 | |
| /// WARNING: This file knows about certain library functions. It recognizes them
 | |
| /// by name, and hardwires knowledge of their semantics.
 | |
| ///
 | |
| /// WARNING: This file knows about how certain Objective-C library functions are
 | |
| /// used. Naive LLVM IR transformations which would otherwise be
 | |
| /// behavior-preserving may break these assumptions.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARC_H
 | |
| #define LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARC_H
 | |
| 
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Transforms/ObjCARC.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| 
 | |
| namespace llvm {
 | |
| class raw_ostream;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| namespace objcarc {
 | |
| 
 | |
| /// \brief A handy option to enable/disable all ARC Optimizations.
 | |
| extern bool EnableARCOpts;
 | |
| 
 | |
| /// \brief Test if the given module looks interesting to run ARC optimization
 | |
| /// on.
 | |
| static inline bool ModuleHasARC(const Module &M) {
 | |
|   return
 | |
|     M.getNamedValue("objc_retain") ||
 | |
|     M.getNamedValue("objc_release") ||
 | |
|     M.getNamedValue("objc_autorelease") ||
 | |
|     M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
 | |
|     M.getNamedValue("objc_retainBlock") ||
 | |
|     M.getNamedValue("objc_autoreleaseReturnValue") ||
 | |
|     M.getNamedValue("objc_autoreleasePoolPush") ||
 | |
|     M.getNamedValue("objc_loadWeakRetained") ||
 | |
|     M.getNamedValue("objc_loadWeak") ||
 | |
|     M.getNamedValue("objc_destroyWeak") ||
 | |
|     M.getNamedValue("objc_storeWeak") ||
 | |
|     M.getNamedValue("objc_initWeak") ||
 | |
|     M.getNamedValue("objc_moveWeak") ||
 | |
|     M.getNamedValue("objc_copyWeak") ||
 | |
|     M.getNamedValue("objc_retainedObject") ||
 | |
|     M.getNamedValue("objc_unretainedObject") ||
 | |
|     M.getNamedValue("objc_unretainedPointer") ||
 | |
|     M.getNamedValue("clang.arc.use");
 | |
| }
 | |
| 
 | |
| /// \enum InstructionClass
 | |
| /// \brief A simple classification for instructions.
 | |
| enum InstructionClass {
 | |
|   IC_Retain,              ///< objc_retain
 | |
|   IC_RetainRV,            ///< objc_retainAutoreleasedReturnValue
 | |
|   IC_RetainBlock,         ///< objc_retainBlock
 | |
|   IC_Release,             ///< objc_release
 | |
|   IC_Autorelease,         ///< objc_autorelease
 | |
|   IC_AutoreleaseRV,       ///< objc_autoreleaseReturnValue
 | |
|   IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
 | |
|   IC_AutoreleasepoolPop,  ///< objc_autoreleasePoolPop
 | |
|   IC_NoopCast,            ///< objc_retainedObject, etc.
 | |
|   IC_FusedRetainAutorelease, ///< objc_retainAutorelease
 | |
|   IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
 | |
|   IC_LoadWeakRetained,    ///< objc_loadWeakRetained (primitive)
 | |
|   IC_StoreWeak,           ///< objc_storeWeak (primitive)
 | |
|   IC_InitWeak,            ///< objc_initWeak (derived)
 | |
|   IC_LoadWeak,            ///< objc_loadWeak (derived)
 | |
|   IC_MoveWeak,            ///< objc_moveWeak (derived)
 | |
|   IC_CopyWeak,            ///< objc_copyWeak (derived)
 | |
|   IC_DestroyWeak,         ///< objc_destroyWeak (derived)
 | |
|   IC_StoreStrong,         ///< objc_storeStrong (derived)
 | |
|   IC_IntrinsicUser,       ///< clang.arc.use
 | |
|   IC_CallOrUser,          ///< could call objc_release and/or "use" pointers
 | |
|   IC_Call,                ///< could call objc_release
 | |
|   IC_User,                ///< could "use" a pointer
 | |
|   IC_None                 ///< anything else
 | |
| };
 | |
| 
 | |
| raw_ostream &operator<<(raw_ostream &OS, const InstructionClass Class);
 | |
| 
 | |
| /// \brief Test if the given class is a kind of user.
 | |
| inline static bool IsUser(InstructionClass Class) {
 | |
|   return Class == IC_User ||
 | |
|          Class == IC_CallOrUser ||
 | |
|          Class == IC_IntrinsicUser;
 | |
| }
 | |
| 
 | |
| /// \brief Test if the given class is objc_retain or equivalent.
 | |
| static inline bool IsRetain(InstructionClass Class) {
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV;
 | |
| }
 | |
| 
 | |
| /// \brief Test if the given class is objc_autorelease or equivalent.
 | |
| static inline bool IsAutorelease(InstructionClass Class) {
 | |
|   return Class == IC_Autorelease ||
 | |
|          Class == IC_AutoreleaseRV;
 | |
| }
 | |
| 
 | |
| /// \brief Test if the given class represents instructions which return their
 | |
| /// argument verbatim.
 | |
| static inline bool IsForwarding(InstructionClass Class) {
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV ||
 | |
|          Class == IC_Autorelease ||
 | |
|          Class == IC_AutoreleaseRV ||
 | |
|          Class == IC_NoopCast;
 | |
| }
 | |
| 
 | |
| /// \brief Test if the given class represents instructions which do nothing if
 | |
| /// passed a null pointer.
 | |
| static inline bool IsNoopOnNull(InstructionClass Class) {
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV ||
 | |
|          Class == IC_Release ||
 | |
|          Class == IC_Autorelease ||
 | |
|          Class == IC_AutoreleaseRV ||
 | |
|          Class == IC_RetainBlock;
 | |
| }
 | |
| 
 | |
| /// \brief Test if the given class represents instructions which are always safe
 | |
| /// to mark with the "tail" keyword.
 | |
| static inline bool IsAlwaysTail(InstructionClass Class) {
 | |
|   // IC_RetainBlock may be given a stack argument.
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV ||
 | |
|          Class == IC_AutoreleaseRV;
 | |
| }
 | |
| 
 | |
| /// \brief Test if the given class represents instructions which are never safe
 | |
| /// to mark with the "tail" keyword.
 | |
| static inline bool IsNeverTail(InstructionClass Class) {
 | |
|   /// It is never safe to tail call objc_autorelease since by tail calling
 | |
|   /// objc_autorelease, we also tail call -[NSObject autorelease] which supports
 | |
|   /// fast autoreleasing causing our object to be potentially reclaimed from the
 | |
|   /// autorelease pool which violates the semantics of __autoreleasing types in
 | |
|   /// ARC.
 | |
|   return Class == IC_Autorelease;
 | |
| }
 | |
| 
 | |
| /// \brief Test if the given class represents instructions which are always safe
 | |
| /// to mark with the nounwind attribute.
 | |
| static inline bool IsNoThrow(InstructionClass Class) {
 | |
|   // objc_retainBlock is not nounwind because it calls user copy constructors
 | |
|   // which could theoretically throw.
 | |
|   return Class == IC_Retain ||
 | |
|          Class == IC_RetainRV ||
 | |
|          Class == IC_Release ||
 | |
|          Class == IC_Autorelease ||
 | |
|          Class == IC_AutoreleaseRV ||
 | |
|          Class == IC_AutoreleasepoolPush ||
 | |
|          Class == IC_AutoreleasepoolPop;
 | |
| }
 | |
| 
 | |
| /// Test whether the given instruction can autorelease any pointer or cause an
 | |
| /// autoreleasepool pop.
 | |
| static inline bool
 | |
| CanInterruptRV(InstructionClass Class) {
 | |
|   switch (Class) {
 | |
|   case IC_AutoreleasepoolPop:
 | |
|   case IC_CallOrUser:
 | |
|   case IC_Call:
 | |
|   case IC_Autorelease:
 | |
|   case IC_AutoreleaseRV:
 | |
|   case IC_FusedRetainAutorelease:
 | |
|   case IC_FusedRetainAutoreleaseRV:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Determine if F is one of the special known Functions.  If it isn't,
 | |
| /// return IC_CallOrUser.
 | |
| InstructionClass GetFunctionClass(const Function *F);
 | |
| 
 | |
| /// \brief Determine which objc runtime call instruction class V belongs to.
 | |
| ///
 | |
| /// This is similar to GetInstructionClass except that it only detects objc
 | |
| /// runtime calls. This allows it to be faster.
 | |
| ///
 | |
| static inline InstructionClass GetBasicInstructionClass(const Value *V) {
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
 | |
|     if (const Function *F = CI->getCalledFunction())
 | |
|       return GetFunctionClass(F);
 | |
|     // Otherwise, be conservative.
 | |
|     return IC_CallOrUser;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, be conservative.
 | |
|   return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
 | |
| }
 | |
| 
 | |
| /// \brief Determine what kind of construct V is.
 | |
| InstructionClass GetInstructionClass(const Value *V);
 | |
| 
 | |
| /// \brief This is a wrapper around getUnderlyingObject which also knows how to
 | |
| /// look through objc_retain and objc_autorelease calls, which we know to return
 | |
| /// their argument verbatim.
 | |
| static inline const Value *GetUnderlyingObjCPtr(const Value *V) {
 | |
|   for (;;) {
 | |
|     V = GetUnderlyingObject(V);
 | |
|     if (!IsForwarding(GetBasicInstructionClass(V)))
 | |
|       break;
 | |
|     V = cast<CallInst>(V)->getArgOperand(0);
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// \brief This is a wrapper around Value::stripPointerCasts which also knows
 | |
| /// how to look through objc_retain and objc_autorelease calls, which we know to
 | |
| /// return their argument verbatim.
 | |
| static inline const Value *StripPointerCastsAndObjCCalls(const Value *V) {
 | |
|   for (;;) {
 | |
|     V = V->stripPointerCasts();
 | |
|     if (!IsForwarding(GetBasicInstructionClass(V)))
 | |
|       break;
 | |
|     V = cast<CallInst>(V)->getArgOperand(0);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// \brief This is a wrapper around Value::stripPointerCasts which also knows
 | |
| /// how to look through objc_retain and objc_autorelease calls, which we know to
 | |
| /// return their argument verbatim.
 | |
| static inline Value *StripPointerCastsAndObjCCalls(Value *V) {
 | |
|   for (;;) {
 | |
|     V = V->stripPointerCasts();
 | |
|     if (!IsForwarding(GetBasicInstructionClass(V)))
 | |
|       break;
 | |
|     V = cast<CallInst>(V)->getArgOperand(0);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// \brief Assuming the given instruction is one of the special calls such as
 | |
| /// objc_retain or objc_release, return the argument value, stripped of no-op
 | |
| /// casts and forwarding calls.
 | |
| static inline Value *GetObjCArg(Value *Inst) {
 | |
|   return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
 | |
| }
 | |
| 
 | |
| static inline bool IsNullOrUndef(const Value *V) {
 | |
|   return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
 | |
| }
 | |
| 
 | |
| static inline bool IsNoopInstruction(const Instruction *I) {
 | |
|   return isa<BitCastInst>(I) ||
 | |
|     (isa<GetElementPtrInst>(I) &&
 | |
|      cast<GetElementPtrInst>(I)->hasAllZeroIndices());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Erase the given instruction.
 | |
| ///
 | |
| /// Many ObjC calls return their argument verbatim,
 | |
| /// so if it's such a call and the return value has users, replace them with the
 | |
| /// argument value.
 | |
| ///
 | |
| static inline void EraseInstruction(Instruction *CI) {
 | |
|   Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
 | |
| 
 | |
|   bool Unused = CI->use_empty();
 | |
| 
 | |
|   if (!Unused) {
 | |
|     // Replace the return value with the argument.
 | |
|     assert((IsForwarding(GetBasicInstructionClass(CI)) ||
 | |
|             (IsNoopOnNull(GetBasicInstructionClass(CI)) &&
 | |
|              isa<ConstantPointerNull>(OldArg))) &&
 | |
|            "Can't delete non-forwarding instruction with users!");
 | |
|     CI->replaceAllUsesWith(OldArg);
 | |
|   }
 | |
| 
 | |
|   CI->eraseFromParent();
 | |
| 
 | |
|   if (Unused)
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(OldArg);
 | |
| }
 | |
| 
 | |
| /// \brief Test whether the given value is possible a retainable object pointer.
 | |
| static inline bool IsPotentialRetainableObjPtr(const Value *Op) {
 | |
|   // Pointers to static or stack storage are not valid retainable object
 | |
|   // pointers.
 | |
|   if (isa<Constant>(Op) || isa<AllocaInst>(Op))
 | |
|     return false;
 | |
|   // Special arguments can not be a valid retainable object pointer.
 | |
|   if (const Argument *Arg = dyn_cast<Argument>(Op))
 | |
|     if (Arg->hasByValAttr() ||
 | |
|         Arg->hasInAllocaAttr() ||
 | |
|         Arg->hasNestAttr() ||
 | |
|         Arg->hasStructRetAttr())
 | |
|       return false;
 | |
|   // Only consider values with pointer types.
 | |
|   //
 | |
|   // It seemes intuitive to exclude function pointer types as well, since
 | |
|   // functions are never retainable object pointers, however clang occasionally
 | |
|   // bitcasts retainable object pointers to function-pointer type temporarily.
 | |
|   PointerType *Ty = dyn_cast<PointerType>(Op->getType());
 | |
|   if (!Ty)
 | |
|     return false;
 | |
|   // Conservatively assume anything else is a potential retainable object
 | |
|   // pointer.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static inline bool IsPotentialRetainableObjPtr(const Value *Op,
 | |
|                                                AliasAnalysis &AA) {
 | |
|   // First make the rudimentary check.
 | |
|   if (!IsPotentialRetainableObjPtr(Op))
 | |
|     return false;
 | |
| 
 | |
|   // Objects in constant memory are not reference-counted.
 | |
|   if (AA.pointsToConstantMemory(Op))
 | |
|     return false;
 | |
| 
 | |
|   // Pointers in constant memory are not pointing to reference-counted objects.
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
 | |
|     if (AA.pointsToConstantMemory(LI->getPointerOperand()))
 | |
|       return false;
 | |
| 
 | |
|   // Otherwise assume the worst.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Helper for GetInstructionClass. Determines what kind of construct CS
 | |
| /// is.
 | |
| static inline InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
 | |
|   for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|        I != E; ++I)
 | |
|     if (IsPotentialRetainableObjPtr(*I))
 | |
|       return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
 | |
| 
 | |
|   return CS.onlyReadsMemory() ? IC_None : IC_Call;
 | |
| }
 | |
| 
 | |
| /// \brief Return true if this value refers to a distinct and identifiable
 | |
| /// object.
 | |
| ///
 | |
| /// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses
 | |
| /// special knowledge of ObjC conventions.
 | |
| static inline bool IsObjCIdentifiedObject(const Value *V) {
 | |
|   // Assume that call results and arguments have their own "provenance".
 | |
|   // Constants (including GlobalVariables) and Allocas are never
 | |
|   // reference-counted.
 | |
|   if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
 | |
|       isa<Argument>(V) || isa<Constant>(V) ||
 | |
|       isa<AllocaInst>(V))
 | |
|     return true;
 | |
| 
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
 | |
|     const Value *Pointer =
 | |
|       StripPointerCastsAndObjCCalls(LI->getPointerOperand());
 | |
|     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
 | |
|       // A constant pointer can't be pointing to an object on the heap. It may
 | |
|       // be reference-counted, but it won't be deleted.
 | |
|       if (GV->isConstant())
 | |
|         return true;
 | |
|       StringRef Name = GV->getName();
 | |
|       // These special variables are known to hold values which are not
 | |
|       // reference-counted pointers.
 | |
|       if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
 | |
|           Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
 | |
|           Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
 | |
|           Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
 | |
|           Name.startswith("\01l_objc_msgSend_fixup_"))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| } // end namespace objcarc
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 |