forked from OSchip/llvm-project
416 lines
16 KiB
C++
416 lines
16 KiB
C++
//===--------- X86InterleavedAccess.cpp ----------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===--------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file contains the X86 implementation of the interleaved accesses
|
|
/// optimization generating X86-specific instructions/intrinsics for
|
|
/// interleaved access groups.
|
|
///
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
/// \brief This class holds necessary information to represent an interleaved
|
|
/// access group and supports utilities to lower the group into
|
|
/// X86-specific instructions/intrinsics.
|
|
/// E.g. A group of interleaving access loads (Factor = 2; accessing every
|
|
/// other element)
|
|
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
|
|
/// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
|
|
/// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
|
|
class X86InterleavedAccessGroup {
|
|
/// \brief Reference to the wide-load instruction of an interleaved access
|
|
/// group.
|
|
Instruction *const Inst;
|
|
|
|
/// \brief Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
|
|
ArrayRef<ShuffleVectorInst *> Shuffles;
|
|
|
|
/// \brief Reference to the starting index of each user-shuffle.
|
|
ArrayRef<unsigned> Indices;
|
|
|
|
/// \brief Reference to the interleaving stride in terms of elements.
|
|
const unsigned Factor;
|
|
|
|
/// \brief Reference to the underlying target.
|
|
const X86Subtarget &Subtarget;
|
|
|
|
const DataLayout &DL;
|
|
|
|
IRBuilder<> &Builder;
|
|
|
|
/// \brief Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
|
|
/// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors.
|
|
void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T,
|
|
SmallVectorImpl<Instruction *> &DecomposedVectors);
|
|
|
|
/// \brief Performs matrix transposition on a 4x4 matrix \p InputVectors and
|
|
/// returns the transposed-vectors in \p TransposedVectors.
|
|
/// E.g.
|
|
/// InputVectors:
|
|
/// In-V0 = p1, p2, p3, p4
|
|
/// In-V1 = q1, q2, q3, q4
|
|
/// In-V2 = r1, r2, r3, r4
|
|
/// In-V3 = s1, s2, s3, s4
|
|
/// OutputVectors:
|
|
/// Out-V0 = p1, q1, r1, s1
|
|
/// Out-V1 = p2, q2, r2, s2
|
|
/// Out-V2 = p3, q3, r3, s3
|
|
/// Out-V3 = P4, q4, r4, s4
|
|
void transpose_4x4(ArrayRef<Instruction *> InputVectors,
|
|
SmallVectorImpl<Value *> &TransposedMatrix);
|
|
void interleave8bit_32x4(ArrayRef<Instruction *> InputVectors,
|
|
SmallVectorImpl<Value *> &TransposedMatrix);
|
|
public:
|
|
/// In order to form an interleaved access group X86InterleavedAccessGroup
|
|
/// requires a wide-load instruction \p 'I', a group of interleaved-vectors
|
|
/// \p Shuffs, reference to the first indices of each interleaved-vector
|
|
/// \p 'Ind' and the interleaving stride factor \p F. In order to generate
|
|
/// X86-specific instructions/intrinsics it also requires the underlying
|
|
/// target information \p STarget.
|
|
explicit X86InterleavedAccessGroup(Instruction *I,
|
|
ArrayRef<ShuffleVectorInst *> Shuffs,
|
|
ArrayRef<unsigned> Ind, const unsigned F,
|
|
const X86Subtarget &STarget,
|
|
IRBuilder<> &B)
|
|
: Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
|
|
DL(Inst->getModule()->getDataLayout()), Builder(B) {}
|
|
|
|
/// \brief Returns true if this interleaved access group can be lowered into
|
|
/// x86-specific instructions/intrinsics, false otherwise.
|
|
bool isSupported() const;
|
|
|
|
/// \brief Lowers this interleaved access group into X86-specific
|
|
/// instructions/intrinsics.
|
|
bool lowerIntoOptimizedSequence();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool X86InterleavedAccessGroup::isSupported() const {
|
|
VectorType *ShuffleVecTy = Shuffles[0]->getType();
|
|
Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType();
|
|
unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy);
|
|
unsigned SupportedNumElem = 4;
|
|
if (ShuffleElemSize == 8)
|
|
SupportedNumElem = 32;
|
|
unsigned WideInstSize;
|
|
|
|
// Currently, lowering is supported for the following vectors:
|
|
// 1. 4-element vectors of 64 bits on AVX.
|
|
// 2. 32-element vectors of 8 bits on AVX.
|
|
if (isa<LoadInst>(Inst)) {
|
|
if (DL.getTypeSizeInBits(ShuffleVecTy) !=
|
|
SupportedNumElem * ShuffleElemSize)
|
|
return false;
|
|
|
|
WideInstSize = DL.getTypeSizeInBits(Inst->getType());
|
|
} else
|
|
WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType());
|
|
|
|
if (DL.getTypeSizeInBits(ShuffleEltTy) == 8 && !isa<StoreInst>(Inst))
|
|
return false;
|
|
|
|
if (!Subtarget.hasAVX() || Factor != 4 ||
|
|
(ShuffleElemSize != 64 && ShuffleElemSize != 8) ||
|
|
WideInstSize != (Factor * ShuffleElemSize * SupportedNumElem))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void X86InterleavedAccessGroup::decompose(
|
|
Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy,
|
|
SmallVectorImpl<Instruction *> &DecomposedVectors) {
|
|
|
|
assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&
|
|
"Expected Load or Shuffle");
|
|
|
|
Type *VecTy = VecInst->getType();
|
|
(void)VecTy;
|
|
assert(VecTy->isVectorTy() &&
|
|
DL.getTypeSizeInBits(VecTy) >=
|
|
DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
|
|
"Invalid Inst-size!!!");
|
|
|
|
if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) {
|
|
Value *Op0 = SVI->getOperand(0);
|
|
Value *Op1 = SVI->getOperand(1);
|
|
|
|
// Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type.
|
|
for (unsigned i = 0; i < NumSubVectors; ++i)
|
|
DecomposedVectors.push_back(
|
|
cast<ShuffleVectorInst>(Builder.CreateShuffleVector(
|
|
Op0, Op1,
|
|
createSequentialMask(Builder, Indices[i],
|
|
SubVecTy->getVectorNumElements(), 0))));
|
|
return;
|
|
}
|
|
|
|
// Decompose the load instruction.
|
|
LoadInst *LI = cast<LoadInst>(VecInst);
|
|
Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace());
|
|
Value *VecBasePtr =
|
|
Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);
|
|
|
|
// Generate N loads of T type.
|
|
for (unsigned i = 0; i < NumSubVectors; i++) {
|
|
// TODO: Support inbounds GEP.
|
|
Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i));
|
|
Instruction *NewLoad =
|
|
Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment());
|
|
DecomposedVectors.push_back(NewLoad);
|
|
}
|
|
}
|
|
|
|
// Create shuffle mask for concatenation of two half vectors.
|
|
// Low = false: mask generated for the shuffle
|
|
// shuffle(VEC1,VEC2,{NumElement/2, NumElement/2+1, NumElement/2+2...,
|
|
// NumElement-1, NumElement+NumElement/2,
|
|
// NumElement+NumElement/2+1..., 2*NumElement-1})
|
|
// = concat(high_half(VEC1),high_half(VEC2))
|
|
// Low = true: mask generated for the shuffle
|
|
// shuffle(VEC1,VEC2,{0,1,2,...,NumElement/2-1,NumElement,
|
|
// NumElement+1...,NumElement+NumElement/2-1})
|
|
// = concat(low_half(VEC1),low_half(VEC2))
|
|
static void createConcatShuffleMask(int NumElements,
|
|
SmallVectorImpl<uint32_t> &Mask, bool Low) {
|
|
int NumHalfElements = NumElements / 2;
|
|
int Offset = Low ? 0 : NumHalfElements;
|
|
for (int i = 0; i < NumHalfElements; ++i)
|
|
Mask.push_back(i + Offset);
|
|
for (int i = 0; i < NumHalfElements; ++i)
|
|
Mask.push_back(i + Offset + NumElements);
|
|
}
|
|
|
|
void X86InterleavedAccessGroup::interleave8bit_32x4(
|
|
ArrayRef<Instruction *> Matrix,
|
|
SmallVectorImpl<Value *> &TransposedMatrix) {
|
|
|
|
// Example: Assuming we start from the following vectors:
|
|
// Matrix[0]= c0 c1 c2 c3 c4 ... c31
|
|
// Matrix[1]= m0 m1 m2 m3 m4 ... m31
|
|
// Matrix[2]= y0 y1 y2 y3 y4 ... y31
|
|
// Matrix[3]= k0 k1 k2 k3 k4 ... k31
|
|
|
|
TransposedMatrix.resize(4);
|
|
|
|
SmallVector<uint32_t, 32> MaskHighTemp;
|
|
SmallVector<uint32_t, 32> MaskLowTemp;
|
|
SmallVector<uint32_t, 32> MaskHighTemp1;
|
|
SmallVector<uint32_t, 32> MaskLowTemp1;
|
|
SmallVector<uint32_t, 32> MaskHighTemp2;
|
|
SmallVector<uint32_t, 32> MaskLowTemp2;
|
|
SmallVector<uint32_t, 32> ConcatLow;
|
|
SmallVector<uint32_t, 32> ConcatHigh;
|
|
|
|
// MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86
|
|
// shuffle pattern.
|
|
|
|
createUnpackShuffleMask<uint32_t>(MVT::v32i8, MaskHighTemp, false, false);
|
|
createUnpackShuffleMask<uint32_t>(MVT::v32i8, MaskLowTemp, true, false);
|
|
ArrayRef<uint32_t> MaskHigh = makeArrayRef(MaskHighTemp);
|
|
ArrayRef<uint32_t> MaskLow = makeArrayRef(MaskLowTemp);
|
|
|
|
// ConcatHigh and ConcatLow built in the vperm2i128 and vinserti128 X86
|
|
// shuffle pattern.
|
|
|
|
createConcatShuffleMask(32, ConcatLow, true);
|
|
createConcatShuffleMask(32, ConcatHigh, false);
|
|
ArrayRef<uint32_t> MaskConcatLow = makeArrayRef(ConcatLow);
|
|
ArrayRef<uint32_t> MaskConcatHigh = makeArrayRef(ConcatHigh);
|
|
|
|
// MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86
|
|
// shuffle pattern.
|
|
|
|
createUnpackShuffleMask<uint32_t>(MVT::v16i16, MaskLowTemp1, true, false);
|
|
createUnpackShuffleMask<uint32_t>(MVT::v16i16, MaskHighTemp1, false, false);
|
|
scaleShuffleMask<uint32_t>(2, makeArrayRef(MaskHighTemp1), MaskHighTemp2);
|
|
scaleShuffleMask<uint32_t>(2, makeArrayRef(MaskLowTemp1), MaskLowTemp2);
|
|
ArrayRef<uint32_t> MaskHighWord = makeArrayRef(MaskHighTemp2);
|
|
ArrayRef<uint32_t> MaskLowWord = makeArrayRef(MaskLowTemp2);
|
|
|
|
// IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23
|
|
// IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31
|
|
// IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23
|
|
// IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31
|
|
|
|
Value *IntrVec1Low =
|
|
Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
|
|
Value *IntrVec1High =
|
|
Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh);
|
|
Value *IntrVec2Low =
|
|
Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
|
|
Value *IntrVec2High =
|
|
Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh);
|
|
|
|
// cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23
|
|
// cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31
|
|
// cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19
|
|
// cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27
|
|
|
|
Value *High =
|
|
Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord);
|
|
Value *High1 =
|
|
Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskHighWord);
|
|
Value *Low =
|
|
Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord);
|
|
Value *Low1 =
|
|
Builder.CreateShuffleVector(IntrVec1High, IntrVec2High, MaskLowWord);
|
|
|
|
// cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7
|
|
// cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15
|
|
// cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23
|
|
// cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31
|
|
|
|
TransposedMatrix[0] = Builder.CreateShuffleVector(Low, High, MaskConcatLow);
|
|
TransposedMatrix[1] = Builder.CreateShuffleVector(Low1, High1, MaskConcatLow);
|
|
TransposedMatrix[2] = Builder.CreateShuffleVector(Low, High, MaskConcatHigh);
|
|
TransposedMatrix[3] =
|
|
Builder.CreateShuffleVector(Low1, High1, MaskConcatHigh);
|
|
}
|
|
|
|
void X86InterleavedAccessGroup::transpose_4x4(
|
|
ArrayRef<Instruction *> Matrix,
|
|
SmallVectorImpl<Value *> &TransposedMatrix) {
|
|
assert(Matrix.size() == 4 && "Invalid matrix size");
|
|
TransposedMatrix.resize(4);
|
|
|
|
// dst = src1[0,1],src2[0,1]
|
|
uint32_t IntMask1[] = {0, 1, 4, 5};
|
|
ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4);
|
|
Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
|
|
Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
|
|
|
|
// dst = src1[2,3],src2[2,3]
|
|
uint32_t IntMask2[] = {2, 3, 6, 7};
|
|
Mask = makeArrayRef(IntMask2, 4);
|
|
Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
|
|
Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
|
|
|
|
// dst = src1[0],src2[0],src1[2],src2[2]
|
|
uint32_t IntMask3[] = {0, 4, 2, 6};
|
|
Mask = makeArrayRef(IntMask3, 4);
|
|
TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
|
|
TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
|
|
|
|
// dst = src1[1],src2[1],src1[3],src2[3]
|
|
uint32_t IntMask4[] = {1, 5, 3, 7};
|
|
Mask = makeArrayRef(IntMask4, 4);
|
|
TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
|
|
TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
|
|
}
|
|
|
|
// Lowers this interleaved access group into X86-specific
|
|
// instructions/intrinsics.
|
|
bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
|
|
SmallVector<Instruction *, 4> DecomposedVectors;
|
|
SmallVector<Value *, 4> TransposedVectors;
|
|
VectorType *ShuffleTy = Shuffles[0]->getType();
|
|
|
|
if (isa<LoadInst>(Inst)) {
|
|
// Try to generate target-sized register(/instruction).
|
|
decompose(Inst, Factor, ShuffleTy, DecomposedVectors);
|
|
|
|
// Perform matrix-transposition in order to compute interleaved
|
|
// results by generating some sort of (optimized) target-specific
|
|
// instructions.
|
|
transpose_4x4(DecomposedVectors, TransposedVectors);
|
|
|
|
// Now replace the unoptimized-interleaved-vectors with the
|
|
// transposed-interleaved vectors.
|
|
for (unsigned i = 0, e = Shuffles.size(); i < e; ++i)
|
|
Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);
|
|
|
|
return true;
|
|
}
|
|
|
|
Type *ShuffleEltTy = ShuffleTy->getVectorElementType();
|
|
unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor;
|
|
|
|
// Lower the interleaved stores:
|
|
// 1. Decompose the interleaved wide shuffle into individual shuffle
|
|
// vectors.
|
|
decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems),
|
|
DecomposedVectors);
|
|
|
|
// 2. Transpose the interleaved-vectors into vectors of contiguous
|
|
// elements.
|
|
switch (NumSubVecElems) {
|
|
case 4:
|
|
transpose_4x4(DecomposedVectors, TransposedVectors);
|
|
break;
|
|
case 32:
|
|
interleave8bit_32x4(DecomposedVectors, TransposedVectors);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// 3. Concatenate the contiguous-vectors back into a wide vector.
|
|
Value *WideVec = concatenateVectors(Builder, TransposedVectors);
|
|
|
|
// 4. Generate a store instruction for wide-vec.
|
|
StoreInst *SI = cast<StoreInst>(Inst);
|
|
Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(),
|
|
SI->getAlignment());
|
|
|
|
return true;
|
|
}
|
|
|
|
// Lower interleaved load(s) into target specific instructions/
|
|
// intrinsics. Lowering sequence varies depending on the vector-types, factor,
|
|
// number of shuffles and ISA.
|
|
// Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
|
|
bool X86TargetLowering::lowerInterleavedLoad(
|
|
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
|
|
ArrayRef<unsigned> Indices, unsigned Factor) const {
|
|
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
|
|
"Invalid interleave factor");
|
|
assert(!Shuffles.empty() && "Empty shufflevector input");
|
|
assert(Shuffles.size() == Indices.size() &&
|
|
"Unmatched number of shufflevectors and indices");
|
|
|
|
// Create an interleaved access group.
|
|
IRBuilder<> Builder(LI);
|
|
X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
|
|
Builder);
|
|
|
|
return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
|
|
}
|
|
|
|
bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI,
|
|
ShuffleVectorInst *SVI,
|
|
unsigned Factor) const {
|
|
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
|
|
"Invalid interleave factor");
|
|
|
|
assert(SVI->getType()->getVectorNumElements() % Factor == 0 &&
|
|
"Invalid interleaved store");
|
|
|
|
// Holds the indices of SVI that correspond to the starting index of each
|
|
// interleaved shuffle.
|
|
SmallVector<unsigned, 4> Indices;
|
|
auto Mask = SVI->getShuffleMask();
|
|
for (unsigned i = 0; i < Factor; i++)
|
|
Indices.push_back(Mask[i]);
|
|
|
|
ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI);
|
|
|
|
// Create an interleaved access group.
|
|
IRBuilder<> Builder(SI);
|
|
X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget,
|
|
Builder);
|
|
|
|
return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
|
|
}
|