forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1150 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1150 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements an idiom recognizer that transforms simple loops into a
 | |
| // non-loop form.  In cases that this kicks in, it can be a significant
 | |
| // performance win.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // TODO List:
 | |
| //
 | |
| // Future loop memory idioms to recognize:
 | |
| //   memcmp, memmove, strlen, etc.
 | |
| // Future floating point idioms to recognize in -ffast-math mode:
 | |
| //   fpowi
 | |
| // Future integer operation idioms to recognize:
 | |
| //   ctpop, ctlz, cttz
 | |
| //
 | |
| // Beware that isel's default lowering for ctpop is highly inefficient for
 | |
| // i64 and larger types when i64 is legal and the value has few bits set.  It
 | |
| // would be good to enhance isel to emit a loop for ctpop in this case.
 | |
| //
 | |
| // We should enhance the memset/memcpy recognition to handle multiple stores in
 | |
| // the loop.  This would handle things like:
 | |
| //   void foo(_Complex float *P)
 | |
| //     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
 | |
| //
 | |
| // We should enhance this to handle negative strides through memory.
 | |
| // Alternatively (and perhaps better) we could rely on an earlier pass to force
 | |
| // forward iteration through memory, which is generally better for cache
 | |
| // behavior.  Negative strides *do* happen for memset/memcpy loops.
 | |
| //
 | |
| // This could recognize common matrix multiplies and dot product idioms and
 | |
| // replace them with calls to BLAS (if linked in??).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-idiom"
 | |
| 
 | |
| STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
 | |
| STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class LoopIdiomRecognize;
 | |
| 
 | |
|   /// This class defines some utility functions for loop idiom recognization.
 | |
|   class LIRUtil {
 | |
|   public:
 | |
|     /// Return true iff the block contains nothing but an uncondition branch
 | |
|     /// (aka goto instruction).
 | |
|     static bool isAlmostEmpty(BasicBlock *);
 | |
| 
 | |
|     static BranchInst *getBranch(BasicBlock *BB) {
 | |
|       return dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     }
 | |
| 
 | |
|     /// Derive the precondition block (i.e the block that guards the loop
 | |
|     /// preheader) from the given preheader.
 | |
|     static BasicBlock *getPrecondBb(BasicBlock *PreHead);
 | |
|   };
 | |
| 
 | |
|   /// This class is to recoginize idioms of population-count conducted in
 | |
|   /// a noncountable loop. Currently it only recognizes this pattern:
 | |
|   /// \code
 | |
|   ///   while(x) {cnt++; ...; x &= x - 1; ...}
 | |
|   /// \endcode
 | |
|   class NclPopcountRecognize {
 | |
|     LoopIdiomRecognize &LIR;
 | |
|     Loop *CurLoop;
 | |
|     BasicBlock *PreCondBB;
 | |
| 
 | |
|     typedef IRBuilder<> IRBuilderTy;
 | |
| 
 | |
|   public:
 | |
|     explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
 | |
|     bool recognize();
 | |
| 
 | |
|   private:
 | |
|     /// Take a glimpse of the loop to see if we need to go ahead recoginizing
 | |
|     /// the idiom.
 | |
|     bool preliminaryScreen();
 | |
| 
 | |
|     /// Check if the given conditional branch is based on the comparison
 | |
|     /// between a variable and zero, and if the variable is non-zero, the
 | |
|     /// control yields to the loop entry. If the branch matches the behavior,
 | |
|     /// the variable involved in the comparion is returned. This function will
 | |
|     /// be called to see if the precondition and postcondition of the loop
 | |
|     /// are in desirable form.
 | |
|     Value *matchCondition(BranchInst *Br, BasicBlock *NonZeroTarget) const;
 | |
| 
 | |
|     /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
 | |
|     /// is set to the instruction counting the population bit. 2) \p CntPhi
 | |
|     /// is set to the corresponding phi node. 3) \p Var is set to the value
 | |
|     /// whose population bits are being counted.
 | |
|     bool detectIdiom
 | |
|       (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
 | |
| 
 | |
|     /// Insert ctpop intrinsic function and some obviously dead instructions.
 | |
|     void transform(Instruction *CntInst, PHINode *CntPhi, Value *Var);
 | |
| 
 | |
|     /// Create llvm.ctpop.* intrinsic function.
 | |
|     CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
 | |
|   };
 | |
| 
 | |
|   class LoopIdiomRecognize : public LoopPass {
 | |
|     Loop *CurLoop;
 | |
|     const DataLayout *DL;
 | |
|     DominatorTree *DT;
 | |
|     ScalarEvolution *SE;
 | |
|     TargetLibraryInfo *TLI;
 | |
|     const TargetTransformInfo *TTI;
 | |
|   public:
 | |
|     static char ID;
 | |
|     explicit LoopIdiomRecognize() : LoopPass(ID) {
 | |
|       initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
 | |
|       DL = nullptr; DT = nullptr; SE = nullptr; TLI = nullptr; TTI = nullptr;
 | |
|     }
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
|     bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
 | |
|                         SmallVectorImpl<BasicBlock*> &ExitBlocks);
 | |
| 
 | |
|     bool processLoopStore(StoreInst *SI, const SCEV *BECount);
 | |
|     bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
 | |
| 
 | |
|     bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
 | |
|                                  unsigned StoreAlignment,
 | |
|                                  Value *SplatValue, Instruction *TheStore,
 | |
|                                  const SCEVAddRecExpr *Ev,
 | |
|                                  const SCEV *BECount);
 | |
|     bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
 | |
|                                     const SCEVAddRecExpr *StoreEv,
 | |
|                                     const SCEVAddRecExpr *LoadEv,
 | |
|                                     const SCEV *BECount);
 | |
| 
 | |
|     /// This transformation requires natural loop information & requires that
 | |
|     /// loop preheaders be inserted into the CFG.
 | |
|     ///
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<TargetLibraryInfo>();
 | |
|       AU.addRequired<TargetTransformInfo>();
 | |
|     }
 | |
| 
 | |
|     const DataLayout *getDataLayout() {
 | |
|       if (DL)
 | |
|         return DL;
 | |
|       DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|       DL = DLP ? &DLP->getDataLayout() : nullptr;
 | |
|       return DL;
 | |
|     }
 | |
| 
 | |
|     DominatorTree *getDominatorTree() {
 | |
|       return DT ? DT
 | |
|                 : (DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree());
 | |
|     }
 | |
| 
 | |
|     ScalarEvolution *getScalarEvolution() {
 | |
|       return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
 | |
|     }
 | |
| 
 | |
|     TargetLibraryInfo *getTargetLibraryInfo() {
 | |
|       return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
 | |
|     }
 | |
| 
 | |
|     const TargetTransformInfo *getTargetTransformInfo() {
 | |
|       return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
 | |
|     }
 | |
| 
 | |
|     Loop *getLoop() const { return CurLoop; }
 | |
| 
 | |
|   private:
 | |
|     bool runOnNoncountableLoop();
 | |
|     bool runOnCountableLoop();
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LoopIdiomRecognize::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | |
| INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
 | |
|                     false, false)
 | |
| 
 | |
| Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
 | |
| 
 | |
| /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
 | |
| /// and zero out all the operands of this instruction.  If any of them become
 | |
| /// dead, delete them and the computation tree that feeds them.
 | |
| ///
 | |
| static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
 | |
|                                   const TargetLibraryInfo *TLI) {
 | |
|   SmallVector<Instruction*, 32> NowDeadInsts;
 | |
| 
 | |
|   NowDeadInsts.push_back(I);
 | |
| 
 | |
|   // Before we touch this instruction, remove it from SE!
 | |
|   do {
 | |
|     Instruction *DeadInst = NowDeadInsts.pop_back_val();
 | |
| 
 | |
|     // This instruction is dead, zap it, in stages.  Start by removing it from
 | |
|     // SCEV.
 | |
|     SE.forgetValue(DeadInst);
 | |
| 
 | |
|     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
 | |
|       Value *Op = DeadInst->getOperand(op);
 | |
|       DeadInst->setOperand(op, nullptr);
 | |
| 
 | |
|       // If this operand just became dead, add it to the NowDeadInsts list.
 | |
|       if (!Op->use_empty()) continue;
 | |
| 
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(Op))
 | |
|         if (isInstructionTriviallyDead(OpI, TLI))
 | |
|           NowDeadInsts.push_back(OpI);
 | |
|     }
 | |
| 
 | |
|     DeadInst->eraseFromParent();
 | |
| 
 | |
|   } while (!NowDeadInsts.empty());
 | |
| }
 | |
| 
 | |
| /// deleteIfDeadInstruction - If the specified value is a dead instruction,
 | |
| /// delete it and any recursively used instructions.
 | |
| static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
 | |
|                                     const TargetLibraryInfo *TLI) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (isInstructionTriviallyDead(I, TLI))
 | |
|       deleteDeadInstruction(I, SE, TLI);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //          Implementation of LIRUtil
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // This function will return true iff the given block contains nothing but goto.
 | |
| // A typical usage of this function is to check if the preheader function is
 | |
| // "almost" empty such that generated intrinsic functions can be moved across
 | |
| // the preheader and be placed at the end of the precondition block without
 | |
| // the concern of breaking data dependence.
 | |
| bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
 | |
|   if (BranchInst *Br = getBranch(BB)) {
 | |
|     return Br->isUnconditional() && BB->size() == 1;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
 | |
|   if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
 | |
|     BranchInst *Br = getBranch(BB);
 | |
|     return Br && Br->isConditional() ? BB : nullptr;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //          Implementation of NclPopcountRecognize
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
 | |
|   LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(nullptr) {
 | |
| }
 | |
| 
 | |
| bool NclPopcountRecognize::preliminaryScreen() {
 | |
|   const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
 | |
|   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
 | |
|     return false;
 | |
| 
 | |
|   // Counting population are usually conducted by few arithmetic instructions.
 | |
|   // Such instructions can be easilly "absorbed" by vacant slots in a
 | |
|   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
 | |
|   // in a compact loop.
 | |
| 
 | |
|   // Give up if the loop has multiple blocks or multiple backedges.
 | |
|   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *LoopBody = *(CurLoop->block_begin());
 | |
|   if (LoopBody->size() >= 20) {
 | |
|     // The loop is too big, bail out.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // It should have a preheader containing nothing but a goto instruction.
 | |
|   BasicBlock *PreHead = CurLoop->getLoopPreheader();
 | |
|   if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
 | |
|     return false;
 | |
| 
 | |
|   // It should have a precondition block where the generated popcount instrinsic
 | |
|   // function will be inserted.
 | |
|   PreCondBB = LIRUtil::getPrecondBb(PreHead);
 | |
|   if (!PreCondBB)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Value *NclPopcountRecognize::matchCondition(BranchInst *Br,
 | |
|                                             BasicBlock *LoopEntry) const {
 | |
|   if (!Br || !Br->isConditional())
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
 | |
|   if (!Cond)
 | |
|     return nullptr;
 | |
| 
 | |
|   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
 | |
|   if (!CmpZero || !CmpZero->isZero())
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst::Predicate Pred = Cond->getPredicate();
 | |
|   if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
 | |
|       (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
 | |
|     return Cond->getOperand(0);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
 | |
|                                        PHINode *&CntPhi,
 | |
|                                        Value *&Var) const {
 | |
|   // Following code tries to detect this idiom:
 | |
|   //
 | |
|   //    if (x0 != 0)
 | |
|   //      goto loop-exit // the precondition of the loop
 | |
|   //    cnt0 = init-val;
 | |
|   //    do {
 | |
|   //       x1 = phi (x0, x2);
 | |
|   //       cnt1 = phi(cnt0, cnt2);
 | |
|   //
 | |
|   //       cnt2 = cnt1 + 1;
 | |
|   //        ...
 | |
|   //       x2 = x1 & (x1 - 1);
 | |
|   //        ...
 | |
|   //    } while(x != 0);
 | |
|   //
 | |
|   // loop-exit:
 | |
|   //
 | |
| 
 | |
|   // step 1: Check to see if the look-back branch match this pattern:
 | |
|   //    "if (a!=0) goto loop-entry".
 | |
|   BasicBlock *LoopEntry;
 | |
|   Instruction *DefX2, *CountInst;
 | |
|   Value *VarX1, *VarX0;
 | |
|   PHINode *PhiX, *CountPhi;
 | |
| 
 | |
|   DefX2 = CountInst = nullptr;
 | |
|   VarX1 = VarX0 = nullptr;
 | |
|   PhiX = CountPhi = nullptr;
 | |
|   LoopEntry = *(CurLoop->block_begin());
 | |
| 
 | |
|   // step 1: Check if the loop-back branch is in desirable form.
 | |
|   {
 | |
|     if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
 | |
|       DefX2 = dyn_cast<Instruction>(T);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
 | |
|   {
 | |
|     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
 | |
|       return false;
 | |
| 
 | |
|     BinaryOperator *SubOneOp;
 | |
| 
 | |
|     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
 | |
|       VarX1 = DefX2->getOperand(1);
 | |
|     else {
 | |
|       VarX1 = DefX2->getOperand(0);
 | |
|       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
 | |
|     }
 | |
|     if (!SubOneOp)
 | |
|       return false;
 | |
| 
 | |
|     Instruction *SubInst = cast<Instruction>(SubOneOp);
 | |
|     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
 | |
|     if (!Dec ||
 | |
|         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
 | |
|           (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // step 3: Check the recurrence of variable X
 | |
|   {
 | |
|     PhiX = dyn_cast<PHINode>(VarX1);
 | |
|     if (!PhiX ||
 | |
|         (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
 | |
|   {
 | |
|     CountInst = nullptr;
 | |
|     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
 | |
|            IterE = LoopEntry->end(); Iter != IterE; Iter++) {
 | |
|       Instruction *Inst = Iter;
 | |
|       if (Inst->getOpcode() != Instruction::Add)
 | |
|         continue;
 | |
| 
 | |
|       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
 | |
|       if (!Inc || !Inc->isOne())
 | |
|         continue;
 | |
| 
 | |
|       PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
 | |
|       if (!Phi || Phi->getParent() != LoopEntry)
 | |
|         continue;
 | |
| 
 | |
|       // Check if the result of the instruction is live of the loop.
 | |
|       bool LiveOutLoop = false;
 | |
|       for (User *U : Inst->users()) {
 | |
|         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
 | |
|           LiveOutLoop = true; break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (LiveOutLoop) {
 | |
|         CountInst = Inst;
 | |
|         CountPhi = Phi;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!CountInst)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // step 5: check if the precondition is in this form:
 | |
|   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
 | |
|   {
 | |
|     BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
 | |
|     Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
 | |
|     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
 | |
|       return false;
 | |
| 
 | |
|     CntInst = CountInst;
 | |
|     CntPhi = CountPhi;
 | |
|     Var = T;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void NclPopcountRecognize::transform(Instruction *CntInst,
 | |
|                                      PHINode *CntPhi, Value *Var) {
 | |
| 
 | |
|   ScalarEvolution *SE = LIR.getScalarEvolution();
 | |
|   TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
 | |
|   BasicBlock *PreHead = CurLoop->getLoopPreheader();
 | |
|   BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
 | |
|   const DebugLoc DL = CntInst->getDebugLoc();
 | |
| 
 | |
|   // Assuming before transformation, the loop is following:
 | |
|   //  if (x) // the precondition
 | |
|   //     do { cnt++; x &= x - 1; } while(x);
 | |
| 
 | |
|   // Step 1: Insert the ctpop instruction at the end of the precondition block
 | |
|   IRBuilderTy Builder(PreCondBr);
 | |
|   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
 | |
|   {
 | |
|     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
 | |
|     NewCount = PopCntZext =
 | |
|       Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
 | |
| 
 | |
|     if (NewCount != PopCnt)
 | |
|       (cast<Instruction>(NewCount))->setDebugLoc(DL);
 | |
| 
 | |
|     // TripCnt is exactly the number of iterations the loop has
 | |
|     TripCnt = NewCount;
 | |
| 
 | |
|     // If the population counter's initial value is not zero, insert Add Inst.
 | |
|     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
 | |
|     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
 | |
|     if (!InitConst || !InitConst->isZero()) {
 | |
|       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
 | |
|       (cast<Instruction>(NewCount))->setDebugLoc(DL);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
 | |
|   //   "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
 | |
|   //   function would be partial dead code, and downstream passes will drag
 | |
|   //   it back from the precondition block to the preheader.
 | |
|   {
 | |
|     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
 | |
| 
 | |
|     Value *Opnd0 = PopCntZext;
 | |
|     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
 | |
|     if (PreCond->getOperand(0) != Var)
 | |
|       std::swap(Opnd0, Opnd1);
 | |
| 
 | |
|     ICmpInst *NewPreCond =
 | |
|       cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
 | |
|     PreCond->replaceAllUsesWith(NewPreCond);
 | |
| 
 | |
|     deleteDeadInstruction(PreCond, *SE, TLI);
 | |
|   }
 | |
| 
 | |
|   // Step 3: Note that the population count is exactly the trip count of the
 | |
|   // loop in question, which enble us to to convert the loop from noncountable
 | |
|   // loop into a countable one. The benefit is twofold:
 | |
|   //
 | |
|   //  - If the loop only counts population, the entire loop become dead after
 | |
|   //    the transformation. It is lots easier to prove a countable loop dead
 | |
|   //    than to prove a noncountable one. (In some C dialects, a infite loop
 | |
|   //    isn't dead even if it computes nothing useful. In general, DCE needs
 | |
|   //    to prove a noncountable loop finite before safely delete it.)
 | |
|   //
 | |
|   //  - If the loop also performs something else, it remains alive.
 | |
|   //    Since it is transformed to countable form, it can be aggressively
 | |
|   //    optimized by some optimizations which are in general not applicable
 | |
|   //    to a noncountable loop.
 | |
|   //
 | |
|   // After this step, this loop (conceptually) would look like following:
 | |
|   //   newcnt = __builtin_ctpop(x);
 | |
|   //   t = newcnt;
 | |
|   //   if (x)
 | |
|   //     do { cnt++; x &= x-1; t--) } while (t > 0);
 | |
|   BasicBlock *Body = *(CurLoop->block_begin());
 | |
|   {
 | |
|     BranchInst *LbBr = LIRUtil::getBranch(Body);
 | |
|     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
 | |
|     Type *Ty = TripCnt->getType();
 | |
| 
 | |
|     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
 | |
| 
 | |
|     Builder.SetInsertPoint(LbCond);
 | |
|     Value *Opnd1 = cast<Value>(TcPhi);
 | |
|     Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
 | |
|     Instruction *TcDec =
 | |
|       cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
 | |
| 
 | |
|     TcPhi->addIncoming(TripCnt, PreHead);
 | |
|     TcPhi->addIncoming(TcDec, Body);
 | |
| 
 | |
|     CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
 | |
|       CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
 | |
|     LbCond->setPredicate(Pred);
 | |
|     LbCond->setOperand(0, TcDec);
 | |
|     LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
 | |
|   }
 | |
| 
 | |
|   // Step 4: All the references to the original population counter outside
 | |
|   //  the loop are replaced with the NewCount -- the value returned from
 | |
|   //  __builtin_ctpop().
 | |
|   {
 | |
|     SmallVector<Value *, 4> CntUses;
 | |
|     for (User *U : CntInst->users())
 | |
|       if (cast<Instruction>(U)->getParent() != Body)
 | |
|         CntUses.push_back(U);
 | |
|     for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
 | |
|       (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // step 5: Forget the "non-computable" trip-count SCEV associated with the
 | |
|   //   loop. The loop would otherwise not be deleted even if it becomes empty.
 | |
|   SE->forgetLoop(CurLoop);
 | |
| }
 | |
| 
 | |
| CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
 | |
|                                                       Value *Val, DebugLoc DL) {
 | |
|   Value *Ops[] = { Val };
 | |
|   Type *Tys[] = { Val->getType() };
 | |
| 
 | |
|   Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
 | |
|   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
 | |
|   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
 | |
|   CI->setDebugLoc(DL);
 | |
| 
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| /// recognize - detect population count idiom in a non-countable loop. If
 | |
| ///   detected, transform the relevant code to popcount intrinsic function
 | |
| ///   call, and return true; otherwise, return false.
 | |
| bool NclPopcountRecognize::recognize() {
 | |
| 
 | |
|   if (!LIR.getTargetTransformInfo())
 | |
|     return false;
 | |
| 
 | |
|   LIR.getScalarEvolution();
 | |
| 
 | |
|   if (!preliminaryScreen())
 | |
|     return false;
 | |
| 
 | |
|   Instruction *CntInst;
 | |
|   PHINode *CntPhi;
 | |
|   Value *Val;
 | |
|   if (!detectIdiom(CntInst, CntPhi, Val))
 | |
|     return false;
 | |
| 
 | |
|   transform(CntInst, CntPhi, Val);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //          Implementation of LoopIdiomRecognize
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool LoopIdiomRecognize::runOnCountableLoop() {
 | |
|   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
 | |
|   if (isa<SCEVCouldNotCompute>(BECount)) return false;
 | |
| 
 | |
|   // If this loop executes exactly one time, then it should be peeled, not
 | |
|   // optimized by this pass.
 | |
|   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
 | |
|     if (BECst->getValue()->getValue() == 0)
 | |
|       return false;
 | |
| 
 | |
|   // We require target data for now.
 | |
|   if (!getDataLayout())
 | |
|     return false;
 | |
| 
 | |
|   // set DT
 | |
|   (void)getDominatorTree();
 | |
| 
 | |
|   LoopInfo &LI = getAnalysis<LoopInfo>();
 | |
|   TLI = &getAnalysis<TargetLibraryInfo>();
 | |
| 
 | |
|   // set TLI
 | |
|   (void)getTargetLibraryInfo();
 | |
| 
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   CurLoop->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   DEBUG(dbgs() << "loop-idiom Scanning: F["
 | |
|                << CurLoop->getHeader()->getParent()->getName()
 | |
|                << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   // Scan all the blocks in the loop that are not in subloops.
 | |
|   for (Loop::block_iterator BI = CurLoop->block_begin(),
 | |
|          E = CurLoop->block_end(); BI != E; ++BI) {
 | |
|     // Ignore blocks in subloops.
 | |
|     if (LI.getLoopFor(*BI) != CurLoop)
 | |
|       continue;
 | |
| 
 | |
|     MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool LoopIdiomRecognize::runOnNoncountableLoop() {
 | |
|   NclPopcountRecognize Popcount(*this);
 | |
|   if (Popcount.recognize())
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   if (skipOptnoneFunction(L))
 | |
|     return false;
 | |
| 
 | |
|   CurLoop = L;
 | |
| 
 | |
|   // If the loop could not be converted to canonical form, it must have an
 | |
|   // indirectbr in it, just give up.
 | |
|   if (!L->getLoopPreheader())
 | |
|     return false;
 | |
| 
 | |
|   // Disable loop idiom recognition if the function's name is a common idiom.
 | |
|   StringRef Name = L->getHeader()->getParent()->getName();
 | |
|   if (Name == "memset" || Name == "memcpy")
 | |
|     return false;
 | |
| 
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   if (SE->hasLoopInvariantBackedgeTakenCount(L))
 | |
|     return runOnCountableLoop();
 | |
|   return runOnNoncountableLoop();
 | |
| }
 | |
| 
 | |
| /// runOnLoopBlock - Process the specified block, which lives in a counted loop
 | |
| /// with the specified backedge count.  This block is known to be in the current
 | |
| /// loop and not in any subloops.
 | |
| bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
 | |
|                                      SmallVectorImpl<BasicBlock*> &ExitBlocks) {
 | |
|   // We can only promote stores in this block if they are unconditionally
 | |
|   // executed in the loop.  For a block to be unconditionally executed, it has
 | |
|   // to dominate all the exit blocks of the loop.  Verify this now.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | |
|     if (!DT->dominates(BB, ExitBlocks[i]))
 | |
|       return false;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
 | |
|     Instruction *Inst = I++;
 | |
|     // Look for store instructions, which may be optimized to memset/memcpy.
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
 | |
|       WeakVH InstPtr(I);
 | |
|       if (!processLoopStore(SI, BECount)) continue;
 | |
|       MadeChange = true;
 | |
| 
 | |
|       // If processing the store invalidated our iterator, start over from the
 | |
|       // top of the block.
 | |
|       if (!InstPtr)
 | |
|         I = BB->begin();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Look for memset instructions, which may be optimized to a larger memset.
 | |
|     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
 | |
|       WeakVH InstPtr(I);
 | |
|       if (!processLoopMemSet(MSI, BECount)) continue;
 | |
|       MadeChange = true;
 | |
| 
 | |
|       // If processing the memset invalidated our iterator, start over from the
 | |
|       // top of the block.
 | |
|       if (!InstPtr)
 | |
|         I = BB->begin();
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// processLoopStore - See if this store can be promoted to a memset or memcpy.
 | |
| bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
 | |
|   if (!SI->isSimple()) return false;
 | |
| 
 | |
|   Value *StoredVal = SI->getValueOperand();
 | |
|   Value *StorePtr = SI->getPointerOperand();
 | |
| 
 | |
|   // Reject stores that are so large that they overflow an unsigned.
 | |
|   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
 | |
|   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
 | |
|     return false;
 | |
| 
 | |
|   // See if the pointer expression is an AddRec like {base,+,1} on the current
 | |
|   // loop, which indicates a strided store.  If we have something else, it's a
 | |
|   // random store we can't handle.
 | |
|   const SCEVAddRecExpr *StoreEv =
 | |
|     dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
 | |
|   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if the stride matches the size of the store.  If so, then we
 | |
|   // know that every byte is touched in the loop.
 | |
|   unsigned StoreSize = (unsigned)SizeInBits >> 3;
 | |
|   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
 | |
| 
 | |
|   if (!Stride || StoreSize != Stride->getValue()->getValue()) {
 | |
|     // TODO: Could also handle negative stride here someday, that will require
 | |
|     // the validity check in mayLoopAccessLocation to be updated though.
 | |
|     // Enable this to print exact negative strides.
 | |
|     if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
 | |
|       dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
 | |
|       dbgs() << "BB: " << *SI->getParent();
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // See if we can optimize just this store in isolation.
 | |
|   if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
 | |
|                               StoredVal, SI, StoreEv, BECount))
 | |
|     return true;
 | |
| 
 | |
|   // If the stored value is a strided load in the same loop with the same stride
 | |
|   // this this may be transformable into a memcpy.  This kicks in for stuff like
 | |
|   //   for (i) A[i] = B[i];
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
 | |
|     const SCEVAddRecExpr *LoadEv =
 | |
|       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
 | |
|     if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
 | |
|         StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
 | |
|       if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
 | |
|         return true;
 | |
|   }
 | |
|   //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// processLoopMemSet - See if this memset can be promoted to a large memset.
 | |
| bool LoopIdiomRecognize::
 | |
| processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
 | |
|   // We can only handle non-volatile memsets with a constant size.
 | |
|   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
 | |
| 
 | |
|   // If we're not allowed to hack on memset, we fail.
 | |
|   if (!TLI->has(LibFunc::memset))
 | |
|     return false;
 | |
| 
 | |
|   Value *Pointer = MSI->getDest();
 | |
| 
 | |
|   // See if the pointer expression is an AddRec like {base,+,1} on the current
 | |
|   // loop, which indicates a strided store.  If we have something else, it's a
 | |
|   // random store we can't handle.
 | |
|   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
 | |
|   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   // Reject memsets that are so large that they overflow an unsigned.
 | |
|   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | |
|   if ((SizeInBytes >> 32) != 0)
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if the stride matches the size of the memset.  If so, then we
 | |
|   // know that every byte is touched in the loop.
 | |
|   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
 | |
| 
 | |
|   // TODO: Could also handle negative stride here someday, that will require the
 | |
|   // validity check in mayLoopAccessLocation to be updated though.
 | |
|   if (!Stride || MSI->getLength() != Stride->getValue())
 | |
|     return false;
 | |
| 
 | |
|   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
 | |
|                                  MSI->getAlignment(), MSI->getValue(),
 | |
|                                  MSI, Ev, BECount);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// mayLoopAccessLocation - Return true if the specified loop might access the
 | |
| /// specified pointer location, which is a loop-strided access.  The 'Access'
 | |
| /// argument specifies what the verboten forms of access are (read or write).
 | |
| static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
 | |
|                                   Loop *L, const SCEV *BECount,
 | |
|                                   unsigned StoreSize, AliasAnalysis &AA,
 | |
|                                   Instruction *IgnoredStore) {
 | |
|   // Get the location that may be stored across the loop.  Since the access is
 | |
|   // strided positively through memory, we say that the modified location starts
 | |
|   // at the pointer and has infinite size.
 | |
|   uint64_t AccessSize = AliasAnalysis::UnknownSize;
 | |
| 
 | |
|   // If the loop iterates a fixed number of times, we can refine the access size
 | |
|   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
 | |
|   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
 | |
|     AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
 | |
| 
 | |
|   // TODO: For this to be really effective, we have to dive into the pointer
 | |
|   // operand in the store.  Store to &A[i] of 100 will always return may alias
 | |
|   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
 | |
|   // which will then no-alias a store to &A[100].
 | |
|   AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
 | |
| 
 | |
|   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
 | |
|        ++BI)
 | |
|     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
 | |
|       if (&*I != IgnoredStore &&
 | |
|           (AA.getModRefInfo(I, StoreLoc) & Access))
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getMemSetPatternValue - If a strided store of the specified value is safe to
 | |
| /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
 | |
| /// be passed in.  Otherwise, return null.
 | |
| ///
 | |
| /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
 | |
| /// just replicate their input array and then pass on to memset_pattern16.
 | |
| static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) {
 | |
|   // If the value isn't a constant, we can't promote it to being in a constant
 | |
|   // array.  We could theoretically do a store to an alloca or something, but
 | |
|   // that doesn't seem worthwhile.
 | |
|   Constant *C = dyn_cast<Constant>(V);
 | |
|   if (!C) return nullptr;
 | |
| 
 | |
|   // Only handle simple values that are a power of two bytes in size.
 | |
|   uint64_t Size = DL.getTypeSizeInBits(V->getType());
 | |
|   if (Size == 0 || (Size & 7) || (Size & (Size-1)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't care enough about darwin/ppc to implement this.
 | |
|   if (DL.isBigEndian())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Convert to size in bytes.
 | |
|   Size /= 8;
 | |
| 
 | |
|   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
 | |
|   // if the top and bottom are the same (e.g. for vectors and large integers).
 | |
|   if (Size > 16) return nullptr;
 | |
| 
 | |
|   // If the constant is exactly 16 bytes, just use it.
 | |
|   if (Size == 16) return C;
 | |
| 
 | |
|   // Otherwise, we'll use an array of the constants.
 | |
|   unsigned ArraySize = 16/Size;
 | |
|   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
 | |
|   return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// processLoopStridedStore - We see a strided store of some value.  If we can
 | |
| /// transform this into a memset or memset_pattern in the loop preheader, do so.
 | |
| bool LoopIdiomRecognize::
 | |
| processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
 | |
|                         unsigned StoreAlignment, Value *StoredVal,
 | |
|                         Instruction *TheStore, const SCEVAddRecExpr *Ev,
 | |
|                         const SCEV *BECount) {
 | |
| 
 | |
|   // If the stored value is a byte-wise value (like i32 -1), then it may be
 | |
|   // turned into a memset of i8 -1, assuming that all the consecutive bytes
 | |
|   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
 | |
|   // but it can be turned into memset_pattern if the target supports it.
 | |
|   Value *SplatValue = isBytewiseValue(StoredVal);
 | |
|   Constant *PatternValue = nullptr;
 | |
| 
 | |
|   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
 | |
| 
 | |
|   // If we're allowed to form a memset, and the stored value would be acceptable
 | |
|   // for memset, use it.
 | |
|   if (SplatValue && TLI->has(LibFunc::memset) &&
 | |
|       // Verify that the stored value is loop invariant.  If not, we can't
 | |
|       // promote the memset.
 | |
|       CurLoop->isLoopInvariant(SplatValue)) {
 | |
|     // Keep and use SplatValue.
 | |
|     PatternValue = nullptr;
 | |
|   } else if (DestAS == 0 &&
 | |
|              TLI->has(LibFunc::memset_pattern16) &&
 | |
|              (PatternValue = getMemSetPatternValue(StoredVal, *DL))) {
 | |
|     // Don't create memset_pattern16s with address spaces.
 | |
|     // It looks like we can use PatternValue!
 | |
|     SplatValue = nullptr;
 | |
|   } else {
 | |
|     // Otherwise, this isn't an idiom we can transform.  For example, we can't
 | |
|     // do anything with a 3-byte store.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // The trip count of the loop and the base pointer of the addrec SCEV is
 | |
|   // guaranteed to be loop invariant, which means that it should dominate the
 | |
|   // header.  This allows us to insert code for it in the preheader.
 | |
|   BasicBlock *Preheader = CurLoop->getLoopPreheader();
 | |
|   IRBuilder<> Builder(Preheader->getTerminator());
 | |
|   SCEVExpander Expander(*SE, "loop-idiom");
 | |
| 
 | |
|   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
 | |
| 
 | |
|   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
 | |
|   // this into a memset in the loop preheader now if we want.  However, this
 | |
|   // would be unsafe to do if there is anything else in the loop that may read
 | |
|   // or write to the aliased location.  Check for any overlap by generating the
 | |
|   // base pointer and checking the region.
 | |
|   Value *BasePtr =
 | |
|     Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy,
 | |
|                            Preheader->getTerminator());
 | |
| 
 | |
|   if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
 | |
|                             CurLoop, BECount,
 | |
|                             StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) {
 | |
|     Expander.clear();
 | |
|     // If we generated new code for the base pointer, clean up.
 | |
|     deleteIfDeadInstruction(BasePtr, *SE, TLI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, everything looks good, insert the memset.
 | |
| 
 | |
|   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
 | |
|   // pointer size if it isn't already.
 | |
|   Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
 | |
|   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
 | |
| 
 | |
|   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
 | |
|                                          SCEV::FlagNUW);
 | |
|   if (StoreSize != 1) {
 | |
|     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
 | |
|                                SCEV::FlagNUW);
 | |
|   }
 | |
| 
 | |
|   Value *NumBytes =
 | |
|     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
 | |
| 
 | |
|   CallInst *NewCall;
 | |
|   if (SplatValue) {
 | |
|     NewCall = Builder.CreateMemSet(BasePtr,
 | |
|                                    SplatValue,
 | |
|                                    NumBytes,
 | |
|                                    StoreAlignment);
 | |
|   } else {
 | |
|     // Everything is emitted in default address space
 | |
|     Type *Int8PtrTy = DestInt8PtrTy;
 | |
| 
 | |
|     Module *M = TheStore->getParent()->getParent()->getParent();
 | |
|     Value *MSP = M->getOrInsertFunction("memset_pattern16",
 | |
|                                         Builder.getVoidTy(),
 | |
|                                         Int8PtrTy,
 | |
|                                         Int8PtrTy,
 | |
|                                         IntPtr,
 | |
|                                         (void*)nullptr);
 | |
| 
 | |
|     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
 | |
|     // an constant array of 16-bytes.  Plop the value into a mergable global.
 | |
|     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
 | |
|                                             GlobalValue::InternalLinkage,
 | |
|                                             PatternValue, ".memset_pattern");
 | |
|     GV->setUnnamedAddr(true); // Ok to merge these.
 | |
|     GV->setAlignment(16);
 | |
|     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
 | |
|     NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
 | |
|                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
 | |
|   NewCall->setDebugLoc(TheStore->getDebugLoc());
 | |
| 
 | |
|   // Okay, the memset has been formed.  Zap the original store and anything that
 | |
|   // feeds into it.
 | |
|   deleteDeadInstruction(TheStore, *SE, TLI);
 | |
|   ++NumMemSet;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
 | |
| /// same-strided load.
 | |
| bool LoopIdiomRecognize::
 | |
| processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
 | |
|                            const SCEVAddRecExpr *StoreEv,
 | |
|                            const SCEVAddRecExpr *LoadEv,
 | |
|                            const SCEV *BECount) {
 | |
|   // If we're not allowed to form memcpy, we fail.
 | |
|   if (!TLI->has(LibFunc::memcpy))
 | |
|     return false;
 | |
| 
 | |
|   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
 | |
| 
 | |
|   // The trip count of the loop and the base pointer of the addrec SCEV is
 | |
|   // guaranteed to be loop invariant, which means that it should dominate the
 | |
|   // header.  This allows us to insert code for it in the preheader.
 | |
|   BasicBlock *Preheader = CurLoop->getLoopPreheader();
 | |
|   IRBuilder<> Builder(Preheader->getTerminator());
 | |
|   SCEVExpander Expander(*SE, "loop-idiom");
 | |
| 
 | |
|   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
 | |
|   // this into a memcpy in the loop preheader now if we want.  However, this
 | |
|   // would be unsafe to do if there is anything else in the loop that may read
 | |
|   // or write the memory region we're storing to.  This includes the load that
 | |
|   // feeds the stores.  Check for an alias by generating the base address and
 | |
|   // checking everything.
 | |
|   Value *StoreBasePtr =
 | |
|     Expander.expandCodeFor(StoreEv->getStart(),
 | |
|                            Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
 | |
|                            Preheader->getTerminator());
 | |
| 
 | |
|   if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
 | |
|                             CurLoop, BECount, StoreSize,
 | |
|                             getAnalysis<AliasAnalysis>(), SI)) {
 | |
|     Expander.clear();
 | |
|     // If we generated new code for the base pointer, clean up.
 | |
|     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // For a memcpy, we have to make sure that the input array is not being
 | |
|   // mutated by the loop.
 | |
|   Value *LoadBasePtr =
 | |
|     Expander.expandCodeFor(LoadEv->getStart(),
 | |
|                            Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
 | |
|                            Preheader->getTerminator());
 | |
| 
 | |
|   if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
 | |
|                             StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
 | |
|     Expander.clear();
 | |
|     // If we generated new code for the base pointer, clean up.
 | |
|     deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
 | |
|     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, everything is safe, we can transform this!
 | |
| 
 | |
| 
 | |
|   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
 | |
|   // pointer size if it isn't already.
 | |
|   Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
 | |
|   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
 | |
| 
 | |
|   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
 | |
|                                          SCEV::FlagNUW);
 | |
|   if (StoreSize != 1)
 | |
|     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
 | |
|                                SCEV::FlagNUW);
 | |
| 
 | |
|   Value *NumBytes =
 | |
|     Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
 | |
| 
 | |
|   CallInst *NewCall =
 | |
|     Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
 | |
|                          std::min(SI->getAlignment(), LI->getAlignment()));
 | |
|   NewCall->setDebugLoc(SI->getDebugLoc());
 | |
| 
 | |
|   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
 | |
|                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
 | |
|                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
 | |
| 
 | |
| 
 | |
|   // Okay, the memset has been formed.  Zap the original store and anything that
 | |
|   // feeds into it.
 | |
|   deleteDeadInstruction(SI, *SE, TLI);
 | |
|   ++NumMemCpy;
 | |
|   return true;
 | |
| }
 |