forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			633 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			633 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs a simple dominator tree walk that eliminates trivially
 | |
| // redundant instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/ScopedHashTable.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AssumptionTracker.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/RecyclingAllocator.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <deque>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "early-cse"
 | |
| 
 | |
| STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
 | |
| STATISTIC(NumCSE,      "Number of instructions CSE'd");
 | |
| STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
 | |
| STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
 | |
| STATISTIC(NumDSE,      "Number of trivial dead stores removed");
 | |
| 
 | |
| static unsigned getHash(const void *V) {
 | |
|   return DenseMapInfo<const void*>::getHashValue(V);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SimpleValue
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// SimpleValue - Instances of this struct represent available values in the
 | |
|   /// scoped hash table.
 | |
|   struct SimpleValue {
 | |
|     Instruction *Inst;
 | |
| 
 | |
|     SimpleValue(Instruction *I) : Inst(I) {
 | |
|       assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
 | |
|     }
 | |
| 
 | |
|     bool isSentinel() const {
 | |
|       return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
 | |
|              Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
 | |
|     }
 | |
| 
 | |
|     static bool canHandle(Instruction *Inst) {
 | |
|       // This can only handle non-void readnone functions.
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(Inst))
 | |
|         return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
 | |
|       return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
 | |
|              isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
 | |
|              isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
 | |
|              isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
 | |
|              isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template<> struct DenseMapInfo<SimpleValue> {
 | |
|   static inline SimpleValue getEmptyKey() {
 | |
|     return DenseMapInfo<Instruction*>::getEmptyKey();
 | |
|   }
 | |
|   static inline SimpleValue getTombstoneKey() {
 | |
|     return DenseMapInfo<Instruction*>::getTombstoneKey();
 | |
|   }
 | |
|   static unsigned getHashValue(SimpleValue Val);
 | |
|   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
 | |
| };
 | |
| }
 | |
| 
 | |
| unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
 | |
|   Instruction *Inst = Val.Inst;
 | |
|   // Hash in all of the operands as pointers.
 | |
|   if (BinaryOperator* BinOp = dyn_cast<BinaryOperator>(Inst)) {
 | |
|     Value *LHS = BinOp->getOperand(0);
 | |
|     Value *RHS = BinOp->getOperand(1);
 | |
|     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
 | |
|       std::swap(LHS, RHS);
 | |
| 
 | |
|     if (isa<OverflowingBinaryOperator>(BinOp)) {
 | |
|       // Hash the overflow behavior
 | |
|       unsigned Overflow =
 | |
|         BinOp->hasNoSignedWrap()   * OverflowingBinaryOperator::NoSignedWrap |
 | |
|         BinOp->hasNoUnsignedWrap() * OverflowingBinaryOperator::NoUnsignedWrap;
 | |
|       return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
 | |
|     }
 | |
| 
 | |
|     return hash_combine(BinOp->getOpcode(), LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
 | |
|     Value *LHS = CI->getOperand(0);
 | |
|     Value *RHS = CI->getOperand(1);
 | |
|     CmpInst::Predicate Pred = CI->getPredicate();
 | |
|     if (Inst->getOperand(0) > Inst->getOperand(1)) {
 | |
|       std::swap(LHS, RHS);
 | |
|       Pred = CI->getSwappedPredicate();
 | |
|     }
 | |
|     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Inst))
 | |
|     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
 | |
| 
 | |
|   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
 | |
|     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
 | |
|                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
 | |
| 
 | |
|   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
 | |
|     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
 | |
|                         IVI->getOperand(1),
 | |
|                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
 | |
| 
 | |
|   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
 | |
|           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
 | |
|           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
 | |
|           isa<ShuffleVectorInst>(Inst)) && "Invalid/unknown instruction");
 | |
| 
 | |
|   // Mix in the opcode.
 | |
|   return hash_combine(Inst->getOpcode(),
 | |
|                       hash_combine_range(Inst->value_op_begin(),
 | |
|                                          Inst->value_op_end()));
 | |
| }
 | |
| 
 | |
| bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
 | |
|   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
 | |
| 
 | |
|   if (LHS.isSentinel() || RHS.isSentinel())
 | |
|     return LHSI == RHSI;
 | |
| 
 | |
|   if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
 | |
|   if (LHSI->isIdenticalTo(RHSI)) return true;
 | |
| 
 | |
|   // If we're not strictly identical, we still might be a commutable instruction
 | |
|   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
 | |
|     if (!LHSBinOp->isCommutative())
 | |
|       return false;
 | |
| 
 | |
|     assert(isa<BinaryOperator>(RHSI)
 | |
|            && "same opcode, but different instruction type?");
 | |
|     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
 | |
| 
 | |
|     // Check overflow attributes
 | |
|     if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
 | |
|       assert(isa<OverflowingBinaryOperator>(RHSBinOp)
 | |
|              && "same opcode, but different operator type?");
 | |
|       if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
 | |
|           LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Commuted equality
 | |
|     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
 | |
|       LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
 | |
|   }
 | |
|   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
 | |
|     assert(isa<CmpInst>(RHSI)
 | |
|            && "same opcode, but different instruction type?");
 | |
|     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
 | |
|     // Commuted equality
 | |
|     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
 | |
|       LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
 | |
|       LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CallValue
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// CallValue - Instances of this struct represent available call values in
 | |
|   /// the scoped hash table.
 | |
|   struct CallValue {
 | |
|     Instruction *Inst;
 | |
| 
 | |
|     CallValue(Instruction *I) : Inst(I) {
 | |
|       assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
 | |
|     }
 | |
| 
 | |
|     bool isSentinel() const {
 | |
|       return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
 | |
|              Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
 | |
|     }
 | |
| 
 | |
|     static bool canHandle(Instruction *Inst) {
 | |
|       // Don't value number anything that returns void.
 | |
|       if (Inst->getType()->isVoidTy())
 | |
|         return false;
 | |
| 
 | |
|       CallInst *CI = dyn_cast<CallInst>(Inst);
 | |
|       if (!CI || !CI->onlyReadsMemory())
 | |
|         return false;
 | |
|       return true;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   template<> struct DenseMapInfo<CallValue> {
 | |
|     static inline CallValue getEmptyKey() {
 | |
|       return DenseMapInfo<Instruction*>::getEmptyKey();
 | |
|     }
 | |
|     static inline CallValue getTombstoneKey() {
 | |
|       return DenseMapInfo<Instruction*>::getTombstoneKey();
 | |
|     }
 | |
|     static unsigned getHashValue(CallValue Val);
 | |
|     static bool isEqual(CallValue LHS, CallValue RHS);
 | |
|   };
 | |
| }
 | |
| unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
 | |
|   Instruction *Inst = Val.Inst;
 | |
|   // Hash in all of the operands as pointers.
 | |
|   unsigned Res = 0;
 | |
|   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
 | |
|     assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
 | |
|            "Cannot value number calls with metadata operands");
 | |
|     Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
 | |
|   }
 | |
| 
 | |
|   // Mix in the opcode.
 | |
|   return (Res << 1) ^ Inst->getOpcode();
 | |
| }
 | |
| 
 | |
| bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
 | |
|   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
 | |
|   if (LHS.isSentinel() || RHS.isSentinel())
 | |
|     return LHSI == RHSI;
 | |
|   return LHSI->isIdenticalTo(RHSI);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // EarlyCSE pass.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// EarlyCSE - This pass does a simple depth-first walk over the dominator
 | |
| /// tree, eliminating trivially redundant instructions and using instsimplify
 | |
| /// to canonicalize things as it goes.  It is intended to be fast and catch
 | |
| /// obvious cases so that instcombine and other passes are more effective.  It
 | |
| /// is expected that a later pass of GVN will catch the interesting/hard
 | |
| /// cases.
 | |
| class EarlyCSE : public FunctionPass {
 | |
| public:
 | |
|   const DataLayout *DL;
 | |
|   const TargetLibraryInfo *TLI;
 | |
|   DominatorTree *DT;
 | |
|   AssumptionTracker *AT;
 | |
|   typedef RecyclingAllocator<BumpPtrAllocator,
 | |
|                       ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
 | |
|   typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
 | |
|                           AllocatorTy> ScopedHTType;
 | |
| 
 | |
|   /// AvailableValues - This scoped hash table contains the current values of
 | |
|   /// all of our simple scalar expressions.  As we walk down the domtree, we
 | |
|   /// look to see if instructions are in this: if so, we replace them with what
 | |
|   /// we find, otherwise we insert them so that dominated values can succeed in
 | |
|   /// their lookup.
 | |
|   ScopedHTType *AvailableValues;
 | |
| 
 | |
|   /// AvailableLoads - This scoped hash table contains the current values
 | |
|   /// of loads.  This allows us to get efficient access to dominating loads when
 | |
|   /// we have a fully redundant load.  In addition to the most recent load, we
 | |
|   /// keep track of a generation count of the read, which is compared against
 | |
|   /// the current generation count.  The current generation count is
 | |
|   /// incremented after every possibly writing memory operation, which ensures
 | |
|   /// that we only CSE loads with other loads that have no intervening store.
 | |
|   typedef RecyclingAllocator<BumpPtrAllocator,
 | |
|     ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
 | |
|   typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
 | |
|                           DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
 | |
|   LoadHTType *AvailableLoads;
 | |
| 
 | |
|   /// AvailableCalls - This scoped hash table contains the current values
 | |
|   /// of read-only call values.  It uses the same generation count as loads.
 | |
|   typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
 | |
|   CallHTType *AvailableCalls;
 | |
| 
 | |
|   /// CurrentGeneration - This is the current generation of the memory value.
 | |
|   unsigned CurrentGeneration;
 | |
| 
 | |
|   static char ID;
 | |
|   explicit EarlyCSE() : FunctionPass(ID) {
 | |
|     initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
| private:
 | |
| 
 | |
|   // NodeScope - almost a POD, but needs to call the constructors for the
 | |
|   // scoped hash tables so that a new scope gets pushed on. These are RAII so
 | |
|   // that the scope gets popped when the NodeScope is destroyed.
 | |
|   class NodeScope {
 | |
|    public:
 | |
|     NodeScope(ScopedHTType *availableValues,
 | |
|               LoadHTType *availableLoads,
 | |
|               CallHTType *availableCalls) :
 | |
|         Scope(*availableValues),
 | |
|         LoadScope(*availableLoads),
 | |
|         CallScope(*availableCalls) {}
 | |
| 
 | |
|    private:
 | |
|     NodeScope(const NodeScope&) LLVM_DELETED_FUNCTION;
 | |
|     void operator=(const NodeScope&) LLVM_DELETED_FUNCTION;
 | |
| 
 | |
|     ScopedHTType::ScopeTy Scope;
 | |
|     LoadHTType::ScopeTy LoadScope;
 | |
|     CallHTType::ScopeTy CallScope;
 | |
|   };
 | |
| 
 | |
|   // StackNode - contains all the needed information to create a stack for
 | |
|   // doing a depth first tranversal of the tree. This includes scopes for
 | |
|   // values, loads, and calls as well as the generation. There is a child
 | |
|   // iterator so that the children do not need to be store spearately.
 | |
|   class StackNode {
 | |
|    public:
 | |
|     StackNode(ScopedHTType *availableValues,
 | |
|               LoadHTType *availableLoads,
 | |
|               CallHTType *availableCalls,
 | |
|               unsigned cg, DomTreeNode *n,
 | |
|               DomTreeNode::iterator child, DomTreeNode::iterator end) :
 | |
|         CurrentGeneration(cg), ChildGeneration(cg), Node(n),
 | |
|         ChildIter(child), EndIter(end),
 | |
|         Scopes(availableValues, availableLoads, availableCalls),
 | |
|         Processed(false) {}
 | |
| 
 | |
|     // Accessors.
 | |
|     unsigned currentGeneration() { return CurrentGeneration; }
 | |
|     unsigned childGeneration() { return ChildGeneration; }
 | |
|     void childGeneration(unsigned generation) { ChildGeneration = generation; }
 | |
|     DomTreeNode *node() { return Node; }
 | |
|     DomTreeNode::iterator childIter() { return ChildIter; }
 | |
|     DomTreeNode *nextChild() {
 | |
|       DomTreeNode *child = *ChildIter;
 | |
|       ++ChildIter;
 | |
|       return child;
 | |
|     }
 | |
|     DomTreeNode::iterator end() { return EndIter; }
 | |
|     bool isProcessed() { return Processed; }
 | |
|     void process() { Processed = true; }
 | |
| 
 | |
|    private:
 | |
|     StackNode(const StackNode&) LLVM_DELETED_FUNCTION;
 | |
|     void operator=(const StackNode&) LLVM_DELETED_FUNCTION;
 | |
| 
 | |
|     // Members.
 | |
|     unsigned CurrentGeneration;
 | |
|     unsigned ChildGeneration;
 | |
|     DomTreeNode *Node;
 | |
|     DomTreeNode::iterator ChildIter;
 | |
|     DomTreeNode::iterator EndIter;
 | |
|     NodeScope Scopes;
 | |
|     bool Processed;
 | |
|   };
 | |
| 
 | |
|   bool processNode(DomTreeNode *Node);
 | |
| 
 | |
|   // This transformation requires dominator postdominator info
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<AssumptionTracker>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<TargetLibraryInfo>();
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| char EarlyCSE::ID = 0;
 | |
| 
 | |
| // createEarlyCSEPass - The public interface to this file.
 | |
| FunctionPass *llvm::createEarlyCSEPass() {
 | |
|   return new EarlyCSE();
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | |
| INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
 | |
| 
 | |
| bool EarlyCSE::processNode(DomTreeNode *Node) {
 | |
|   BasicBlock *BB = Node->getBlock();
 | |
| 
 | |
|   // If this block has a single predecessor, then the predecessor is the parent
 | |
|   // of the domtree node and all of the live out memory values are still current
 | |
|   // in this block.  If this block has multiple predecessors, then they could
 | |
|   // have invalidated the live-out memory values of our parent value.  For now,
 | |
|   // just be conservative and invalidate memory if this block has multiple
 | |
|   // predecessors.
 | |
|   if (!BB->getSinglePredecessor())
 | |
|     ++CurrentGeneration;
 | |
| 
 | |
|   /// LastStore - Keep track of the last non-volatile store that we saw... for
 | |
|   /// as long as there in no instruction that reads memory.  If we see a store
 | |
|   /// to the same location, we delete the dead store.  This zaps trivial dead
 | |
|   /// stores which can occur in bitfield code among other things.
 | |
|   StoreInst *LastStore = nullptr;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // See if any instructions in the block can be eliminated.  If so, do it.  If
 | |
|   // not, add them to AvailableValues.
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
 | |
|     Instruction *Inst = I++;
 | |
| 
 | |
|     // Dead instructions should just be removed.
 | |
|     if (isInstructionTriviallyDead(Inst, TLI)) {
 | |
|       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
 | |
|       Inst->eraseFromParent();
 | |
|       Changed = true;
 | |
|       ++NumSimplify;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
 | |
|     // its simpler value.
 | |
|     if (Value *V = SimplifyInstruction(Inst, DL, TLI, DT, AT)) {
 | |
|       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
 | |
|       Inst->replaceAllUsesWith(V);
 | |
|       Inst->eraseFromParent();
 | |
|       Changed = true;
 | |
|       ++NumSimplify;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a simple instruction that we can value number, process it.
 | |
|     if (SimpleValue::canHandle(Inst)) {
 | |
|       // See if the instruction has an available value.  If so, use it.
 | |
|       if (Value *V = AvailableValues->lookup(Inst)) {
 | |
|         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
 | |
|         Inst->replaceAllUsesWith(V);
 | |
|         Inst->eraseFromParent();
 | |
|         Changed = true;
 | |
|         ++NumCSE;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, just remember that this value is available.
 | |
|       AvailableValues->insert(Inst, Inst);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a non-volatile load, process it.
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | |
|       // Ignore volatile loads.
 | |
|       if (!LI->isSimple()) {
 | |
|         LastStore = nullptr;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If we have an available version of this load, and if it is the right
 | |
|       // generation, replace this instruction.
 | |
|       std::pair<Value*, unsigned> InVal =
 | |
|         AvailableLoads->lookup(Inst->getOperand(0));
 | |
|       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
 | |
|         DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << "  to: "
 | |
|               << *InVal.first << '\n');
 | |
|         if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
 | |
|         Inst->eraseFromParent();
 | |
|         Changed = true;
 | |
|         ++NumCSELoad;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, remember that we have this instruction.
 | |
|       AvailableLoads->insert(Inst->getOperand(0),
 | |
|                           std::pair<Value*, unsigned>(Inst, CurrentGeneration));
 | |
|       LastStore = nullptr;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this instruction may read from memory, forget LastStore.
 | |
|     if (Inst->mayReadFromMemory())
 | |
|       LastStore = nullptr;
 | |
| 
 | |
|     // If this is a read-only call, process it.
 | |
|     if (CallValue::canHandle(Inst)) {
 | |
|       // If we have an available version of this call, and if it is the right
 | |
|       // generation, replace this instruction.
 | |
|       std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
 | |
|       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
 | |
|         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << "  to: "
 | |
|                      << *InVal.first << '\n');
 | |
|         if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
 | |
|         Inst->eraseFromParent();
 | |
|         Changed = true;
 | |
|         ++NumCSECall;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, remember that we have this instruction.
 | |
|       AvailableCalls->insert(Inst,
 | |
|                          std::pair<Value*, unsigned>(Inst, CurrentGeneration));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Okay, this isn't something we can CSE at all.  Check to see if it is
 | |
|     // something that could modify memory.  If so, our available memory values
 | |
|     // cannot be used so bump the generation count.
 | |
|     if (Inst->mayWriteToMemory()) {
 | |
|       ++CurrentGeneration;
 | |
| 
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|         // We do a trivial form of DSE if there are two stores to the same
 | |
|         // location with no intervening loads.  Delete the earlier store.
 | |
|         if (LastStore &&
 | |
|             LastStore->getPointerOperand() == SI->getPointerOperand()) {
 | |
|           DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << "  due to: "
 | |
|                        << *Inst << '\n');
 | |
|           LastStore->eraseFromParent();
 | |
|           Changed = true;
 | |
|           ++NumDSE;
 | |
|           LastStore = nullptr;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Okay, we just invalidated anything we knew about loaded values.  Try
 | |
|         // to salvage *something* by remembering that the stored value is a live
 | |
|         // version of the pointer.  It is safe to forward from volatile stores
 | |
|         // to non-volatile loads, so we don't have to check for volatility of
 | |
|         // the store.
 | |
|         AvailableLoads->insert(SI->getPointerOperand(),
 | |
|          std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
 | |
| 
 | |
|         // Remember that this was the last store we saw for DSE.
 | |
|         if (SI->isSimple())
 | |
|           LastStore = SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool EarlyCSE::runOnFunction(Function &F) {
 | |
|   if (skipOptnoneFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   // Note, deque is being used here because there is significant performance gains
 | |
|   // over vector when the container becomes very large due to the specific access
 | |
|   // patterns. For more information see the mailing list discussion on this:
 | |
|   // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
 | |
|   std::deque<StackNode *> nodesToProcess;
 | |
| 
 | |
|   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|   DL = DLP ? &DLP->getDataLayout() : nullptr;
 | |
|   TLI = &getAnalysis<TargetLibraryInfo>();
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   AT = &getAnalysis<AssumptionTracker>();
 | |
| 
 | |
|   // Tables that the pass uses when walking the domtree.
 | |
|   ScopedHTType AVTable;
 | |
|   AvailableValues = &AVTable;
 | |
|   LoadHTType LoadTable;
 | |
|   AvailableLoads = &LoadTable;
 | |
|   CallHTType CallTable;
 | |
|   AvailableCalls = &CallTable;
 | |
| 
 | |
|   CurrentGeneration = 0;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Process the root node.
 | |
|   nodesToProcess.push_back(
 | |
|       new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
 | |
|                     CurrentGeneration, DT->getRootNode(),
 | |
|                     DT->getRootNode()->begin(),
 | |
|                     DT->getRootNode()->end()));
 | |
| 
 | |
|   // Save the current generation.
 | |
|   unsigned LiveOutGeneration = CurrentGeneration;
 | |
| 
 | |
|   // Process the stack.
 | |
|   while (!nodesToProcess.empty()) {
 | |
|     // Grab the first item off the stack. Set the current generation, remove
 | |
|     // the node from the stack, and process it.
 | |
|     StackNode *NodeToProcess = nodesToProcess.back();
 | |
| 
 | |
|     // Initialize class members.
 | |
|     CurrentGeneration = NodeToProcess->currentGeneration();
 | |
| 
 | |
|     // Check if the node needs to be processed.
 | |
|     if (!NodeToProcess->isProcessed()) {
 | |
|       // Process the node.
 | |
|       Changed |= processNode(NodeToProcess->node());
 | |
|       NodeToProcess->childGeneration(CurrentGeneration);
 | |
|       NodeToProcess->process();
 | |
|     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
 | |
|       // Push the next child onto the stack.
 | |
|       DomTreeNode *child = NodeToProcess->nextChild();
 | |
|       nodesToProcess.push_back(
 | |
|           new StackNode(AvailableValues,
 | |
|                         AvailableLoads,
 | |
|                         AvailableCalls,
 | |
|                         NodeToProcess->childGeneration(), child,
 | |
|                         child->begin(), child->end()));
 | |
|     } else {
 | |
|       // It has been processed, and there are no more children to process,
 | |
|       // so delete it and pop it off the stack.
 | |
|       delete NodeToProcess;
 | |
|       nodesToProcess.pop_back();
 | |
|     }
 | |
|   } // while (!nodes...)
 | |
| 
 | |
|   // Reset the current generation.
 | |
|   CurrentGeneration = LiveOutGeneration;
 | |
| 
 | |
|   return Changed;
 | |
| }
 |