llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp

147 lines
5.2 KiB
C++

//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements a register stacking pass.
///
/// This pass reorders instructions to put register uses and defs in an order
/// such that they form single-use expression trees. Registers fitting this form
/// are then marked as "stackified", meaning references to them are replaced by
/// "push" and "pop" from the stack.
///
/// This is primarily a code size optimiation, since temporary values on the
/// expression don't need to be named.
///
//===----------------------------------------------------------------------===//
#include "WebAssembly.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "wasm-reg-stackify"
namespace {
class WebAssemblyRegStackify final : public MachineFunctionPass {
const char *getPassName() const override {
return "WebAssembly Register Stackify";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addPreserved<MachineBlockFrequencyInfo>();
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
public:
static char ID; // Pass identification, replacement for typeid
WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
};
} // end anonymous namespace
char WebAssemblyRegStackify::ID = 0;
FunctionPass *llvm::createWebAssemblyRegStackify() {
return new WebAssemblyRegStackify();
}
bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********** Register Stackifying **********\n"
"********** Function: "
<< MF.getName() << '\n');
bool Changed = false;
MachineRegisterInfo &MRI = MF.getRegInfo();
WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
// Walk the instructions from the bottom up. Currently we don't look past
// block boundaries, and the blocks aren't ordered so the block visitation
// order isn't significant, but we may want to change this in the future.
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : reverse(MBB)) {
MachineInstr *Insert = &MI;
// Don't nest anything inside a phi.
if (Insert->getOpcode() == TargetOpcode::PHI)
break;
// Iterate through the inputs in reverse order, since we'll be pulling
// operands off the stack in FIFO order.
for (MachineOperand &Op : reverse(Insert->uses())) {
// We're only interested in explicit virtual register operands.
if (!Op.isReg() || Op.isImplicit())
continue;
unsigned Reg = Op.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
// Only consider registers with a single definition.
// TODO: Eventually we may relax this, to stackify phi transfers.
MachineInstr *Def = MRI.getVRegDef(Reg);
if (!Def)
continue;
// There's no use in nesting implicit defs inside anything.
if (Def->getOpcode() == TargetOpcode::IMPLICIT_DEF)
continue;
// Single-use expression trees require defs that have one use, or that
// they be trivially clonable.
// TODO: Eventually we'll relax this, to take advantage of set_local
// returning its result.
bool OneUse = MRI.hasOneUse(Reg);
if (!OneUse && !Def->isMoveImmediate())
continue;
// For now, be conservative and don't look across block boundaries,
// unless we have something trivially clonable.
// TODO: Be more aggressive.
if (Def->getParent() != &MBB && !Def->isMoveImmediate())
continue;
// For now, be simple and don't reorder loads, stores, or side effects.
// TODO: Be more aggressive.
if ((Def->mayLoad() || Def->mayStore() ||
Def->hasUnmodeledSideEffects()))
continue;
Changed = true;
if (OneUse) {
// Move the def down and nest it in the current instruction.
MBB.insert(MachineBasicBlock::instr_iterator(Insert),
Def->removeFromParent());
MFI.stackifyVReg(Reg);
Insert = Def;
} else {
// Clone the def down and nest it in the current instruction.
MachineInstr *Clone = MF.CloneMachineInstr(Def);
unsigned OldReg = Def->getOperand(0).getReg();
unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
assert(Op.getReg() == OldReg);
assert(Clone->getOperand(0).getReg() == OldReg);
Op.setReg(NewReg);
Clone->getOperand(0).setReg(NewReg);
MBB.insert(MachineBasicBlock::instr_iterator(Insert), Clone);
MFI.stackifyVReg(Reg);
Insert = Clone;
}
}
}
}
return Changed;
}